JP2006189004A - Variable compression ratio mechanism for internal combustion engine - Google Patents

Variable compression ratio mechanism for internal combustion engine Download PDF

Info

Publication number
JP2006189004A
JP2006189004A JP2005002668A JP2005002668A JP2006189004A JP 2006189004 A JP2006189004 A JP 2006189004A JP 2005002668 A JP2005002668 A JP 2005002668A JP 2005002668 A JP2005002668 A JP 2005002668A JP 2006189004 A JP2006189004 A JP 2006189004A
Authority
JP
Japan
Prior art keywords
control shaft
control
internal combustion
combustion engine
reciprocator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005002668A
Other languages
Japanese (ja)
Other versions
JP4429925B2 (en
Inventor
Narifumi Sugawara
済文 菅原
Katsuya Mogi
克也 茂木
Yoshiaki Tanaka
儀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nissan Motor Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Mitsubishi Electric Corp filed Critical Nissan Motor Co Ltd
Priority to JP2005002668A priority Critical patent/JP4429925B2/en
Publication of JP2006189004A publication Critical patent/JP2006189004A/en
Application granted granted Critical
Publication of JP4429925B2 publication Critical patent/JP4429925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a lock state of a reciprocating piece, when a control shaft operates at a maximum-minimum operating angle or more, without using a special member, by regulating a screw lead angle of the reciprocating piece by an operating angle of the control shaft. <P>SOLUTION: This variable compression ration mechanism has the control shaft 9 arranged in parallel to a crankshaft and provided with an eccentric cam 10, a control plate 14 integrally arranged on this control shaft 9, the reciprocating piece 20 for slidably connecting a pin of a tip part to a slit of this control plate, and a rotatingly driving source for changing the internal combustion engine compression ratio by moving the reciprocating piece in the shaft direction by fixed position rotation by meshing with a base end part screw part of this reciprocating piece. The control plate 14 abuts on a stopper arranged in a position of a turning angle θ or more of the control shaft 9 determined by an expression of tan<SP>-1</SP>(p/πd)+tan<SP>-1</SP>μ≤θ(in the expression, μ: a friction coefficient, p: a screw pitch, d: a screw diameter, and θ: an angle formed of a fork of the control shaft and a vertical shaft), when the control shaft 9 is at the maximum-minimum operating angle or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば自動車のエンジンなど、内燃機関の圧縮比を連続的に変化させる内燃機関可変圧縮比機構に関するものである。   The present invention relates to an internal combustion engine variable compression ratio mechanism that continuously changes the compression ratio of an internal combustion engine such as an automobile engine.

自動車のエンジンにおいては、一般に、エンジンに加わる負荷が低い場合にはそのシリンダ内に吸入される燃料の量が少ないので、ピストンが上死点近傍に位置するときのシリンダ内の温度や圧力は低く、燃焼の安定性が低下する。そのため、圧縮比を高めて燃焼の安定性を向上させると共に、膨張比を高めて熱効率を向上させ、燃料消費量の低減を図っている。一方、エンジンに加わる負荷が高くなると、シリンダ内に吸入される燃料の量が多くなり、シリンダ内の温度も上昇し、ノッキングが発生する。このノッキングを防止するために、エンジンの負荷が小さいときに圧縮比を高くし、エンジンの負荷が大きいときに圧縮比を低く制御する圧縮比可変機構が開発されている(例えば、特許文献1参照)。   In an automobile engine, generally, when the load applied to the engine is low, the amount of fuel sucked into the cylinder is small, so the temperature and pressure in the cylinder when the piston is located near the top dead center are low. , Combustion stability decreases. Therefore, the compression ratio is increased to improve the stability of combustion, and the expansion ratio is increased to improve the thermal efficiency, thereby reducing the fuel consumption. On the other hand, when the load applied to the engine increases, the amount of fuel sucked into the cylinder increases, the temperature in the cylinder rises, and knocking occurs. In order to prevent this knocking, a variable compression ratio mechanism has been developed that increases the compression ratio when the engine load is small and controls the compression ratio low when the engine load is large (see, for example, Patent Document 1). ).

この圧縮比可変機構では、クランクシャフトのクランクピンに回転可能にロアーリンクを取り付け、一端がピストンピンに連係するアッパーリンクの他端をロアーリンクの一部に連係させ、偏心カムを有する制御軸をクランクシャフトと平行に配置し、一端がロアーリンクの他部に連係する制御リンクの他端を制御軸の偏心カムに連係させ、往復子により制御軸を所定の回転範囲で回転駆動し圧縮比を制御できるようにしている。ここで用いられる往復子は、その基端部のねじに噛合する回転駆動源により回転駆動されることにより、回転運動を軸線方向の直線運動に変換し、この往復子の直線運動を制御軸の回動運動に変換して内燃機関の圧縮比を変化させる。   In this variable compression ratio mechanism, a lower link is rotatably attached to the crank pin of the crankshaft, one end of the upper link linked to the piston pin is linked to a part of the lower link, and a control shaft having an eccentric cam is provided. The other end of the control link, which is arranged in parallel with the crankshaft and one end of which is linked to the other part of the lower link, is linked to the eccentric cam of the control shaft. I can control it. The reciprocator used here is rotationally driven by a rotational drive source that meshes with a screw at the base end portion thereof, thereby converting the rotational motion into a linear motion in the axial direction. This is converted into a rotational motion to change the compression ratio of the internal combustion engine.

内燃機関の省燃費のためには、往復子の駆動系全体としての低消費電力化は勿論、往復子の動作を必要としない保持モード時(圧縮比固定)には無通電または微小通電にて保持させることが効果大である。保持モード時においては内燃機関の圧縮比は固定であるため、往復子の動きとしては動作不要であるが、内燃機関のシリンダにおける爆発力による反力を受けるため、圧縮比保持に保持力が必要である。このとき往復子は往復子のねじリードを自己保持可能に設定し、不可逆変化とすることにより保持モード時において省電力状態を達成可能としている。   In order to save the fuel consumption of the internal combustion engine, not only the power consumption of the reciprocator drive system as a whole is reduced, but also in the holding mode where the operation of the reciprocator is not required (compression ratio is fixed) It is very effective to hold it. In the holding mode, the compression ratio of the internal combustion engine is fixed, so no operation is required for the movement of the reciprocator. However, the holding force is required to hold the compression ratio because it receives the reaction force due to the explosion force in the cylinder of the internal combustion engine. It is. At this time, the reciprocator sets the screw lead of the reciprocator so that it can be held by itself, and an irreversible change makes it possible to achieve a power saving state in the holding mode.

しかし、制御軸からの反力等の外力によりモーターが逆駆動されないようなねじリードを設定している場合で、かつ制御軸に動作範囲固定用のストッパがある場合は、往復子の作動範囲内でストッパに当接した場合には、往復子がねじ作用によってロックし動作不能となる。このため、ロック状態回避策としては最大動作角以上に動作させずストッパに当接させない。   However, if the screw lead is set so that the motor is not driven reversely by an external force such as reaction force from the control shaft, and if there is a stopper for fixing the operating range on the control shaft, the operating range of the reciprocator When it comes into contact with the stopper, the reciprocator is locked by the screw action and becomes inoperable. For this reason, as a lock state avoidance measure, it does not operate beyond the maximum operating angle and does not contact the stopper.

または、雌ネジ部材と移動規制部材の間にスラスト転がり軸受けを介装し、このスラスト転がり軸受けが雌ネジ部材と移動規制部材の圧着圧力を相対回転を許容しつつ受け止め、当接してもロックさせない構造とすることが考えられている(例えば、特許文献2参照)。   Alternatively, a thrust rolling bearing is interposed between the female screw member and the movement restricting member, and this thrust rolling bearing accepts the pressure of the female screw member and the movement restricting member while allowing relative rotation, and does not lock even when abutting. A structure is considered (see, for example, Patent Document 2).

特開2002−138867号公報(図1)JP 2002-138867 A (FIG. 1) 特開平8−268691号公報(図1〜図3、[0006]、[0018])Japanese Patent Laid-Open No. 8-268691 (FIGS. 1 to 3, [0006], [0018])

従来の内燃機関の可変圧縮比機構は上記のように構成されているので、往復子がねじロックする恐れがあり、このねじロックを回避するために、動作範囲を限定してストッパに当接させない構造では、万が一当接させた場合は即不良となってしまうためにその保証方法等や基準位置となるストッパに当接させないで内燃機関と往復子との初期位置を出し接合させる方法等の問題があり、現実解としては難しい状況である。また、雌ネジ部材と移動規制部材の間にスラスト転がり軸受けを介装する構造では、構成が複雑になるとともに内燃機関から加わる大きな外力に耐える構成とすることが困難であるという課題があった。   Since the conventional variable compression ratio mechanism of the internal combustion engine is configured as described above, the reciprocator may be screw-locked. In order to avoid this screw lock, the operating range is limited and the stopper is not brought into contact with the stopper. In the structure, if it makes contact, it will become defective immediately, so there are problems such as the guarantee method and the method of bringing out the initial position of the internal combustion engine and the reciprocator without joining the stopper as the reference position This is a difficult situation as a real solution. Further, in the structure in which the thrust rolling bearing is interposed between the female screw member and the movement restricting member, there is a problem that the configuration is complicated and it is difficult to have a configuration that can withstand a large external force applied from the internal combustion engine.

この発明は、上記のような課題を解消するためになされたもので、圧縮比可変用制御軸の作動角によって往復子のねじリード角を規定することにより、特別な部材を用いることなく、制御軸が最大・最少の作動角以上作動したときにおける往復子のロック状態を回避することが可能な内燃機関の可変圧縮比機構を得ることを目的とする。   The present invention has been made to solve the above-described problems. By defining the screw lead angle of the reciprocator by the operating angle of the control shaft for varying the compression ratio, the control can be performed without using a special member. It is an object of the present invention to obtain a variable compression ratio mechanism of an internal combustion engine that can avoid a locked state of a reciprocator when a shaft is operated at a maximum or minimum operating angle.

この発明に係る内燃機関の可変圧縮比機構は、ピストンのピストンピンとクランクシャフトのクランクピンとを連結する複数のリンクと、偏心カムが設けられ前記クランクシャフトと平行に配設された制御軸と、前記複数のリンクの一つに一端が連結されるとともに、前記偏心カムに他端が連結された制御リンクと、前記制御軸に一体に設けられた制御プレートと、この制御プレートのスリットに先端部のピンが滑動可能に連結された往復子と、この往復子の基端部ねじ部に噛合する回転子と、この回転子の回転で前記往復子を軸方向に移動させて前記制御軸を回動させ、その制御軸の回動によって前記ピストン位置を変化させて内燃機関圧縮比を変える回転駆動源とを備え、tan−1(p/πd)+tan−1μ≦θの式により求められる制御軸の回動角θ以上の位置に設けるストッパは、前記制御軸が最大・最少の作動角以上において前記制御プレートが当接する。 A variable compression ratio mechanism for an internal combustion engine according to the present invention includes a plurality of links connecting a piston pin of a piston and a crank pin of a crankshaft, a control shaft provided with an eccentric cam and disposed in parallel with the crankshaft, A control link having one end connected to one of the plurality of links and the other end connected to the eccentric cam, a control plate integrally provided on the control shaft, and a slit at the tip of the control plate. A reciprocator to which a pin is slidably connected, a rotor meshing with a base end screw portion of the reciprocator, and the rotation of the rotor moves the reciprocator in the axial direction to rotate the control shaft. And a rotational drive source that changes the compression ratio of the internal combustion engine by changing the piston position by the rotation of the control shaft, and is obtained by the equation of tan −1 (p / πd) + tan −1 μ ≦ θ. A stopper provided at a position equal to or greater than the rotation angle θ of the control shaft is in contact with the control plate when the control shaft is at a maximum or minimum operating angle.

この発明によれば、制御軸が最大・最少の作動角以上において、制御軸と一体の制御プレートがストッパに当接するように構成したので、この当接時には制御プレートは傾斜して、往復子のねじリード角に制御プレートの作動角θが加算されたことになる。この結果、往復子のねじリード角を自己保持可能に設定していても、制御プレートがストッパに当接することにより該制御プレートの作動角θが加算されて、ねじリード角を自己保持可能な角度以上とすることになり、特別な部材等を用いることなく、ねじロックを確実に回避することができる効果がある。   According to the present invention, the control plate integrated with the control shaft is in contact with the stopper when the control shaft is at the maximum or minimum operating angle. The operating angle θ of the control plate is added to the screw lead angle. As a result, even if the screw lead angle of the reciprocator is set so as to be capable of self-holding, the operating angle θ of the control plate is added when the control plate comes into contact with the stopper, so that the screw lead angle can be self-held. Thus, there is an effect that the screw lock can be surely avoided without using a special member or the like.

実施の形態1.
図1は内燃機関の圧縮比可変機構を示す縦断説明図である。シリンダブロック1には円筒状のシリンダ2が形成されており、その内部にはピストン3が昇降可能に配置されている。ピストン3のピストンピン4とクランクシャフト5のクランクピン6とは、複リンク式の圧縮比可変機構を介して機械的に連携されている。この圧縮比可変機構は、クランクピン6に相対回転可能に外嵌するロアーリンク7、このロアーリンク7とピストンピン4とを連携するアッパーリンク8、クランクシャフト5と平行に複数設けてあるシリンダの列方向に延びる制御軸9、この制御軸9に偏心して設けられた偏心カム10、この偏心カム10とロアーリンク7とを連携する制御リンク11、制御軸9を所定の制御範囲で回転駆動すると共に所定の回転位置に保持する往復子20(図2に示すもの)とを備えている。
Embodiment 1 FIG.
FIG. 1 is a longitudinal explanatory view showing a compression ratio variable mechanism of an internal combustion engine. A cylindrical cylinder 2 is formed in the cylinder block 1, and a piston 3 is disposed inside the cylinder block 1 so as to be movable up and down. The piston pin 4 of the piston 3 and the crankpin 6 of the crankshaft 5 are mechanically linked via a multi-link type compression ratio variable mechanism. The variable compression ratio mechanism includes a lower link 7 that is externally fitted to the crankpin 6 so as to be relatively rotatable, an upper link 8 that links the lower link 7 and the piston pin 4, and a cylinder that is provided in parallel with the crankshaft 5. A control shaft 9 extending in the row direction, an eccentric cam 10 provided eccentric to the control shaft 9, a control link 11 that links the eccentric cam 10 and the lower link 7, and a control shaft 9 are driven to rotate within a predetermined control range. And a reciprocator 20 (shown in FIG. 2) that is held at a predetermined rotational position.

アッパーリンク8の上端部はピストンピン4に相対回転可能に連結され、下端部が連結ピン12を介してロアーリンク7に相対回転可能に連結されている。制御リンク11の一端は連結ピン13を介してロアーリンク7に相対回転可能に連結され、他端は偏心カム10に相対回転可能に外嵌されている。制御軸9に設けられている制御プレート14のスリット15には往復子20のピン20aが滑動可能に係合されている。往復子20で調整されるピン20aの位置により連携機構の姿勢が決められ、ピストン3の上方に形成される燃焼室の圧縮比が制御されるように動作する。図1で、矢印A1〜A7は、内燃機関の燃焼動作時の変動荷重に起因して各部に加わる力の方向と流れを表わしたものである。   An upper end portion of the upper link 8 is connected to the piston pin 4 so as to be relatively rotatable, and a lower end portion is connected to the lower link 7 via the connecting pin 12 so as to be relatively rotatable. One end of the control link 11 is connected to the lower link 7 via a connecting pin 13 so as to be relatively rotatable, and the other end is externally fitted to the eccentric cam 10 so as to be relatively rotatable. A pin 20a of a reciprocator 20 is slidably engaged with a slit 15 of a control plate 14 provided on the control shaft 9. The position of the pin 20a adjusted by the reciprocator 20 determines the attitude of the linkage mechanism, and operates so that the compression ratio of the combustion chamber formed above the piston 3 is controlled. In FIG. 1, arrows A <b> 1 to A <b> 7 represent the direction and flow of the force applied to each part due to the fluctuating load during the combustion operation of the internal combustion engine.

図2は上記の往復子20の駆動機構の外観構成を示す正面図である。図において、往復子20を内蔵したハウジング21の端面にボルト24で結合されたケース22、このケース22の端面にボルト25で結合されたカバー23および該ケースの一端に取り付けられた駆動源としての電動モータ30とで構成されている。往復子20は、ハウジング21から露出した他端部に取り付けられたピン20aを有し、そのスライド頭部が制御プレート14のスリット15に滑動可能に係合している。制御プレート14は、ピン20aが軸線方向に移動すると制御軸9を中心として回動され、その動きが図1に示すように連係機構を介してピストン3に伝えられ、ピストン3の上方に形成される燃焼室の圧縮比を制御するようになっている。構造上、往復子20は連係機構を介して内燃機関の本来の動きによって生じる交番荷重を受けやすい状態におかれる。   FIG. 2 is a front view showing an external configuration of the drive mechanism of the reciprocator 20. In the figure, a case 22 connected to an end face of a housing 21 incorporating a reciprocator 20 with a bolt 24, a cover 23 connected to an end face of the case 22 with a bolt 25, and a drive source attached to one end of the case. The electric motor 30 is comprised. The reciprocator 20 has a pin 20 a attached to the other end exposed from the housing 21, and its slide head is slidably engaged with the slit 15 of the control plate 14. The control plate 14 is rotated about the control shaft 9 when the pin 20a moves in the axial direction, and its movement is transmitted to the piston 3 via the linkage mechanism as shown in FIG. The compression ratio of the combustion chamber is controlled. Structurally, the reciprocator 20 is easily subjected to an alternating load generated by the original movement of the internal combustion engine via the linkage mechanism.

図3は往復子20の駆動機構の内部構造を示す縦断説明図である。駆動源としての電動モータ30のモータピニオン軸32に設けられた歯車33から回転駆動力を伝達する回転駆動力伝達手段としての3つの歯車34,35および36と、この歯車36の内面に形成され、かつ上記往復子20の雄ねじ37に螺合する雌ねじ(回転力伝達手段)38とから往復子20の駆動機構が構成されている。   FIG. 3 is a longitudinal explanatory view showing the internal structure of the drive mechanism of the reciprocator 20. Three gears 34, 35, and 36 serving as rotational driving force transmitting means for transmitting rotational driving force from a gear 33 provided on a motor pinion shaft 32 of an electric motor 30 serving as a driving source, and an inner surface of the gear 36 are formed. A drive mechanism for the reciprocator 20 is constituted by a female screw (rotational force transmitting means) 38 that is screwed into the male screw 37 of the reciprocator 20.

往復子20は略円筒状のハウジング21内に摺動可能に配置されており、このハウジング21の端面にボルト24で結合されたケース22と該ケースの端面にボルト25で結合されたカバー23との間に形成された空間26には、電動モータ30のモータピニオン軸32に設けられた歯車33、回転駆動力伝達手段としての3つの歯車34,35および36が収納されている。また、カバー23には往復子20の他端側の収納が可能な内空間27が形成されている。更に、カバー23の一部には電動モータ30のモータピニオン軸32の貫通を受け入れる開口部28が形成されており、この開口部を中心としたカバー23の外面に上記電動モータ30がボルト等の締結部材(図示せず)で固定されている。   The reciprocator 20 is slidably disposed in a substantially cylindrical housing 21. A case 22 coupled to the end surface of the housing 21 with a bolt 24 and a cover 23 coupled to the end surface of the case with a bolt 25. In the space 26 formed between the two, a gear 33 provided on the motor pinion shaft 32 of the electric motor 30 and three gears 34, 35 and 36 as rotational driving force transmitting means are accommodated. In addition, the cover 23 is formed with an inner space 27 in which the other end side of the reciprocator 20 can be stored. Further, an opening 28 for receiving the penetration of the motor pinion shaft 32 of the electric motor 30 is formed in a part of the cover 23, and the electric motor 30 is attached to the outer surface of the cover 23 around the opening such as a bolt. It is fixed by a fastening member (not shown).

そして、制御軸9の中心を通る鉛直軸0−0に対し左右の最大・最少の作動角θ以上において制御プレート14が当接するように内燃機関側にストッパ39が設けられている。このストッパ39は、下記の式よりに求められる制御軸9と一体の制御プレート14の作動角以上の位置に設けられている。



tan−1(p/πd)+tan−1μ≦θ

μ:摩擦係数
p:ねじピッチ
d:ねじ径
θ:制御軸のフォークと垂直軸とがなす角
A stopper 39 is provided on the internal combustion engine side so that the control plate 14 comes into contact with the vertical axis 0-0 passing through the center of the control shaft 9 at the left and right maximum and minimum operating angles θ. This stopper 39 is provided at a position equal to or greater than the operating angle of the control plate 14 integrated with the control shaft 9 obtained from the following equation.

Record

tan −1 (p / πd) + tan −1 μ ≦ θ

μ: Friction coefficient
p: Screw pitch
d: Screw diameter
θ: Angle between the control shaft fork and the vertical shaft

図示例は、制御軸9の中心を通る鉛直軸0−0に対し、左右45°、つまり制御軸9の作動角90°の最大作動角位置と最少作動角位置にストッパ39を設けているが、実験結果によると、鉛直軸0−0に対し、左右45°以上52.8°の任意の位置にストッパ39を設けることにより、確実にねじロックを回避することができた。   In the illustrated example, stoppers 39 are provided at the maximum operating angle position and the minimum operating angle position of 45 ° left and right, that is, 90 ° operating angle of the control shaft 9 with respect to the vertical axis 0-0 passing through the center of the control shaft 9. According to the experimental results, the screw lock can be reliably avoided by providing the stopper 39 at an arbitrary position of 45 ° to 52.8 ° with respect to the vertical axis 0-0.

次に動作について説明する。
電動モータ30が回転駆動すると、その回転力はモータピニオン軸32の歯車33に噛合した中間歯車34,35により減速して歯車36に回転力が伝達される。この場合、歯車36はケース22やカバー23内の定位置で不図示の軸受けにより回転可能に支持されているので、この歯車36の回転は、その内周に螺合する往復子20を軸方向に直線運動させ、ハウジング21に対して、図4に示すようにせり出すか、あるいは図3に示すように引き込まれるように可動することになる。この直線運動は、往復子20の先端にあるピン20aが制御プレート14のスリット15内を滑動することにより該制御プレートつまり制御軸9の回転運動に変換される。このことにより、複数のリンクと連結ピンを介してシリンダ2内のピストン3の高さ位置を変化させ、内燃機関の圧縮比を連続的に変化可能とすることになる。
Next, the operation will be described.
When the electric motor 30 is rotationally driven, the rotational force is reduced by the intermediate gears 34 and 35 meshed with the gear 33 of the motor pinion shaft 32 and the rotational force is transmitted to the gear 36. In this case, since the gear 36 is rotatably supported by a bearing (not shown) at a fixed position in the case 22 or the cover 23, the rotation of the gear 36 causes the reciprocator 20 screwed to the inner periphery thereof to move in the axial direction. It is moved linearly to the housing 21 so as to protrude as shown in FIG. 4 or to be retracted as shown in FIG. This linear motion is converted into a rotational motion of the control plate, that is, the control shaft 9 when the pin 20 a at the tip of the reciprocator 20 slides in the slit 15 of the control plate 14. As a result, the height position of the piston 3 in the cylinder 2 is changed via a plurality of links and connecting pins, and the compression ratio of the internal combustion engine can be continuously changed.

往復子20は、初期位置を出すために、制御軸9と一体の制御プレート14をストッパ39に当接させるまで作動させるが、このストッパ位置は制御軸9が最大・最少の作動角θ以上であり、制御プレート14は傾斜した状態でストッパ39に当接する。この当接時には制御プレート14は傾斜しており、図3,5に示す往復子20のねじリード角βに制御プレートの回動角度θが加算されたことになる。この結果、制御軸9の作動角θによって往復子20のねじリード角βを規定することにより、往復子20のねじリード角βを自己保持可能に設定していても、制御プレート14がストッパ39に当接することにより該制御プレートの作動角θが加算されて、ねじリード角を自己保持可能な角度以上とすることになり、ねじロックを確実に回避することができる。
図5は図4の補助説明図であり、図5(1)は制御プレート14を最小の作動角θ以上に作動させた場合、図5(2)は制御プレート14を最大の作動角θ以上に作動させた場合、図5(3)は制御プレート14を軸線より垂直状態(θ=0)に作動させた場合のねじリード角の状態図である。
In order to obtain an initial position, the reciprocator 20 is operated until the control plate 14 integrated with the control shaft 9 is brought into contact with the stopper 39. The stopper position is greater than the maximum / minimum operating angle θ of the control shaft 9. Yes, the control plate 14 contacts the stopper 39 in an inclined state. At the time of this contact, the control plate 14 is inclined, and the rotation angle θ of the control plate is added to the screw lead angle β of the reciprocator 20 shown in FIGS. As a result, by defining the screw lead angle β of the reciprocator 20 by the operating angle θ of the control shaft 9, even if the screw lead angle β of the reciprocator 20 is set so as to be capable of self-holding, the control plate 14 is stopped by the stopper 39. , The operating angle θ of the control plate is added, and the screw lead angle becomes equal to or larger than the self-holding angle, so that the screw lock can be surely avoided.
FIG. 5 is an auxiliary explanatory view of FIG. 4. FIG. 5 (1) shows that when the control plate 14 is operated at a minimum operating angle θ or more, FIG. 5 (2) shows the control plate 14 at a maximum operating angle θ or more. 5 (3) is a state diagram of screw lead angles when the control plate 14 is operated in a vertical state (θ = 0) from the axis.

以上のように、この実施の形態1によれば、往復子20のねじリード角を内燃機関からの反力を受ける自己保持可能な角度としていても、特別な部品構成を必要とすることなく、確実にねじロックを回避することができる。また、制御プレート14を当接させるストッパ39を内燃機関側に設けたので、内燃機関側からの大きな力が加えられても破損の恐れがない。若し、往復子側にストッパを設けた場合は、内燃機関側からの大きな力が加えられるので、往復子側の強度を大きくする必要がある。内燃機関のピストンの作動量に誤差を生じやすい。往復子に加工精度を要求されることになる。更に、制御プレート14は制御軸9が最大・最少の作動角θ以上回動した傾斜状態でストッパに当接するので、内燃機関側からの力が直接往復子に加わることがなく、往復子の損傷を防止できる。   As described above, according to the first embodiment, even if the screw lead angle of the reciprocator 20 is an angle capable of self-holding that receives a reaction force from the internal combustion engine, a special component configuration is not required. Screw locking can be avoided reliably. In addition, since the stopper 39 for contacting the control plate 14 is provided on the internal combustion engine side, there is no risk of damage even if a large force is applied from the internal combustion engine side. If a stopper is provided on the reciprocator side, a large force is applied from the internal combustion engine side, so that the strength on the reciprocator side needs to be increased. An error is likely to occur in the operation amount of the piston of the internal combustion engine. Processing accuracy is required for the reciprocator. Further, since the control plate 14 is in contact with the stopper in an inclined state in which the control shaft 9 is rotated more than the maximum / minimum operating angle θ, the force from the internal combustion engine side is not directly applied to the reciprocator, and the reciprocator is damaged. Can be prevented.

この発明の内燃機関の圧縮比可変機構を示す縦断説明図である。1 is a longitudinal explanatory view showing a compression ratio variable mechanism of an internal combustion engine of the present invention. 往復子の駆動機構の外観構成を示す正面図である。It is a front view which shows the external appearance structure of the drive mechanism of a reciprocator. 往復子の駆動機構の内部構造を示す縦断説明図である。It is a vertical explanatory view which shows the internal structure of the drive mechanism of a reciprocator. 制御プレートが傾斜状態でストッパに当接するときのねじリード角の説明図である。It is explanatory drawing of a screw lead angle when a control plate contact | abuts to a stopper in the inclination state. 制御プレートが最小・最大・軸線より垂直状態(θ=0)におけるねじリード角の状態図である。It is a state figure of the screw lead angle in the state (θ = 0) where the control plate is perpendicular to the minimum / maximum / axis.

符号の説明Explanation of symbols

1 シリンダブロック、2 シリンダ、3 ピストン、4 ピストンピン、5 クランクシャフト、6 クランクピン、7 ロアーリンク、8 アッパーリンク、9 制御軸、10 偏心カム、11 制御リンク、12,13 連結ピン、14 制御プレート、15スリット、20 往復子、20a ピン。   1 Cylinder block, 2 cylinder, 3 piston, 4 piston pin, 5 crankshaft, 6 crankpin, 7 lower link, 8 upper link, 9 control shaft, 10 eccentric cam, 11 control link, 12, 13 connecting pin, 14 control Plate, 15 slit, 20 reciprocator, 20a pin.

Claims (2)

ピストンのピストンピンとクランクシャフトのクランクピンとを連結する複数のリンクと、偏心カムが設けられ前記クランクシャフトと平行に配設された制御軸と、前記複数のリンクの一つに一端が連結されるとともに、前記偏心カムに他端が連結された制御リンクと、前記制御軸に一体に設けられた制御プレートと、この制御プレートのスリットに先端部のピンが滑動可能に連結された往復子と、この往復子の基端部ねじ部に噛合する回転子と、この回転子の回転で前記往復子を軸方向に移動させて前記制御軸を回動させ、その制御軸の回動によって前記ピストン位置を変化させて内燃機関圧縮比を変える回転駆動源と、前記制御軸が最大・最少の作動角以上において前記制御プレートが当接する下記の式よりに求められる制御軸の回動角θ以上の位置に設けるストッパとを備えた内燃機関圧縮比可変機構。



tan−1(p/πd)+tan−1μ≦θ

μ:摩擦係数
p:ねじピッチ
d:ねじ径
θ:制御軸のフォークと垂直軸とがなす角
A plurality of links for connecting the piston pin of the piston and a crank pin of the crankshaft, a control shaft provided with an eccentric cam and disposed in parallel with the crankshaft, and one end connected to one of the plurality of links; A control link having the other end connected to the eccentric cam, a control plate integrally provided on the control shaft, a reciprocator having a tip pin slidably connected to a slit of the control plate, and A rotor meshing with a base end screw portion of the reciprocator, and the rotation of the rotor causes the reciprocator to move in the axial direction to rotate the control shaft, and the rotation of the control shaft allows the piston position to be adjusted. Rotation drive source that changes the compression ratio of the internal combustion engine by changing it, and the rotation angle of the control shaft that is obtained from the following formula where the control plate abuts when the control shaft is above the maximum / minimum operating angle Internal combustion engine variable compression ratio mechanism and a stopper provided at more positions.

Record

tan −1 (p / πd) + tan −1 μ ≦ θ

μ: Friction coefficient
p: Screw pitch
d: Screw diameter
θ: Angle between the control shaft fork and the vertical shaft
ストッパは、内燃機関側に設けたことを特徴とする請求項1記載の内燃機関圧縮比可変機構。   2. The internal combustion engine compression ratio variable mechanism according to claim 1, wherein the stopper is provided on the internal combustion engine side.
JP2005002668A 2005-01-07 2005-01-07 Variable compression ratio mechanism of internal combustion engine Active JP4429925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002668A JP4429925B2 (en) 2005-01-07 2005-01-07 Variable compression ratio mechanism of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002668A JP4429925B2 (en) 2005-01-07 2005-01-07 Variable compression ratio mechanism of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006189004A true JP2006189004A (en) 2006-07-20
JP4429925B2 JP4429925B2 (en) 2010-03-10

Family

ID=36796432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002668A Active JP4429925B2 (en) 2005-01-07 2005-01-07 Variable compression ratio mechanism of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4429925B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118314A1 (en) * 2007-03-28 2008-10-02 Edwards Charles Mendler Power take-off coupling
DE102011116952A1 (en) * 2011-10-26 2013-05-02 Audi Ag Multi-joint crank drive of an internal combustion engine and method for operating a multi-joint crank drive
US9140182B2 (en) 2013-02-22 2015-09-22 Hyundai Motor Company Variable compression ratio control system
DE102014018525A1 (en) * 2014-12-12 2016-06-16 Audi Ag Multi-link crank drive for an internal combustion engine with fail-safe eccentric shaft locking device
KR101863527B1 (en) * 2015-07-15 2018-05-31 닛산 지도우샤 가부시키가이샤 Variable compression ratio internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118314A1 (en) * 2007-03-28 2008-10-02 Edwards Charles Mendler Power take-off coupling
DE102011116952A1 (en) * 2011-10-26 2013-05-02 Audi Ag Multi-joint crank drive of an internal combustion engine and method for operating a multi-joint crank drive
DE102011116952B4 (en) * 2011-10-26 2015-09-03 Audi Ag Multi-joint crank drive of an internal combustion engine and method for operating a multi-joint crank drive
US9140182B2 (en) 2013-02-22 2015-09-22 Hyundai Motor Company Variable compression ratio control system
DE102014018525A1 (en) * 2014-12-12 2016-06-16 Audi Ag Multi-link crank drive for an internal combustion engine with fail-safe eccentric shaft locking device
DE102014018525B4 (en) * 2014-12-12 2018-05-30 Audi Ag Multi-link crank drive for an internal combustion engine with fail-safe eccentric shaft locking device
KR101863527B1 (en) * 2015-07-15 2018-05-31 닛산 지도우샤 가부시키가이샤 Variable compression ratio internal combustion engine
EP3324024A4 (en) * 2015-07-15 2018-12-05 Nissan Motor Co., Ltd. Variable compression ratio internal combustion engine

Also Published As

Publication number Publication date
JP4429925B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US10883421B2 (en) Actuator of variable compression ratio mechanism and actuator of link mechanism
US9482161B2 (en) Actuator of link mechanism for internal combustion engine and actuator for variable compression ratio mechanism
US8087390B2 (en) Multi-link variable compression ratio engine
JP4429925B2 (en) Variable compression ratio mechanism of internal combustion engine
KR101781648B1 (en) Actuator and exhaust gas recirculation valve, wastegate or variable turbine geometry device of a turbocharger comprising an actuator
US7484485B2 (en) Variable-valve-actuation apparatus for internal combustion engine
JP5136366B2 (en) Control device for variable compression ratio mechanism of internal combustion engine
JP2009041511A (en) Double link type variable compression ratio internal combustion engine
JP2007056836A (en) Variable compression ratio internal combustion engine, gear structure and method for assembling gear in variable compression ratio internal combustion engine
JP2019152112A (en) Actuator for variable compression ratio mechanism for internal combustion engine and actuator used for device for internal combustion engine
JP4169716B2 (en) Variable valve actuator
JP5025539B2 (en) Automotive actuator
JP2006316764A (en) Variable compression ratio engine
KR20140142128A (en) Mechanical lash adjuster
WO2016009468A1 (en) Variable compression ratio internal combustion engine
JP4827891B2 (en) Variable valve actuator
JP4333129B2 (en) Engine compression ratio changing method and variable compression ratio engine
JP2007247536A (en) Variable compression ratio mechanism of internal combustion engine
JP4007350B2 (en) Control method of variable compression ratio mechanism
JP2007056835A (en) Variable compression ratio internal combustion engine
JPS6018600Y2 (en) Variable timing adjustment device for internal combustion engines
JP6805783B2 (en) Variable compression ratio mechanism
JP2010133338A (en) Compression ratio control device
JP5151901B2 (en) Variable valve operating device for internal combustion engine
JP2008101611A (en) Variable valve gear for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350