JP2006188577A - Biaxially oriented film for optical use - Google Patents

Biaxially oriented film for optical use Download PDF

Info

Publication number
JP2006188577A
JP2006188577A JP2005000537A JP2005000537A JP2006188577A JP 2006188577 A JP2006188577 A JP 2006188577A JP 2005000537 A JP2005000537 A JP 2005000537A JP 2005000537 A JP2005000537 A JP 2005000537A JP 2006188577 A JP2006188577 A JP 2006188577A
Authority
JP
Japan
Prior art keywords
polyester
film
adjusting agent
color adjusting
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000537A
Other languages
Japanese (ja)
Inventor
Shunichi Suzuki
俊一 鈴木
Atsushi Koyamamatsu
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005000537A priority Critical patent/JP2006188577A/en
Publication of JP2006188577A publication Critical patent/JP2006188577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented film for optical use imparting a good color, containing extremely reduced amount of fine particles in the film without using antimony (Sb) or germanium (Ge) as a catalyst. <P>SOLUTION: The biaxially oriented film for optical use comprises an aromatic polyester substantially free from metal elements of density ≥5.0 and the film has color b value of from -0.5 to 2.0 obtained by transmitted light measurement, and containing ≤195 particles/mm<SP>2</SP>of fine particles with particle diameter of 1-10 μm measured by a dark field microscopic method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学用二軸延伸フィルムに関し、詳しくは、ポリエステルからなり、優れた色相を呈する二軸延伸された光学用二軸延伸フィルムに関する。   The present invention relates to a biaxially stretched film for optics, and more particularly, to a biaxially stretched film for optics that is made of polyester and exhibits an excellent hue.

ポリエステルは、その機械的、物理的、化学的性能が優れているため、フィルムに広く利用されている。近年、地球環境の保全が重要な課題となり、環境負荷の少ないフィルムが求められている。ポリエステルについても、環境負荷の低減の観点から、SbやGe元素を含有しないフィルムが望ましい。   Polyester is widely used in films because of its excellent mechanical, physical and chemical performance. In recent years, the preservation of the global environment has become an important issue, and there is a demand for films with low environmental impact. As for polyester, a film containing no Sb or Ge element is desirable from the viewpoint of reducing environmental load.

特公昭48−2229号公報Japanese Patent Publication No. 48-2229 特公昭47−26597号公報Japanese Patent Publication No. 47-26597 国際公開第01/00706号パンフレットInternational Publication No. 01/00706 Pamphlet 国際公開第03/008479号パンフレットInternational Publication No. 03/008479 Pamphlet 国際公開第03/027166号パンフレットInternational Publication No. 03/027166 Pamphlet 特開平11−158257号公報Japanese Patent Laid-Open No. 11-158257

しかし、触媒としてアンチモン(Sb)やゲルマニウム(Ge)を使用しないポリエステルを原料として用いると、通常は色相の悪いフィルムしか得られない。本発明は、触媒としてSbやGeを使用しないにもかかわらず、良好な色相を呈し、フィルム中の微細粒子量が非常に少ない光学用二軸延伸フィルムを提供することを課題とする。   However, when a polyester that does not use antimony (Sb) or germanium (Ge) as a catalyst is used as a raw material, usually only a film having a poor hue can be obtained. An object of the present invention is to provide a biaxially stretched film for optics that exhibits a good hue and has a very small amount of fine particles in the film even though Sb or Ge is not used as a catalyst.

すなわち、本発明は比重5.0以上の金属元素を実質的に含有しない芳香族ポリエステルからなり、透過光測定によるカラーb値が−0.5〜2.0、暗視野顕微鏡法により測定されるフィルム中に存在する触媒に起因する粒径1〜10μmの微細粒子が195個/mm以下であることを特徴とする、光学用二軸延伸フィルムである。 That is, the present invention comprises an aromatic polyester that does not substantially contain a metal element having a specific gravity of 5.0 or more, and has a color b * value of -0.5 to 2.0 by transmitted light measurement, measured by dark field microscopy. It is a biaxially stretched film for optics, characterized in that the number of fine particles having a particle diameter of 1 to 10 μm caused by the catalyst present in the film is 195 particles / mm 2 or less.

本発明によれば、触媒としてアンチモン(Sb)やゲルマニウム(Ge)を使用しないにもかかわらず、良好な色相を呈し、フィルム中の微細粒子量が非常に少ない光学用二軸延伸フィルムを提供することができる。   According to the present invention, there is provided an optically biaxially stretched film that exhibits a good hue and has a very small amount of fine particles in the film even though antimony (Sb) or germanium (Ge) is not used as a catalyst. be able to.

以下本発明を詳しく説明する。
[芳香族ポリエステル]
本発明における芳香族ポリエステルとは、テレフタル酸やナフタレンジカルボン酸、あるいはこれらのエステル形成性誘導体に代表される芳香族ジカルボン酸成分と、グリコール成分を重縮合反応せしめて得られるポリエステルのことである。このポリエステルは、共重合ポリエステルであってもよく、共重合成分として、芳香族ジカルボン酸成分とグリコール成分以外の成分、例えば脂肪族ジカルボン酸成分、芳香族ジヒドロキシ化合物、オキシカルボン酸成分が共重合されていても良い。
The present invention will be described in detail below.
[Aromatic polyester]
The aromatic polyester in the present invention is a polyester obtained by a polycondensation reaction between an aromatic dicarboxylic acid component typified by terephthalic acid, naphthalenedicarboxylic acid, or an ester-forming derivative thereof, and a glycol component. This polyester may be a copolyester, and as a copolymer component, a component other than an aromatic dicarboxylic acid component and a glycol component, for example, an aliphatic dicarboxylic acid component, an aromatic dihydroxy compound, and an oxycarboxylic acid component are copolymerized. May be.

芳香族ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレンナフタレートよりなる群から少なくとも1種選ばれるポリエステルであることが好ましく、これらの中でも特にポリエチレンテレフタレートを主たる構成成分とするポリエステルであることが好ましい。なお「主たる構成成分」とはポリエステルの全繰り返し単位の80モル%以上が芳香族ポリエステルであることを示す。   The aromatic polyester is preferably a polyester selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polytetramethylene terephthalate, polytetramethylene naphthalate, Among these, a polyester having polyethylene terephthalate as a main constituent is particularly preferable. The “main constituent component” means that 80 mol% or more of all repeating units of the polyester is an aromatic polyester.

[比重5.0以上の金属元素]
本発明における比重5.0以上の金属元素は、ポリエステル中に含有される触媒や金属系の整色剤、艶消剤等に含有されている金属化合物に由来する金属元素である。具体的には、例えばアンチモン、ゲルマニウム、マンガン、コバルト、セリウム、錫、亜鉛、鉛、カドミウムが該当する。これらに対し、例えばチタン、アルミニウム、カルシウム、マグネシウム、ナトリウム、カリウムは、ここでいう比重5.0以上の金属には該当しない。
[Metal elements having a specific gravity of 5.0 or more]
The metal element having a specific gravity of 5.0 or more in the present invention is a metal element derived from a metal compound contained in a catalyst, a metal color adjuster, a matting agent or the like contained in the polyester. Specific examples include antimony, germanium, manganese, cobalt, cerium, tin, zinc, lead, and cadmium. On the other hand, for example, titanium, aluminum, calcium, magnesium, sodium, and potassium do not correspond to metals having a specific gravity of 5.0 or more.

本発明において、金属元素を実質的に含有しないとは、金属元素の含有量が10ppm以下、好ましくは7重量ppm以下、さらに好ましくは5重量ppm以下であることをいう。10ppmを超えると製膜をする上での取り扱い性、環境負荷が大きい点で不都合がある。例えばアンチモン元素の場合は10ppmを超えると、製糸や製膜時に異物となって口金やダイ周辺に付着し、長期間の連続成形性に悪影響を与える。鉛や錫、カドミウム元素の場合、10ppmを超えると金属元素そのものに毒性があり、環境負荷が大きくなる。ゲルマニウムの場合は、それ自体が高価なため、含有量が10ppmより多くなると得られるポリエステル組成物の価格が上昇してしまい好ましくない。   In the present invention, substantially not containing a metal element means that the content of the metal element is 10 ppm or less, preferably 7 ppm by weight or less, more preferably 5 ppm by weight or less. When it exceeds 10 ppm, there is a disadvantage in that the handling property and the environmental load in film formation are large. For example, in the case of an antimony element, when it exceeds 10 ppm, it becomes a foreign substance at the time of yarn production or film formation, and adheres to the periphery of the die or die, which adversely affects long-term continuous formability. In the case of lead, tin, and cadmium elements, if it exceeds 10 ppm, the metal elements themselves are toxic and the environmental load increases. In the case of germanium, since it is expensive per se, if the content exceeds 10 ppm, the price of the resulting polyester composition increases, which is not preferable.

[色相]
本発明の光学用二軸延伸フィルムは、透過光測定によるカラーb値が−0.5〜2.0の範囲にある。カラーb値が−0.5未満であると表示機器等の画像の青みが強すぎる傾向があり、2.0を超えると表示機器等の画像が黄色味の色調になる傾向がある。なお、色相は、L表色系における数値である。
[Hue]
The biaxially stretched film for optics of the present invention has a color b * value in the range of -0.5 to 2.0 as measured by transmitted light. If the color b * value is less than −0.5, the blueness of the image of the display device tends to be too strong, and if it exceeds 2.0, the image of the display device tends to have a yellowish tone. The hue is a numerical value in the L * a * b * color system.

本発明においては上記の色相を得るために、ポリエステルは整色剤をフィルム重量あたり好ましくは0.1〜10ppm、さらに好ましくは0.3ppm〜9ppm、特に好ましくは0.5〜8ppm含有する。この整色剤は、整色剤濃度20mg/L、光路長1cmでのクロロホルム溶液の状態で測定される波長380〜780nmでの最大吸収波長が540〜600nm、好ましくは545〜595nm、さらに好ましくは550〜590nmであり、最大吸収波長での吸光度に対する各波長での吸光度の割合が下記式(1)〜(4)を全て満たす整色剤である。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
(式中、A400、A500、A600、A700、はそれぞれ400nm、500nm、600nm、700nmでの可視光吸収スペクトルにおける吸光度、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。)
In the present invention, in order to obtain the above-described hue, the polyester preferably contains a color adjusting agent per film weight, preferably 0.1 to 10 ppm, more preferably 0.3 ppm to 9 ppm, and particularly preferably 0.5 to 8 ppm. This color adjuster has a maximum absorption wavelength of 540 to 600 nm, preferably 545 to 595 nm, more preferably 540 to 595 nm, measured in a chloroform solution state with a color adjuster concentration of 20 mg / L and an optical path length of 1 cm. The color adjusting agent is 550 to 590 nm, and the ratio of the absorbance at each wavelength to the absorbance at the maximum absorption wavelength satisfies all of the following formulas (1) to (4).
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
(Wherein, A 400 , A 500 , A 600 , A 700 are the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm, and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. .)

この整色剤は、さらに下記式(6)〜(9)のいずれかまたは全てを満たすことが好ましい。
0.00≦A400/Amax≦0.15 (6)
0.30≦A500/Amax≦0.60 (7)
0.60≦A600/Amax≦0.95 (8)
0.00≦A700/Amax≦0.03 (9)
This color adjusting agent preferably further satisfies any or all of the following formulas (6) to (9).
0.00 ≦ A 400 / A max ≦ 0.15 (6)
0.30 ≦ A 500 / A max ≦ 0.60 (7)
0.60 ≦ A 600 / A max ≦ 0.95 (8)
0.00 ≦ A 700 / A max ≦ 0.03 (9)

整色剤が0.1ppm未満であると得られるフィルムの黄色味が強くなり好ましくなく、10ppmを超えると明度が弱くなり見た目に黒味が強くなり光学用二軸延伸フィルムとして好ましくない。   If the color adjusting agent is less than 0.1 ppm, the resulting film has an unfavorable yellowish tint, and if it exceeds 10 ppm, the lightness is weakened and the appearance is darkened, which is not preferred as an optically biaxially stretched film.

整色剤濃度20mg/L、光路長1cmでのクロロホルム溶液の状態で測定される380〜780nmでの最大吸収波長が540nm未満であるとフィルムの赤味が強くなり、600nmを超えるとフィルムの青味が強くなり光学用二軸延伸フィルムとして好ましくなく、式(1)〜(4)の条件をいずれか一つでも満たさないと、フィルムの着色が大きく好ましくない。   If the maximum absorption wavelength at 380 to 780 nm measured in a chloroform solution state with a color adjusting agent concentration of 20 mg / L and an optical path length of 1 cm is less than 540 nm, the redness of the film becomes strong. A taste becomes strong and it is not preferable as a biaxially stretched film for optics, and if any one of the conditions of the formulas (1) to (4) is not satisfied, the coloring of the film is large and not preferable.

なお、整色剤は、有機の多芳香族環系染料または顔料である。具体的には、後述のように青色系整色剤、紫系整色剤、赤色系整色剤、橙色系整色剤を例示することができる。これらは単一種で用いても複数種を併用して用いても良い。   The color adjusting agent is an organic polyaromatic ring dye or pigment. Specifically, as described later, a blue color adjusting agent, a purple color adjusting agent, a red color adjusting agent, and an orange color adjusting agent can be exemplified. These may be used alone or in combination of two or more.

整色剤は、好ましくは青色系整色剤と紫色系整色剤を併用する。このときの青色系整色剤と紫色系整色剤との重量比は、好ましくは90:10〜40:60の範囲、80:20〜50:50の範囲である。青色系整色剤の重量比が90を超えると得られるフィルムのカラーa値が小さくなり緑色を呈し、青色整色剤の重量比が40未満であるとカラーa値が大きくなり赤色を呈して好ましくない。 As the color adjusting agent, a blue color adjusting agent and a purple color adjusting agent are preferably used in combination. In this case, the weight ratio of the blue color adjusting agent to the purple color adjusting agent is preferably in the range of 90:10 to 40:60, and in the range of 80:20 to 50:50. When the weight ratio of the blue color adjusting agent exceeds 90, the color a * value of the obtained film becomes small and green, and when the weight ratio of the blue color adjusting agent is less than 40, the color a * value increases and the red color is increased. Presented unfavorably.

青色系整色剤は、一般に市販されている整色剤の中で「Blue」と表記されているものであって、具体的には溶液中の可視光スペクトルにおける最大吸収波長が580〜620nm程度にあるものである。青色系整色剤として、C.I.Solvent Blue 11、C.I.Solvent Blue 25、C.I.SolventBlue 35、C.I.Solvent Blue 36、C.I.SolventBlue 45 (Telasol Blue RLS)、C.I.SolventBlue 55、C.I.Solvent Blue 63、C.I.SolventBlue 78、C.I.Solvent Blue 83、C.I.SolventBlue 87、C.I.Solvent Blue 94が例示される。   The blue color adjusting agent is generally described as “Blue” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light spectrum in the solution is about 580 to 620 nm. It is what. CISolvent Blue 11, CISolvent Blue 25, CISolventBlue 35, CISolvent Blue 36, CISolventBlue 45 (Telasol Blue RLS), CISolventBlue 55, CISolvent Blue 63, CISolventBlue 78, CISolvent Examples include Blue 83, CISolventBlue 87, and CISolvent Blue 94.

紫色系整色剤は、市販されている整色剤の中で「Violet」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が560〜580nm程度にあるものである。紫色系整色剤として、C.I.Solvent Violet 8、C.I.Solvent Violet 13、C.I.SolventViolet 14、C.I.Solvent Violet 21、C.I.SolventViolet 27、C.I.Solvent Violet 28、C.I.SolventViolet 36が例示される。   The purple color adjusting agent is described as “Violet” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is about 560 to 580 nm. It is what. C.I.Solvent Violet 8, C.I.Solvent Violet 13, C.I.Solvent Violet 14, C.I.Solvent Violet 21, C.I.Solvent Violet 27, C.I.Solvent Violet 28, C.I.SolventViolet 36 are illustrated as purple color adjusting agents.

赤色系整色剤は、市販されている整色剤の中で「Red」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が480〜520nm程度にあるものである。赤色系整色剤として、C.I.Solvent Red 24、C.I.Solvent Red 25、C.I.SolventRed 27、C.I.Solvent Red 30、C.I.SolventRed 49、C.I.Solvent Red 52、C.I.SolventRed 100、C.I.Solvent Red 109、C.I.SolventRed 111、C.I.Solvent Red 121、C.I.SolventRed 135、C.I.Solvent Red 168、C.I.SolventRed 179が例示される。   The red color adjusting agent is described as “Red” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is about 480 to 520 nm. It is what. CISolvent Red 24, CISolvent Red 25, CISolventRed 27, CISolvent Red 30, CISolventRed 49, CISolvent Red 52, CISolventRed 100, CISolvent Red 109, CISolventRed 111, CISolvent Examples include Red 121, CISolventRed 135, CISolvent Red 168, and CISolventRed 179.

橙色系系整色剤は、市販されている整色剤の中で「Orange」と表記されているものである。橙色系整色剤として、C.I.Solvent Orange 60が例示される。   The orange-based color adjusting agent is represented by “Orange” among commercially available color adjusting agents. C.I. Solvent Orange 60 is exemplified as the orange color adjusting agent.

[微細粒子]
本発明の光学用二軸延伸フィルムは、暗視野顕微鏡法により測定されるフィルム中に存在する触媒に起因する粒径1〜10μmの微細粒子が195個/mm以下である。この微細粒子が195個/mmを超えると、粒子による光の散乱等によりフィルムの透明性が悪化し、光学用二軸延伸フィルムに用いたとき画像がぼやける。
[Fine particles]
The biaxially stretched film for optics of the present invention has 195 particles / mm 2 or less of fine particles having a particle diameter of 1 to 10 μm caused by the catalyst present in the film as measured by dark field microscopy. If the number of fine particles exceeds 195 particles / mm 2 , the transparency of the film deteriorates due to light scattering by the particles, and the image becomes blurred when used for an optical biaxially stretched film.

本発明においては、ポリエステル中に存在するチタン金属元素が、ポリエステルを構成する全ジカルボン酸成分に対して、好ましくは2〜15ミリモル%、さらに好ましくはチタン金属元素は3〜10ミリモル%とする。チタン金属元素が2ミリモル%未満であるとポリエステルの重縮合反応が十分に進行せず、15ミリモル%を超えると得られるフィルムの色相が黄色味を帯び、耐熱性が低下し好ましくない。   In the present invention, the titanium metal element present in the polyester is preferably 2 to 15 mmol%, more preferably 3 to 10 mmol%, based on the total dicarboxylic acid component constituting the polyester. If the titanium metal element is less than 2 mmol%, the polycondensation reaction of the polyester does not proceed sufficiently, and if it exceeds 15 mmol%, the hue of the resulting film is yellowish and the heat resistance is lowered, which is not preferable.

そして、チタン金属元素とリン元素のモル比率が下記数式(5)を満たすことが好ましい。
1≦P/Ti≦15 (5)
(式中、Pはポリエステル中に含有されるリン元素の濃度(ミリモル%)を、Tiはポリエステル中に含有されるポリエステルに可溶なチタン金属元素の濃度(ミリモル%)を表す。)
And it is preferable that the molar ratio of a titanium metal element and a phosphorus element satisfy | fills following Numerical formula (5).
1 ≦ P / Ti ≦ 15 (5)
(In the formula, P represents the concentration (mmol%) of the phosphorus element contained in the polyester, and Ti represents the concentration (mmol%) of the titanium metal element soluble in the polyester contained in the polyester.)

P/Tiが1未満であると得られるフィルムの色相が黄色味を帯び、15を超えるとポリエステルの重縮合反応が遅くなるため好ましくない。P/Tiの範囲は、さらに好ましくは2〜10である。   If the P / Ti is less than 1, the resulting film has a yellow hue, and if it exceeds 15, the polycondensation reaction of the polyester becomes slow, which is not preferable. The range of P / Ti is more preferably 2-10.

ポリマーに可溶性のチタン金属元素とは、酸化チタンのような無機のチタン化合物は含まれず、通常触媒として用いられている有機のチタン化合物や艶消し剤として使用される酸化チタンに不純物として含有されている有機チタン化合物を指す。   Titanium metal elements soluble in polymers do not include inorganic titanium compounds such as titanium oxide, but are contained as impurities in organic titanium compounds usually used as catalysts and titanium oxides used as matting agents. An organic titanium compound.

ポリエステルの固有粘度は、好ましくは0.40〜1.00である。固有粘度は、溶媒としてオルトクロロフェノールを用い、測定温度35℃で測定された数値から算出される値である。   The intrinsic viscosity of the polyester is preferably 0.40 to 1.00. The intrinsic viscosity is a value calculated from a numerical value measured at a measurement temperature of 35 ° C. using orthochlorophenol as a solvent.

[ポリエステルの製造方法]
本発明における芳香族ポリエステルは、通常知られている製造方法により製造することができる。例えば、まずテレフタル酸の如きジカルボン酸成分とエチレングリコールの如きグリコール成分とを直接エステル化反応させる、若しくはテレフタル酸ジメチルの如きジカルボン酸成分の低級アルキルエステルとエチレングリコールの如きグリコール成分とをエステル交換反応させ、ジカルボン酸のグリコールエステルおよび/またはその低重合体を製造する。次いでこの反応生成物を重合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって目的とする芳香族ポリエステルが製造される。
[Production method of polyester]
The aromatic polyester in the present invention can be produced by a generally known production method. For example, first, a dicarboxylic acid component such as terephthalic acid is directly esterified with a glycol component such as ethylene glycol, or a lower alkyl ester of a dicarboxylic acid component such as dimethyl terephthalate is transesterified with a glycol component such as ethylene glycol. To produce a glycol ester of dicarboxylic acid and / or a low polymer thereof. Then, the reaction product is heated under reduced pressure in the presence of a polymerization catalyst and subjected to a polycondensation reaction until a predetermined degree of polymerization is obtained, whereby a desired aromatic polyester is produced.

芳香族ポリエステルを製造する際において用いる重合触媒は、好ましくはチタン化合物および/またはアルミニウム化合物である。チタン化合物としては、ポリエステルの重縮合触媒として一般的なチタン化合物、例えば、酢酸チタンやテトラ−n−ブトキシチタンを用いることができるが、好ましくは、下記一般式(I)で表わされる化合物を用い、または下記一般式(I)で表わされる化合物と下記一般式(II)で表わされる芳香族多価カルボン酸もしくはその無水物とを反応させた生成物を用い、または下記一般式(III)で表される化合物を用いる。   The polymerization catalyst used in the production of the aromatic polyester is preferably a titanium compound and / or an aluminum compound. As the titanium compound, a general titanium compound, for example, titanium acetate or tetra-n-butoxy titanium can be used as a polyester polycondensation catalyst. Preferably, a compound represented by the following general formula (I) is used. Or a product obtained by reacting a compound represented by the following general formula (I) with an aromatic polyvalent carboxylic acid represented by the following general formula (II) or an anhydride thereof, or in the following general formula (III) The compound represented is used.

Figure 2006188577
(式中、R、R、RおよびRはそれぞれ同一若しくは異なって、アルキル基またはフェニル基を示し、mは1〜4の整数を示し、かつmが2、3または4の場合、2個、3個または4個のRおよびRは、それぞれ同一であっても異なっていてもどちらでもよい。)
Figure 2006188577
(Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4) 2, 3 or 4 R 2 and R 3 may be the same or different from each other.)

Figure 2006188577
(式中、qは2〜4の整数を表わす。)
Figure 2006188577
(In the formula, q represents an integer of 2 to 4.)

Figure 2006188577
(式中、Xは炭素数1〜20のアルキル基、アルコキシ基、または炭素数6〜20のアリール基、アリールオキシ基である。)
Figure 2006188577
(In the formula, X represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or an aryl group or aryloxy group having 6 to 20 carbon atoms.)

アルミニウム化合物としては、アルミニウムアセチルアセトネートが安定で取扱いが容易な点において優れているので好ましい。また、これらチタン化合物とアルミニウム化合物は単独で用いても、2種以上を併用しても良いが、チタン化合物を単独で用いるのが特に好ましい。   As the aluminum compound, aluminum acetylacetonate is preferable because it is stable and easy to handle. These titanium compounds and aluminum compounds may be used alone or in combination of two or more, but it is particularly preferable to use the titanium compound alone.

なかでも最も好ましいのが上記一般式(I)で表わされる化合物を用いる態様、一般式(I)で表わされる化合物と上記一般式(II)で表わされる芳香族多価カルボン酸若しくはその無水物とを反応させた生成物を用いる態様、または上記一般式(III)で表される化合物を単独で用いる態様である。   Among these, the most preferred embodiment uses the compound represented by the above general formula (I), the compound represented by the general formula (I) and the aromatic polyvalent carboxylic acid represented by the above general formula (II) or an anhydride thereof. Or a mode in which a compound represented by the above general formula (III) is used alone.

一般式(I)で表わされるテトラアルコキサイドチタンおよび/またはテトラフェノキサイドチタンとしては、Rがアルキル基および/またはフェニル基であればよい。テトライソプロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタンが例示される。   As tetraalkoxide titanium and / or tetraphenoxide titanium represented by the general formula (I), R may be an alkyl group and / or a phenyl group. Examples include tetraisopropoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetraethoxy titanium, and tetraphenoxy titanium.

また、かかるチタン化合物と反応させる一般式(II)で表される芳香族多価カルボン酸またはその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸またはこれらの無水物が例示される。   In addition, the aromatic polyvalent carboxylic acid represented by the general formula (II) to be reacted with the titanium compound or the anhydride thereof includes phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid or an anhydride thereof. Illustrated.

上記チタン化合物と芳香族多価カルボン酸またはその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸またはその無水物の一部とを溶解し、これにチタン化合物を滴下し、0〜200℃の温度で30分以上反応させればよい。   When the titanium compound and the aromatic polyvalent carboxylic acid or its anhydride are reacted, the aromatic polyvalent carboxylic acid or a part of its anhydride is dissolved in a solvent, and the titanium compound is dropped into this, What is necessary is just to make it react for 30 minutes or more at the temperature of 0-200 degreeC.

なお、一般式(III)で表される化合物は、一般式(I)で表される化合物とモノアルキルホスホン酸、モノアリールホスホン酸、モノアルキルホスフェート、モノアリールホスフェートを70〜150℃の範囲で反応させることによって得ることができる。   In addition, the compound represented by general formula (III) is a compound represented by general formula (I) and monoalkylphosphonic acid, monoarylphosphonic acid, monoalkylphosphate, monoarylphosphate in the range of 70 to 150 ° C. It can be obtained by reacting.

上述したように、ポリエステルに可溶なチタン金属元素とリン元素を好ましいモル比率に保つためにはポリエステル組成物中にリン化合物を添加する。リン化合物としては、好ましくはリン酸、亜リン酸、ホスホン酸、ホスフィン酸、あるいはこれらのアルキル、アリールエステル、ホスホノアセテート系化合物を用いる。   As described above, a phosphorus compound is added to the polyester composition in order to keep the titanium metal element and phosphorus element soluble in the polyester in a preferred molar ratio. As the phosphorus compound, phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, or alkyl, aryl ester or phosphonoacetate compounds thereof are preferably used.

リン化合物のポリエステル組成物中への添加方法は、エステル交換反応またはエステル化反応が実質的に終了した後であればいつでもよいが、通常はエステル化反応、若しくはエステル交換反応が終了した後すぐに添加し、その後重縮合反応せしめることが好ましい。   The addition method of the phosphorus compound into the polyester composition may be any time after the ester exchange reaction or the esterification reaction is substantially completed, but usually immediately after the esterification reaction or the ester exchange reaction is completed. It is preferable to add and then polycondensate.

整色剤は、芳香族ポリエステル製造工程の任意の段階で添加することができ、好ましくは重合反応が終了するまでの時期に、特に好ましくはエステル化反応もしくはエステル交換反応が終了した後に添加する。   The color adjusting agent can be added at any stage of the aromatic polyester production process, and is preferably added until the completion of the polymerization reaction, particularly preferably after completion of the esterification reaction or transesterification reaction.

[フィルムの製造方法]
本発明の光学用二軸延伸フィルムは、従来公知の溶融製膜方法を用いて製造することができる。
例えば乾燥したポリエステル組成物を270℃〜300℃の範囲で溶融してシート状に押し出し、冷却ドラムで冷却して未延伸フィルムを得る。次いで該未延伸フィルムを二軸方向に延伸し、熱固定し、必要であれば熱弛緩処理することによって製造することができる。その際、フィルムの表面特性、密度、熱収縮率の性質は、延伸条件その他の製造条件により変わるので、必要に応じて適宜条件を選択して製膜する。
[Film Production Method]
The biaxially stretched film for optics of the present invention can be produced using a conventionally known melt film forming method.
For example, the dried polyester composition is melted in the range of 270 ° C. to 300 ° C., extruded into a sheet, and cooled with a cooling drum to obtain an unstretched film. Next, the unstretched film can be produced by stretching in a biaxial direction, heat setting, and heat relaxation treatment if necessary. At this time, the surface properties, density, and heat shrinkage properties of the film vary depending on the stretching conditions and other manufacturing conditions, and accordingly, the conditions are appropriately selected as necessary to form a film.

以下、実施例により、本発明をさらに具体的に説明する。なお、実施例中の数値は以下の方法により測定した。
(ア)固有粘度
フィルムサンプルを100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the numerical value in an Example was measured with the following method.
(A) Intrinsic viscosity A dilute solution obtained by dissolving a film sample in orthochlorophenol at 100 ° C for 60 minutes was determined from a value measured at 35 ° C using an Ubbelohde viscometer.

(イ)ジエチレングリコール含有量
ヒドラジンヒドラート(抱水ヒドラジン)を用いてフィルムサンプルを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィ−(ヒューレットパッカード社製「HP6850」)を用いて測定した。
(I) Diethylene glycol content The film sample was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposition product was measured using gas chromatography ("HP6850" manufactured by Hewlett-Packard Company). did.

(ウ)フィルムの透過光測定によるカラーb
JIS―Z8722と8729規格に準じ、カラーメーター(日本電色工業社製、SZ−Σ90)を用いて、フィルムの透過光のカラーb*値を測定した。
(C) Color b * value by transmitted light measurement of film According to JIS-Z8722 and 8729 standards, the color b * value of the transmitted light of the film is determined using a color meter (Nippon Denshoku Industries Co., Ltd., SZ-Σ90). It was measured.

(エ)比重5.0以上の金属元素含有量
フィルムサンプルを、硫酸アンモニウム、硫酸、硝酸、過塩素酸とともに混合して約300℃で9時間湿式分解後、蒸留水で希釈し、理学製ICP発光分析装置(JY170 ULTRACE)を用いて定性分析し、比重5.0以上の金属元素の存在の有無を確認した。1重量ppm以上の存在が確認された金属元素について、その元素含有量を示した。
(D) Metal element content with a specific gravity of 5.0 or more Film samples are mixed with ammonium sulfate, sulfuric acid, nitric acid and perchloric acid, wet-decomposed at about 300 ° C for 9 hours, diluted with distilled water, and made by Rigaku ICP. Qualitative analysis was performed using an analyzer (JY170 ULTRACE), and the presence or absence of a metal element having a specific gravity of 5.0 or more was confirmed. About the metal element with which existence of 1 weight ppm or more was confirmed, the element content was shown.

(オ)ポリエステルに可溶性のチタン、アルミニウム、アンチモン、マンガン、リン含有量
ポリマー中のポリエステルに可溶性のチタン元素量、アルミニウム元素量、アンチモン元素量、マンガン元素量、リン元素量は粒状のポリマーサンプルをアルミ板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成し、蛍光X線装置(理学電機工業株式会社製3270E型)を用いて求めた。ただし、艶消剤として酸化チタンを添加したポリエステル組成物中のチタン元素量については、サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について日立製作所製Z−8100形原子吸光光度計を用いて定量を行った。ここで0.5規定塩酸抽出後の抽出液中に酸化チタンの分散が確認された場合は遠心分離機で酸化チタン粒子を沈降させ、傾斜法により上澄み液のみを回収して、同様の操作を行った。これらの操作によりポリエステル組成物中に酸化チタンを含有していてもポリエステルに可溶性のチタン元素の定量が可能となる。
(E) Content of titanium, aluminum, antimony, manganese and phosphorus soluble in polyester The amount of titanium element, aluminum element, antimony element, manganese element and phosphorus element soluble in polyester in the polymer is a granular polymer sample. After being melted by heating on an aluminum plate, a test molded body having a flat surface was prepared with a compression press and determined using a fluorescent X-ray apparatus (type 3270E manufactured by Rigaku Corporation). However, regarding the amount of titanium element in the polyester composition to which titanium oxide was added as a matting agent, the sample was dissolved in orthochlorophenol and then extracted with 0.5 N hydrochloric acid. The extract was quantified using a Hitachi Z-8100 atomic absorption spectrophotometer. Here, when dispersion of titanium oxide was confirmed in the extract after extraction with 0.5N hydrochloric acid, the titanium oxide particles were settled with a centrifuge, and only the supernatant was recovered by the gradient method. went. By these operations, even if the polyester composition contains titanium oxide, the titanium element soluble in the polyester can be quantified.

(カ)ヘーズ
溶融押出機から回転冷却ドラム上にシート状に溶融押出し、急冷固化して厚さ500μmの未延伸フィルム(シート)を作成し、日本電色工業社製濁度計(HDH−1001DP)にて測定した。
(F) Haze Melt extrusion from a melt extruder into a sheet on a rotary cooling drum, followed by rapid cooling and solidification to create an unstretched film (sheet) having a thickness of 500 μm, and a turbidimeter (HDH-1001DP) manufactured by Nippon Denshoku Industries Co. ).

(キ)微細粒子
フィルムの表面を、メチルエチルケトンで処理して、易滑層を除去したのち、顕微鏡(Nikon Microphoto―FX)を使用して、透過暗視野測定法にて、光源10目盛、100倍で、撮影した。得られた写真を、画像解析装置にて、直径が1〜10μmに観察される粒子の個数をカウントした。
(G) Fine particles After treating the surface of the film with methyl ethyl ketone and removing the slippery layer, using a microscope (Nikon Microphoto-FX), a transmission dark field measurement method, light source 10 scale, 100 times I took a picture. In the obtained photograph, the number of particles observed to have a diameter of 1 to 10 μm was counted with an image analyzer.

(ク)触媒および整色剤の調製)
(1)チタン触媒Aの合成
無水トリメリット酸のエチレングリコール溶液(0.2重量%)にテトラブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応せしめた。その後常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させた。析出物をろ紙によって濾過し、100℃で2時間乾燥せしめ、目的の化合物を得た。これをチタン触媒Aとする。
(H) Preparation of catalyst and color adjusting agent)
(1) Synthesis of Titanium Catalyst A Add 1/2 mole of tetrabutoxytitanium to trimellitic anhydride in ethylene glycol solution (0.2% by weight) with respect to trimellitic anhydride and keep at 80 ° C. under normal pressure in air. And reacted for 60 minutes. Thereafter, it was cooled to room temperature, and the produced catalyst was recrystallized with 10 times the amount of acetone. The precipitate was filtered through filter paper and dried at 100 ° C. for 2 hours to obtain the target compound. This is designated as titanium catalyst A.

(2)整色剤の可視光吸収スペクトル測定、整色剤調製
表1に示す整色剤を室温で濃度20mg/Lのクロロホルム溶液とし、光路長1cmの石英セルに充填し、対照セルにはクロロホルムのみを充填して、日立分光光度計U−3010を用いて、380〜780nmの可視光領域での可視光吸収スペクトルを測定した。整色剤2種を混合する場合は合計で濃度20mg/Lとなるようにした。最大吸収波長とその波長における吸光度に対する、400、500、600、700nmの各波長での吸光度の割合を測定した。更に粉末の整色剤の熱重量減少開始温度を測定した。結果を表1に示す。尚、実施例、比較例でこれら整色剤をポリエステル製造工程で添加する場合は、100℃の温度で、原料として用いるグリコール溶液に対し、濃度0.1重量%となるように溶解または分散させて調製した。
(2) Visible light absorption spectrum measurement of the color adjusting agent, color adjusting agent preparation The color adjusting agent shown in Table 1 is made into a chloroform solution having a concentration of 20 mg / L at room temperature, and is filled in a quartz cell having an optical path length of 1 cm. Filled with chloroform alone, a visible light absorption spectrum in the visible light region of 380 to 780 nm was measured using a Hitachi spectrophotometer U-3010. When mixing two color adjusting agents, the total concentration was 20 mg / L. The ratio of the absorbance at each wavelength of 400, 500, 600, and 700 nm to the maximum absorption wavelength and the absorbance at that wavelength was measured. Further, the thermal weight reduction start temperature of the powder color matching agent was measured. The results are shown in Table 1. In addition, when these color adjusting agents are added in the polyester production process in Examples and Comparative Examples, they are dissolved or dispersed at a temperature of 100 ° C. to a concentration of 0.1% by weight with respect to the glycol solution used as a raw material. Prepared.

Figure 2006188577
Figure 2006188577

[実施例1]
・ポリエステル組成物チップの製造
テレフタル酸ジメチル100部とエチレングリコール70部の混合物に、参考例1で調製したチタン触媒A 0.016部を加圧反応が可能なSUS製容器に仕込んだ。0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.023部を添加し、エステル交換反応を終了させた。
[Example 1]
-Manufacture of polyester composition chip In a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.016 part of titanium catalyst A prepared in Reference Example 1 was charged into a SUS container capable of pressure reaction. The ester exchange reaction was performed while increasing the pressure from 140 ° C. to 240 ° C. under a pressure of 0.07 MPa, and then 0.023 part of triethylphosphonoacetate was added to complete the ester exchange reaction.

その後反応生成物に表1に示す整色剤Aの0.1重量%エチレングリコール溶液0.2部を添加して重合容器に移し、290℃まで昇温し、30Pa以下の高真空にて重縮合反応を行って、固有粘度0.63、ジエチレングリコール含有量が1.3重量%であるポリエステル組成物を得た。さらに常法に従いチップ化した。結果を表2に示す。   Thereafter, 0.2 part of a 0.1 wt% ethylene glycol solution of the color adjusting agent A shown in Table 1 was added to the reaction product, transferred to a polymerization vessel, heated to 290 ° C., and heated under a high vacuum of 30 Pa or less. A condensation reaction was performed to obtain a polyester composition having an intrinsic viscosity of 0.63 and a diethylene glycol content of 1.3% by weight. Furthermore, it was made into a chip according to a conventional method. The results are shown in Table 2.

・易滑用塗布液の調整
下記のポリエステル樹脂(イ)を65重量%、架橋剤(ロ)を20%、球状粒子(ハ)を10重量%、濡れ剤(ニ)を5重量%の割合で、混合に分散処理して、これらの成分の合計濃度が8%の水系塗布液を調整した。
・ Adjustment of easy-slip coating solution Ratio of 65% by weight of the following polyester resin (I), 20% of the crosslinking agent (B), 10% by weight of spherical particles (C), and 5% by weight of wetting agent (D) Then, an aqueous coating solution having a total concentration of these components of 8% was prepared by dispersing the mixture.

(イ)ポリエステル樹脂:
酸成分が、2、6−ナフタレンジカルボン酸 70モル%/イソフタル酸 25モル%/5−ナトリウムスルホイソフタル酸 5モル%、グリコール成分が、エチレングリコール 90モル%/ジエチレングリコール 10モル%のポリエステル樹脂。
(ロ)架橋剤:
メチルメタアクリレート 25モル%、2−イソプロペニル−2−オキサゾリン 30モル%、ポリエチレンオキシドメタクリレート 10モル%/アクリルアミド 35%で構成。
(ハ)球状粒子:
球状架橋アクリル粒子(粒径 100nm)。
(ニ)濡れ剤:
ポリオキシエチレンラウリルエーテル。
(I) Polyester resin:
A polyester resin having an acid component of 70 mol% of 2,6-naphthalenedicarboxylic acid / 25 mol% of isophthalic acid / 5 mol% of 5-sodium sulfoisophthalic acid and a glycol component of 90 mol% of ethylene glycol / 10 mol% of diethylene glycol.
(B) Crosslinking agent:
Consists of 25 mol% methyl methacrylate, 30 mol% 2-isopropenyl-2-oxazoline, 10 mol% polyethylene oxide methacrylate / 35% acrylamide.
(C) Spherical particles:
Spherical cross-linked acrylic particles (particle size 100 nm).
(D) Wetting agent:
Polyoxyethylene lauryl ether.

・ポリエステルフィルムの製膜
ポリエチレンテレフタレート樹脂ペレットを、140℃で、6時間減圧乾燥した後、押し出し機に供給し、約285℃で、溶融したポリエステル樹脂を回転冷却ドラム上に、静電印荷法、エアーナイフ法等手段で、シート状に押し出し、極力厚み斑のない未延伸シートとした。続いて、得られたシートを、100℃に加熱して、縦方向(長手方向)に、3.2倍延伸し、1軸配向フィルムを得た。その後、前記の塗布液を、リバースローラー法により、1軸配向フィルムの両面に塗付した。さらに、160℃に加熱されたゾーンで、横方向(幅方向)に3.8倍延伸した後、230℃の熱処理ゾーンで熱処理を実施して、厚さ125μmの2軸配向積層ポリエステルフィルムを得た。フィルムの両面に形成された易滑層の厚みは、それぞれ、80nmであった。結果を表3に示す。
Polyester film formation Polyethylene terephthalate resin pellets were dried under reduced pressure at 140 ° C. for 6 hours, then supplied to an extruder, and the polyester resin melted at about 285 ° C. was placed on a rotating cooling drum by electrostatic printing. Then, it was extruded into a sheet shape by means of an air knife method or the like to obtain an unstretched sheet with as little thickness unevenness as possible. Subsequently, the obtained sheet was heated to 100 ° C. and stretched 3.2 times in the longitudinal direction (longitudinal direction) to obtain a uniaxially oriented film. Then, the said coating liquid was apply | coated on both surfaces of the uniaxially oriented film by the reverse roller method. Further, after stretching 3.8 times in the transverse direction (width direction) in a zone heated to 160 ° C., heat treatment is performed in a heat treatment zone at 230 ° C. to obtain a 125 μm thick biaxially oriented laminated polyester film. It was. The thickness of the easy-slip layer formed on both surfaces of the film was 80 nm, respectively. The results are shown in Table 3.

[比較例1]
テレフタル酸ジメチル100重量部とエチレングリコール70重量部との混合物に、酢酸マンガン四水和物0.032重量部を撹拌機、精留塔およびメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、リン酸トリメチル0.02重量部を添加し、エステル交換反応を終了させた。次いで、得られた反応生成物を撹拌装置、窒素導入口、減圧口、蒸留装置を備えた反応容器に移し、三酸化二アンチモン0.045重量部を添加して290℃まで昇温し、30Pa以下の高真空で重縮合反応を行って、ポリエステル組成物を得た。実施例1と同様に成形評価を行った。結果を表3に示す。

Figure 2006188577
Figure 2006188577
[Comparative Example 1]
A mixture of 100 parts by weight of dimethyl terephthalate and 70 parts by weight of ethylene glycol was charged with 0.032 parts by weight of manganese acetate tetrahydrate in a reactor equipped with a stirrer, a rectifying column and a methanol distillation condenser, and 140 ° C. The ester exchange reaction was carried out while distilling out the methanol produced as a result of the reaction while gradually raising the temperature to 240 ° C. Thereafter, 0.02 part by weight of trimethyl phosphate was added to complete the transesterification reaction. Subsequently, the obtained reaction product was transferred to a reaction vessel equipped with a stirrer, a nitrogen inlet, a vacuum port, and a distillation device, 0.045 parts by weight of antimony trioxide was added, and the temperature was raised to 290 ° C., 30 Pa A polycondensation reaction was performed under the following high vacuum to obtain a polyester composition. Molding evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
Figure 2006188577
Figure 2006188577

本発明の光学用二軸延伸フィルムは、反射防止フィルム、タッチスクリーン、拡散板の基材用フィルムとして用いることができ、LCD、CRT、PDP、ELといった表示機器の構成部品として利用することができる。   The biaxially stretched optical film of the present invention can be used as a base film for an antireflection film, a touch screen, or a diffusion plate, and can be used as a component of a display device such as an LCD, CRT, PDP, or EL. .

Claims (4)

比重5.0以上の金属元素を実質的に含有しない芳香族ポリエステルからなり、透過光測定によるカラーb値が−0.5〜2.0、暗視野顕微鏡法により測定されるフィルム中に存在する触媒に起因する粒径1〜10μmの微細粒子が195個/mm以下であることを特徴とする、光学用二軸延伸フィルム。 It consists of an aromatic polyester that does not substantially contain a metal element with a specific gravity of 5.0 or more, and has a color b * value of -0.5 to 2.0 by transmitted light measurement, present in a film measured by dark field microscopy. A biaxially stretched film for optics, characterized in that the number of fine particles having a particle diameter of 1 to 10 μm caused by the catalyst is 195 particles / mm 2 or less. 整色剤濃度20mg/L、光路長1cmでのクロロホルム溶液の状態で測定される波長380〜780nmでの最大吸収波長が540〜600nm、最大吸収波長での吸光度に対する各波長での吸光度の割合が下記式(1)〜(4)を全て満たす整色剤をフィルム重量あたり0.1〜10ppm含有する、請求項1記載の光学用二軸延伸フィルム。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
(式中、A400、A500、A600、A700、はそれぞれ400nm、500nm、600nm、700nmでの可視光吸収スペクトルにおける吸光度、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。)
The maximum absorption wavelength at a wavelength of 380 to 780 nm measured in a chloroform solution state with a color adjusting agent concentration of 20 mg / L and an optical path length of 1 cm is 540 to 600 nm, and the ratio of the absorbance at each wavelength to the absorbance at the maximum absorption wavelength is The biaxially stretched film for optics according to claim 1, comprising 0.1 to 10 ppm of a color adjusting agent satisfying all of the following formulas (1) to (4) per film weight.
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
(Wherein, A 400 , A 500 , A 600 , A 700 are the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm, and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. .)
ポリエステル中に存在するチタン金属元素が、ポリエステルを構成する全ジカルボン酸成分に対して2〜15ミリモル%の範囲にあり、かつチタン金属元素とリン元素のモル比率が下記数式(5)を満たす、請求項1記載の光学用二軸延伸フィルム。
1≦P/Ti≦15 (5)
(式中、Pはポリエステル中に含有されるリン元素の濃度(ミリモル%)を、Tiはポリエステル中に含有されるポリエステルに可溶なチタン金属元素の濃度(ミリモル%)を表す。)
The titanium metal element present in the polyester is in the range of 2 to 15 mmol% with respect to all dicarboxylic acid components constituting the polyester, and the molar ratio of the titanium metal element and the phosphorus element satisfies the following formula (5). The biaxially stretched film for optics according to claim 1.
1 ≦ P / Ti ≦ 15 (5)
(In the formula, P represents the concentration (mmol%) of the phosphorus element contained in the polyester, and Ti represents the concentration (mmol%) of the titanium metal element soluble in the polyester contained in the polyester.)
整色剤として青色系整色剤と紫色系整色剤を重量比90:10〜40:60範囲で併用する、請求項2記載の光学用二軸延伸フィルム。   The biaxially stretched film for optics according to claim 2, wherein a blue color adjusting agent and a purple color adjusting agent are used in combination in a weight ratio of 90:10 to 40:60 as the color adjusting agent.
JP2005000537A 2005-01-05 2005-01-05 Biaxially oriented film for optical use Pending JP2006188577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000537A JP2006188577A (en) 2005-01-05 2005-01-05 Biaxially oriented film for optical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000537A JP2006188577A (en) 2005-01-05 2005-01-05 Biaxially oriented film for optical use

Publications (1)

Publication Number Publication Date
JP2006188577A true JP2006188577A (en) 2006-07-20

Family

ID=36796077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000537A Pending JP2006188577A (en) 2005-01-05 2005-01-05 Biaxially oriented film for optical use

Country Status (1)

Country Link
JP (1) JP2006188577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077219A (en) * 2005-09-13 2007-03-29 Mitsubishi Polyester Film Copp Polyester film for optical use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077219A (en) * 2005-09-13 2007-03-29 Mitsubishi Polyester Film Copp Polyester film for optical use

Similar Documents

Publication Publication Date Title
CN1741902B (en) Laminate film
JP5130620B2 (en) Polyester film for display
JP2009214354A (en) Laminated optical polyester film
JP6896998B2 (en) Polyester resin composition and its manufacturing method
JP6638462B2 (en) Polyester resin composition for transparent optical film
JP2007130956A (en) Optical laminated polyester film
WO2024014373A1 (en) Method for producing polyester film through chemical recycling and polyester film
JP4233568B2 (en) Colored polyester resin composition and molded product thereof
JP2010260953A (en) Polyester composition and polyester film
JP5064683B2 (en) Laminated polyester film
JPH10182803A (en) Polyester, polyester molding and production of polyester
TWI504669B (en) Polyester resin composition and polyester film using thereof
JP2006188577A (en) Biaxially oriented film for optical use
WO2022054669A1 (en) Method for producing polyester resin composition
JP2007077219A (en) Polyester film for optical use
JP4817648B2 (en) Polyester composition and molded article comprising the same
JP5064677B2 (en) Laminated polyester film
JP2007154001A (en) Optical laminated polyester film
JP2006152140A (en) Polyester composition and molded article therefrom
JP2019099791A (en) Polyester composition and method for producing the same
JP6863287B2 (en) Polyester composition and its manufacturing method
JP4673054B2 (en) Polyester composition and method for producing the same
JP2007181996A (en) Laminated polyester film
JPS63193934A (en) White polyester film
JP2024121785A (en) Method for producing bis-(2-hydroxyethyl) terephthalate composition