JP2006188382A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP2006188382A
JP2006188382A JP2005000800A JP2005000800A JP2006188382A JP 2006188382 A JP2006188382 A JP 2006188382A JP 2005000800 A JP2005000800 A JP 2005000800A JP 2005000800 A JP2005000800 A JP 2005000800A JP 2006188382 A JP2006188382 A JP 2006188382A
Authority
JP
Japan
Prior art keywords
wire
base material
carbon nanotubes
bias voltage
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000800A
Other languages
Japanese (ja)
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005000800A priority Critical patent/JP2006188382A/en
Priority to KR1020057023130A priority patent/KR101313919B1/en
Priority to KR1020127023664A priority patent/KR101342356B1/en
Priority to US10/558,874 priority patent/US8808856B2/en
Priority to PCT/JP2005/018894 priority patent/WO2006073017A1/en
Priority to CN2005800003526A priority patent/CN1906127B/en
Priority to EP05793094A priority patent/EP1834925A1/en
Priority to TW094138909K priority patent/TWI403611B/en
Priority to TW094138909A priority patent/TW200630505A/en
Publication of JP2006188382A publication Critical patent/JP2006188382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form carbon nanotubes while dispensing with a step of applying a catalyst. <P>SOLUTION: A plasma generation coil 2 connected to a high-frequency power source 3 is placed in a vacuum chamber 1. A wire 4 containing a metal catalyzing the formation of carbon nanotubes is supportably passed into the coil 2. The wire 4 is heated by passing an electric current therethrough. A negative bias voltage is applied from a bias power source 8. A raw material gas is fed to form a plasma 9. A film of carbon nanotubes is then formed on the wire 4 by the catalysis of the metal contained in the wire 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブの製造方法に関する。   The present invention relates to a method for producing carbon nanotubes.

カーボンナノチューブ は、ディスプレイ、ランプ、ナノデバイス、電子銃等数多くの応用が期待される材料である。   Carbon nanotubes are materials that are expected to have many applications such as displays, lamps, nanodevices, and electron guns.

このカーボンナノチューブの製造法として、予め触媒を形成した基板を、装置内に配置して加熱するとともに、原料ガスを供給して原料ガスを熱分解し、基板上の触媒を種としてカーボンを成長させる気相成長法がある(例えば、特許文献1)。
特開2002−180252号公報
As a method for producing this carbon nanotube, a substrate on which a catalyst has been formed in advance is placed in an apparatus and heated, and a source gas is supplied to thermally decompose the source gas, and carbon is grown using the catalyst on the substrate as a seed. There is a vapor phase growth method (for example, Patent Document 1).
JP 2002-180252 A

しかしながら、かかる気相成長法では、カーボンナノチューブを成長させるためには、基板等の基材に、予め触媒を形成する工程が必要になるという課題がある。   However, in this vapor phase growth method, in order to grow carbon nanotubes, there is a problem that a step of forming a catalyst in advance on a base material such as a substrate is required.

本発明は、基材に、予め触媒を形成することなく、カーボンナノチューブを製造できるようにすることを目的とする。   An object of the present invention is to make it possible to produce carbon nanotubes without previously forming a catalyst on a substrate.

本発明では、上述の目的を達成するために、次のように構成している。   The present invention is configured as follows in order to achieve the above-described object.

すなわち、本発明は、真空チャンバ内に導入された原料ガスをプラズマ化して基材にカーボンナノチューブを形成する方法であって、前記基材を加熱するとともに、該基材にバイアス電圧を印加するものである。   That is, the present invention is a method for forming a carbon nanotube on a base material by converting the raw material gas introduced into the vacuum chamber into a plasma, and heating the base material and applying a bias voltage to the base material It is.

ここで、基材とは、カーボンナノチューブを形成する対象をいい、その形状は問わないものであり、例えば、基板やワイヤなどを含むものである。この基材は、カーボンナノチューブの形成の触媒となる触媒金属、例えば、Fe、Ni、Co等を含有する材料、例えば、ステンレスなどからなるのが好ましい。さらに、この基材は、通電加熱されるのが好ましい。   Here, the base material refers to an object on which the carbon nanotube is formed, and its shape is not limited, and includes, for example, a substrate, a wire, and the like. This base material is preferably made of a catalyst metal that serves as a catalyst for the formation of carbon nanotubes, for example, a material containing Fe, Ni, Co, etc., such as stainless steel. Furthermore, it is preferable that this base material is heated by energization.

バイアス電圧は、負の直流バイアス電圧であるのが好ましい。この負のバイアス電圧は、その絶対値が、100Vより大きい電圧であるのが好ましい。   The bias voltage is preferably a negative DC bias voltage. The negative bias voltage is preferably a voltage whose absolute value is greater than 100V.

また、真空チャンバ内に、高周波電源が供給されるプラズマ発生用コイルが設けられるとともに、前記基材が、該プラズマ発生用コイル内に配置されるのが好ましい。   In addition, it is preferable that a plasma generating coil to be supplied with a high frequency power source is provided in the vacuum chamber, and the base material is disposed in the plasma generating coil.

本発明によると、従来のように、予め基材に触媒金属を付与する工程を必要とせずに、カーボンナノチューブを形成することができる。これは、次のように考えられる。すなわち、基材にバイアス電圧を印加して、基材の表面をスパッタリングするので、触媒金属を含有する基材を用いることにより、該基材の表面から弾き出された触媒金属の微粒子が、基材に引き付けられてその表面に付着し、この付着した触媒金属の微粒子を種として、カーボンナノチューブが形成されると考えられる。   According to the present invention, carbon nanotubes can be formed without requiring a step of previously applying a catalyst metal to a substrate as in the prior art. This is considered as follows. That is, since a bias voltage is applied to the base material and the surface of the base material is sputtered, the catalyst metal fine particles ejected from the surface of the base material are removed by using the base material containing the catalytic metal. It is considered that carbon nanotubes are formed by using the fine particles of the catalyst metal adhering to the surface of the catalyst metal as a seed.

本発明によれば、予め触媒を付与する工程を必要とすることなく、カーボンナノチューブを製造することができる。   According to the present invention, carbon nanotubes can be produced without requiring a step of applying a catalyst in advance.

以下、添付した図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、本発明の実施形態に係る製造方法が適用される製造装置の概略構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus to which a manufacturing method according to an embodiment of the present invention is applied.

この製造装置は、真空チャンバ1を備えており、この真空チャンバ1内には、プラズマ発生用コイル2が設置されている。このプラズマ発生用コイル2は、例えば、Cu、Ni、ステンレス、カーボンなどからなり、高周波電源3に接続される。この高周波電源3は、例えば、13.56MHzの高周波電力を供給する。   The manufacturing apparatus includes a vacuum chamber 1, and a plasma generating coil 2 is installed in the vacuum chamber 1. The plasma generating coil 2 is made of, for example, Cu, Ni, stainless steel, carbon or the like, and is connected to the high frequency power source 3. The high frequency power supply 3 supplies high frequency power of 13.56 MHz, for example.

このプラズマ発生用コイル2内には、カーボンナノチューブを形成する基材、この実施の形態では、例えば、直径1mmのワイヤ4が挿通配置される。このワイヤ4は、カーボンナノチューブの形成の触媒となる金属を含有するのが好ましく、例えば、ステンレス、Fe、Niなどからなる。   In this plasma generating coil 2, a base material for forming carbon nanotubes, in this embodiment, for example, a wire 4 having a diameter of 1 mm is inserted and disposed. The wire 4 preferably contains a metal that serves as a catalyst for the formation of carbon nanotubes, and is made of, for example, stainless steel, Fe, Ni, or the like.

また、このワイヤ4には、加熱用電源5が接続され、例えば、700℃〜800℃程度に通電加熱される。ワイヤ4は、直線状に限らず、コイル状や波状であってもよく、複数のワイヤを撚り合わせたものであってもよい。   In addition, a heating power source 5 is connected to the wire 4 and is heated by energization to, for example, about 700 ° C. to 800 ° C. The wire 4 is not limited to a linear shape, and may be a coil shape or a wave shape, or may be a twisted piece of a plurality of wires.

この真空チャンバ1には、ガス導入部6およびガス排気部7が設けられており、ガス導入部6から炭化水素ガス等の原料ガスおよびキャリアガス、例えば、CH/H、CH/Ar、CH/Oが導入され、処理後のガスがガス排気部7から排気される。 The vacuum chamber 1 is provided with a gas introduction part 6 and a gas exhaust part 7, and a raw material gas such as a hydrocarbon gas and a carrier gas such as CH 4 / H 2 , CH 4 / Ar from the gas introduction part 6. , CH 4 / O 2 is introduced, and the treated gas is exhausted from the gas exhaust unit 7.

ガス圧力(全圧)は、10Pa〜1000pa程度であるのが好ましい。   The gas pressure (total pressure) is preferably about 10 Pa to 1000 pa.

この実施の形態では、ワイヤ4には、バイアス電源8が接続され、該ワイヤ4には、負の直流バイアス電圧が印加される。   In this embodiment, a bias power supply 8 is connected to the wire 4, and a negative DC bias voltage is applied to the wire 4.

この実施の形態の製造装置では、カーボンナノチューブを形成するワイヤに対して、従来のように、予め触媒金属を形成する工程を経ることなく、真空チャンバ1内のプラズマ発生用コイル2内に、ワイヤ4を挿通支持する。   In the manufacturing apparatus of this embodiment, the wire for forming the carbon nanotubes is provided in the plasma generating coil 2 in the vacuum chamber 1 without passing through a step of previously forming a catalytic metal as in the prior art. 4 is inserted and supported.

次に、このワイヤ4を通電加熱する一方、負のバイアス電圧を印加し、さらに、プラズマ発生用コイル2に、高周波電力を供給するとともに、ガス導入部6から原料ガス等をその流量を制御しながら導入する。   Next, while energizing and heating the wire 4, a negative bias voltage is applied, and further, high-frequency power is supplied to the plasma generating coil 2, and the flow rate of the raw material gas and the like from the gas introduction unit 6 is controlled. While introducing.

プラズマ発生コイル2内には、プラズマ9が発生し、原料ガスが励起され、ワイヤ4上に、カーボンナノチューブが形成される。   In the plasma generating coil 2, plasma 9 is generated, the source gas is excited, and carbon nanotubes are formed on the wire 4.

すなわち、この実施の形態では、予め触媒金属を形成することなく、ワイヤ4上にカーボンナノチューブを形成することができる。   That is, in this embodiment, carbon nanotubes can be formed on the wire 4 without forming a catalyst metal in advance.

これは、ワイヤ4には、負のバイアス電圧が印加されているために、ワイヤ4の表面がスパッタリングされ、スパッタリングされたワイヤ4に含まれている触媒金属の微粒子が、比較的ガス圧力が高いために、ワイヤ4側に引付けられてワイヤ4の表面に付着し、これを触媒としてカーボンナノチューブが成長すると考えられる。   This is because, since a negative bias voltage is applied to the wire 4, the surface of the wire 4 is sputtered, and the catalyst metal fine particles contained in the sputtered wire 4 have a relatively high gas pressure. Therefore, it is considered that carbon nanotubes grow by being attracted to the wire 4 side and attached to the surface of the wire 4 and using this as a catalyst.

次に、成膜条件、特にバイアス電圧を変えた場合に、形成される膜の状態およびその電子放出特性を評価した。   Next, the state of the formed film and its electron emission characteristics were evaluated when the film forming conditions, particularly the bias voltage was changed.

電子放出特性は、図2に示すように、真空中で、アノード10との間に、1mmの間隙を介してカーボンナノチューブを成膜したワイヤ4を配置し、該ワイヤ4をカソードとして直流電圧を印加し、5V/μmでの放出電流を計測することにより行った。   As shown in FIG. 2, the electron emission characteristics are as follows: a wire 4 on which a carbon nanotube is formed is disposed between the anode 10 and the anode 10 in a vacuum, and a DC voltage is applied using the wire 4 as a cathode. The measurement was performed by applying and measuring the emission current at 5 V / μm.

表1に成膜条件、電子放出特性およびSEM像による膜の状態の評価結果を示す。   Table 1 shows the film formation conditions, electron emission characteristics, and evaluation results of the film state by SEM images.

この表1においては、入力は、プラズマ発生用コイル2に供給される高周波電力を、電圧および電流は、ワイヤ4の通電加熱用の電圧および電流を、時間は、成膜時間を、温度は、ワイヤ温度を、圧力は、CHおよびHの全圧を、電子放出特性は、上述のようにして測定された放出電流を示している。 In Table 1, the input is the high frequency power supplied to the plasma generating coil 2, the voltage and current are the voltage and current for energization heating of the wire 4, the time is the film formation time, and the temperature is The wire temperature, the pressure represents the total pressure of CH 4 and H 2 , and the electron emission characteristic represents the emission current measured as described above.

なお、各条件に対応するSEM像を、それぞれ図3〜図10 示す。各図において、(b)は、(a)の一部拡大図である。   SEM images corresponding to the respective conditions are shown in FIGS. In each figure, (b) is a partially enlarged view of (a).

バイアス電圧を印加しない条件No.1では、カーボンナノウォール(CNW)の小さな成長が見られたが、5V/μmにおける電子放出電流は、認められなかった。   Condition No. in which no bias voltage is applied In 1, a small growth of carbon nanowall (CNW) was observed, but no electron emission current at 5 V / μm was observed.

条件No.2〜5に示すように、負のバイアス電圧の絶対値を大きくするのに伴って、カーボンナノウォール(CNW)の成長が大きくなり、さらに、グラファイトが成長し、5V/μmにおける電子放出電流の増加が認められた。   Condition No. 2-5, as the absolute value of the negative bias voltage is increased, the growth of the carbon nanowall (CNW) increases, and further, the graphite grows, and the electron emission current at 5 V / μm increases. An increase was observed.

さらに、条件No.6〜8に示すように、バイアス電圧が、−160Vでは、カーボンナノチューブ(CNT)の成長が認められ、条件NO.7,8では、5V/μmにおける電子放出電流が認められた。   Furthermore, condition no. As shown in FIGS. 6 to 8, when the bias voltage is −160 V, the growth of carbon nanotubes (CNT) is recognized, and the condition NO. 7 and 8, an electron emission current at 5 V / μm was observed.

負のバイアス電圧は、その絶対値が、100を越える値であるのが好ましい。   The absolute value of the negative bias voltage is preferably a value exceeding 100.

このように、ワイヤ4に負のバイアス電圧を印加しながらプラズマCVDを行うことにより、予め触媒を形成していないワイヤや基板に、カーボンナノチューブを成膜することができる。   Thus, by performing plasma CVD while applying a negative bias voltage to the wire 4, carbon nanotubes can be formed on a wire or substrate on which no catalyst has been previously formed.

なお、カーボンナノチューブを成膜するワイヤ4や基板等の基材が長く、プラズマ発生用コイル2のプラズマ発生領域からはみ出すような場合には、ワイヤ4や基板等の基材を、プラズマ発生用コイル2に対して移動させたり、あるいは、逆に、基材に対してプラズマ発生用コイル2を移動させて基材の全長に亘ってカーボンナノチューブを成膜するようにすればよい。   When the base material such as the wire 4 or the substrate for forming the carbon nanotube is long and protrudes from the plasma generation region of the plasma generating coil 2, the base material such as the wire 4 or the substrate is attached to the plasma generating coil. The plasma generating coil 2 may be moved relative to the base material to form the carbon nanotubes over the entire length of the base material.

また、図11に示すように、ワイヤ4や基板等の基材が、プラズマ発生用コイル2よりも長い場合には、複数のプラズマ発生用コイル2を、ワイヤ4等の基材の長手方向に沿って並設し、各プラズマ発生用コイル2で発生するプラズマ同士が重なり合うようにして、基材の全体に成膜するようにしてもよい。   In addition, as shown in FIG. 11, when the base material such as the wire 4 or the substrate is longer than the plasma generating coil 2, the plurality of plasma generating coils 2 are arranged in the longitudinal direction of the base material such as the wire 4. The plasma may be formed on the entire substrate so that the plasma generated in each of the plasma generating coils 2 overlaps with each other.

さらに、図12に示すように、プラズマ発生用コイル2の長手方向の中央部分2aの巻き径を大きくし、両端部分2bの巻き径を小さくしてプラズマを中央部分に効率的に閉じ込めるようにして成膜速度を高めるようにしてもよい。   Further, as shown in FIG. 12, the winding diameter of the central portion 2a in the longitudinal direction of the plasma generating coil 2 is increased and the winding diameter of both end portions 2b is decreased so that the plasma is efficiently confined in the central portion. The film formation rate may be increased.

(その他の実施の形態)
本発明は、図13に示す容量結合型あるいは図14に示す誘導結合型のプラズマCVD装置に適用し、基板やワイヤ等の基材11に負のバイアス電圧を印加するとともに、基材11を、ヒータ12等によって間接的に加熱するようにしてよい。
(Other embodiments)
The present invention is applied to the capacitively coupled plasma CVD apparatus shown in FIG. 13 or the inductively coupled plasma CVD apparatus shown in FIG. 14, and applies a negative bias voltage to the substrate 11 such as a substrate or a wire. Heating may be performed indirectly by the heater 12 or the like.

また、本発明の他の実施の形態として、バイアス電圧の印加は、カーボンナノチューブの成膜の初期の段階のみ行うようにしてもよい。   As another embodiment of the present invention, the bias voltage may be applied only at the initial stage of carbon nanotube film formation.

本発明は、各種の用途に用いられるカーボンナノチューブの製造に有用である。   The present invention is useful for the production of carbon nanotubes used in various applications.

本発明の実施形態に係るカーボンナノチューブの製造方法を実施する装置の概略構成図である。It is a schematic block diagram of the apparatus which enforces the manufacturing method of the carbon nanotube which concerns on embodiment of this invention. 電子放出特性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of an electron emission characteristic. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 成膜条件が異なる膜の状態を示すSEM像である。It is a SEM image which shows the state of the film | membrane from which film-forming conditions differ. 図1のプラズマ発生用コイルの変形例を示す図である。It is a figure which shows the modification of the coil for plasma generation of FIG. 図1のプラズマ発生用コイルの他の変形例を示す図である。It is a figure which shows the other modification of the coil for plasma generation of FIG. 図1の装置の他の例を示す図である。It is a figure which shows the other example of the apparatus of FIG. 図1の装置の更に他の例を示すである。FIG. 6 shows yet another example of the apparatus of FIG.

符号の説明Explanation of symbols

1 真空チャンバ 2 プラズマ発生用コイル
3 高周波電源 4 ワイヤ(基材)
5 加熱用電源 8 バイアス電源
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Coil for plasma generation 3 High frequency power supply 4 Wire (base material)
5 Power supply for heating 8 Bias power supply

Claims (6)

真空チャンバ内に導入された原料ガスをプラズマ化して基材にカーボンナノチューブを形成する方法であって、
前記基材を加熱するとともに、該基材にバイアス電圧を印加することを特徴とするカーボンナノチューブの製造方法。
A method of forming a carbon nanotube on a base material by converting a raw material gas introduced into a vacuum chamber into plasma,
A method for producing a carbon nanotube, comprising heating the base material and applying a bias voltage to the base material.
前記バイアス電圧が、負の直流バイアス電圧である請求項1に記載のカーボンナノチューブの製造方法。   The method of manufacturing a carbon nanotube according to claim 1, wherein the bias voltage is a negative DC bias voltage. 前記基材は、カーボンナノチューブの形成の触媒となる触媒金属を含有する請求項1または2に記載のカーボンナノチューブの製造方法。   The method for producing carbon nanotubes according to claim 1 or 2, wherein the base material contains a catalytic metal serving as a catalyst for forming carbon nanotubes. 前記基材が、通電加熱される請求項1〜3のいずれか1項に記載のカーボンナノチューブの製造方法。   The manufacturing method of the carbon nanotube of any one of Claims 1-3 in which the said base material is electrically heated. 前記基材が、ステンレス製のワイヤである請求項4に記載のカーボンナノチューブの製造方法。   The method for producing carbon nanotubes according to claim 4, wherein the base material is a stainless steel wire. 前記真空チャンバ内には、高周波電源が供給されるプラズマ発生用コイルが設けられるとともに、前記基材が、該プラズマ発生用コイル内に配置される請求項1〜5のいずれか1項に記載のカーボンナノチューブの製造方法。   The plasma generating coil to which a high-frequency power is supplied is provided in the vacuum chamber, and the base material is disposed in the plasma generating coil. A method for producing carbon nanotubes.
JP2005000800A 2005-01-05 2005-01-05 Method for producing carbon nanotube Pending JP2006188382A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005000800A JP2006188382A (en) 2005-01-05 2005-01-05 Method for producing carbon nanotube
KR1020057023130A KR101313919B1 (en) 2005-01-05 2005-10-13 Apparatus and method for producing carbon film using plasma cvd and carbon film
KR1020127023664A KR101342356B1 (en) 2005-01-05 2005-10-13 Method for producing carbon film using plasma cvd and carbon film
US10/558,874 US8808856B2 (en) 2005-01-05 2005-10-13 Apparatus and method for producing carbon film using plasma CVD and carbon film
PCT/JP2005/018894 WO2006073017A1 (en) 2005-01-05 2005-10-13 Apparatus for manufacturing carbon film by plasma cvd, method for manufacturing the same, and carbon film
CN2005800003526A CN1906127B (en) 2005-01-05 2005-10-13 Apparatus for manufacturing carbon film by plasma CVD, method for manufacturing the same, and carbon film
EP05793094A EP1834925A1 (en) 2005-01-05 2005-10-13 Apparatus for manufacturing carbon film by plasma cvd, method for manufacturing the same, and carbon film
TW094138909K TWI403611B (en) 2005-01-05 2005-11-04 An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film
TW094138909A TW200630505A (en) 2005-01-05 2005-11-04 Apparatus for producing carbon film and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000800A JP2006188382A (en) 2005-01-05 2005-01-05 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2006188382A true JP2006188382A (en) 2006-07-20

Family

ID=36795930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000800A Pending JP2006188382A (en) 2005-01-05 2005-01-05 Method for producing carbon nanotube

Country Status (2)

Country Link
JP (1) JP2006188382A (en)
CN (1) CN1906127B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048603A (en) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd Carbon film, electron emission source, and lighting lamp of field emission type
JP2015038038A (en) * 2008-12-30 2015-02-26 独立行政法人産業技術総合研究所 Granular substrate and filament substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201233253A (en) * 2011-01-26 2012-08-01 Bing-Li Lai Plasma reaction method and apparatus
CN107119262A (en) * 2017-05-27 2017-09-01 华南理工大学 A kind of method of nickel metal base surface catalytic growth carbon nano-tube film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
JP2004303521A (en) * 2003-03-31 2004-10-28 Hitachi Ltd Flat display device
CN2666928Y (en) * 2003-09-23 2004-12-29 青岛科技大学 Apparatus for chemical gas phase depositing diamond film by plasma heat wire method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048603A (en) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd Carbon film, electron emission source, and lighting lamp of field emission type
JP4578350B2 (en) * 2005-08-10 2010-11-10 株式会社ピュアロンジャパン Carbon film, electron emission source and field emission type lighting lamp
JP2015038038A (en) * 2008-12-30 2015-02-26 独立行政法人産業技術総合研究所 Granular substrate and filament substrate

Also Published As

Publication number Publication date
CN1906127B (en) 2012-01-11
CN1906127A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2008530724A (en) Apparatus and process for carbon nanotube growth
JP2007051059A (en) Apparatus and method for growing array of single-wall carbon nanotube
KR101342356B1 (en) Method for producing carbon film using plasma cvd and carbon film
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
JP5732636B2 (en) Method for producing aligned carbon nanotubes
JP2005238142A (en) Catalytic structure and method for producing carbon nanotube by using the same
WO2007015445A1 (en) Plasma generator and film forming method employing same
JP2005307352A (en) Apparatus for producing carbon film and production method therefor
JP4834818B2 (en) Method for producing aggregate of carbon nanotubes
JP4853861B2 (en) Method and apparatus for forming carbon nanostructure
JP2006188382A (en) Method for producing carbon nanotube
JP5653822B2 (en) Method for producing carbon nanotube
JP2006306704A (en) Method of forming carbon film and carbon film
JP2007070158A (en) Carbon nanotube assembly and method for producing the same
JP4872042B2 (en) High-density carbon nanotube aggregate and method for producing the same
JP5032042B2 (en) Plasma CVD apparatus and film forming method
JP2005239481A (en) Metal occlusion carbon nanotube aggregate, its manufacturing method, metal occlusion carbon nanotube, metal nanowire, and its manufacturing method
JP4917758B2 (en) Carbon metal nanotree and method for producing the same
JP2009067663A (en) Method of growing carbon nanotube on carbon fiber sheet and carbon nanotube emitter
JP3837556B2 (en) Metal wire or capillary provided with carbon nanotube and method for forming carbon nanotube
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same
JP2008293967A (en) Electron source and method of manufacturing electron source
JP2005097015A (en) Method for manufacturing carbon nanotube
KR100707199B1 (en) Low temperature growth method of single-walled carbon nanotubes by H2O plasma
JP2003238124A (en) Method for manufacturing carbon nanotube