JP2006187708A - Waste water recovery method and waste water recovery device - Google Patents

Waste water recovery method and waste water recovery device Download PDF

Info

Publication number
JP2006187708A
JP2006187708A JP2005000612A JP2005000612A JP2006187708A JP 2006187708 A JP2006187708 A JP 2006187708A JP 2005000612 A JP2005000612 A JP 2005000612A JP 2005000612 A JP2005000612 A JP 2005000612A JP 2006187708 A JP2006187708 A JP 2006187708A
Authority
JP
Japan
Prior art keywords
chamber
water
concentration
primary
electrodeionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000612A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀昭 高橋
Masanari Hidaka
真生 日高
Makio Tamura
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005000612A priority Critical patent/JP2006187708A/en
Publication of JP2006187708A publication Critical patent/JP2006187708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water recovery method and a waste water recovery device, wherein the reduction of space can be attained, or further, waste water can be dramatically reduced by dispensing with the installation of a conventional large scale waste water recovery device. <P>SOLUTION: Ultrapure water obtained in an ultrapure water production apparatus 20 is fed to each use point 14. Among the water to be exhausted from each use point 14, the waste water comprising inorganic ion components in the concentration of 0.01 to 1,000 mg/l is fed to an electric deionization apparatus 15, so as to perform deionization treatment, and the treated water in the electric deionization apparatus 15 is returned to the ultrapure water production apparatus 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造分野、電力分野、医製薬製造、その他の産業における純水又は超純水の使用後の排水を電気脱イオン装置で処理して再利用に供するようにした排水回収方法および排水回収装置に関する。   The present invention relates to a wastewater recovery method in which wastewater after use of pure water or ultrapure water in the semiconductor manufacturing field, electric power field, pharmaceutical manufacturing, and other industries is treated with an electrodeionization device for reuse. It relates to a wastewater recovery device.

工業排水等の排水を回収して再利用することは水資源の節約を図ることだけでなく、環境汚染防止にも役立つことであり、排水の回収再利用は技術的にも重要な問題である。工場や研究施設などのような純水及び超純水を使用する施設では、各ユースポイント(使用地点)で排出された工業排水は、ユースポイントごとにそのまま回収再利用するのではなく、おおまかに無機系・有機系などに分類され、分類された排水は一括で排水処理設備へ送られ回収再利用されている。これはユースポイントごとに排水回収すると、ユースポイントごとに排水回収設備を設置しなければならず、そのための設置スペースが必要になることやコストがかかるという欠点があるためである。   Collecting and reusing wastewater such as industrial wastewater not only saves water resources but also helps prevent environmental pollution, and wastewater collection and reuse is an important technical issue. . In facilities that use pure water and ultrapure water such as factories and research facilities, industrial wastewater discharged at each use point (use point) is not collected and reused for each use point, but roughly. The wastewater classified into inorganic and organic is sent to the wastewater treatment facility in a lump and is collected and reused. This is because if wastewater is collected for each use point, a wastewater recovery facility must be installed for each use point, and there is a disadvantage that an installation space is required and costs are required.

図6は、従来技術による半導体製造工場における代表的な排水回収装置のフロー図である。図6の排水回収装置100において、市水や工水などの原水は前処理装置101にて、前処理され、その処理水を一次純水製造装置102へ供給した後、サブシステム103において超純水を製造し、その超純水がユースポイント104にて使用され、ユースポイント104から排出される水の一部を排水回収設備105へ供給し、排水回収設備105から製造された水を一次純水製造装置102へ戻して水を再利用する。ユースポイント104はクリーンルーム106内にあり、排水回収設備105はクリーンルーム外に設置されている。   FIG. 6 is a flowchart of a typical wastewater recovery apparatus in a semiconductor manufacturing factory according to the prior art. In the wastewater recovery apparatus 100 of FIG. 6, raw water such as city water and industrial water is pretreated by the pretreatment apparatus 101, and the treated water is supplied to the primary pure water production apparatus 102, and then ultrapure in the subsystem 103. The water is produced, the ultrapure water is used at the use point 104, a part of the water discharged from the use point 104 is supplied to the waste water recovery facility 105, and the water produced from the waste water recovery facility 105 is primary pure. It returns to the water production apparatus 102 and water is reused. The use point 104 is in the clean room 106, and the waste water collection facility 105 is installed outside the clean room.

排水回収設備105に返送される水は、フッ酸系成分、酸系又はアルカリ系成分、有機系成分、シリコン粉末等の研磨系成分あるいは研磨スラリ、シリコン又は金属片等の化学的又は機械的研磨系成分を含有する水のうち、0.001mg/l〜30%の濃度の希薄排水である。これら以外の排水は別の排水処理設備へ送られ、処理を施された後に廃水として捨てられる。   The water returned to the wastewater recovery facility 105 is a chemical or mechanical polishing such as a hydrofluoric acid component, an acid or alkali component, an organic component, a polishing component such as silicon powder, or a polishing slurry, silicon or a metal piece. Among water containing system components, it is a diluted waste water having a concentration of 0.001 mg / l to 30%. Wastewater other than these is sent to another wastewater treatment facility, where it is treated and discarded as wastewater.

このように、一括で分類された希薄排水のうち、例えば無機系混合成分を含有する工業排水には、酸、アルカリあるいは塩類が含まれているため、排水の回収に当たっては脱イオン処理を施すことが必要となる。ところが、該排水は様々な成分の混合物であり、含有成分に応じた処理方法を採る必要がある。従来、このような排水を処理する装置としては、主に逆浸透膜装置、イオン交換樹脂装置及び電気脱イオン装置が用いられている。一方、特開2001−976号公報には、電気透析装置の濃縮室を隔膜により2室に分割し、そのうちの陰極側濃縮室に陽極側濃縮室とは異なる供給水を流入、排出させることで濃縮室内での硬度成分の析出、蓄積を防止して脱イオン水を製造する脱イオン水製造装置が開示されている。
特開2001−976号公報(請求項1、図1)
In this way, among the diluted wastewater classified in a lump, industrial wastewater containing inorganic mixed components, for example, contains acid, alkali, or salts, so deionization treatment should be applied to collect wastewater. Is required. However, the waste water is a mixture of various components, and it is necessary to adopt a treatment method according to the contained components. Conventionally, as a device for treating such waste water, a reverse osmosis membrane device, an ion exchange resin device, and an electrodeionization device are mainly used. On the other hand, JP-A-2001-976 divides a concentration chamber of an electrodialysis apparatus into two chambers by a diaphragm, and feeds and discharges supply water different from the anode-side concentration chamber into and out of the cathode-side concentration chamber. A deionized water production apparatus for producing deionized water by preventing precipitation and accumulation of hardness components in the concentration chamber is disclosed.
JP 2001-976 A (Claim 1, FIG. 1)

しかしながら、逆浸透膜装置やイオン交換樹脂装置は、混合成分含有排水を処理するのに適しているが、逆浸透膜装置は水利用率が悪く、設置及び運転コストもかかる上、大きな設置スペースも必要となる。また、イオン交換樹脂装置は、薬品再生の工程を必要とするため運転効率が悪い。一方、電気脱イオン装置は上記欠点が解消され、少ない設置スペースで低コストの運転を実現することができる。しかし、電気脱イオン装置は高イオン負荷や多価イオン成分の処理性能が悪く、混合排水を被処理水とした場合、充分な処理性能が得られない。また、従来の電気脱イオン装置は濃縮倍率を100倍以上に高めることができず、水利用率が低いという欠点がある。また、電気脱イオン装置の濃縮水は蒸発乾固処理されるが、イオン濃度が低いため溶質の固形分を分離するには多大の熱エネルギーが必要となり、蒸発乾固処理工程における装置を複雑化させ、処理操作や運転コストの負担を増大させるという欠点がある。   However, reverse osmosis membrane devices and ion exchange resin devices are suitable for treating mixed component-containing wastewater. However, reverse osmosis membrane devices have poor water utilization, require installation and operating costs, and have a large installation space. Necessary. In addition, since the ion exchange resin device requires a chemical regeneration step, the operation efficiency is poor. On the other hand, the electrodeionization apparatus eliminates the above-mentioned drawbacks and can realize low-cost operation with a small installation space. However, the electrodeionization apparatus has poor treatment performance for high ion loads and multivalent ion components, and when the mixed waste water is treated water, sufficient treatment performance cannot be obtained. Moreover, the conventional electrodeionization apparatus has a drawback that the concentration factor cannot be increased to 100 times or more, and the water utilization rate is low. In addition, the concentrated water of the electrodeionization device is evaporated to dryness, but because the ion concentration is low, a large amount of thermal energy is required to separate the solid content of the solute, making the device in the evaporation to dryness process complicated. And the burden of processing operations and operating costs is increased.

このため、従来の排水処理は、前記排水回収装置を複数組み合わせて使用していた。例えば、工業排水をまず逆浸透膜装置に通して、逆浸透膜装置では除去しきれないイオンをイオン交換樹脂装置や電気脱イオン装置によって充分に除去し、一定の水質を備えた脱塩水を得、次いで、該脱塩水を回収水として超純水製造における一次純水製造系へ戻し再利用していた。しかしながら、このような排水回収装置は、大規模で処理コストが上昇すると共に、広い設置スペースを必要とするという問題がある。また、電気脱イオン装置の濃縮水を再利用するために前段に戻すことも考えられるが、これでは、前段の運転操作が複雑になり、装置の設計や運転工程も煩雑になるという問題がある。また、特開2001−976号公報記載の濃縮室を2室に分割した脱イオン水製造装置は、濃縮室を経由する濃縮水循環系を備えることの記載はない。このため、濃縮室内での硬度成分の析出、蓄積を防止し長期間安定して脱イオン性能を維持するものの、濃縮倍率を高め水の利用率を高めるものではない。   For this reason, the conventional wastewater treatment uses a combination of a plurality of the wastewater recovery devices. For example, industrial wastewater is first passed through a reverse osmosis membrane device, and ions that cannot be removed by the reverse osmosis membrane device are sufficiently removed by an ion exchange resin device or an electric deionization device to obtain demineralized water having a certain water quality. Subsequently, the demineralized water was returned to the primary pure water production system in the production of ultrapure water as recovered water and reused. However, such a waste water recovery apparatus has a problem that the processing cost increases on a large scale and a large installation space is required. In addition, it is conceivable to return to the previous stage in order to reuse the concentrated water of the electrodeionization apparatus, but this causes a problem that the operation operation of the previous stage becomes complicated, and the design and operation process of the apparatus become complicated. . Moreover, the deionized water manufacturing apparatus which divided | segmented the concentration chamber of Unexamined-Japanese-Patent No. 2001-976 into two chambers does not have description of providing the concentrated water circulation system which passes through a concentration chamber. For this reason, although precipitation and accumulation | storage of the hardness component in a concentration chamber are prevented and deionization performance is maintained stably for a long period of time, it does not raise a concentration rate and raise the utilization factor of water.

従って、本発明の目的は、従来のような大規模な排水回収装置を設置する必要がなく、省スペース化が図れるか、あるいは更に、排水を劇的に低減できる排水回収方法及び排水回収装置を提供することにある。   Accordingly, an object of the present invention is to provide a wastewater recovery method and wastewater recovery apparatus that can save space or can dramatically reduce wastewater without the need for installing a large-scale wastewater recovery apparatus as in the prior art. It is to provide.

かかる実情において、本発明者らは鋭意検討を行った結果、純水又は超純水製造装置で得られた純水又は超純水を各ユースポイントに供給し、該各ユースポイントから排出される排水のうち、特定の排水のみを、電気脱イオン装置へ供給して脱イオン処理を行い、該電気脱イオン装置の処理水を該純水又は超純水製造装置に返送すれば、従来のような大規模な排水回収装置を設置する必要がなく、省スペース化が図れること、また、濃縮室が分割された電気脱イオン装置を用いれば濃縮排水を劇的に低減することができ、濃縮排水の処理が簡便となることなどを見出し、本発明を完成するに至った。   In such a situation, the present inventors have intensively studied, and as a result, supplied pure water or ultrapure water obtained with pure water or ultrapure water production equipment to each use point and discharged from each use point. Of the wastewater, only a specific wastewater is supplied to the electrodeionization device to perform the deionization treatment, and the treated water of the electrodeionization device is returned to the pure water or ultrapure water production device. It is not necessary to install a large-scale wastewater collection device, and space saving can be achieved. Concentrated wastewater can be drastically reduced by using an electrodeionization device with a concentrated concentrating chamber. As a result, the present inventors have completed the present invention.

すなわち、本発明は、純水又は超純水製造装置で得られた純水又は超純水を各ユースポイントに供給し、該各ユースポイントから排出される排水のうち、0.01〜1000mg/l濃度の無機イオン成分を含有する排水を、電気脱イオン装置へ供給して脱イオン処理を行い、該電気脱イオン装置の処理水を該純水又は超純水製造装置の一次純水製造装置又はサブシステムに返送することを特徴とする排水回収方法を提供するものである。   That is, the present invention supplies pure water or ultrapure water obtained with pure water or ultrapure water production equipment to each use point, and out of waste water discharged from each use point, 0.01 to 1000 mg / Waste water containing an inorganic ion component having a concentration of l is supplied to an electrodeionization device to perform deionization treatment, and the treated water of the electrodeionization device is used as a primary pure water production device for the pure water or ultrapure water production device. Alternatively, the present invention provides a wastewater recovery method characterized by being returned to the subsystem.

また、本発明は、純水又は超純水を製造する純水又は超純水製造装置と、該純水又は超純水を使用する各ユースポイントと、電気脱イオン装置を有し、該各ユースポイントから排出される排水のうち、0.01〜1000mg/l濃度の無機イオン成分を含有する排水を該電気脱イオン装置の脱イオン室に流入させる第1排水配管と、該電気脱イオン装置の処理水を該純水又は超純水製造装置に返送する返送配管を備えることを特徴とする排水回収装置を提供するものである。   Further, the present invention includes a pure water or ultrapure water production apparatus for producing pure water or ultrapure water, each use point using the pure water or ultrapure water, and an electrodeionization apparatus, A first drainage pipe for allowing wastewater containing inorganic ion components having a concentration of 0.01 to 1000 mg / l out of wastewater discharged from a use point to flow into the deionization chamber of the electrodeionization device, and the electrodeionization device The waste water recovery apparatus characterized by including the return piping which returns this treated water to this pure water or an ultrapure water manufacturing apparatus is provided.

本発明によれば、広い設置スペースを必要としない電気脱イオン装置のみを排水回収装置としてユースポイント近傍に設置し、ユースポイントごとに排水を回収再利用できるため、大規模な排水回収設備を設置する必要が無い。
また、電気脱イオン装置の濃縮倍率を10〜10倍にすることにより濃縮排水を劇的に低減することができ、装置単体での水利用率も上がる。濃縮排水が極めて少ないため、容量の小さな廃液タンクを設置すればよく、排水ラインを設置できないクリーンルームのような場所でも設置が可能となる。
濃縮水を前段に戻したり、さらに濃縮するなどの再利用する必要がないため、装置が単純化でき、設計し易い。
According to the present invention, only an electrodeionization device that does not require a large installation space is installed in the vicinity of a use point as a waste water recovery device, and waste water can be recovered and reused for each use point, so a large-scale waste water recovery facility is installed. There is no need to do.
Moreover, the concentration drainage of an electrodeionization apparatus can be drastically reduced by increasing the concentration ratio of the electrodeionization apparatus by 10 2 to 10 6 times, and the water utilization rate of the apparatus alone increases. Since concentrated drainage is extremely small, it is sufficient to install a waste liquid tank with a small capacity, and it is possible to install it in a place such as a clean room where a drainage line cannot be installed.
Since it is not necessary to reuse concentrated water such as returning the concentrated water to the previous stage or further concentrating, the apparatus can be simplified and designed easily.

本発明の実施の形態における排水回収方法及び排水回収装置を図1を参照して説明する。図1は本例の排水回収装置のフロー図である。本発明における純水又は超純水製造装置としては、特に制限されないが、本例の超純水製造装置20は前処理装置11と、一次純水製造装置12と、二次純水製造装置13をこの順序で配置したものである。前処理装置11は、濁質、微粒子及び酸化剤などを除去できるものであり、例えば精密ろ過膜装置、限外ろ過膜装置及び活性炭装置から選ばれる1又は2以上の装置から構成される。一次純水製造装置12は、例えば逆浸透膜装置、イオン交換樹脂装置及び電気脱イオン装置から選ばれる1又は2以上から構成される。サブシステム13は、例えば紫外線酸化装置、精密ろ過膜装置、限外ろ過膜装置、イオン交換樹脂装置及び電気脱イオン装置から選ばれる1又は2以上から構成される。   A drainage recovery method and drainage recovery apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flow diagram of the wastewater recovery apparatus of this example. Although it does not restrict | limit especially as a pure water or ultrapure water manufacturing apparatus in this invention, The ultrapure water manufacturing apparatus 20 of this example is the pre-processing apparatus 11, the primary pure water manufacturing apparatus 12, and the secondary pure water manufacturing apparatus 13. Are arranged in this order. The pretreatment device 11 can remove turbidity, fine particles, oxidant, and the like, and includes, for example, one or more devices selected from a microfiltration membrane device, an ultrafiltration membrane device, and an activated carbon device. The primary pure water production apparatus 12 is composed of, for example, one or more selected from a reverse osmosis membrane apparatus, an ion exchange resin apparatus, and an electrodeionization apparatus. The subsystem 13 includes one or more selected from, for example, an ultraviolet oxidation device, a microfiltration membrane device, an ultrafiltration membrane device, an ion exchange resin device, and an electrodeionization device.

超純水製造装置20で得られた超純水は各ユースポイント14に供給される。ユースポイント14とは、超純水が使用される地点のことを言う。ユースポイント14は、クリーンルーム16内に通常複数箇所に設置され、半導体基板の剥離、洗浄、エッヂング、現像などの工程が行われ、その工程で超純水がそれぞれ使用される。このため、ユースポイント14から排出される排水は、それぞれ様々な成分を種々の濃度で含む。   The ultrapure water obtained by the ultrapure water production apparatus 20 is supplied to each use point 14. The use point 14 refers to a point where ultrapure water is used. The use points 14 are usually installed at a plurality of locations in the clean room 16, and processes such as peeling, cleaning, edging and developing of the semiconductor substrate are performed, and ultrapure water is used in each process. For this reason, the waste water discharged from the use point 14 includes various components at various concentrations.

各ユースポイント14から排出される排水のうち、0.01〜1000mg/l濃度の無機イオン成分を含有する排水(以下、利用排水とも言う)は、第1排水配管18を通して直接、電気脱イオン装置15に供給される。ユースポイント14毎に排出されるそれぞれの排水は、前述の如く、フッ酸系成分、酸系又はアルカリ系成分、有機系成分、シリコン粉末等の研磨系成分あるいは研磨スラリ、シリコン又は金属片等の化学的又は機械的研磨系成分を含有する水であり、このうち、利用排水は、0.01〜1000mg/l、好ましくは0.1〜100mg/l濃度、更に好ましくは1〜10mg/l濃度の無機イオン成分含有排水であれば、特に制限されないが、例えばフッ酸系成分(HF、NHF等)含有ウエハー洗浄排水、酸系又はアルカリ系成分(HCl、HNO、HSO、HPO、CHCOOH、H、NHOH等)含有排水、有機系成分(IPA、アセトン、界面活性剤、TMAH)含有排水、その他の酸やアルカリ成分を含有する排水、単成分からなる排水などが挙げられる。従来、ユースポイントから得られる無機排水は複数のユースポイントから得られる排水の混合排水であり、濃度も一定ではなかったため、直接電気脱イオン装置に供給することはできなかったが、本発明によれば、ユースポイント毎に排水を回収するため、成分や濃度が特定されており、電気脱イオン装置で処理が可能となる。なお、本例において、利用排水は、第1排水配管18を通して直接、電気脱イオン装置15に供給されているが、これに限定されず、例えば、利用排水中の苛性ソーダを除去するため、電気脱イオン装置15の前段にポリッシャー型の活性炭等の前処理手段を付設してもよい。 Among the wastewater discharged from each use point 14, wastewater containing an inorganic ion component having a concentration of 0.01 to 1000 mg / l (hereinafter also referred to as “utilized wastewater”) is directly connected to the electrode deionizer through the first drainage pipe 18. 15 is supplied. As described above, each drainage discharged for each use point 14 is composed of a hydrofluoric acid component, an acid or alkali component, an organic component, a polishing component such as silicon powder, a polishing slurry, silicon, or a metal piece. Water containing chemical or mechanical polishing system components. Among these, the wastewater used is 0.01 to 1000 mg / l, preferably 0.1 to 100 mg / l, more preferably 1 to 10 mg / l. For example, hydrous acid-based components (HF, NH 4 F, etc.) containing wafer cleaning waste water, acid-based or alkaline components (HCl, HNO 3 , H 2 SO 4 , H 3 PO 4, CH 3 COOH , H 2 O 2, NH 4 OH , etc.) containing wastewater, organic components (IPA, acetone, surfactants, TMAH) containing wastewater, other acids or Al Wastewater containing Li component, drainage and the like made of a single component. Conventionally, inorganic wastewater obtained from a use point is a mixed wastewater obtained from a plurality of use points, and since the concentration was not constant, it could not be supplied directly to an electrodeionization device. For example, since wastewater is collected for each point of use, components and concentrations are specified, and treatment with an electrodeionization device is possible. In this example, the used wastewater is directly supplied to the electrodeionization device 15 through the first drainage pipe 18, but the present invention is not limited to this. For example, in order to remove caustic soda in the used wastewater, Pretreatment means such as polisher-type activated carbon may be provided in front of the ion device 15.

ユースポイント14毎に排出されるそれぞれの排水から利用排水を選択する方法としては、例えば、ユースポイント14における超純水の使用履歴から判断する方法、排水の水質検査から判断する方法等が挙げられる。また、利用排水以外の排水は、第2排水配管19を通って、排水回収設備17に送られ、排水回収設備17の処理水は一次純水製造装置12又は前処理装置11に返送される。本発明の排水回収方法においても、排水回収設備17は必要とされるものの、被処理排水は減容されており、排水回収設備17の規模は小さく、設置スペースも大きくとることはない。   Examples of the method of selecting the use wastewater from each drainage discharged for each use point 14 include a method of judging from the use history of ultrapure water at the use point 14 and a method of judging from a water quality inspection of waste water. . In addition, wastewater other than used wastewater is sent to the wastewater collection facility 17 through the second drainage pipe 19, and the treated water in the wastewater collection facility 17 is returned to the primary pure water production device 12 or the pretreatment device 11. Even in the wastewater recovery method of the present invention, although the wastewater recovery facility 17 is required, the wastewater to be treated is reduced in volume, the scale of the wastewater recovery facility 17 is small, and the installation space is not large.

本発明で用いる電気脱イオン装置としては、例えば、特開2001−239270号公報の従来技術欄に記載された従前の脱塩室構造を有する電気脱イオン装置、あるいは特開2001−239270号公報記載の陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画され且つ当該アニオン交換膜と当該カチオン交換膜の間に位置する中間イオン交換膜で区画される第1小脱塩室と第2小脱塩室を内包し、被処理水が該第1小脱塩室と該第2小脱塩室にこの順序で直列に通水される1つ又は複数の脱塩室を有する電気脱イオン装置が使用できる。   Examples of the electrodeionization apparatus used in the present invention include an electrodeionization apparatus having a conventional demineralization chamber structure described in the prior art column of JP-A-2001-239270, or described in JP-A-2001-239270. A first small desalting chamber and a second small demineralization chamber which are partitioned by an anion exchange membrane and a cathode side by a cation exchange membrane and by an intermediate ion exchange membrane located between the anion exchange membrane and the cation exchange membrane. An electrodeionization apparatus comprising one or more demineralization chambers including a demineralization chamber, and water to be treated is passed through the first small desalination chamber and the second small desalination chamber in series in this order. Can be used.

また、本発明で用いる電気脱イオン装置15は、該濃縮室が、隔膜により2室以上に分割され、希薄な濃縮水が供給される一次濃縮室とそれよりも濃厚な濃縮水が供給される二次濃縮室により構成され、該一次濃縮室は脱イオン室の陰極側又は陽極側の一方又は両方に配置され、該脱イオン室と該一次濃縮室の接合体と、該二次濃縮室は交互に積層されたものであって、且つ該一次濃縮室を経由する一次濃縮水循環系と、該二次濃縮室を経由する二次濃縮水循環系の2つの濃縮水循環系を備えるものであれば、濃縮水の排出量21を利用排水の0.0001〜1%と劇的に低減することができ、濃縮排水の処理が不要となる。例えば電気脱イオン装置をクリーンルーム16に設置する場合、容量の小さな運搬自在の廃液タンク22のみを設置するだけでよく、極めて都合がよい。   In the electrodeionization apparatus 15 used in the present invention, the concentration chamber is divided into two or more chambers by a diaphragm, and a primary concentration chamber to which dilute concentrated water is supplied and concentrated water that is richer than that are supplied. A secondary concentrating chamber, and the primary concentrating chamber is disposed on one or both of the cathode side and the anode side of the deionization chamber, the deionization chamber / primary concentrating chamber assembly, and the secondary concentrating chamber As long as it is alternately stacked and has two concentrated water circulation systems including a primary concentrated water circulation system that passes through the primary concentration chamber and a secondary concentrated water circulation system that passes through the secondary concentration chamber, The concentrated water discharge 21 can be drastically reduced to 0.0001 to 1% of the wastewater used, and the treatment of the concentrated wastewater becomes unnecessary. For example, when the electrodeionization apparatus is installed in the clean room 16, it is only necessary to install only a transportable waste liquid tank 22 having a small capacity, which is extremely convenient.

濃縮室が分割された電気脱イオン装置15において、濃縮室は、一次濃縮室及び二次濃縮室ともに、合成樹脂で成型された内部がくり抜かれた枠体、ゴムパッキン又はガスケット様の枠体等の使用により形成される。濃縮室の内部空間には、膜同士の密着を防止し、流路の確保をするために、導電性又は非導電性水透過性体を配置してもよい。非導電性水透過性体としては、例えば、メッシュ状物、不織布、織布及びこれ以外の多孔質体などが挙げられ、このうちメッシュ状物が網目の選定が容易であると共に水透過性に優れ、濃縮室の差圧上昇を招き難い点で好ましい。   In the electrodeionization apparatus 15 in which the concentrating chamber is divided, the concentrating chamber includes both a primary concentrating chamber and a secondary concentrating chamber, a frame body made of synthetic resin, a rubber packing, a gasket-like frame body, etc. Formed by the use of. In the internal space of the concentration chamber, a conductive or non-conductive water-permeable body may be disposed in order to prevent the membranes from sticking to each other and secure a flow path. Examples of the non-conductive water-permeable body include mesh-like materials, non-woven fabrics, woven fabrics, and other porous materials. Among these, the mesh-like material is easy to select a mesh and has water permeability. It is preferable in that it is excellent and hardly raises the differential pressure in the concentrating chamber.

該濃縮室の隔膜としては、一次濃縮室と二次濃縮室で異なる濃縮水が流れ、両者が互いに混合しないでイオン交換が行われるような機能を有するものであればよく、例えばイオン交換膜が挙げられる。イオン交換膜はカチオン交換膜又はアニオン交換膜を用いることができ、被処理液から除去したい成分がカチオンかアニオンかによって、イオン交換膜が選択される。   The diaphragm of the concentrating chamber may have any function as long as different concentrated water flows between the primary concentrating chamber and the secondary concentrating chamber, and the ion exchange is performed without mixing them. Can be mentioned. As the ion exchange membrane, a cation exchange membrane or an anion exchange membrane can be used, and the ion exchange membrane is selected depending on whether the component to be removed from the liquid to be treated is a cation or an anion.

一次濃縮室を経由する一次濃縮水循環系に供給される供給液としては、特に制限されず、脱イオン室に供給される利用排水から分岐して供給される水であっても、利用排水からの分岐ラインとは別途のラインから供給される水であってもよい。一次濃縮水は、常時循環運転される。従って、一次濃縮水を循環運転するために一次濃縮水貯蔵タンク及び循環ポンプを設置する。なお、一次濃縮水の濃度を適正に制御できるように、一次濃縮水循環配管には一次濃縮水の一部を系外に排出するブロー配管を設置してもよい。一次濃縮水の濃度は被処理水の10〜1000倍濃厚にするように濃縮室の厚さ、印加電流、濃縮液のLVなどが調節される。   The supply liquid supplied to the primary concentrated water circulation system that passes through the primary concentration chamber is not particularly limited. Even if the water is branched from the used wastewater supplied to the deionization chamber, The branch line may be water supplied from a separate line. The primary concentrated water is always circulated. Therefore, a primary concentrated water storage tank and a circulation pump are installed to circulate the primary concentrated water. In addition, you may install the blow piping which discharges a part of primary concentrated water out of the system in the primary concentrated water circulation piping so that the density | concentration of primary concentrated water can be controlled appropriately. The thickness of the concentration chamber, the applied current, the LV of the concentrate, etc. are adjusted so that the concentration of the primary concentrated water is 10 to 1000 times thicker than the water to be treated.

二次濃縮室を経由する二次濃縮水循環系は、一次濃縮水循環系とは独立する循環系であり、該二次濃縮水循環系に供給される供給水としては、特に制限されず、脱イオン室に供給される被処理水(利用排水)から分岐して供給される水であっても、利用排水からの分岐ラインとは別途のラインから供給される水であってもよい。二次濃縮水は常時循環運転される。従って、二次濃縮水を循環運転するために二次濃縮水貯蔵タンク及び循環ポンプを設置する。また、二次濃縮水の濃度を適正に制御できるように、二次濃縮水循環配管には二次濃縮水の一部を系外に排出するブロー配管を設置する。二次濃縮水の濃度は一次濃縮液の10〜1000倍濃厚にするように濃縮室のLV、厚さ、印加電流などが調節される。   The secondary concentrated water circulation system passing through the secondary concentration chamber is a circulation system independent of the primary concentrated water circulation system, and the supply water supplied to the secondary concentrated water circulation system is not particularly limited, and is a deionization chamber. Even if it is the water which branches and is supplied from the to-be-processed water (utilization waste_water | drain) supplied to water, the water supplied from a line separate from the branch line from utilization waste_water | drain may be sufficient. Secondary concentrated water is always circulated. Therefore, a secondary concentrated water storage tank and a circulation pump are installed to circulate the secondary concentrated water. In addition, in order to appropriately control the concentration of the secondary concentrated water, the secondary concentrated water circulation pipe is provided with a blow pipe for discharging a part of the secondary concentrated water out of the system. The LV, thickness, applied current, etc. of the concentration chamber are adjusted so that the concentration of the secondary concentrated water is 10 to 1000 times thicker than the primary concentrated solution.

一次濃縮室及び二次濃縮室は、イオン交換体が充填されていても、充填されていなくてもよいが、一次濃縮室と二次濃縮室の少なくとも一方には、アニオン交換体又はカチオン交換体単床、又はアニオン交換体とカチオン交換体が1:9〜9:1の体積比で混合された混床が充填されていることが好ましい。これらのイオン交換体は、濃縮したい成分に応じて決定される。イオン交換体の形態としては、イオン交換樹脂、イオン交換繊維、特開2002−306976号公報記載の多孔質イオン交換体が挙げられる。いずれも電気抵抗を低減し、濃縮倍率を高くすることができるという点で好ましい。   The primary concentration chamber and the secondary concentration chamber may or may not be filled with an ion exchanger, but at least one of the primary concentration chamber and the secondary concentration chamber has an anion exchanger or a cation exchanger. It is preferable to fill a single bed or a mixed bed in which an anion exchanger and a cation exchanger are mixed at a volume ratio of 1: 9 to 9: 1. These ion exchangers are determined according to the component to be concentrated. Examples of the ion exchanger include ion exchange resins, ion exchange fibers, and porous ion exchangers described in JP-A No. 2002-306976. Both are preferable in that the electrical resistance can be reduced and the concentration factor can be increased.

一次濃縮室及び二次濃縮室の厚さとしては、共に、それぞれ0.5〜6mmが好ましく、特に1.0〜5.0mmが好ましい。0.5mm未満であると、濃縮室の構造を維持することが難しく、一次濃縮室と二次濃縮室のイオン交換膜が接触しやすくなり、濃縮室の性能を発揮できない。また通水差圧も上昇しやすい。一方、6mmを超えると電気抵抗が高くなり、消費電力が増大する。濃縮室のLVは、通常5〜200m/h程度である。   The thicknesses of the primary concentration chamber and the secondary concentration chamber are both preferably 0.5 to 6 mm, particularly preferably 1.0 to 5.0 mm. If it is less than 0.5 mm, it is difficult to maintain the structure of the concentration chamber, the ion exchange membranes in the primary concentration chamber and the secondary concentration chamber are likely to come into contact, and the performance of the concentration chamber cannot be exhibited. Also, the water differential pressure is likely to increase. On the other hand, if it exceeds 6 mm, the electrical resistance increases and the power consumption increases. The LV of the concentration chamber is usually about 5 to 200 m / h.

次に、本発明で用いる電気脱イオン装置及び電気脱イオン装置の運転方法を図2を参照して説明する。図2は利用排水がカチオン性不純物含有排水であり、脱カチオン水を得るための電気脱カチオン装置のフロー図である。図2中、符号Dは脱カチオン室、C1は一次濃縮室、C2は二次濃縮室、Eは電極室、Aはアニオン交換膜、Cはカチオン交換膜、黒色反転はカチオン交換体をそれぞれ示す。   Next, the operation of the electrodeionization apparatus and electrodeionization apparatus used in the present invention will be described with reference to FIG. FIG. 2 is a flow diagram of an electrodeionization apparatus for obtaining decationized water in which the wastewater used is a cationic impurity-containing wastewater. In FIG. 2, symbol D indicates a decation chamber, C1 indicates a primary concentration chamber, C2 indicates a secondary concentration chamber, E indicates an electrode chamber, A indicates an anion exchange membrane, C indicates a cation exchange membrane, and black inversion indicates a cation exchanger. .

電気脱カチオン装置15aは、電気脱カチオン装置本体31a、2つの脱カチオン室Dに利用排水をそれぞれ流入させる被処理水流入配管32、2つの脱カチオン室Dの処理水を流出させる脱カチオン水流出配管33、4つの一次濃縮室C1を経由する一次濃縮水循環配管34、3つの二次濃縮室C2を経由する二次濃縮水循環配管35及び二次濃縮水循環配管35から分岐する二次濃縮水ブロー配管36を備える。   The electrodeionization device 15a has an electrodeionization device main body 31a, an untreated water inflow pipe 32 through which used wastewater flows into the two decationization chambers D, and an outflow of decationized water from which the treated water in the two decationization chambers D flows out. Pipe 33, primary concentrated water circulation pipe 34 that passes through four primary concentration chambers C1, secondary concentrated water circulation pipe 35 that passes through three secondary concentration chambers C2, and secondary concentrated water blow pipe that branches from secondary concentrated water circulation pipe 35 36.

電気脱カチオン装置本体31aは、陽極室E及び陰極室Eが両端に配置され、陽極側がアニオン交換膜Aで区画され陰極側がカチオン交換膜Cで区画されるカチオン交換体が充填された脱カチオン室D、Dと、脱カチオン室Dと脱カチオン室Dの間に濃縮室C1、C2を配置すると共に、陽極室側から陰極室側に向けて順に、濃縮室C1、C2、脱カチオン室D、濃縮室C1、C2、脱カチオン室D、濃縮室C1、C2及び一次濃縮室C1を配置したものである。   The electrodeionization apparatus main body 31a is a decationization chamber filled with a cation exchanger in which an anode chamber E and a cathode chamber E are disposed at both ends, an anode side is partitioned by an anion exchange membrane A, and a cathode side is partitioned by a cation exchange membrane C. D, D and concentration chambers C1, C2 are arranged between the decation chamber D and the decation chamber D, and the concentration chambers C1, C2, decation chamber D, in order from the anode chamber side to the cathode chamber side, The concentration chambers C1, C2, the decation chamber D, the concentration chambers C1, C2, and the primary concentration chamber C1 are arranged.

濃縮室は、カチオン交換膜Cにより、希薄な濃縮水が供給される一次濃縮室C1とそれよりも濃厚な濃縮水が供給される二次濃縮室C2に分割され、一次濃縮室C1は脱カチオン室Dの陰極側に配置され、脱カチオン室Dと一次濃縮室C1の接合体と、二次濃縮室C2が交互に積層されたものである。なお、一次濃縮室C1にはカチオン交換体が充填されている。また、電極室Eに隣接する室を一次濃縮室C1とすることにより、不純物成分が電極室Eに拡散することがなく、該不純物成分による電極Eの腐食の問題を回避することができる。   The concentrating chamber is divided by the cation exchange membrane C into a primary concentrating chamber C1 to which dilute concentrated water is supplied and a secondary concentrating chamber C2 to which concentrated water more concentrated than that is supplied. The primary concentrating chamber C1 is decationized. Arranged on the cathode side of the chamber D, the assembly of the decation chamber D and the primary concentration chamber C1, and the secondary concentration chamber C2 are alternately stacked. The primary concentration chamber C1 is filled with a cation exchanger. Further, by setting the chamber adjacent to the electrode chamber E as the primary concentration chamber C1, the impurity component does not diffuse into the electrode chamber E, and the problem of corrosion of the electrode E due to the impurity component can be avoided.

次に、電気脱カチオン装置15aの運転方法を説明する。カチオン性不純物を含む利用排水は、被処理水流入配管32を通って脱カチオン室Dに流入し、一対の電極Eに電圧を印加することで脱カチオン室Dから脱カチオン水を得ることができる。脱カチオン室Dで除去されたカチオン性不純物は、カチオン交換膜Cを透過し、一次濃縮室C1に流入する。また、一次濃縮室C1は脱イオン機能を有するため、カチオン性不純物は、カチオン交換膜Cを透過し、二次濃縮室C2に流入する。このため、二次濃縮室C2からカチオン性不純物が濃縮倍率10〜10にまで高濃度に濃縮された濃縮水を得ることができる。すなわち、二次濃縮水ブロー配管3から系外へ排出される濃縮水は、処理水の0.0001〜1体積%の量であり、劇的に低減することができる。 Next, a method for operating the electrodeionization apparatus 15a will be described. The waste water containing cationic impurities flows into the decation chamber D through the treated water inflow pipe 32, and decation water can be obtained from the decation chamber D by applying a voltage to the pair of electrodes E. . The cationic impurities removed in the decationization chamber D permeate the cation exchange membrane C and flow into the primary concentration chamber C1. Moreover, since the primary concentration chamber C1 has a deionization function, the cationic impurities pass through the cation exchange membrane C and flow into the secondary concentration chamber C2. For this reason, it is possible to obtain concentrated water in which the cationic impurities are concentrated at a high concentration from the secondary concentration chamber C2 to a concentration ratio of 10 2 to 10 6 . That is, the concentrated water discharged from the secondary concentrated water blow pipe 3 to the outside of the system is an amount of 0.0001 to 1% by volume of treated water, and can be dramatically reduced.

次に、本発明で用いる他の電気脱イオン装置及び電気脱イオン装置の運転方法を図3を参照して説明する。図3は利用排水がアニオン性不純物含有排水であり、脱アニオン液を得るための電気脱アニオン装置のフロー図である。図3において、図1と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。但し、図3中、符号Dは脱アニオン室、模様部はアニオン交換体をそれぞれ示す。   Next, another electrodeionization apparatus used in the present invention and an operation method of the electrodeionization apparatus will be described with reference to FIG. FIG. 3 is a flow diagram of an electrodeionization apparatus for obtaining a deanion liquid, in which the wastewater used is an anionic impurity-containing wastewater. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. However, in FIG. 3, the code | symbol D shows a deanion chamber and a pattern part shows an anion exchanger, respectively.

電気脱アニオン装置15b、電気脱アニオン装置本体31b、2つの脱アニオン室Dに利用排水をそれぞれ流入させる被処理水流入配管32、2つの脱アニオン室Dの処理水を流出させる脱アニオン水流出配管33、4つの一次濃縮室C1を経由する一次濃縮水循環配管34、3つの二次濃縮室C2を経由する二次濃縮水循環配管35及び二次濃縮水循環配管35から分岐する二次濃縮水ブロー配管36を備える。   Electrodeionization device 15b, electrodeionization device main body 31b, treated water inflow piping 32 through which used wastewater flows into the two deanion chambers D, and deionization water outflow piping through which the treated water in the two deanion chambers D flows out 33, the primary concentrated water circulation pipe 34 that passes through the four primary concentration chambers C1, the secondary concentrated water circulation pipe 35 that passes through the three secondary concentration chambers C2, and the secondary concentrated water blow pipe 36 that branches from the secondary concentrated water circulation pipe 35. Is provided.

電気脱アニオン装置本体31bは、陽極室E及び陰極室Eが両端に配置され、陽極側がアニオン交換膜Aで区画され陰極側がカチオン交換膜Cで区画されるアニオン交換体が充填された脱アニオン室D、Dと、脱アニオン室Dと脱アニオン室Dの間に濃縮室C1、C2を配置すると共に、陰極室側から陽極室側に向けて順に、濃縮室C1、C2、脱カチオン室D、濃縮室C1、C2、脱カチオン室D、濃縮室C1、C2及び一次濃縮室C1を配置したものである。   The electrodeionization device main body 31b is a deionization chamber filled with an anion exchanger in which an anode chamber E and a cathode chamber E are disposed at both ends, an anode side is partitioned by an anion exchange membrane A, and a cathode side is partitioned by a cation exchange membrane C. D, D, and concentration chambers C1, C2 are arranged between deanion chamber D and deanion chamber D, and in order from the cathode chamber side to the anode chamber side, concentration chambers C1, C2, decation chamber D, The concentration chambers C1, C2, the decation chamber D, the concentration chambers C1, C2, and the primary concentration chamber C1 are arranged.

濃縮室は、アニオン交換膜Aにより、希薄な濃縮水が供給される一次濃縮室C1とそれよりも濃厚な濃縮水が供給される二次濃縮室C2に分割され、一次濃縮室C1は脱アニオン室Dの陽極側に配置され、脱アニオン室Dと一次濃縮室C1の接合体と、二次濃縮室C2が交互に積層されたものである。なお、一次濃縮室C1にはアニオン交換体が充填されている。   The concentrating chamber is divided into a primary concentrating chamber C1 to which dilute concentrated water is supplied and a secondary concentrating chamber C2 to which concentrated concentrated water is supplied by the anion exchange membrane A. The primary concentrating chamber C1 is deionized. It is arrange | positioned at the anode side of the chamber D, and the assembly of the deanion chamber D and the primary concentration chamber C1, and the secondary concentration chamber C2 are laminated | stacked alternately. The primary concentration chamber C1 is filled with an anion exchanger.

次に、電気脱アニオン装置15bの運転方法を説明する。アニオン性不純物を含む被処理水は、被処理水流入配管32を通って脱アニオン室Dに流入し、一対の電極Eに電圧を印加することで脱アニオン室Dから脱アニオン水を得ることができる。脱アニオン室Dで除去されたアニオン性不純物は、アニオン交換膜Aを透過し、一次濃縮室C1に流入する。一次濃縮室C1は脱イオン機能を有するため、アニオン性不純物は、アニオン交換膜Aを透過し、二次濃縮室C2に流入する。このため、二次濃縮室C2からアニオン性不純物が濃縮倍率10〜10にまで高濃度に濃縮された濃縮水を得ることができる。 Next, a method for operating the electrodeionization device 15b will be described. To-be-treated water containing anionic impurities flows into the deanion chamber D through the to-be-treated water inflow pipe 32 and applies a voltage to the pair of electrodes E to obtain deanion water from the deanion chamber D. it can. The anionic impurities removed in the deanion chamber D permeate the anion exchange membrane A and flow into the primary concentration chamber C1. Since the primary concentration chamber C1 has a deionization function, the anionic impurities pass through the anion exchange membrane A and flow into the secondary concentration chamber C2. For this reason, it is possible to obtain concentrated water in which the anionic impurities are concentrated at a high concentration from the secondary concentration chamber C2 to a concentration ratio of 10 2 to 10 6 .

次に、本発明で用いる他の電気脱イオン装置及び電気脱イオン装置の運転方法を図4を参照して説明する。図4は電気脱イオン装置のフロー図である。図4において、図1と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。但し、図4中、符号Dは脱イオン室、斜線部はカチオン交換体とアニオン交換体の混合イオン交換体をそれぞれ示す。   Next, another electrodeionization apparatus used in the present invention and an operation method of the electrodeionization apparatus will be described with reference to FIG. FIG. 4 is a flow diagram of the electrodeionization apparatus. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. However, in FIG. 4, the code | symbol D shows a deionization chamber, and a shaded part shows the mixed ion exchanger of a cation exchanger and an anion exchanger, respectively.

電気脱イオン装置15cは、電気脱イオン装置本体31c、2つの脱イオン室Dに被処理水をそれぞれ流入させる被処理水流入配管32、2つの脱イオン室Dの処理水を流出させる脱イオン水流出配管33、6つの一次濃縮室C1を経由する一次濃縮水循環配管34、3つの二次濃縮室C2を経由する二次濃縮水循環配管35及び二次濃縮水循環配管35から分岐する二次濃縮水ブロー配管36を備える。   The electrodeionization device 15c includes an electrodeionization device main body 31c, an untreated water inflow pipe 32 through which treated water flows into the two deionization chambers D, and deionized water from which the treated water from the two deionization chambers D flows out. Outflow pipe 33, primary concentrated water circulation pipe 34 that passes through six primary concentration chambers C1, secondary concentrated water circulation pipe 35 that passes through three secondary concentration chambers C2, and secondary concentrated water blow that branches from secondary concentrated water circulation pipe 35 A pipe 36 is provided.

電気脱イオン装置本体31cは、陽極室E及び陰極室Eが両端に配置され、陽極側がアニオン交換膜Aで区画され陰極側がカチオン交換膜Cで区画されるアニオン交換体が充填された脱イオン室D、Dと、脱イオン室Dと脱イオン室Dの間に濃縮室C1、C2、C1を配置すると共に、陰極室側から陽極室側に向けて順に、濃縮室C1、C2、C1、脱イオン室D、濃縮室C1、C2、C1、脱イオン室D、濃縮室C1、C2、C1を配置したものである。   The electrodeionization device main body 31c is a deionization chamber filled with an anion exchanger in which an anode chamber E and a cathode chamber E are arranged at both ends, an anode side is partitioned by an anion exchange membrane A, and a cathode side is partitioned by a cation exchange membrane C. D, D and concentration chambers C1, C2, C1 are arranged between deionization chamber D and deionization chamber D, and concentration chambers C1, C2, C1, deionization are sequentially performed from the cathode chamber side toward the anode chamber side. An ion chamber D, concentration chambers C1, C2, and C1, a deionization chamber D, and concentration chambers C1, C2, and C1 are arranged.

濃縮室は、アニオン交換膜A及びカチオン交換膜Cにより、希薄な濃縮水が供給される一次濃縮室C1、C1とそれよりも濃厚な濃縮水が供給される二次濃縮室C2に3分割され、一次濃縮室C1は脱イオン室Dの陽極側と陰極側の双方に配置され、脱イオン室Dと2つの一次濃縮室C1、C1の接合体と、二次濃縮室C2が交互に積層されたものである。なお、一次濃縮室C1にはカチオン交換体とアニオン交換体の混合イオン交換体が充填されているが、これに限定されず、脱塩室の陽極側に配置される一次濃縮室C1にはアニオン交換体単床を、脱塩室の陰極側に配置される一次濃縮室C1にはカチオン交換体床を充填してもよい。   The concentration chamber is divided into three by an anion exchange membrane A and a cation exchange membrane C into a primary concentration chamber C1, C1 to which dilute concentrated water is supplied and a secondary concentration chamber C2 to which concentrated water is concentrated. The primary concentration chamber C1 is disposed on both the anode side and the cathode side of the deionization chamber D, and the deionization chamber D, the joined body of the two primary concentration chambers C1 and C1, and the secondary concentration chamber C2 are alternately stacked. It is a thing. The primary concentration chamber C1 is filled with a mixed ion exchanger of a cation exchanger and an anion exchanger. However, the present invention is not limited to this, and the primary concentration chamber C1 disposed on the anode side of the desalting chamber has an anion. The primary concentration chamber C1 disposed on the cathode side of the desalting chamber may be filled with the cation exchanger bed.

次に、電気脱アニオン装置15cの運転方法を説明する。イオン性不純物を含む被処理水は、被処理水流入配管32を通って脱イオン室Dに流入し、一対の電極Eに電圧を印加することで脱イオン室Dから脱イオン水を得ることができる。脱イオン室Dで除去されたイオン性不純物のうち、アニオン性不純物は、アニオン交換膜Aを透過し、陽極側に位置する一次濃縮室C1に流入する。また、一次濃縮室C1は脱イオン機能を有するため、アニオン性不純物は、アニオン交換膜Aを透過し、陽極側に位置する二次濃縮室C2に流入する。一方、脱イオン室Dで除去されたイオン性不純物のうち、カチオン性不純物は、カチオン交換膜Cを透過し、陰極側に位置する一次濃縮室C1に流入する。一次濃縮室C1は同様に、脱イオン機能を有するため、カチオン性不純物は、カチオン交換膜Cを透過し、陰極側に位置する二次濃縮室C2に流入する。このため、二次濃縮室C2からアニオン性不純物とカチオン性不純物が濃縮倍率10〜10にまで高濃度に濃縮された濃縮水を得ることができる。電気脱アニオン装置15cによれば、脱イオン室Dの両側に一次濃縮室C1が設置されるため、直接高濃度の濃縮水が脱イオン室Dに拡散することはなく、処理液の水質を低下させることはない。 Next, the operation method of the electrodeionization device 15c will be described. To-be-treated water containing ionic impurities flows into the deionization chamber D through the to-be-treated water inflow pipe 32 and deionized water can be obtained from the deionization chamber D by applying a voltage to the pair of electrodes E. it can. Of the ionic impurities removed in the deionization chamber D, the anionic impurities pass through the anion exchange membrane A and flow into the primary concentration chamber C1 located on the anode side. Further, since the primary concentration chamber C1 has a deionization function, the anionic impurities pass through the anion exchange membrane A and flow into the secondary concentration chamber C2 located on the anode side. On the other hand, among the ionic impurities removed in the deionization chamber D, the cationic impurities pass through the cation exchange membrane C and flow into the primary concentration chamber C1 located on the cathode side. Similarly, since the primary concentration chamber C1 has a deionization function, the cationic impurities pass through the cation exchange membrane C and flow into the secondary concentration chamber C2 located on the cathode side. For this reason, the concentrated water in which the anionic impurities and the cationic impurities are concentrated at a high concentration up to a concentration ratio of 10 2 to 10 6 can be obtained from the secondary concentration chamber C2. According to the electrodeionization device 15c, since the primary concentration chamber C1 is installed on both sides of the deionization chamber D, the concentrated water of high concentration does not directly diffuse into the deionization chamber D, and the water quality of the treatment liquid is lowered. I will not let you.

なお、2つの小脱塩室を有する脱塩室を備える電気脱イオン装置の場合、図2〜図4中、脱塩室Dを図5に示す脱塩室D2に置き換えたものである。すなわち、一側のカチオン交換膜Cと他側のアニオン交換膜Aとその中間に位置する中間イオン交換膜38で2つの小脱イオン室d1、d2に区画され、一方の小脱イオン室d1の流出配管32aと他方の小脱イオン室d2の流入管32bが連接されたものである。小脱イオン室d1、d2に充填されるイオン交換体としては、特に制限されず、カチオン交換体、アニオン交換体、カチオン交換体とアニオン交換体の混合イオン交換体のいずれであってもよい。また、中間イオン交換膜もアニオン膜、カチオン膜のいずれであってもよく、また、例えば流入方向において二分し、一方をアニオン膜、他方をカチオン膜とする複式膜であってもよい。   In addition, in the case of the electrodeionization apparatus provided with the desalination chamber which has two small desalination chambers, the desalination chamber D is replaced with the desalination chamber D2 shown in FIG. 5 in FIGS. That is, the cation exchange membrane C on one side, the anion exchange membrane A on the other side, and the intermediate ion exchange membrane 38 located in the middle thereof are partitioned into two small deionization chambers d1 and d2, and one of the small deionization chambers d1 The outflow pipe 32a and the inflow pipe 32b of the other small deionization chamber d2 are connected. The ion exchanger filled in the small deionization chambers d1 and d2 is not particularly limited, and may be any of a cation exchanger, an anion exchanger, and a mixed ion exchanger of a cation exchanger and an anion exchanger. Further, the intermediate ion exchange membrane may be either an anion membrane or a cation membrane, and may be, for example, a duplex membrane that is divided into two in the inflow direction and one is an anion membrane and the other is a cation membrane.

2つの小脱塩室を有する脱塩室を備える電気脱イオン装置によれば、電気脱カチオン装置15aと同様の効果を奏する他、イオン交換体が充填された脱イオン室一つ当たりの濃縮室の数を半分にすることができ、電気抵抗を著しく低減することができる。また、濃縮室の数が少なくなったことによって、濃縮室を流れる濃縮液の濃度をより濃厚とすることができる。また、カチオンとアニオンの混合成分の処理性能が向上する。特に、酸又はアルカリなどのアニオン又はカチオン成分のどちらか一方が多く含まれている混合成分を処理する場合、小脱塩室d1に除去したい成分を取れるイオン交換体を充填し、小脱塩室d2を混床にすることで処理性能が向上する。そして、アニオンやカチオンのうち除去しにくい成分を選択的に除去できる。   According to the electrodeionization apparatus provided with the desalination chamber having two small desalination chambers, the same effect as the electrodeionization apparatus 15a can be obtained, and the concentration chamber per deionization chamber filled with the ion exchanger. Can be halved and the electrical resistance can be significantly reduced. Further, since the number of the concentration chambers is reduced, the concentration of the concentrated liquid flowing through the concentration chamber can be made thicker. Moreover, the processing performance of the mixed component of a cation and an anion is improved. In particular, when processing a mixed component containing either an anion or a cation component such as acid or alkali in a large amount, the small desalting chamber d1 is filled with an ion exchanger capable of removing the component to be removed, and the small desalting chamber The treatment performance is improved by using d2 as a mixed floor. And the component which is hard to remove among anions and cations can be removed selectively.

本発明において、電気脱イオン装置15の処理水は、超純水製造装置20に返送配管23を通って返送される。具体的には、二次純水製造装置13、一次純水製造装置12、前処理装置11のいずれに返送してもよい。これにより、排水は再利用されるため、排水回収装置の水の利用率が高くなる。   In the present invention, the treated water of the electrodeionization apparatus 15 is returned to the ultrapure water production apparatus 20 through the return pipe 23. Specifically, you may return to any of the secondary pure water manufacturing apparatus 13, the primary pure water manufacturing apparatus 12, and the pretreatment apparatus 11. Thereby, since the wastewater is reused, the utilization rate of the water in the wastewater recovery device is increased.

本発明において、ユースポイント14と電気脱イオン装置15は同一施設内に設置することができる。ここで同一施設とは、同じ環境下におかれた建屋又は部屋を言い、例えば、クリーンルームが例示される。電気脱イオン装置15は、広い設置スペースを必要としないため、ユースポイント14と同じ施設内に設置することができる。ユースポイント14から排出される排水を同じ部屋内に設置された電気脱イオン装置で処理することは、排水処理設備までの配管を設置する必要がなく、設置スペースを削減することができると共に、部屋の壁を貫通する排水用の配管などの設置を省略できるため、清浄度を高めるために都合がよい。また、利用排水以外の排水は減容されており、施設外に大規模な排水回収設備を設置する必要は無い。   In the present invention, the use point 14 and the electrodeionization device 15 can be installed in the same facility. Here, the same facility refers to a building or a room placed under the same environment, for example, a clean room. Since the electrodeionization device 15 does not require a wide installation space, it can be installed in the same facility as the use point 14. Treating the wastewater discharged from the use point 14 with the electrodeionization device installed in the same room eliminates the need for installing a pipe to the wastewater treatment facility, and can reduce the installation space. It is convenient to increase the cleanliness because it is possible to omit the installation of drainage pipes penetrating the walls. In addition, the volume of wastewater other than used wastewater is reduced, and there is no need to install a large-scale wastewater recovery facility outside the facility.

本実施の形態における排水回収装置のフロー図である。It is a flowchart of the waste_water | drain collection | recovery apparatus in this Embodiment. 本発明で用いる電気脱イオン装置のフロー図である。It is a flowchart of the electrodeionization apparatus used by this invention. 本発明で用いる他の電気脱イオン装置のフロー図である。It is a flowchart of the other electrodeionization apparatus used by this invention. 本発明で用いる他の電気脱イオン装置のフロー図である。It is a flowchart of the other electrodeionization apparatus used by this invention. 本発明で用いる電気脱イオン装置の他の脱塩室構造のフロー図である。It is a flowchart of the other demineralization chamber structure of the electrodeionization apparatus used by this invention. 従来の排水回収装置のフロー図である。It is a flowchart of the conventional waste_water | drain collection | recovery apparatus.

符号の説明Explanation of symbols

10 排水回収装置
11 前処理装置
12 一次純水製造装置
13 二次純水製造装置
14 ユースポイント
15、15a〜15c 電気脱イオン装置
16 クリーンルーム
17 排水回収設備
18 第1排水配管
19 第2排水配管
20 超純水製造装置
21 濃縮排水
22 廃液容器
23 返送配管
31a〜31c 電気脱イオン装置本体
32 被処理水流入管
33 処理水流出管
34 一次濃縮水循環系
35 二次濃縮水循環系
36 二次濃縮水ブロー配管
C1 一次濃縮室
C2 二次濃縮室
D 脱塩室
C カチオン交換膜
A アニオン交換膜
DESCRIPTION OF SYMBOLS 10 Wastewater recovery device 11 Pretreatment device 12 Primary pure water production device 13 Secondary pure water production device 14 Use point 15, 15a-15c Electrodeionization device 16 Clean room 17 Wastewater recovery equipment 18 First drainage pipe 19 Second drainage pipe 20 Ultrapure water production equipment 21 Concentrated waste water 22 Waste liquid container 23 Return piping 31a to 31c Electrodeionization equipment body 32 Water to be treated inflow pipe 33 Treated water outflow pipe 34 Primary concentrated water circulation system 35 Secondary concentrated water circulation system 36 Secondary concentrated water blow pipe C1 Primary concentration chamber C2 Secondary concentration chamber D Desalination chamber C Cation exchange membrane A Anion exchange membrane

Claims (9)

純水又は超純水製造装置で得られた純水又は超純水を各ユースポイントに供給し、該各ユースポイントから排出される排水のうち、0.01〜1000mg/l濃度の無機イオン成分を含有する排水を、電気脱イオン装置へ供給して脱イオン処理を行い、該電気脱イオン装置の処理水を該超純水製造装置に返送することを特徴とする排水回収方法。   Pure water or ultrapure water obtained with pure water or ultrapure water production equipment is supplied to each use point, and among the waste water discharged from each use point, an inorganic ion component having a concentration of 0.01 to 1000 mg / l A wastewater recovery method comprising: supplying wastewater containing water to an electrodeionization device to perform deionization treatment, and returning treated water of the electrodeionization device to the ultrapure water production device. 前記ユースポイント及び電気脱イオン装置を同一施設内に設置することを特徴とする請求項1記載の排水回収方法。   The waste water recovery method according to claim 1, wherein the use point and the electrodeionization apparatus are installed in the same facility. 前記施設が、クリーンルームであることを特徴とする請求項1又は2記載の排水回収方法。   The wastewater recovery method according to claim 1 or 2, wherein the facility is a clean room. 前記電気脱イオン装置は、脱イオン室、濃縮室及び電極室を有すると共に、一対の電極に電圧を印加することで脱イオン室から脱イオン水を得る装置であって、該濃縮室は、隔膜により2室以上に分割され、希薄な濃縮水が供給される一次濃縮室とそれよりも濃厚な濃縮水が供給される二次濃縮室により構成され、該一次濃縮室は脱イオン室の陰極側又は陽極側の一方又は両方に配置され、
該脱イオン室と該一次濃縮室の接合体と、該二次濃縮室は交互に積層され、
該一次濃縮室を経由する一次濃縮水循環系と、該二次濃縮室を経由する二次濃縮水循環系を備えるものであることを特徴とする請求項1〜3のいずれか1項記載の排水回収方法。
The electrodeionization apparatus has a deionization chamber, a concentration chamber, and an electrode chamber, and obtains deionized water from the deionization chamber by applying a voltage to a pair of electrodes, the concentration chamber having a diaphragm Is divided into two or more chambers, and is composed of a primary concentrating chamber to which dilute concentrated water is supplied and a secondary concentrating chamber to which concentrated concentrated water is supplied. The primary concentrating chamber is on the cathode side of the deionization chamber. Or arranged on one or both of the anode side,
The assembly of the deionization chamber and the primary concentration chamber, and the secondary concentration chamber are alternately stacked,
The waste water recovery according to any one of claims 1 to 3, comprising a primary concentrated water circulation system passing through the primary concentration chamber and a secondary concentrated water circulation system passing through the secondary concentration chamber. Method.
前記電気脱イオン装置の濃縮水を循環運転して、系外へ排出される濃縮水量を、該電気脱イオン装置の処理水量の0.0001〜1体積%とすることを特徴とする請求項1〜4のいずれか1項記載の排水回収方法。   The concentrated water discharged from the system by circulating the concentrated water of the electrodeionization apparatus is 0.0001 to 1% by volume of the treated water amount of the electrodeionization apparatus. The waste water recovery method of any one of -4. 純水又は超純水を製造する超純水製造装置と、該純水又は超純水を使用する各ユースポイントと、電気脱イオン装置を有し、該各ユースポイントから排出される排水のうち、0.01〜1000mg/l濃度の無機イオン成分を含有する排水を該電気脱イオン装置の脱イオン室に流入させる第1排水配管と、該電気脱イオン装置の処理水を該純水又は超純水製造装置に返送する返送配管を備えることを特徴とする排水回収装置。   Of the waste water discharged from each use point, having an ultra pure water production device for producing pure water or ultra pure water, each use point using the pure water or ultra pure water, and an electrodeionization device , A first drainage pipe for allowing wastewater containing an inorganic ion component having a concentration of 0.01 to 1000 mg / l to flow into the deionization chamber of the electrodeionization device, and treating the treated water of the electrodeionization device with the pure water or ultrapure water. A wastewater recovery apparatus comprising a return pipe for returning to a pure water production apparatus. 前記ユースポイント及び電気脱イオン装置を同一施設内に設置することを特徴とする請求項6記載の排水回収装置。   The wastewater recovery apparatus according to claim 6, wherein the use point and the electrodeionization apparatus are installed in the same facility. 前記施設が、クリーンルームであることを特徴とする請求項6又は7記載の排水回収装置。   The wastewater recovery apparatus according to claim 6 or 7, wherein the facility is a clean room. 前記電気脱イオン装置は、脱イオン室、濃縮室及び電極室を有すると共に、一対の電極に電圧を印加することで脱イオン室から脱イオン水を得る装置であって、該濃縮室は、隔膜により2室以上に分割され、希薄な濃縮水が供給される一次濃縮室とそれよりも濃厚な濃縮水が供給される二次濃縮室により構成され、該一次濃縮室は脱イオン室の陰極側又は陽極側の一方又は両方に配置され、
該脱イオン室と該一次濃縮室の接合体と、該二次濃縮室は交互に積層され、
該一次濃縮室を経由する一次濃縮水循環系と、該二次濃縮室を経由する二次濃縮水循環系を備えるものであることを特徴とする請求項6〜8のいずれか1項記載の排水回収装置。
The electrodeionization apparatus has a deionization chamber, a concentration chamber, and an electrode chamber, and obtains deionized water from the deionization chamber by applying a voltage to a pair of electrodes, the concentration chamber having a diaphragm Is divided into two or more chambers, and is composed of a primary concentrating chamber to which dilute concentrated water is supplied and a secondary concentrating chamber to which concentrated concentrated water is supplied. The primary concentrating chamber is on the cathode side of the deionization chamber. Or arranged on one or both of the anode side,
The assembly of the deionization chamber and the primary concentration chamber, and the secondary concentration chamber are alternately stacked,
The waste water recovery according to any one of claims 6 to 8, comprising a primary concentrated water circulation system passing through the primary concentration chamber and a secondary concentrated water circulation system passing through the secondary concentration chamber. apparatus.
JP2005000612A 2005-01-05 2005-01-05 Waste water recovery method and waste water recovery device Pending JP2006187708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000612A JP2006187708A (en) 2005-01-05 2005-01-05 Waste water recovery method and waste water recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000612A JP2006187708A (en) 2005-01-05 2005-01-05 Waste water recovery method and waste water recovery device

Publications (1)

Publication Number Publication Date
JP2006187708A true JP2006187708A (en) 2006-07-20

Family

ID=36795364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000612A Pending JP2006187708A (en) 2005-01-05 2005-01-05 Waste water recovery method and waste water recovery device

Country Status (1)

Country Link
JP (1) JP2006187708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313421A (en) * 2006-05-25 2007-12-06 Ebara Corp Pure water circulating feed system, pure water recycling method, and method for treating substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216749A (en) * 1997-02-05 1998-08-18 Japan Organo Co Ltd Ultrapure water making apparatus
JPH11165176A (en) * 1997-12-05 1999-06-22 Japan Organo Co Ltd Electric deionized water generator
WO2004096717A2 (en) * 2003-04-30 2004-11-11 Ebara Corporation Method and apparatus for treating waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216749A (en) * 1997-02-05 1998-08-18 Japan Organo Co Ltd Ultrapure water making apparatus
JPH11165176A (en) * 1997-12-05 1999-06-22 Japan Organo Co Ltd Electric deionized water generator
WO2004096717A2 (en) * 2003-04-30 2004-11-11 Ebara Corporation Method and apparatus for treating waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313421A (en) * 2006-05-25 2007-12-06 Ebara Corp Pure water circulating feed system, pure water recycling method, and method for treating substrate

Similar Documents

Publication Publication Date Title
US10662085B2 (en) Low energy system and method of desalinating seawater
JP4978098B2 (en) Electrodeionization equipment
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
US20230182078A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP2009226315A (en) Electric deionized water manufacturing device and manufacturing method of deionized water
JP4403621B2 (en) Electrodeionization equipment
JP5114307B2 (en) Electric deionized water production equipment
JP4152544B2 (en) Deionized water production method and apparatus
JP3952127B2 (en) Electrodeionization treatment method
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2001259644A (en) Pure water producer and pure water production method using the same
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP4662277B2 (en) Electrodeionization equipment
JP4505965B2 (en) Pure water production method
JP2006187708A (en) Waste water recovery method and waste water recovery device
JP4599668B2 (en) Operation method of electrodeionization equipment
KR101881463B1 (en) Apparatus and Method for Wastewater Treatment using Capacitive Deionization and Electrochemical oxidation
JP4453972B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP2008030004A (en) Electric deionizer
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP4631148B2 (en) Pure water production method
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525