JP2006191276A - Transmitting device for electric power and information by proximity magnetic field coupling - Google Patents

Transmitting device for electric power and information by proximity magnetic field coupling Download PDF

Info

Publication number
JP2006191276A
JP2006191276A JP2005000497A JP2005000497A JP2006191276A JP 2006191276 A JP2006191276 A JP 2006191276A JP 2005000497 A JP2005000497 A JP 2005000497A JP 2005000497 A JP2005000497 A JP 2005000497A JP 2006191276 A JP2006191276 A JP 2006191276A
Authority
JP
Japan
Prior art keywords
coil
power supply
power
electric power
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005000497A
Other languages
Japanese (ja)
Inventor
Yukio Odawara
幸生 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita Prefectural Government
Original Assignee
Oita Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita Prefectural Government filed Critical Oita Prefectural Government
Priority to JP2005000497A priority Critical patent/JP2006191276A/en
Publication of JP2006191276A publication Critical patent/JP2006191276A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a device which supplies electric power and transmits signals by proximity magnetic field coupling small-sized by putting close or uniting transmission lines (magnetic paths) of an electric power system and a signal system and to prevent noise from the electric power system from being mixed with a transmitted signal. <P>SOLUTION: A transformer is constituted wherein an exciting coil and a feed coil are loosely coupled with each other, and a flyback type converter is used which accumulates electric power by applying DC power to the exciting coil and supplies electric power to a load with an electromotive force induced across the feed coil by cutting off the DC power. In a non-feed period wherein current variation of the exciting coil is nearly constant and the power supply from the feed coil is stopped, communication is carried out from a transmitting coil which is nearby the feed coil and rotates together to a magnetic detector nearby it with a high-frequency magnetic field on which a pulse-modulated signal is superposed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本体機器と周辺機器との間で、近接磁界結合により本体機器から周辺機器に動作に必要な電力の供給を行い、かつ、近接磁界結合により本体機器と周辺機器の間で情報の伝送(通信)を行う装置に関する技術である。特に、周辺機器が回転を伴う場合にも、非接触で電力の供給と情報の伝送(通信)を行うことが出来る。
Supply power necessary for operation from the main device to the peripheral device by proximity magnetic field coupling between the main device and the peripheral device, and transfer of information (communication) between the main device and peripheral device by the near magnetic field coupling It is the technique regarding the apparatus which performs. In particular, even when a peripheral device is rotated, power can be supplied and information can be transmitted (communication) without contact.

近接磁界結合に基づく電力の伝送手段として、2個の円形コイルを対峙させた同軸円形コイルが知られている。主な用途として、回転する対象物に電力を供給する回転トランスとして使われる。この形態は、一般的なトランスと比べ磁気的結合が疎であり、即ち、電力伝送の力率が低いが、小電力の伝送が手軽に実現できる特長を持つ。これに対し、特許文献「回転体への電力供給用変圧器」及び非特許文献「回転する検出器への非接触による給電におけるコアタイプ回転変圧器の利用」に、円形コイル(図1では給電コイル3に対応する。)に対してコア6を介し励磁コイル5を並列連結する形態の回転トランス(以下、コアタイプ回転変圧器という。)が紹介されている。コアタイプ回転変圧器では励磁コイルの数の自乗に比例して給電電力を増加させることができ、併せて給電効率も改善でき、これにより従来は難しかった径の大きい対象物に対して適用が可能となる。
A coaxial circular coil in which two circular coils are opposed to each other is known as a power transmission means based on near magnetic field coupling. As a main application, it is used as a rotary transformer that supplies power to a rotating object. This form has a feature that the magnetic coupling is sparse compared to a general transformer, that is, the power factor of power transmission is low, but low power transmission can be easily realized. On the other hand, in the patent documents “Transformer for power supply to rotating body” and Non-patent document “Use of core-type rotary transformer for non-contact power feeding to rotating detector”, circular coils (power feeding in FIG. 1) A rotary transformer (hereinafter referred to as a core type rotary transformer) in which the exciting coil 5 is connected in parallel via a core 6 is introduced. The core type rotary transformer can increase the power supply in proportion to the square of the number of exciting coils, and at the same time improve the power supply efficiency, which can be applied to objects with large diameters that were difficult in the past. It becomes.

特開平10−230375 の公開特許Japanese Patent Laid-Open No. 10-230375 小田原幸生(本発明者)著 「回転する検出器への非接触による給電におけるコアタイプ回転変圧器の利用」 電気学会論文誌D (平成13年10月号 P.1068〜1074)Odawara Yukio (Inventor) "Use of core-type rotary transformer for non-contact power supply to rotating detector" IEEJ Transactions D (October 2001, P.1068-1074)

同軸円形コイルやコアタイプ回転変圧器の形式のトランスは非接触により電力の供給を行うが、計測制御における応用では情報(信号)の伝送手段も必要になる。信号を電力として考えれば、もう一組のトランスを用いることもできるが、利便性を良くするために給電用トランスと信号伝送用トランスを接近させる場合、情報伝送において給電によるノイズを受け、正しく情報伝送ができない問題を解決する。
Transformers in the form of coaxial circular coils or core-type rotary transformers supply power without contact, but information (signal) transmission means are also required for measurement control applications. If the signal is considered as electric power, another set of transformers can be used. However, in order to improve convenience, when the power supply transformer and the signal transmission transformer are brought close to each other, the noise caused by the power supply is received in information transmission, and the information is correctly received. Solve the problem of transmission failure.

同軸円形コイルやコアタイプ回転変圧器の駆動にも使われているフライバック型コンバータは、スイッチング素子のトランジスタがオンしている期間にコイルに電力を蓄え、次にトランジスタがオフしている期間にコイルに蓄えた電力を負荷に供給するコンバータである。この給電サイクルのうち、コイルに電力を蓄える期間、即ち負荷への電力供給の休止期間は磁界変化が単調(直線的)であり、かつ、給電サイクルの大部分を占める。そこで、負荷への電力供給の休止期間に、このトランスの近傍の信号伝送コイルと磁気検出手段により、近接磁界結合に基づきパルス変調信号を乗せた高周波磁界により通信を行うことにより給電の影響(ノイズ)を受けない良好な情報伝送ができる。
Flyback converters, which are also used to drive coaxial circular coils and core type rotary transformers, store power in the coil while the transistor of the switching element is on, and then during the period when the transistor is off. It is a converter that supplies electric power stored in a coil to a load. Of this power supply cycle, the period in which power is stored in the coil, that is, the rest period of power supply to the load, is a monotonous (linear) magnetic field change and occupies most of the power supply cycle. Therefore, during the suspension period of power supply to the load, the signal transmission coil and magnetic detection means in the vicinity of this transformer communicate with a high-frequency magnetic field carrying a pulse-modulated signal based on near magnetic field coupling, thereby affecting the effect of power supply (noise). ) Good information transmission without receiving.

非接触による給電と情報伝送が簡易なトランスで実現できる。また、電力と情報信号の伝送路を共通とするため、これらが別々の場合と比べ、機構部品のトランスの小型化に有効である。さらに、情報伝送の期間が給電の期間と比べ数倍長くとれ、情報伝送の高速化や高精度化に対応し易い。
Non-contact power supply and information transmission can be realized with a simple transformer. In addition, since the power and information signal transmission paths are shared, it is effective in reducing the size of the transformer of the mechanical component as compared with the case where these are separate. Furthermore, the information transmission period can be several times longer than the power supply period, and it is easy to cope with higher speed and higher accuracy of information transmission.

例えば、回転軸に取り付けた検出器により、この回転軸のトルクをリアルタイムで計測する例を示す。電力供給を行うトランスは、図1に示すように、静止部の励磁コイル5とコア6と、回転軸4と共に回転する給電コイル3とにより構成する。また、情報伝送を行うため、給電コイル3の外周に送信コイル1を付加し、近傍の静止部に磁気検出器8を置く。なお、図では励磁コイル5の数を2個としているが、必要に応じて変えることができる。コア6の空隙7は支持部材9や、給電コイル3及び送信コイル1の配線が通過する隙間であり、できるだけ小さいほうが望ましい。また、適当な厚さのスペーサ2を送信コイル1と給電コイル3に挟み、両者の電界結合を抑えることができる。   For example, an example is shown in which the torque of the rotating shaft is measured in real time by a detector attached to the rotating shaft. As shown in FIG. 1, the transformer that supplies electric power includes an exciting coil 5 and a core 6 that are stationary parts, and a power supply coil 3 that rotates together with the rotating shaft 4. Further, in order to perform information transmission, the transmission coil 1 is added to the outer periphery of the feeding coil 3, and the magnetic detector 8 is placed on a stationary part in the vicinity. In the figure, the number of exciting coils 5 is two, but can be changed as necessary. The gap 7 of the core 6 is a gap through which the support member 9 and the wires of the feeding coil 3 and the transmission coil 1 pass, and it is desirable that the gap 7 be as small as possible. In addition, the spacer 2 having an appropriate thickness can be sandwiched between the transmission coil 1 and the feeding coil 3 to suppress the electric field coupling between them.

給電回路と信号伝送回路のブロック図を図2に示し、図3に各部の動作波形を示す。
給電回路37の本体機器側回路35(静止部)において、直流電源10と、並列接続の共振コンデンサ14を有する励磁コイル5と、転流ダイオード13を有する半導体スイッチ12とを直列に接続する。回転軸4と共に回転する周辺機器側回路36において、給電コイル3と、整流コンデンサ16と、整流ダイオード17とを直列に接続する。この場合、整流ダイオード17の接続極性は、半導体スイッチ12がオンの時に給電コイル3に発生する起電力による通電を阻止する方向である。なお、整流ダイオード17の端子間容量により生じる電気的振動を減衰させるため、抵抗とダイオードより成るダンパ15を用いる。図2では励磁コイル5、コア6、共振コンデンサ14、半導体スイッチ12、転流ダイオード13の組は2組であり、各組は特性的にも制御的にも同じ条件であるが、組数は必要に応じて変えることができる。
FIG. 2 shows a block diagram of the power feeding circuit and the signal transmission circuit, and FIG. 3 shows operation waveforms of each part.
In the main device side circuit 35 (stationary part) of the power supply circuit 37, the DC power source 10, the exciting coil 5 having the parallel-connected resonant capacitor 14, and the semiconductor switch 12 having the commutation diode 13 are connected in series. In the peripheral device side circuit 36 that rotates together with the rotating shaft 4, the feeding coil 3, the rectifier capacitor 16, and the rectifier diode 17 are connected in series. In this case, the connection polarity of the rectifier diode 17 is a direction in which energization due to the electromotive force generated in the power feeding coil 3 is prevented when the semiconductor switch 12 is on. Note that a damper 15 made of a resistor and a diode is used in order to attenuate the electrical vibration generated by the inter-terminal capacitance of the rectifier diode 17. In FIG. 2, there are two sets of the exciting coil 5, the core 6, the resonant capacitor 14, the semiconductor switch 12, and the commutation diode 13, and each set has the same conditions in terms of characteristics and control. It can be changed as needed.

給電はタイミング・クロック11により半導体スイッチ12を周期的にオン/オフさせ、半導体スイッチ12がオンの時に励磁コイル5に電力を蓄積し、オフと共に励磁コイル5と共振コンデンサ14との間に電気的振動を発生させる。これに伴って励磁コイル5に発生する交流磁界により給電コイル3に誘起する起電力により整流ダイオード17を通電させ、整流コンデンサ16の充電を行う。そして、整流コンデンサ16の充電電力を周辺機器用電源端子18より出力し、周辺機器側36の電源とする。これらはいわゆるフライバック型コンバータの構成である。   Power supply is performed by periodically turning on / off the semiconductor switch 12 by the timing clock 11, and when the semiconductor switch 12 is turned on, electric power is accumulated in the exciting coil 5. Generate vibration. Along with this, the rectifier diode 17 is energized by the electromotive force induced in the feeding coil 3 by the alternating magnetic field generated in the exciting coil 5, and the rectifier capacitor 16 is charged. Then, the charging power of the rectifying capacitor 16 is output from the peripheral device power supply terminal 18 and used as the power supply for the peripheral device side 36. These are the so-called flyback converter configurations.

給電コイル3における発生起電力により整流コンデンサ16の充電を行う期間を給電期間(図3の41)、行わない期間を無給電期間(図3の42)とする。無給電期間42の初期は、半導体スイッチ12はオフであり、本体機器側回路35における電流は、直流電源10の負極→転流ダイオード13→励磁コイル5→直流電源10の正極の方向であり、この電流は負の値から直線的に増加する。この電流の値がゼロになる前に半導体スイッチ12がオンとなるように設定しておくと、次に、直流電源10の正極→励磁コイル5→半導体スイッチ12→直流電源10の負極に電流が流れ、電流の値は直線的に増加する。(励磁コイル6の電流を図3の46に示す。)この際に、給電コイル3と並列接続のダンパ15に流れる微弱電流を無視すると、概して給電コイル3から電流は流れない。(給電コイル電流を図3の47に示す。)即ち、無給電期間42において励磁コイル5への印加電圧は直流電源10の電圧にほぼ等しく一定であり、従って、励磁コイル5による磁界変化もほぼ一定である。このため、無給電期間42に情報の伝送を行うことにより、電力供給の影響(ノイズ)を受けない通信が可能になる。   A period during which the rectifying capacitor 16 is charged by the electromotive force generated in the power feeding coil 3 is defined as a power feeding period (41 in FIG. 3), and a period during which charging is not performed is defined as a non-power feeding period (42 in FIG. 3). In the initial period of the non-power supply period 42, the semiconductor switch 12 is off, and the current in the main device side circuit 35 is in the direction of the negative electrode of the DC power supply 10 → the commutation diode 13 → the exciting coil 5 → the positive electrode of the DC power supply 10. This current increases linearly from a negative value. If the semiconductor switch 12 is set to be turned on before the current value becomes zero, then, the current flows from the positive electrode of the DC power supply 10 to the exciting coil 5 → the semiconductor switch 12 → the negative electrode of the DC power supply 10. The current and current values increase linearly. (The current of the exciting coil 6 is indicated by 46 in FIG. 3.) At this time, if the weak current flowing through the damper 15 connected in parallel with the feeding coil 3 is ignored, generally no current flows from the feeding coil 3. (The feeding coil current is indicated by 47 in FIG. 3.) That is, during the non-feeding period 42, the voltage applied to the exciting coil 5 is substantially equal to the voltage of the DC power source 10, and therefore the magnetic field change by the exciting coil 5 is also almost equal. It is constant. For this reason, by transmitting information during the non-power supply period 42, communication that is not affected by the influence of power supply (noise) becomes possible.

タイミング・クロック11の動作周期40をT、無給電期間42の長さをTとする。(図3参照)一般的に、直流電源10の出力電圧に対する共振コンデンサ14の振幅電圧の比率は20倍程度であり、(T/T)は0.80〜0.95である。電圧比率を大きくすると、無給電期間の占める割合はさらに大きくなり、情報伝送の制御の点で有利である。 The operation cycle 40 of the timing clock 11 T, the length of the passive period 42 and T R. (See FIG. 3) Generally, the ratio of the amplitude voltage of the resonant capacitor 14 to the output voltage of the DC power supply 10 is about 20 times, and (T R / T) is 0.80 to 0.95. When the voltage ratio is increased, the ratio occupied by the non-power supply period is further increased, which is advantageous in terms of information transmission control.

一方、給電期間41では励磁コイル5の電流は短期間に大きく変化し、給電コイル3においても整流コンデンサ16への充電電流が発生し変化する。一方、給電期間41の終了直後に、整流ダイオード17の印加電圧が順方向から逆方向に急激に変わり、整流ダイオード17の端子間容量と給電コイル3との間で電気的振動が起きる。このため、給電期間41及びこの直後の過渡期は情報の伝送に利用しない。   On the other hand, in the power feeding period 41, the current of the exciting coil 5 changes greatly in a short time, and the charging current to the rectifying capacitor 16 is also generated and changed in the power feeding coil 3. On the other hand, immediately after the end of the power supply period 41, the voltage applied to the rectifier diode 17 changes suddenly from the forward direction to the reverse direction, and electrical vibration occurs between the inter-terminal capacitance of the rectifier diode 17 and the power supply coil 3. For this reason, the power feeding period 41 and the transition period immediately after this are not used for information transmission.

信号伝送回路38は給電回路37と同じく本体機器側回路35(静止部)と周辺機器側回路36(回転部)に分かれる。信号伝送の同期をとるため、それぞれの回路において給電期間41と無給電期間42を検出する。周辺機器側回路36では整流ダイオード17の端子間電圧を給電検出器19で検出することにより直接的に給電期間41と無給電期間42を判別できる。一方、本体機器側回路35では、半導体スイッチ12がオン状態からオフになる時が給電期間41の開始にほぼ一致する。また、無給電期間42の開始は、給電期間41の長さは定常状態で一定であり事前に計測しておくことができるので、給電期間41(T−T)に対し余裕をみて長めにとり、簡易的にタイミング・クロック11による半導体スイッチのオフの期間(図3の43)に対応させる。 The signal transmission circuit 38 is divided into a main body device side circuit 35 (stationary part) and a peripheral device side circuit 36 (rotation part) like the power feeding circuit 37. In order to synchronize signal transmission, the power supply period 41 and the non-power supply period 42 are detected in each circuit. In the peripheral device side circuit 36, the power supply period 41 and the non-power supply period 42 can be directly discriminated by detecting the voltage between the terminals of the rectifier diode 17 by the power supply detector 19. On the other hand, in the main device side circuit 35, the time when the semiconductor switch 12 is turned off from the on state substantially coincides with the start of the power supply period 41. In addition, since the length of the power supply period 41 is constant in a steady state and can be measured in advance, the start of the non-power supply period 42 is longer than the power supply period 41 (T−T R ). The semiconductor switch is simply turned off by the timing clock 11 (43 in FIG. 3).

次に、センサ等によるアナログ信号の伝送を行う動作を説明する。給電検出器19により無給電期間42の開始を検出し、次の三角波発生回路20でパルス幅変調の搬送波の三角波をリセット状態から立ち上げ、無給電期間42の終了までに三角波をリセット状態に戻す。(図3の48参照)次のPWM変調回路22でアナログ信号入力21と前記三角波の電圧を比較し、PWM変調による2値パルス信号に変換する。(アナログ信号は図3の49に対応する。また、この変化はタイミング・クロックの周期Tと比べて緩やかであるものとする。2値パルス信号は図3の50に対応する。)これにより連続波変調回路23で振幅変調を行い、送信コイル1の周辺に高周波磁界を発生させる。ここでコンデンサ24は給電期間41に送信コイル1が通電することを防ぐ。コンデンサ25は共振により高周波磁界を発生させるために使う。   Next, an operation for transmitting an analog signal by a sensor or the like will be described. The feed detector 19 detects the start of the non-feed period 42, the next triangle wave generation circuit 20 raises the triangular wave of the pulse-width modulated carrier from the reset state, and returns the triangle wave to the reset state by the end of the no-feed period 42. . (See 48 in FIG. 3) In the next PWM modulation circuit 22, the analog signal input 21 and the triangular wave voltage are compared and converted to a binary pulse signal by PWM modulation. (Analog signal corresponds to 49 in FIG. 3. Also, this change is assumed to be slow compared with the timing clock period T. The binary pulse signal corresponds to 50 in FIG. 3.) The wave modulation circuit 23 performs amplitude modulation to generate a high-frequency magnetic field around the transmission coil 1. Here, the capacitor 24 prevents the transmission coil 1 from being energized during the power supply period 41. The capacitor 25 is used to generate a high frequency magnetic field by resonance.

本体機器側回路35において、送信コイル1が発生する高周波磁界を磁気検出器8で検出し、帯域フィルタ26により主に給電のノイズである低周波成分を取り除き、連続波復調回路27で検波を行う。検波後の波形は図3の51に示すように信号の立ち上がりと立下りが鈍っており、また、振幅も変動する可能性があるため、一定の閾値でこのオン/オフを判定すると誤差を生じる。そこで、次の微分回路28と、シュミット型比較器による2値変換回路29で検波後の波形の信号の立ち上がりと立ち下りを検出して2値信号に変換し、誤差を少なくする。次に、パルス検出回路30でタイミング・クロック11を参照し、無給電期間42に対応するパルス信号のみを検出し、受信PWM信号54を得る。これをPWM復調回路31でアナログ信号に変換し、端子32より出力する。
In the main device side circuit 35, the high frequency magnetic field generated by the transmission coil 1 is detected by the magnetic detector 8, the low frequency component which is mainly power supply noise is removed by the band filter 26, and the continuous wave demodulation circuit 27 detects the high frequency magnetic field. . As shown by 51 in FIG. 3, the waveform after detection has a slow rise and fall of the signal, and the amplitude may also fluctuate. Therefore, an error occurs when this on / off determination is made with a certain threshold. . Therefore, the next differentiation circuit 28 and a binary conversion circuit 29 using a Schmitt comparator detect the rising and falling edges of the signal of the waveform after detection and convert it to a binary signal to reduce the error. Next, the pulse detection circuit 30 refers to the timing clock 11, detects only the pulse signal corresponding to the non-feed period 42, and obtains the received PWM signal 54. This is converted into an analog signal by the PWM demodulation circuit 31 and output from the terminal 32.

前述の「発明を実施するための最良の形態」に対応し、具体的に車軸のトルクを計測するシステムを試作した。機構部品の回転トランスは、給電コイル3の直径を13cm、導線の巻き数を20回とした。コア6に外径28mm、内径15mm、厚さ13mm、空隙6mmのフェライト製コアを用い、これに対し導線の巻き数を37回とし励磁コイル5とした。励磁コイル5の数は1個である。給電コイル3の自己インダクタンスは200μH、励磁コイル5の自己インダクタンスは160μH、これらの相互インダクタンスは60μHである。また、共振コンデンサ14は0.02μFの高耐圧コンデンサを使用し、半導体スイッチ12には転流ダイオード13を内蔵するパワーMOS・FETを使用した。送信コイル1として給電コイル3の上に約1mmのスペーサ2を挟みビニル被覆導線を2回巻いた。送信コイル1のインダクタンスは0.7μHである。磁気検出器8は磁気検出の手段として径20mmのコイルを用い、トランジスタ(FET)により信号の増幅を行った。   In response to the above-mentioned “Best Mode for Carrying Out the Invention”, a system for specifically measuring the torque of an axle was prototyped. In the rotating transformer of the mechanical component, the diameter of the feeding coil 3 was 13 cm, and the number of windings of the conducting wire was 20 times. A ferrite core having an outer diameter of 28 mm, an inner diameter of 15 mm, a thickness of 13 mm, and a gap of 6 mm was used as the core 6. The number of exciting coils 5 is one. The feed coil 3 has a self-inductance of 200 μH, the excitation coil 5 has a self-inductance of 160 μH, and their mutual inductance is 60 μH. The resonant capacitor 14 is a 0.02 μF high voltage capacitor, and the semiconductor switch 12 is a power MOS • FET incorporating a commutation diode 13. A vinyl-coated conductive wire was wound twice with a spacer 2 of about 1 mm on the feeding coil 3 as the transmission coil 1. The inductance of the transmission coil 1 is 0.7 μH. The magnetic detector 8 uses a coil having a diameter of 20 mm as means for magnetic detection, and amplifies the signal by a transistor (FET).

直流電源10の電圧を10V、タイミング・クロック11の動作周波数を20kHz、半導体スイッチのオン/オフのデューティ比を80%とし、効率60%で1Wの給電を行うと共に、信号伝送を行った。連続波変調回路23はAM方式で、周波数は20MHzである。信号伝送距離は磁気検出器8のコイル先端において送信コイル1の巻き線から15mm程度まで離すことができた。図4に、アナログ信号入力21に対し周波数1kHz、振幅2Vの正弦波信号(図4の58)を入力し、この伝送信号をアナログ信号出力32により観察したアナログ信号出力波形59を示す。PWM復調回路31がサンプル・アンド・ホールド回路に拠っている関係で階段状波形になっているが、十分に実用的な精度と速度で信号(情報)の伝送が得られた。
The voltage of the DC power source 10 was 10 V, the operating frequency of the timing clock 11 was 20 kHz, the on / off duty ratio of the semiconductor switch was 80%, 1 W was fed at an efficiency of 60%, and signal transmission was performed. The continuous wave modulation circuit 23 is an AM system and has a frequency of 20 MHz. The signal transmission distance could be separated from the winding of the transmission coil 1 to about 15 mm at the coil tip of the magnetic detector 8. FIG. 4 shows an analog signal output waveform 59 in which a sine wave signal (58 in FIG. 4) having a frequency of 1 kHz and an amplitude of 2 V is input to the analog signal input 21 and this transmission signal is observed by the analog signal output 32. Although the PWM demodulating circuit 31 has a stepped waveform because it depends on the sample-and-hold circuit, transmission of signals (information) was obtained with sufficiently practical accuracy and speed.

(1)発明を実施するための最良の形態及び実施例として回転型を示したが、静止型の適用も可能である。これにより、引火性のガスや粉塵の多い環境や水中でも着脱自在な給電及び情報伝送の手段として利用できる。 (1) Although the rotary type is shown as the best mode and example for carrying out the invention, a stationary type can also be applied. Thus, it can be used as a power supply and information transmission means that is detachable even in an environment with a lot of flammable gas or dust or in water.

(2)発明を実施するための最良の形態及び実施例では、背景技術で述べたコアタイプ回転変圧器をベースとしているが、特性の類似している同軸円形コイルを用いることもできる。 (2) Although the best mode and embodiment for carrying out the invention are based on the core type rotary transformer described in the background art, a coaxial circular coil having similar characteristics can also be used.

(3)発明を実施するための最良の形態及び実施例では、伝送する信号をパルス幅変調(PWM)信号のとしているが、無給電期間(図3の42)にデジタル信号を1ビットずつ順次送受信するシリアル伝送にも対応できる。 (3) In the best mode and embodiment for carrying out the invention, a signal to be transmitted is a pulse width modulation (PWM) signal, but a digital signal is sequentially bit by bit during a non-feed period (42 in FIG. 3). It can also handle serial transmission.

(4)発明を実施するための最良の形態及び実施例では、本体機器側(図2の35)から周辺機器側36に電力の供給を行い、これと逆向きに信号伝送を行う例を示しているが、電力供給の方向と同じ向きに信号伝送を行うことも可能である。 (4) In the best mode and embodiment for carrying out the invention, an example is shown in which power is supplied from the main device side (35 in FIG. 2) to the peripheral device side 36 and signal transmission is performed in the opposite direction. However, it is also possible to perform signal transmission in the same direction as the direction of power supply.

(5)本発明は、可動部の回路と静止部の回路とを結ぶ配線で、配線の表皮が損傷剥離し、微細な塵を発生する問題を解決することができ、或いは、配線をコンパクトにまとめることができるため、クリーンルーム対応機器の防塵対策や小型化に対応できる。
(5) The present invention is a wiring that connects the circuit of the movable part and the circuit of the stationary part, and can solve the problem that the skin of the wiring is damaged and peeled and fine dust is generated, or the wiring is made compact. Since it can be put together, it can cope with dust-proof measures and downsizing of clean room compatible devices.

機構部品の回転トランスの構成Structure of rotating transformer for mechanical parts 本発明の装置の回路ブロック図Circuit block diagram of the device of the present invention 図2における各部の動作波形Operation waveform of each part in FIG. 図2における信号伝送の観察波形Observation waveform of signal transmission in Fig. 2

符号の説明Explanation of symbols

40 タイミング・クロック(31)に基づく給電及び信号伝送の周期(期間T)
41 給電期間
42 無給電期間(期間T
43 半導体スイッチ(12)がオンの期間
44 半導体スイッチ(12)がオフの期間
45 半導体スイッチ(12)のオンとオフの状態を示した波形
46 励磁コイル(6)電流の波形
47 給電コイル(3)電流の波形
48 三角波発生回路(20)出力波形
49 アナログ信号入力(21)波形
50 PWM変調回路(22)出力波形
51 連続波復調回路(27)出力波形
52 微分回路(22)出力波形
53 2値変換回路(29)出力波形
54 パルス検出回路(30)出力波形
40 Period of power supply and signal transmission based on the timing clock (31) (period T)
41 feeding period 42 parasitic period (T R)
43 Semiconductor switch (12) ON period 44 Semiconductor switch (12) OFF period 45 Waveform showing semiconductor switch (12) ON / OFF state 46 Excitation coil (6) Current waveform 47 Feed coil (3 ) Current waveform 48 Triangular wave generation circuit (20) Output waveform 49 Analog signal input (21) Waveform 50 PWM modulation circuit (22) Output waveform 51 Continuous wave demodulation circuit (27) Output waveform 52 Differentiation circuit (22) Output waveform 53 2 Value conversion circuit (29) output waveform 54 Pulse detection circuit (30) output waveform

Claims (1)

給電コイルと励磁コイルとにより疎なる磁気結合をなすトランスを用い、前記励磁コイルに直流電源を印加することにより電力を蓄積し、前記直流電源の切断により前記給電コイルに誘起する起電力により負荷に電力を供給するフライバック型コンバータにおいて、前記トランスの近傍に送信コイルと磁気検出器を設け、前記励磁コイルの電流変化がほぼ一定であり前記負荷への電力供給が停止する無給電期間に、前記送信コイルと前記磁気検出器の間でパルス変調に基づく高周波磁界により通信を行う近接磁界結合による電力および情報の伝送装置。

Using a transformer that forms a sparse magnetic coupling between the power supply coil and the excitation coil, the power is stored by applying a DC power supply to the excitation coil, and the load is generated by the electromotive force induced in the power supply coil by the disconnection of the DC power supply. In the flyback converter for supplying power, a transmission coil and a magnetic detector are provided in the vicinity of the transformer, and during the non-feeding period in which the current change of the excitation coil is substantially constant and power supply to the load is stopped, A power and information transmission device using near magnetic field coupling that performs communication by a high-frequency magnetic field based on pulse modulation between a transmission coil and the magnetic detector.

JP2005000497A 2005-01-05 2005-01-05 Transmitting device for electric power and information by proximity magnetic field coupling Withdrawn JP2006191276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000497A JP2006191276A (en) 2005-01-05 2005-01-05 Transmitting device for electric power and information by proximity magnetic field coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000497A JP2006191276A (en) 2005-01-05 2005-01-05 Transmitting device for electric power and information by proximity magnetic field coupling

Publications (1)

Publication Number Publication Date
JP2006191276A true JP2006191276A (en) 2006-07-20

Family

ID=36797998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000497A Withdrawn JP2006191276A (en) 2005-01-05 2005-01-05 Transmitting device for electric power and information by proximity magnetic field coupling

Country Status (1)

Country Link
JP (1) JP2006191276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490232A1 (en) * 2006-12-20 2012-08-22 Analogic Corporation Non-contact rotary power transfer system
CN103795154A (en) * 2013-11-22 2014-05-14 西南交通大学 Load legitimacy determination method of inductive wireless electric energy transmission system
CN114866153A (en) * 2022-07-07 2022-08-05 国机传感科技有限公司 Extremely-low-frequency magnetic sensing signal transmitting system, method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490232A1 (en) * 2006-12-20 2012-08-22 Analogic Corporation Non-contact rotary power transfer system
US8581437B2 (en) 2006-12-20 2013-11-12 Analogic Corporation Non-contact rotary power transfer system
CN103795154A (en) * 2013-11-22 2014-05-14 西南交通大学 Load legitimacy determination method of inductive wireless electric energy transmission system
CN114866153A (en) * 2022-07-07 2022-08-05 国机传感科技有限公司 Extremely-low-frequency magnetic sensing signal transmitting system, method and device

Similar Documents

Publication Publication Date Title
CN106341053B (en) Flyback-based power conversion device
KR102224451B1 (en) Power receiver and power transmitter
US9304615B2 (en) Capacitive stylus pen having a transformer for boosting a signal
JP4941417B2 (en) Non-contact power transmission device
JP6278526B2 (en) Transmission of signals through a contactless interface
CN104052290B (en) Switching Power Converter With Secondary To Primary Messaging
US10680526B2 (en) Power transfer and feedback across a common isolator
TW201044740A (en) Non-contact power supply system
JP2008161052A (en) Charging system
JP4521574B2 (en) Half-bridge resonant converter
JP2008099352A (en) Non-contact power transmission apparatus
JP2014027102A (en) Coil unit and wireless power feeder using the same
JP3906708B2 (en) Non-contact power transmission device
CN101516151A (en) LED drive circuit and LED illumination device using same
JP2009201246A (en) Dc-dc converter and voltage detector using the same
JP2012060812A (en) Non-contact power transmission device
EP2887520A1 (en) A synchronous rectifier and a method for controlling it
TW201232986A (en) Wireless charging system and transmission circuit thereof
JP5559312B2 (en) Electromagnetic equipment using shared magnetic flux in multi-load parallel magnetic circuit and its operation method
JP2006191276A (en) Transmitting device for electric power and information by proximity magnetic field coupling
WO2015019908A1 (en) Wireless power transmission system
JP2007014136A (en) Switching power supply
JP2014180071A (en) Control method of non-contact power supply device and non-contact power supply device
EP2154791B1 (en) Method and system for inductively transmitting energy and information
CN218771789U (en) Magnetic coupling isolation circuit for switching power converter and switching power converter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401