JP2006187305A - Organism signal processor - Google Patents

Organism signal processor Download PDF

Info

Publication number
JP2006187305A
JP2006187305A JP2003328573A JP2003328573A JP2006187305A JP 2006187305 A JP2006187305 A JP 2006187305A JP 2003328573 A JP2003328573 A JP 2003328573A JP 2003328573 A JP2003328573 A JP 2003328573A JP 2006187305 A JP2006187305 A JP 2006187305A
Authority
JP
Japan
Prior art keywords
subject
measurement
electroencephalogram
optical measurement
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003328573A
Other languages
Japanese (ja)
Other versions
JP4399666B2 (en
Inventor
Tokiaki Kawaguchi
常昭 川口
Yukari Yamamoto
由香里 山本
Masafumi Kiguchi
雅史 木口
Daiki Sato
大樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP2003328573A priority Critical patent/JP4399666B2/en
Priority to PCT/JP2004/012856 priority patent/WO2005034761A1/en
Priority to EP04772805A priority patent/EP1665988A4/en
Priority to US10/572,357 priority patent/US7974671B2/en
Publication of JP2006187305A publication Critical patent/JP2006187305A/en
Application granted granted Critical
Publication of JP4399666B2 publication Critical patent/JP4399666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organism signal processor capable of obtaining a light measurement image correlated to the cerebral function. <P>SOLUTION: The organism signal processor comprises light measurement devices 1-3 and 5-13 for measuring the transmission light or reflection light of the light applied to the head of a subject 4 and finding optical characteristics inside the head based on the light measurement data, a stimulation presenting device 21 for applying stimulation to the subject, and brain wave measuring devices 30-31 for measuring organism signals correlated to the activity of the subject. The subject is alerted by intensifying the stimulation based on the brain waves and the optical characteristics are obtained by selecting the light measurement data. In this way, the state of activity of the brain of the subject is retained in the allowable range according to conditions for the light measurement, so that a light measurement image correlated to the cerebral function can be stably obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生体信号処理装置に係り、特に光計測装置と脳波計測装置などの他の計測装置とを結合してなる脳機能計測に好適な生体信号処理装置に関する。   The present invention relates to a biological signal processing apparatus, and more particularly to a biological signal processing apparatus suitable for brain function measurement formed by combining an optical measurement apparatus and another measurement apparatus such as an electroencephalogram measurement apparatus.

光計測装置は、OCT(Optical Coherence Topography)と称され、被検体である生体に光を照射して生体の透過光又は生体内部からの散乱光を計測し、生体内部の光学特性の違いを画像化する装置である。この光計測装置によれば、生体代謝物質や血流などを計測して、生体機能を簡便かつ生体に無害な方法で計測できることから、臨床医学及び脳科学などの分野での活用が期待されている。   The optical measurement device is called OCT (Optical Coherence Topography) and irradiates light on a living body as a subject to measure transmitted light from the living body or scattered light from inside the living body, and images differences in optical characteristics inside the living body. It is a device to convert. According to this optical measurement device, it is expected to be used in fields such as clinical medicine and brain science because it can measure biological metabolites and blood flow, and measure biological functions in a simple and harmless manner to the living body. Yes.

例えば、脳の高次機能の活性化は、生体内部の酸素代謝及び血液循環と密接に関連しており、これらは生体中の特定の色素(ヘモグロビン等)の濃度に対応する。そこで、その特定色素に吸収されやすい可視から赤外領域の複数波長の光を脳の複数部位に照射し、脳内部を通過した光を複数部位から検出し、その光吸収量から脳内の代謝物質の濃度や血液中のヘモグロビン濃度などを画像化して脳の高次機能を計測することが提案されている(特許文献1)。   For example, activation of higher brain functions is closely related to oxygen metabolism and blood circulation inside the living body, and these correspond to the concentration of a specific pigment (such as hemoglobin) in the living body. Therefore, multiple wavelengths of the visible to infrared region that are easily absorbed by the specific dye are irradiated to multiple parts of the brain, and the light that has passed through the brain is detected from the multiple parts. It has been proposed to measure the higher-order function of the brain by imaging the concentration of a substance, the concentration of hemoglobin in blood, and the like (Patent Document 1).

特開平9−149903号公報JP-A-9-149903

ところで、従来の光計測装置によれば、思考、言語、運動などの高次機能を計測する場合、聴覚や視覚などによって脳に刺激を与え、その前後における脳の状態変化を画像化し、それらの画像を対比して脳機能を診断する。   By the way, according to the conventional optical measurement device, when measuring higher-order functions such as thinking, language, and movement, the brain is stimulated by hearing or vision, and the state change of the brain before and after it is imaged. Diagnose brain function by contrasting images.

しかし、光計測画像に表れた脳の状態と刺激との関係についての分析は進められているが、脳機能と対応付けることについては配慮されていないことから、光計測画像に基づいて的確な診断を行うまでには至っていない。   However, although the analysis of the relationship between the brain state and stimuli appearing in the optical measurement image is underway, there is no consideration for associating it with the brain function. It hasn't been done yet.

そこで、本発明は、脳機能と関連付けた光計測画像を取得できる生体信号処理装置を実現することを課題とする。   Therefore, an object of the present invention is to realize a biological signal processing apparatus that can acquire an optical measurement image associated with a brain function.

本発明は、上記課題を解決するため、光計測装置と脳波計測装置などの他の計測装置とを有機的に結合することを特徴とする。すなわち、脳科学分野においては、頭皮などに電極を接触させて脳の活動に伴って発生する脳波を計測し、特定周波数帯域の脳波信号(α波、β波、θ波、δ波など)に基づいて、思考、言語などの知的動作や運動機能などの脳の高次機能を分析する試みが行われている。例えば、頭皮表面に多数の電極を接触させて二次元脳電図を取得して脳の各部位の機能を分析し、脳障害等の有無を診断して医療に反映させる開発研究が進められている。   In order to solve the above problems, the present invention is characterized in that an optical measurement device and another measurement device such as an electroencephalogram measurement device are organically coupled. That is, in the field of brain science, electrodes are brought into contact with the scalp and the like to measure brain waves generated by brain activity, and to generate brain wave signals (α waves, β waves, θ waves, δ waves, etc.) in specific frequency bands. Based on this, attempts have been made to analyze higher-order brain functions such as intellectual movements such as thinking and language and motor functions. For example, development research is progressing to obtain a two-dimensional electroencephalogram by contacting many electrodes on the scalp surface, analyze the function of each part of the brain, diagnose the presence or absence of brain damage, etc., and reflect it in medicine Yes.

そこで、本発明は、被検体の頭部に照射した光の透過光又は反射光を計測し、該光計測データに基づいて頭部内の光学特性を求める光計測装置と、前記被検体に刺激を付与する刺激呈示装置とを備えてなる生体信号処理装置を対象とし、前記被検体の活動に相関する生体信号を計測する生体活動計測装置を設け、前記刺激呈示装置は、前記生体活動計測装置により計測された生体信号に基づいて刺激を制御する。これにより、被検体に対して与える刺激を制御できるから、光計測の条件に合わせて脳の活動状態を許容できる範囲に保持することができる。その結果、安定的に、脳機能と関連付けた光計測画像を取得できる。   Accordingly, the present invention provides an optical measurement device for measuring transmitted light or reflected light of light irradiated on the head of a subject and obtaining optical characteristics in the head based on the optical measurement data, and stimulating the subject. A biological signal processing device provided with a stimulus presentation device for providing a biological activity measurement device for measuring a biological signal correlated with the activity of the subject, wherein the stimulus presentation device is provided with the biological activity measurement device The stimulation is controlled based on the biological signal measured by. Thereby, since the stimulus given to the subject can be controlled, the activity state of the brain can be maintained in an allowable range according to the optical measurement conditions. As a result, an optical measurement image associated with the brain function can be acquired stably.

この場合において、生体活動計測装置としては、典型的には、被検体の脳波を計測する脳波計測装置が用いられる。この場合、刺激呈示装置は、脳波計測装置から出力されるθ波又はβ波の強度に応じて刺激を制御することができる。すなわち、θ波又はβ波の強度が高い場合は覚醒状態又はアテンション(注意力又は集中力)強度が高い状態にあると考えられる。そこで、例えば、覚醒状態又はアテンション強度が高い状態の脳機能を光計測する場合は、覚醒させるような刺激を呈示するようにすれば、安定した計測条件の下で、効率のよい光計測を行うことができる。   In this case, typically, an electroencephalogram measurement apparatus that measures an electroencephalogram of a subject is used as the life activity measurement apparatus. In this case, the stimulus presentation device can control the stimulus according to the intensity of the θ wave or the β wave output from the electroencephalogram measurement device. That is, when the intensity of the θ wave or the β wave is high, it is considered that the state of wakefulness or attention (attention or concentration) is high. Therefore, for example, in the case of optical measurement of a brain function in an arousal state or a state of high attention intensity, an efficient optical measurement is performed under stable measurement conditions by presenting an arousal stimulus. be able to.

また、生体活動計測装置としては、脳波計測装置に代えて、被検体の例えば頚の筋肉の動きを計測する体動計測装置を用いることができる。この場合、刺激呈示装置は被検体の頚の動きである体動量に基づいて刺激を制御する。   In addition, as the life activity measuring device, a body motion measuring device that measures the movement of, for example, a cervical muscle of a subject can be used instead of the electroencephalogram measuring device. In this case, the stimulus presentation device controls the stimulation based on the amount of body movement that is the movement of the subject's neck.

また、生体活動計測装置により計測された生体信号に基づいて刺激を制御することに変えて、又はこれとともに、光計測装置は、生体信号に基づいて光計測データを取捨選択して光学特性を求めるようにすることができる。これによれば、計測条件から外れたときの光計測データを捨てることにより、光計測の精度を向上できる。   In addition to or in addition to controlling the stimulus based on the biological signal measured by the biological activity measurement device, the optical measurement device selects optical measurement data based on the biological signal and obtains optical characteristics. Can be. According to this, the accuracy of the optical measurement can be improved by discarding the optical measurement data when the measurement condition is not met.

また、被検体の目の開眼度合を計測する開眼検出装置を設け、開眼度合に応じて脳波計測装置により計測したα波を較正することが好ましい。これにより、開眼度合に応じて変動するα波の強度を較正して、一層、計測精度を向上できる。   Moreover, it is preferable to provide an eye-opening detection device that measures the degree of eye opening of the subject and to calibrate the α wave measured by the electroencephalogram measurement device according to the degree of eye opening. Thereby, the intensity | strength of the alpha wave which fluctuates according to an eye opening degree can be calibrated, and a measurement precision can be improved further.

さらに、光計測手段と脳波計測手段の計測を協調制御するサンプリングパスル生成手段を設けることが好ましい。この場合、サンプリングパルス生成手段は、刺激呈示装置から複数回の刺激を連続的に呈示させ、各回の刺激呈示ごとに脳波計測装置の計測を行わせるとともに、複数回の刺激の呈示期間に光計測装置の計測を1回行わせるようにする。また、これに代えて、刺激呈示装置から1回の刺激を呈示させて光計測装置の計測を1回行わせた後、一定の休止期間をおいて刺激呈示装置から同一の刺激を複数回呈示させて刺激の呈示ごとに脳波計測装置の計測を行わせるようにすることができる。これにより、計測原理が異なる光計測と脳波計測の計測協調を図ることができる。   Furthermore, it is preferable to provide sampling pulse generation means for cooperatively controlling the measurement of the optical measurement means and the electroencephalogram measurement means. In this case, the sampling pulse generating means continuously presents a plurality of stimuli from the stimulus presenting device, performs measurement of the electroencephalogram measuring device for each stimulus presenting, and performs optical measurement during a plurality of stimulus presenting periods. Let the instrument measure once. Alternatively, after the stimulus presentation device presents a single stimulus and the optical measurement device performs the measurement once, the same stimulus is presented from the stimulus presentation device a plurality of times in a certain pause period. Thus, it is possible to cause the electroencephalogram measurement apparatus to perform measurement for each presentation of the stimulus. Thereby, measurement cooperation of optical measurement and electroencephalogram measurement with different measurement principles can be achieved.

本発明によれば、脳機能と関連付けた光計測画像を取得できる生体信号処理装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the biological signal processing apparatus which can acquire the optical measurement image linked | related with the brain function is realizable.

[実施の形態1]
図1に、本発明の生体信号処理装置の一実施の形態の全体構成図を示す。本実施の形態は、光計測装置と脳波計測装置とを結合したシステムである。図において、複数(図示例では2個)の光源1は、人体を透過しやすい波長が600〜1200nm程度の近赤外光を発生する。光源1より発生した近赤外光は、光ファイバーを介して光方向性結合器(光結合器)2に導かれて混合され、照射光用の1つの光ファイバー3で伝送可能に結合される。光ファイバー3の先端は、被検者4の頭部の所望位置に保持可能に、図示していないヘッドキャップに取り付けられている。
[Embodiment 1]
FIG. 1 shows an overall configuration diagram of an embodiment of a biological signal processing apparatus of the present invention. The present embodiment is a system in which an optical measurement device and an electroencephalogram measurement device are combined. In the figure, a plurality (two in the illustrated example) of light sources 1 generate near-infrared light having a wavelength of about 600 to 1200 nm that is likely to pass through the human body. Near-infrared light generated from the light source 1 is guided to an optical directional coupler (optical coupler) 2 through an optical fiber, mixed, and coupled so as to be transmitted by one optical fiber 3 for irradiation light. The tip of the optical fiber 3 is attached to a head cap (not shown) so as to be held at a desired position on the head of the subject 4.

そのヘッドキャップには、集光用の光ファイバー5の先端が固定されており、被検体4の頭内部から散乱しながら外部に戻ってきた信号光を光検出器6に導く。光検出器6は、フォトダイオード又は光電子増倍管などで構成され、入射される信号光を電気信号に変換する。光検出器6により電気信号に変換された信号光は、複数(図示例では2個)の位相検波器(検波器)7に入力される。位相検波器7は光源1ごとに設定された周期を参照してフィルタリングを行い、光源1ごとに対応する信号光の光量をA/D変換器9に出力する。A/D変換器9は、検出した信号光の光量をディジタルに変換して光計測制御装置10に出力する。   The tip of the optical fiber 5 for condensing is fixed to the head cap, and the signal light returned to the outside while being scattered from the inside of the head of the subject 4 is guided to the photodetector 6. The photodetector 6 is composed of a photodiode or a photomultiplier tube and converts incident signal light into an electric signal. The signal light converted into an electrical signal by the photodetector 6 is input to a plurality (two in the illustrated example) of phase detectors (detectors) 7. The phase detector 7 performs filtering with reference to the period set for each light source 1, and outputs the amount of signal light corresponding to each light source 1 to the A / D converter 9. The A / D converter 9 converts the detected light amount of the signal light into digital and outputs it to the optical measurement control device 10.

ここで、被検体4に照射される近赤外光は、酸素化ヘモグロビンと脱酸素ヘモグロビンのそれぞれの量を求めるために、600〜1200nmの波長のうちから、2種あるいは3種の波長が混合されて照射される。これらの波長を光検出器6にて弁別して検出可能とするため、複数の光源1からの信号光が重なりを持たないように順次点灯する方法、あるいは各光源1を異なる周波数で点滅させ、その点滅周波数でフィルタリングする方法が採用される。   Here, the near-infrared light irradiated to the subject 4 is a mixture of two or three wavelengths from among wavelengths of 600 to 1200 nm in order to obtain the respective amounts of oxygenated hemoglobin and deoxygenated hemoglobin. And irradiated. In order to discriminate and detect these wavelengths by the photodetector 6, a method of sequentially lighting the signal light from the plurality of light sources 1 so as not to overlap, or each light source 1 blinks at a different frequency, A method of filtering by the blinking frequency is adopted.

点滅周波数でフィルタリングする方法の場合、位相検波器7は、光検出器6にて検出する光源1の数だけ用意される。例えば、光検出器6Aとして、光源1A、1B,1C、1D、1E、1Fのそれぞれ用の合計6個の位相検波器7が用意される。また、光検出器6Bとして、光源1E、1F、1G、1H、1I、1Jのそれぞれ用の合計6個の位相検波器7が用意される。なお、最大では1つの光検出器6には、例えば8個の位相検波器7が用意される。なお、波長が2種類の場合、及び光源を順次点灯する方法の場合、位相検波器7は必要としない。   In the case of the method of filtering at the blinking frequency, as many phase detectors 7 as the number of the light sources 1 detected by the photodetector 6 are prepared. For example, a total of six phase detectors 7 for the light sources 1A, 1B, 1C, 1D, 1E, and 1F are prepared as the photodetectors 6A. In addition, a total of six phase detectors 7 for the light sources 1E, 1F, 1G, 1H, 1I, and 1J are prepared as the photodetectors 6B. For example, eight phase detectors 7 are prepared in one photo detector 6 at the maximum. Note that the phase detector 7 is not required when there are two types of wavelengths and when the light source is sequentially turned on.

光計測制御装置10は、駆動装置8を介して各光源1の光強度、光検出器6の増幅度、などを制御するとともに、光生体計測の開始から終了までを制御する。光演算装置11は、A/D変換器9から出力される各光源の検出光量を用いて、被検体4の同一個所を通過する近赤外光の2種あるいは3種のペアから、被検体4内の酸素化・脱酸素ヘモグロビン及び総ヘモグロビンの変化量を計算する。その計算結果の光計測データは、数値あるいは画像化して表示装置であるモニタ12に表示するとともに、メモリ13に記憶する。また、刺激呈示装置21は、被検体4の例えば頭部近くに設けられ、音や映像などにより被検体4に刺激を与える装置である。   The optical measurement control device 10 controls the light intensity of each light source 1, the amplification degree of the photodetector 6, and the like via the driving device 8, and also controls from the start to the end of the optical biological measurement. The optical calculation device 11 uses the detected light amount of each light source output from the A / D converter 9 to detect the subject from two or three pairs of near infrared light passing through the same portion of the subject 4. The amount of change in oxygenated / deoxygenated hemoglobin and total hemoglobin in 4 is calculated. The optical measurement data obtained as a result of the calculation is displayed as a numerical value or an image on the monitor 12 as a display device, and also stored in the memory 13. The stimulus presentation device 21 is a device that is provided near the head of the subject 4, for example, and that stimulates the subject 4 with sound or video.

一方、脳波計測装置は、被検体4の頭部に設置された脳波電極30と、脳波受信装置31と、脳波演算装置32とを含んで構成されている。脳波受信装置31は、脳波電極30により検出された脳波の変化を受信して、図示していないモニタに表示するとともに、脳波演算装置32に出力する。脳波演算装置32は、入力される脳波に基づいて、θ波やβ波などの脳波を検出し、それらに基づいて被検体4の体調(例えば、眠気)などの状態を検知する。脳波演算装置32によって求められたθ波やβ波などの大きさあるいは割合などの演算結果は、刺激呈示装置21に設けられた結果呈示装置である表示画面22に出力される。刺激呈示装置21は、入力されるθ波やβ波などの大きさあるいは割合が設定値を越え、あるいは下回るときに、光計測制御装置10にトリガ信号23を出力して、光トポグラフィの計測の停止、ポーズ、開始の制御を行わせるようになっている。   On the other hand, the electroencephalogram measurement apparatus includes an electroencephalogram electrode 30 installed on the head of the subject 4, an electroencephalogram reception apparatus 31, and an electroencephalogram calculation apparatus 32. The electroencephalogram receiver 31 receives the change in the electroencephalogram detected by the electroencephalogram electrode 30, displays it on a monitor (not shown), and outputs it to the electroencephalogram calculator 32. The electroencephalogram calculation device 32 detects electroencephalograms such as θ waves and β waves based on the input electroencephalograms, and detects the state of the subject 4 such as physical condition (for example, sleepiness) based on them. Calculation results such as the magnitude or ratio of the θ wave and β wave obtained by the electroencephalogram calculation device 32 are output to the display screen 22 which is a result presentation device provided in the stimulus presentation device 21. The stimulus presentation device 21 outputs a trigger signal 23 to the optical measurement control device 10 when the magnitude or ratio of an input θ wave, β wave, or the like exceeds or falls below a set value to measure optical topography. Stop, pause, and start are controlled.

すなわち、光計測においては、刺激呈示装置21により聴覚又は視覚の刺激を被検体4に与えたタイミングとの関係、例えば刺激付与前後の脳機能の変化を光計測することが要望される。そこで、本実施の形態では、被検体4の状態等に応じて刺激呈示装置21から出力されるトリガ信号23によって、光計測制御装置10は光計測の開始、ポーズ及び停止を制御することができるようにしている。   That is, in optical measurement, it is desired to optically measure the relationship with the timing at which an auditory or visual stimulus is applied to the subject 4 by the stimulus presentation device 21, for example, a change in brain function before and after the stimulus is applied. Therefore, in the present embodiment, the optical measurement control device 10 can control the start, pause, and stop of the optical measurement by the trigger signal 23 output from the stimulus presentation device 21 according to the state of the subject 4 and the like. I am doing so.

このように構成される本実施の形態の動作及び使用形態について、以下に詳細に説明する。まず、脳の活動状態を光計測する場合、被検体4の脳の活動状態や運動状態を一定あるいは所望の状態に管理するなど、計測条件を満足する必要がある。以下、光計測条件に応じた計測モードに分けて、本実施の形態の動作及び使用状態を説明する。なお、下記の計測モードは、それぞれ単独で、あるいは複数のモードを適宜組み合わせて動作ないし使用することができる。   The operation and usage of the present embodiment configured as described above will be described in detail below. First, when optically measuring the brain activity state, it is necessary to satisfy the measurement conditions such as managing the brain activity state and the motion state of the subject 4 to be constant or a desired state. Hereinafter, the operation and use state of this embodiment will be described by dividing into measurement modes according to the optical measurement conditions. In addition, the following measurement modes can be operated or used independently or in combination of a plurality of modes as appropriate.

(被検体の注意喚起モード)
脳の活動状態を光計測する場合、被検体4の脳の活動状態や運動状態を一定の状態に維持して計測するための例として、被検体4が例えば眠らないように注意を喚起する必要がある。この場合は、図2に示すように、刺激呈示装置21の表示画面22に注意喚起の映像を呈示する。同図(a)の曲線101は、脳波演算装置32により演算された被検体4の覚醒度の時間変化を示す。同図(a)の線102は、覚醒度に関する注意喚起のための判定閾値である。覚醒度が、判定閾値を下回る図中のB期間の場合、同図(b)に示すように注意喚起のためのランプ104を点灯し、判定閾値以上の図中のA期間の場合は注意喚起のためのランプ104を消灯する。これによって、光計測条件を一定の許容できる範囲内に保持できる。
(Subject alert mode)
When optically measuring the activity state of the brain, it is necessary to call attention so that the subject 4 does not sleep, for example, as an example for maintaining and measuring the brain activity state and movement state of the subject 4 in a certain state. There is. In this case, as shown in FIG. 2, a warning image is presented on the display screen 22 of the stimulus presentation device 21. A curve 101 in FIG. 9A shows a temporal change in the arousal level of the subject 4 calculated by the electroencephalogram calculation device 32. A line 102 in FIG. 5A is a determination threshold for alerting the degree of arousal. In the period B in the figure where the arousal level is below the determination threshold, the warning lamp 104 is turned on as shown in FIG. 5B, and in the period A in the figure above the determination threshold, the warning is issued. The lamp 104 for is turned off. As a result, the optical measurement conditions can be maintained within a certain allowable range.

図3に、覚醒度を脳波演算装置32において演算し、覚醒度を判定して注意喚起を呈示する手順の一例を示す。図3に示すように、脳波演算装置32は、脳波受信装置31から入植される脳波をリアルタイムで計測し(S1)、サンプリング周期ごとに、直前の一定区間(サンプリング周期)の脳波データをフーリエ変換する(S2)。次いで、被検体が眠りかけてまどろんでいることが現れる脳波中のθ波(4〜7Hz成分)の信号強度を求める(S3)。求めたθ波を必要に応じて覚醒度として刺激呈示装置21の表示画面22に表示する。次に、θ波の信号強度が予め設定された判定閾値を超えているか否か判定する(S5)。超えていない場合は、被検体の注意を喚起するために表示画面22に注意喚起の表示をする(S6)。θ波の信号強度が判定閾値を超えている場合は、表示画面22に注意喚起の表示をしない。   FIG. 3 shows an example of a procedure for calculating the arousal level in the electroencephalogram calculation device 32, determining the arousal level, and presenting an alert. As shown in FIG. 3, the electroencephalogram calculation apparatus 32 measures the electroencephalogram implanted from the electroencephalogram reception apparatus 31 in real time (S1), and performs Fourier transform on the electroencephalogram data in the immediately preceding predetermined section (sampling period) for each sampling period. (S2). Next, the signal intensity of the θ wave (4 to 7 Hz component) in the electroencephalogram where the subject appears to sleep and slumber is obtained (S3). The obtained θ wave is displayed on the display screen 22 of the stimulus presentation device 21 as the arousal level as necessary. Next, it is determined whether or not the signal intensity of the θ wave exceeds a preset determination threshold (S5). If not exceeded, a warning message is displayed on the display screen 22 to alert the subject (S6). When the signal intensity of the θ wave exceeds the determination threshold, no alert is displayed on the display screen 22.

ここで、被検体の注意喚起を促す要因としては、覚醒度のほかに、脳波により計測できるアテンション強度、あるいは後述する筋電信号により計測できる体動などがある。また、注意喚起の方法は、音に対する脳の反応を計測している場合は表示画面22に映像を表示し、視覚に対する脳の反応を計測している場合は音により行うことが好ましい。さらに、注意喚起は、例えば、アラーム音の強弱や周波数の変化、触覚(温度)の変化、あるいは注意喚起映像や演算結果のグラフなどによる視覚によることができる。   Here, factors that prompt the attention of the subject include not only the arousal level but also the attention intensity that can be measured by an electroencephalogram or the body movement that can be measured by a myoelectric signal described later. In addition, it is preferable that the alerting method is performed by displaying an image on the display screen 22 when the response of the brain to sound is measured, and by sound when the response of the brain to vision is measured. Furthermore, the alerting can be made visually, for example, by an alarm sound intensity or frequency change, a tactile sense (temperature) change, or a reminder image or a calculation result graph.

このようにして、脳波の演算結果を刺激呈示装置21内の表示画面22に呈示して、眠気やアテンション強度などを被検体4にフィードバックすることにより、脳の所望の活性等を維持した状態、例えば「起きている状態」で、光計測による脳機能計測を行うことができる。その結果、取得した光計測データの無駄を少なくすることができ、光計測の演算負荷を軽減することができる。   In this way, the brain wave calculation result is presented on the display screen 22 in the stimulus presentation device 21, and the drowsiness, attention intensity, etc. are fed back to the subject 4 to maintain the desired activity of the brain, For example, it is possible to perform brain function measurement by optical measurement in the “awake state”. As a result, the waste of the acquired optical measurement data can be reduced, and the calculation load of optical measurement can be reduced.

なお、図2、3に示した例では、脳波のθ波を用いる場合を説明したが、β波(14〜33Hz)を用いてまったく同様に注意喚起させることができる。すなわち、β波は緊張度が高く、注意力や認識力が高い状態にあることを表し、注意力が必要な事柄を行うときはβ波が出ている。なお、映画やテレビに集中しているときはα波が出ているが、このα波は受身的な注意力であるから、脳機能計測で用いられるアテンションとは異なる。これに対し、β波の注意力は積極的なので、アテンションを評価するにはβ波の変化を用いるのが好ましい。   In the example shown in FIGS. 2 and 3, the case of using the brain wave θ wave has been described, but it is possible to call attention in the same manner using a β wave (14 to 33 Hz). That is, the β wave has a high degree of tension and is in a state of high attention and cognitive power, and the β wave is generated when performing matters requiring attention. It should be noted that an α wave is generated when concentrated on a movie or television, but since this α wave is passive attention, it is different from the attention used in brain function measurement. On the other hand, since the attention of the β wave is positive, it is preferable to use the change of the β wave to evaluate the attention.

(脳状態による光計測制御モード1)
一般に、光計測においては光計測データを複数のサンプリング周期に渡って収集し、それらを加算することによって、計測データに含まれるノイズを低減することが行われている。そのために、同一の計測条件における計測時間が長くなり、その間に脳状態が変化すると収集した光計測データが無駄になるおそれがある。そこで、本実施の形態では、脳波演算装置32から脳波データ34を光演算装置11に送り、光演算装置11において脳の活動状態に応じてサンプリングされる光計測データの取捨選択を可能にしている。
(Optical measurement control mode 1 according to the brain state)
In general, in optical measurement, optical measurement data is collected over a plurality of sampling periods and added to reduce noise included in the measurement data. Therefore, the measurement time under the same measurement condition becomes long, and if the brain state changes during that time, the collected optical measurement data may be wasted. Therefore, in the present embodiment, the electroencephalogram data 34 is sent from the electroencephalogram calculation device 32 to the optical calculation device 11, and the optical measurement data sampled according to the brain activity state in the optical calculation device 11 can be selected. .

図4(a)の曲線101は、脳波演算装置32により演算された被検体4の覚醒度(アテンション強度)の時間変化を示す。同図(a)の線102は、覚醒度(アテンション強度)に関する注意喚起のための判定閾値である。また、同図(b)の曲線105は光演算装置11により演算された光計測データの時間変化を表している。そして、脳波演算装置32又は光演算装置11において、図5に示す処理手順に従ってアテンション強度を判定して、光計測データの取捨選択を行う。まず、任意の計測区間Aの脳波データをフーリエ変換する(S11)。次いで、被検体が眠りかけてまどろんでいることが現れる脳波中のθ波(4〜7Hz成分)の信号強度を求める(S12)。求めたθ波の信号強度が予め設定された判定閾値を超えているか否か判定する(S13)。θ波の信号強度が判定閾値を超えている場合は、区間Aを光計測データの加算区間とし(S14)、超えていない場合は、区間Aを光計測データの加算区間から除き(S15)、次の区間に移る(S16)。つまり、アテンション強度が判定閾値102を超える図4の区間106、107にサンプリングされた光計測データを加算し、その区間以外の区間の光計測データは加算しないで捨てる。   A curve 101 in FIG. 4A shows a temporal change in the arousal level (attention intensity) of the subject 4 calculated by the electroencephalogram calculation device 32. A line 102 in FIG. 10A is a determination threshold value for alerting the degree of arousal (attention intensity). Further, a curve 105 in FIG. 5B represents a time change of the optical measurement data calculated by the optical calculation device 11. Then, in the electroencephalogram calculation device 32 or the optical calculation device 11, the attention intensity is determined according to the processing procedure shown in FIG. 5, and the optical measurement data is selected. First, the brain wave data in an arbitrary measurement section A is Fourier transformed (S11). Next, the signal intensity of the θ wave (4 to 7 Hz component) in the electroencephalogram where it appears that the subject is asleep and dizzy is obtained (S12). It is determined whether or not the obtained signal strength of the θ wave exceeds a preset determination threshold value (S13). If the signal intensity of the θ wave exceeds the determination threshold, the section A is set as the optical measurement data addition section (S14), and if not, the section A is excluded from the optical measurement data addition section (S15). The process moves to the next section (S16). That is, the optical measurement data sampled in the sections 106 and 107 in FIG. 4 where the attention intensity exceeds the determination threshold 102 is added, and the optical measurement data in the sections other than the sections are discarded without being added.

この場合において、光計測データをメモリ13に記憶するときは、加算区間106、107の基点と終点を示すマーカを付記して保存する。また、θ波は眠りかけのまどろんでいる状態であるから、途中で起こさないのであれば、熟睡する可能性もあるので、δ波(1.5〜4Hz)も評価したほうがよい場合もある。   In this case, when storing the optical measurement data in the memory 13, markers indicating the base points and end points of the addition sections 106 and 107 are added and stored. In addition, since the θ wave is in a slumbering state, if it does not occur halfway, there is a possibility of a good sleep, so it may be better to evaluate the δ wave (1.5 to 4 Hz).

したがって、この光計測制御モード1によれば、計測条件から外れた光計測データを捨てることができるので、光計測の精度を向上させることができる。また、計測精度向上のための繰り返し計測回数を低減して、実質的な計測時間を短縮できる。   Therefore, according to this optical measurement control mode 1, optical measurement data that deviates from the measurement conditions can be discarded, so that the accuracy of optical measurement can be improved. In addition, the number of repeated measurements for improving measurement accuracy can be reduced, and the substantial measurement time can be shortened.

また、図3の例で説明したように、図5のθ波に代えて、β波に基づいてアテンション強度を判定して光計測データの取捨選択を行うことができる。図6に、他の脳波に基づいて光計測データの取捨選択を行う場合の各波形図を例示する。同図(a)は脳波の波形図、同図(b)は脳波に含まれる特定周波数帯域の脳波の一例、同図(c)は光計測データの波形の一例をそれぞれ示す。図示のように、特定周波数帯域の脳波が判定閾値108を下回るときには光計測データを捨て、他の区間109、109の光計測データを加算する。   Further, as described in the example of FIG. 3, the optical measurement data can be selected by determining the attention intensity based on the β wave instead of the θ wave of FIG. 5. FIG. 6 illustrates each waveform diagram when optical measurement data is selected based on other brain waves. FIG. 4A shows an electroencephalogram waveform diagram, FIG. 2B shows an example of an electroencephalogram in a specific frequency band included in the electroencephalogram, and FIG. 3C shows an example of an optical measurement data waveform. As shown in the figure, when the electroencephalogram in the specific frequency band falls below the determination threshold 108, the optical measurement data is discarded and the optical measurement data of the other sections 109 and 109 are added.

(脳状態による光計測制御モード2)
脳疾患によっては、例えばてんかんのように、何時発症するか不確定な疾患がある。このような脳疾患の発作は、発作の前後の脳状態を観察することが肝要であるが、何時発症するかわからないため、長時間にわたって光計測を行わなければならず、被検体にとっても計測の負担が大きいという問題がある。また、膨大な光計測データを長時間にわたって記憶しなければならず、膨大な記憶容量の記憶装置が必要になる。
(Optical measurement control mode 2 according to the brain state)
Some brain diseases have uncertain times of onset, such as epilepsy. It is important to observe the brain state before and after the seizure of such a brain disease, but since it is not known when it will occur, it is necessary to perform optical measurements over a long period of time. There is a problem that the burden is large. In addition, a large amount of optical measurement data must be stored for a long time, and a storage device having a huge storage capacity is required.

そこで、脳波演算装置32の診断結果により、てんかんの発作が検知されたとき、図1に示すトリガ信号35を光計測制御装置10に送る。光計測制御装置10はトリガ信号35を受信したとき、その前の一定期間の光計測データをメモリ13に記憶させる。これにより、メモリ13の記憶容量を節約できる。また、脳波演算装置32はてんかん発作の検知を刺激呈示装置21に送り、表示画面22にその旨を表示する。   Therefore, when an epileptic seizure is detected based on the diagnosis result of the electroencephalogram calculation device 32, a trigger signal 35 shown in FIG. 1 is sent to the optical measurement control device 10. When the optical measurement control device 10 receives the trigger signal 35, the optical measurement control device 10 stores optical measurement data for a certain period before that in the memory 13. Thereby, the storage capacity of the memory 13 can be saved. In addition, the electroencephalogram calculation device 32 sends the detection of the epileptic seizure to the stimulus presentation device 21 and displays that fact on the display screen 22.

以上説明したように、図1の実施の形態によれば、被検体4に聴覚や視覚などの刺激を与えたときの前後に、被検者4の脳内部の酸素化・脱酸素ヘモグロビン及び総ヘモグロビンの変化量を求めて画像化するなどにより、脳状態の変化を観察して脳機能計測を行うことができる。   As described above, according to the embodiment of FIG. 1, the oxygenation / deoxygenation hemoglobin and the total amount in the brain of the subject 4 before and after the subject 4 is given a stimulus such as hearing or vision. The brain function can be measured by observing the change in the brain state, for example, by determining the amount of change in hemoglobin and imaging it.

特に、脳の所望の活性等を維持した状態、例えば「起きている状態」で、光トポグラフィによる脳機能計測を行うことができる。その結果、取得した光計測データの無駄を少なくすることができ、光計測の演算処理負荷を軽減することができる。   In particular, it is possible to perform brain function measurement by optical topography in a state in which a desired activity or the like of the brain is maintained, for example, in a “wake state”. As a result, the waste of the acquired optical measurement data can be reduced, and the calculation processing load of optical measurement can be reduced.

また、計測条件に合致する光計測データを取捨選択して光計測結果を演算していることから、光計測の精度を向上させることができる。
[実施の形態2]
図7に、本発明の生体信号処理装置の他の実施の形態の全体構成図を示す。本実施の形態が図1実施形態と異なる点は、脳波計測装置に加えて、あるいは脳波計測装置に代えて、体動検出装置を結合した点にある。その他の点は、図1実施形態と同一であることから、各部に同一符号を付して説明を省略する。
Moreover, since the optical measurement result is calculated by selecting the optical measurement data that matches the measurement condition, the accuracy of the optical measurement can be improved.
[Embodiment 2]
FIG. 7 shows an overall configuration diagram of another embodiment of the biological signal processing apparatus of the present invention. This embodiment is different from the embodiment shown in FIG. 1 in that a body motion detection device is coupled in addition to or instead of the electroencephalogram measurement device. Since the other points are the same as those in the embodiment of FIG. 1, the same reference numerals are given to the respective parts and the description thereof is omitted.

体動検出装置は、被検体4の頸部などに接触して取り付けられた筋電電極40と、筋電電極40により検出された筋電信号を受信する筋電受信装置41と、筋電受信装置41により受信された筋電信号に基づいて体動を演算する体動演算装置42を有して構成されている。体動演算装置42は、例えば被検体4が頭部を動かしたことを検出し、刺激呈示装置21の表示画面22に表示するなどにより、被検体4にフィードバックするようにすることができる。例えば、図8に示すように、脳波110の時間変化とともに、体動量111の時間変化として波形が表示される。   The body movement detection device includes a myoelectric electrode 40 attached in contact with the neck of the subject 4, a myoelectric receiving device 41 that receives a myoelectric signal detected by the myoelectric electrode 40, and myoelectric reception. A body motion calculation device 42 that calculates body motion based on the myoelectric signal received by the device 41 is provided. The body motion calculation device 42 can feed back to the subject 4 by detecting that the subject 4 has moved the head and displaying it on the display screen 22 of the stimulus presentation device 21, for example. For example, as shown in FIG. 8, a waveform is displayed as a time change of the body movement amount 111 with a time change of the electroencephalogram 110.

本実施の形態によれば、脳波の覚醒度(アテンション強度)と同様に、予め設定された体動量の許容値に対応する判定閾値(図2の102に相当)と比較して、被検体の注意喚起モード、脳状態による光計測制御モード1、2に相当する動作又は使用態様を実現できる。また、逆に、動いたときの脳の状態を光計測することもできる。   According to the present embodiment, as with the degree of arousal (attention intensity) of the electroencephalogram, compared with a determination threshold value (corresponding to 102 in FIG. 2) corresponding to a preset allowable amount of body movement, It is possible to realize the operation or use mode corresponding to the alert mode and the light measurement control modes 1 and 2 depending on the brain state. Conversely, the state of the brain when it moves can also be optically measured.

つまり、体動量による被検体の注意喚起モードの場合は、図3の処理手順のように、筋電をリアルタイムで計測し、直前のサンプリング周期の筋電データから体動量を求め、その体動量が判定閾値を超えているか否か判定し、越えている場合は、例えば表示画面22に「動かないように」などの注意喚起を呈示する。このときの筋電信号112と体動量113と光計測データ114の各波形を図9(a)〜(c)に示す。図示のように、筋電信号112を積分して得られる体動量113が判定閾値115を超えたか否か判定し、超えている区間は光計測データを捨て、超えていない区間116,116については光計測データを加算するようにする。   That is, in the alert mode of the subject based on the amount of body movement, as shown in the processing procedure of FIG. 3, the myoelectricity is measured in real time, the amount of body movement is obtained from the myoelectric data of the immediately preceding sampling cycle, and the amount of body movement is It is determined whether or not the determination threshold is exceeded. If it exceeds, a warning such as “Do not move” is presented on the display screen 22, for example. The waveforms of the myoelectric signal 112, the amount of body movement 113, and the optical measurement data 114 at this time are shown in FIGS. As shown in the figure, it is determined whether or not the amount of body movement 113 obtained by integrating the myoelectric signal 112 exceeds the determination threshold value 115. For the sections 116 and 116 where the optical measurement data is not exceeded, the optical measurement data is discarded. Add optical measurement data.

また、図5の処理手順のように、区間Aの筋電データから体動量を求め、体動量が判定閾値を超えているか否か判定し、区間Aの光計測データを加算区間から除き、判定閾値を超えていない場合は区間Aを加算区間とする処理を区間ごとに行う。これにより、計測条件に合致する光計測データを取捨選択して光計測結果を演算することにより、光計測の精度を向上させることができる。
(体動量による光計測制御モードの特有例)
図10に、体動特有の計測モードの処理例を示す。乳幼児などの場合は、検査者の合図でタスク(動きなど)を開始してくれない場合がある。この場合は、筋電信号から口や手などの動きを検出し、動きが一定の閾値以上の期間をタスク期間とみなすことができる。ただし、体動が非常に大きく、光計測による脳機能計測が困難な区間は、計測データから除くようにすることができる。すなわち、図10に示すように、区間Aの筋電データから体動量を求める(S21)。次いで、求めた体動量が第1の判定閾値Taを超えているか否か判定する(S22)。超えていれば、区間Aの光計測データを加算区間から除く(S24)。一方、体動量が判定閾値Taを超えていない場合は、第2の判定閾値Tb(ただし、Ta>Tb)を超えているか否か判定する(S23)。体動量がTbを超えていれば、つまりTb<体動量<Taであれば、区間Aの光計測データを加算区間とする(S25)。一方、体動量がTbを超えていなければ、ステップS24に移って区間Aの光計測データを加算区間から除く。これらの処理を終了後、次の区間に移る(S26)。
Further, as in the processing procedure of FIG. 5, the amount of body movement is obtained from the myoelectric data of the section A, it is determined whether or not the body movement amount exceeds the determination threshold, and the optical measurement data of the section A is excluded from the addition section. When the threshold value is not exceeded, the process of setting the section A as the addition section is performed for each section. Thereby, the accuracy of optical measurement can be improved by selecting the optical measurement data that matches the measurement conditions and calculating the optical measurement result.
(Specific example of optical measurement control mode based on body movement)
FIG. 10 shows an example of processing in a measurement mode specific to body movement. In the case of an infant, the task (movement, etc.) may not be started at the signal of the examiner. In this case, the movement of the mouth or hand is detected from the myoelectric signal, and a period in which the movement is equal to or greater than a certain threshold can be regarded as the task period. However, sections in which body movement is very large and it is difficult to measure brain function by optical measurement can be excluded from the measurement data. That is, as shown in FIG. 10, the amount of body movement is obtained from the electromyogram data of section A (S21). Next, it is determined whether the calculated body movement amount exceeds the first determination threshold value Ta (S22). If it exceeds, the optical measurement data of the section A is excluded from the addition section (S24). On the other hand, if the body movement amount does not exceed the determination threshold Ta, it is determined whether or not the second determination threshold Tb (where Ta> Tb) is exceeded (S23). If the body movement amount exceeds Tb, that is, if Tb <body movement amount <Ta, the optical measurement data in the section A is set as the addition section (S25). On the other hand, if the amount of body movement does not exceed Tb, the process proceeds to step S24, and the optical measurement data of the section A is excluded from the addition section. After completing these processes, the process proceeds to the next section (S26).

なお、図10のステップS21に変えて筋電をリアルタイムで計測して体動量を求め、ステップS24、S25に変えて、Tb<体動量<Taのときは、乳幼児が好きな画像を刺激呈示装置21の表示画面22に表示し、体動量>Taかつ体動量<Tbのときは、乳幼児が好きでない画像を表示画面22に表示することができる。すなわち、体動を現状で維持させるためには、乳幼児が好きな画像を表示する。体動を抑えたい場合は、スローテンポのアニメーションを、体動を上げたい場合はアップテンポのアニメーションであって、比較的好きでない画像を表示する。
[実施の形態3]
図11に、本発明の生体信号処理装置のさらに他の実施の形態の全体構成図を示す。本実施の形態が図1実施形態と異なる点は、開眼モニタ50を設けたことにある。その他の点は、基本的に図1実施形態と同一であることから、各部に同一符号を付して説明を省略する。
It should be noted that instead of step S21 in FIG. 10, myoelectricity is measured in real time to determine the amount of body movement, and in steps S24 and S25, if Tb <body movement amount <Ta, an image that the infant likes is a stimulus presentation device. 21. When the body movement amount> Ta and the body movement amount <Tb, the image that the infant does not like can be displayed on the display screen 22. That is, in order to maintain body movement at present, an image that the infant likes is displayed. When it is desired to suppress the body movement, an animation with a slow tempo is displayed, and when it is desired to increase the body movement, an animation with an up-tempo and relatively unfavorable is displayed.
[Embodiment 3]
FIG. 11 shows an overall configuration diagram of still another embodiment of the biological signal processing apparatus of the present invention. This embodiment is different from the embodiment in FIG. 1 in that an eye-opening monitor 50 is provided. Since the other points are basically the same as those in the embodiment of FIG. 1, the same reference numerals are given to the respective parts and the description thereof is omitted.

脳波のうちのα波の量は、開眼により減少することから、α波の計測精度を向上させるためには目が開かれているときと、閉じられているときで、α波の計測値の評価を変える必要がある。特に、乳幼児の脳機能を計測するときに必要になる。そこで、本実施の形態では、目の開閉状態を検出する開眼モニタ50を設け、開眼モニタ50の検出信号51を脳波演算装置32に入力するようにしている。   Since the amount of α wave in the brain wave is reduced by eye opening, in order to improve the measurement accuracy of α wave, the measured value of α wave is different between when the eye is open and when it is closed. It is necessary to change the evaluation. This is particularly necessary when measuring the brain function of infants. Therefore, in the present embodiment, an eye opening monitor 50 for detecting the open / closed state of the eyes is provided, and the detection signal 51 of the eye opening monitor 50 is input to the electroencephalogram calculation device 32.

開眼モニタ50は、例えば、CCDカメラなどにより眼球の画像をリアルタイムで撮影し、黒目の面積を評価関数にして、開閉度合を検出する。つまり、図12(b)、(c)、(d)に示すように、目を閉じた状態から、半分開いた状態、全開の状態など、開眼状態を複数の段階に分け、各状態におけるα波の強度を予め計測した複数のデータに基づいて、同図(a)に示す較正曲線120を予め設定しておく。   The eye-opening monitor 50, for example, takes an image of an eyeball in real time with a CCD camera or the like, and detects the degree of opening and closing using the area of the black eye as an evaluation function. That is, as shown in FIGS. 12B, 12C, and 12D, the open eye state is divided into a plurality of stages, such as a state where the eyes are closed, a state where the eyes are half open, and a state where the eyes are fully open. Based on a plurality of data obtained by measuring wave intensity in advance, a calibration curve 120 shown in FIG.

これによって、本実施の形態によれば、脳波演算装置32において開眼状態に応じてα波を較正できるから、α波の計測精度を向上できる。その結果、刺激呈示装置21により呈示する呈示内容を適切なものとすることができる。   Thereby, according to this Embodiment, since the alpha wave can be calibrated according to an open eye state in the electroencephalogram calculation apparatus 32, the measurement precision of alpha wave can be improved. As a result, the content presented by the stimulus presentation device 21 can be made appropriate.

なお、図示していないが、図1と同様に、脳波演算装置32から脳波データ34を光演算装置11に送り、前述の光計測制御モード1、2の制御に反映させることができる。また、脳疾患の発作等の検出信号に基づいてトリガ信号35を光計測制御装置10に出力するようにすることもできる。
[実施の形態4]
ここで、図1又は図11に示した実施形態の生体信号処理装置においては、光計測と脳波計測に計測原理の相違があることから、計測制御の協調を図ることが好ましい。すなわち、光計測及び脳波計測はいずれも刺激に対する脳機能の変化を計測するが、計測値の精度を向上させるために、1回の刺激に対して複数回のサンプリングデータを加算する。
Although not shown, as in FIG. 1, the electroencephalogram data 34 can be sent from the electroencephalogram computation device 32 to the optical computation device 11 and reflected in the control of the optical measurement control modes 1 and 2 described above. In addition, the trigger signal 35 can be output to the optical measurement control device 10 based on a detection signal such as a seizure of a brain disease.
[Embodiment 4]
Here, in the biological signal processing apparatus of the embodiment shown in FIG. 1 or FIG. 11, it is preferable to coordinate measurement control because there is a difference in measurement principle between optical measurement and electroencephalogram measurement. That is, both optical measurement and electroencephalogram measurement measure changes in brain function with respect to a stimulus, but in order to improve the accuracy of the measurement value, a plurality of sampling data is added to one stimulus.

しかし、計測原理の相違から、図13に示すように、脳波計測に用いる典型的な誘発電位計(ERP)の場合は、刺激を与える間隔(刺激間隔)が例えば0.1〜1秒間隔で、必要な加算回数は20〜200回であるのに対し、光計測の場合は、刺激間隔が15〜30秒間隔で、必要な加算回数は5〜10回である。つまり、脳波の場合は刺激を与えてから数10m秒で反応を検知できるのに対し、血中ヘモグロビンの濃度変化を計測する光計測の場合は、刺激を与えてから血液状態が変化するのに10〜15秒以上の時間がかかることに起因する。   However, due to the difference in measurement principle, as shown in FIG. 13, in the case of a typical evoked electrometer (ERP) used for electroencephalogram measurement, the interval for applying stimulation (stimulus interval) is, for example, 0.1 to 1 second. The required number of additions is 20 to 200 times, whereas in the case of optical measurement, the stimulation interval is 15 to 30 seconds and the required number of additions is 5 to 10 times. In other words, in the case of an electroencephalogram, the reaction can be detected within a few tens of milliseconds after the stimulus is applied, whereas in the case of optical measurement that measures changes in blood hemoglobin concentration, the blood state changes after the stimulus is applied. This is because it takes 10 to 15 seconds or more.

そこで、本実施の形態では、図14に示すように、刺激期間Sとレスト(休止)期間Rとを交互に繰り返して計測する場合に、1つの刺激130を刺激間隔1秒で繰り返し与えながら、脳波計測を100回加算可能で、光計測を1刺激呈示期間20秒を5回加算可能に設定する。これにより、光計測と脳波計測との協調をとることができる。この協調計測は、図15に示したサンプリングパルス生成手段により実現できる。つまり、同図に示すように、クロックパルス発生器60から発生するクロックパルスを、第1の分周器61により脳波計測に適したクロックパルスに分周して脳波計測用のサンプリング器62に供給する。また、第1の分周器61により分周されたクロックパルスをさらに第2の分周器63で分周して光計測用のサンプリング器64に供給する。これにより、図16に示すように、サンプリング器64とサンプリング器62からは、それぞれサンプリングパルス131、132が出力され、光計測データと脳波データが設定されたタイミングでサンプリングされる。   Therefore, in the present embodiment, as shown in FIG. 14, in the case where the stimulation period S and the rest (rest) period R are alternately measured repeatedly, while one stimulation 130 is repeatedly given at a stimulation interval of 1 second, The electroencephalogram measurement can be added 100 times, and the optical measurement is set so that one stimulus presentation period 20 seconds can be added 5 times. Thereby, cooperation with optical measurement and electroencephalogram measurement can be taken. This coordinated measurement can be realized by the sampling pulse generation means shown in FIG. That is, as shown in the figure, the clock pulse generated from the clock pulse generator 60 is divided into clock pulses suitable for brain wave measurement by the first frequency divider 61 and supplied to the sampler 62 for brain wave measurement. To do. Further, the clock pulse frequency-divided by the first frequency divider 61 is further frequency-divided by the second frequency divider 63 and supplied to the optical measurement sampling device 64. Accordingly, as shown in FIG. 16, sampling pulses 131 and 132 are output from the sampling device 64 and the sampling device 62, respectively, and the optical measurement data and the electroencephalogram data are sampled at the set timing.

図17に、計測協調制御の他の実施の形態を示す。本実施の形態は、光計測用刺激と脳波計測用刺激を同じものを利用し、光計測と脳波計測ごとに1回ずつ刺激を加える。光計測135の刺激時間は最小とし、1回の刺激に対する反応を計測する。脳波計測136の刺激は光計測135と光計測135との間にも刺激を加えて、計測回数を増やす。光計測の刺激の前後は必要なレスト時間を確保する。   FIG. 17 shows another embodiment of measurement cooperative control. In this embodiment, the same stimulus is used for the light measurement and the brain wave measurement, and the stimulus is applied once for each light measurement and brain wave measurement. The stimulation time of the light measurement 135 is minimized, and a response to one stimulation is measured. The stimulation of the electroencephalogram measurement 136 also adds a stimulus between the optical measurement 135 and the optical measurement 135 to increase the number of measurements. The necessary rest time is secured before and after the light measurement stimulus.

このように、光計測と脳波計測との計測の協調を図ることにより、両者の計測特性を損なうことなく短時間で、光計測と脳波計測による脳機能計測の対応付けを行うことができ、脳科学及び脳医学の進歩に寄与することができる。   In this way, by coordinating the measurement between the optical measurement and the electroencephalogram measurement, the brain function measurement by the optical measurement and the electroencephalogram measurement can be associated in a short time without impairing the measurement characteristics of the two. Can contribute to the advancement of science and brain medicine.

本発明の生体信号処理装置の一実施の形態の全体構成図である。1 is an overall configuration diagram of an embodiment of a biological signal processing apparatus of the present invention. 脳波による注意喚起の刺激呈示を説明する図である。It is a figure explaining the stimulus presentation of the alerting by an electroencephalogram. 脳波による注意喚起の処理手順のフローチャートである。It is a flowchart of the processing procedure of alerting by an electroencephalogram. 脳波による光計測の制御を説明する図である。It is a figure explaining the control of the optical measurement by an electroencephalogram. 脳波による光計測の処理手順のフローチャートである。It is a flowchart of the process sequence of the optical measurement by an electroencephalogram. 脳波による光計測の制御を説明する図である。It is a figure explaining the control of the optical measurement by an electroencephalogram. 本発明の生体信号処理装置の他の実施の形態の全体構成図である。It is a whole block diagram of other embodiment of the biosignal processing apparatus of this invention. 脳波と体動の関係を説明する図である。It is a figure explaining the relationship between an electroencephalogram and a body motion. 筋電信号と体動量と光計測との関係を説明する図である。It is a figure explaining the relationship between a myoelectric signal, a body movement amount, and optical measurement. 体動による光計測の処理手順のフローチャートである。It is a flowchart of the process sequence of the optical measurement by a body movement. 本発明の生体信号処理装置のさらに他の実施の形態の全体構成図である。It is a whole block diagram of other embodiment of the biosignal processing apparatus of this invention. 開眼の度合とα波との関係を説明する図である。It is a figure explaining the relationship between the degree of eye opening, and an alpha wave. 光計測と脳波計測の計測特性の違いを説明する図である。It is a figure explaining the difference in the measurement characteristic of optical measurement and electroencephalogram measurement. 光計測と脳波計測の一実施の形態の計測タイミングを示すタイムチャートである。It is a time chart which shows the measurement timing of one Embodiment of an optical measurement and an electroencephalogram measurement. 光計測と脳波計測のサンプリングパルス生成手段の構成図である。It is a block diagram of the sampling pulse production | generation means of optical measurement and an electroencephalogram measurement. 図15のサンプリングパルス生成手段により発生されるサンプリングパルスのタイムチャートである。It is a time chart of the sampling pulse generated by the sampling pulse generation means of FIG. 光計測と脳波計測の他の実施の形態の計測タイミングを示すタイムチャートである。It is a time chart which shows the measurement timing of other embodiment of an optical measurement and an electroencephalogram measurement.

符号の説明Explanation of symbols

1 光源
2 光結合器
4 被検体
6 光検出器
7 検波器
10 光計測制御装置
11 光演算装置
12 モニタ
13 メモリ
21 刺激呈示装置
22 表示画面
23 トリガ信号
30 脳波電極
31 脳波受信装置
32 脳波演算装置
33 脳波データ
34 脳波データ
35 トリガ信号
DESCRIPTION OF SYMBOLS 1 Light source 2 Optical coupler 4 Subject 6 Optical detector 7 Detector 10 Optical measurement control apparatus 11 Optical arithmetic device 12 Monitor 13 Memory 21 Stimulus presentation device 22 Display screen 23 Trigger signal 30 Electroencephalogram electrode 31 Electroencephalogram receiver 31 Electroencephalogram arithmetic device 33 EEG data 34 EEG data 35 Trigger signal

Claims (7)

被検体の頭部に照射した光の透過光又は反射光を計測し、該光計測データに基づいて頭部内の光学特性を求める光計測装置と、前記被検体に刺激を付与する刺激呈示装置とを備えてなる生体信号処理装置において、前記被検体の活動に相関する生体信号を計測する生体活動計測装置を設け、前記刺激呈示装置は、前記生体活動計測装置により計測された生体信号に基づいて前記刺激を制御することを特徴とする生体信号処理装置。   An optical measurement device that measures transmitted light or reflected light of the light irradiated on the head of the subject, and obtains optical characteristics in the head based on the optical measurement data, and a stimulus presentation device that applies a stimulus to the subject A biological signal processing device comprising: a biological activity measurement device that measures a biological signal correlated with the activity of the subject; and the stimulus presentation device is based on the biological signal measured by the biological activity measurement device A biological signal processing apparatus for controlling the stimulation. 前記生体活動計測装置は、前記被検体の脳波を計測する脳波計測装置であり、前記刺激呈示装置は、前記脳波計測装置から出力されるθ波又はβ波の強度に応じて前記刺激を制御することを特徴とする請求項1に記載の生体信号処理装置。   The biological activity measurement device is an electroencephalogram measurement device that measures an electroencephalogram of the subject, and the stimulus presentation device controls the stimulation according to the intensity of a θ wave or a β wave output from the electroencephalogram measurement device. The biological signal processing apparatus according to claim 1. 前記生体活動計測装置は、前記被検体の筋肉の動きを計測する体動計測装置であり、前記刺激呈示装置は、前記体動計測装置から出力される体動量に応じて前記刺激を制御することを特徴とする請求項1に記載の生体信号処理装置。   The biological activity measurement device is a body motion measurement device that measures the movement of muscles of the subject, and the stimulus presentation device controls the stimulation according to the amount of body motion output from the body motion measurement device. The biological signal processing apparatus according to claim 1. 被検体の頭部に照射した光の透過光又は反射光を計測し、該光計測データに基づいて頭部内の光学特性を求める光計測装置と、前記被検体に刺激を付与する刺激呈示装置とを備えてなる生体信号処理装置において、前記被検体の活動に相関する生体信号を計測する生体活動計測装置を設け、前記光計測装置は、前記生体活動計測装置により計測された生体信号に基づいて前記光計測データを取捨選択して前記光学特性を求めることを特徴とする生体信号処理装置。   An optical measurement device that measures transmitted light or reflected light of the light irradiated on the head of the subject, and obtains optical characteristics in the head based on the optical measurement data, and a stimulus presentation device that applies a stimulus to the subject A biological signal processing device comprising: a biological activity measurement device that measures a biological signal correlated with the activity of the subject; and the optical measurement device is based on the biological signal measured by the biological activity measurement device The biological signal processing apparatus is characterized in that the optical characteristics are obtained by selecting the optical measurement data. 前記脳波計測装置は、前記被検体の脳波を計測する脳波計測装置であり、前記光計測装置は、前記脳波計測装置から出力されるθ波又はβ波の強度に応じて前記光計測データを取捨選択することを特徴とする請求項4に記載の生体信号処理装置。   The electroencephalogram measurement apparatus is an electroencephalogram measurement apparatus that measures the electroencephalogram of the subject, and the optical measurement apparatus discards the optical measurement data according to the intensity of the θ wave or the β wave output from the electroencephalogram measurement apparatus. The biological signal processing apparatus according to claim 4, wherein the biological signal processing apparatus is selected. 前記生体活動計測装置は、前記被検体の筋肉の動きを計測する体動計測装置であり、前記光計測装置は、前記体動計測装置から出力される体動量に応じて前記光計測データを取捨選択することを特徴とする請求項4に記載の生体信号処理装置。   The biological activity measurement device is a body motion measurement device that measures the movement of muscles of the subject, and the optical measurement device discards the optical measurement data according to the amount of body motion output from the body motion measurement device. The biological signal processing apparatus according to claim 4, wherein the biological signal processing apparatus is selected. 前記被検体の目の開眼度合を計測する開眼検出装置を設け、前記脳波計測装置は、開眼度合に応じて計測したα波を較正することを特徴とする請求項2又は5に記載の生体信号処理装置。   The biological signal according to claim 2, wherein an eye opening detection device that measures an eye opening degree of the subject is provided, and the electroencephalogram measurement apparatus calibrates an α wave measured according to the eye opening degree. Processing equipment.
JP2003328573A 2003-09-19 2003-09-19 Biological signal processing device Expired - Fee Related JP4399666B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003328573A JP4399666B2 (en) 2003-09-19 2003-09-19 Biological signal processing device
PCT/JP2004/012856 WO2005034761A1 (en) 2003-09-19 2004-09-03 Organism information signal processing system comprising combination of organism light measuring device and brain wave measuring device, and probe used for same
EP04772805A EP1665988A4 (en) 2003-09-19 2004-09-03 Organism information signal processing system comprising combination of organism light measuring device and brain wave measuring device, and probe used for same
US10/572,357 US7974671B2 (en) 2003-09-19 2004-09-03 Living body information signal processing system combining living body optical measurement apparatus and brain wave measurement apparatus and probe device used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328573A JP4399666B2 (en) 2003-09-19 2003-09-19 Biological signal processing device

Publications (2)

Publication Number Publication Date
JP2006187305A true JP2006187305A (en) 2006-07-20
JP4399666B2 JP4399666B2 (en) 2010-01-20

Family

ID=36795040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328573A Expired - Fee Related JP4399666B2 (en) 2003-09-19 2003-09-19 Biological signal processing device

Country Status (1)

Country Link
JP (1) JP4399666B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086481A (en) * 2006-09-29 2008-04-17 Medoravaagu Aps Method for diagnosing illness
JP2009148314A (en) * 2007-12-18 2009-07-09 National Institute Of Information & Communication Technology Cerebral dysfunction predicting apparatus
WO2009148069A1 (en) * 2008-06-04 2009-12-10 株式会社 日立メディコ Stimulation subject presentation device for living body optical measurement apparatus and method for presenting stimulation subject
KR101069153B1 (en) * 2008-11-20 2011-09-30 서울대학교산학협력단 Optical Brain Response Monitoring Device For Closed-loop Deep Brain Stimulation
WO2012091229A1 (en) * 2010-12-28 2012-07-05 성균관대학교 산학협력단 Optical imaging analysis method for cerebral haemodynamics
WO2013057931A1 (en) * 2011-10-19 2013-04-25 パナソニック株式会社 Auditory event related potential measuring system, auditory event related potential measuring method, and computer program for same
KR101270405B1 (en) 2013-02-14 2013-06-07 성균관대학교산학협력단 An optical imaging analysis method for brain hemodynamics
JP2016010651A (en) * 2014-06-30 2016-01-21 日本光電工業株式会社 Biological information measuring apparatus, biological information measuring method, and program
JP5997776B2 (en) * 2012-11-26 2016-09-28 株式会社日立製作所 Kansei evaluation system
JP2020081162A (en) * 2018-11-20 2020-06-04 テルモ株式会社 Notification system and notification method
JP2020146292A (en) * 2019-03-14 2020-09-17 株式会社リコー Biological information measurement device, biological information measurement system, biological information measurement method and biological information measurement program
JP2022535554A (en) * 2019-07-09 2022-08-09 ヂェァジァン ユニバーシティ Markingless all-optical neuromodulation and imaging method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485591B1 (en) * 2014-03-05 2015-01-22 재단법인 실감교류인체감응솔루션연구단 Device, computer-readable recording medium and method for generating touch feeling by non-invasive brain stimulation using ultrasonic waves

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086481A (en) * 2006-09-29 2008-04-17 Medoravaagu Aps Method for diagnosing illness
JP2009148314A (en) * 2007-12-18 2009-07-09 National Institute Of Information & Communication Technology Cerebral dysfunction predicting apparatus
US8600720B2 (en) 2008-06-04 2013-12-03 Hitachi Medical Corporation Stimulating task presentation device and stimulating task presentation method for living body optical measurement apparatus
WO2009148069A1 (en) * 2008-06-04 2009-12-10 株式会社 日立メディコ Stimulation subject presentation device for living body optical measurement apparatus and method for presenting stimulation subject
JP5484324B2 (en) * 2008-06-04 2014-05-07 株式会社日立メディコ Stimulation task presentation device in biological light measurement device
KR101069153B1 (en) * 2008-11-20 2011-09-30 서울대학교산학협력단 Optical Brain Response Monitoring Device For Closed-loop Deep Brain Stimulation
WO2012091229A1 (en) * 2010-12-28 2012-07-05 성균관대학교 산학협력단 Optical imaging analysis method for cerebral haemodynamics
JP5249478B1 (en) * 2011-10-19 2013-07-31 パナソニック株式会社 Auditory event-related potential measurement system, auditory event-related potential measurement method, and computer program therefor
WO2013057931A1 (en) * 2011-10-19 2013-04-25 パナソニック株式会社 Auditory event related potential measuring system, auditory event related potential measuring method, and computer program for same
US9241652B2 (en) 2011-10-19 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Auditory event-related potential measurement system, auditory event-related potential measurement method, and computer program thereof
JP5997776B2 (en) * 2012-11-26 2016-09-28 株式会社日立製作所 Kansei evaluation system
KR101270405B1 (en) 2013-02-14 2013-06-07 성균관대학교산학협력단 An optical imaging analysis method for brain hemodynamics
JP2016010651A (en) * 2014-06-30 2016-01-21 日本光電工業株式会社 Biological information measuring apparatus, biological information measuring method, and program
JP2020081162A (en) * 2018-11-20 2020-06-04 テルモ株式会社 Notification system and notification method
JP2020146292A (en) * 2019-03-14 2020-09-17 株式会社リコー Biological information measurement device, biological information measurement system, biological information measurement method and biological information measurement program
JP7346858B2 (en) 2019-03-14 2023-09-20 株式会社リコー Biological information measuring device, biological information measuring system, biological information measuring method, and biological information measuring program
JP2022535554A (en) * 2019-07-09 2022-08-09 ヂェァジァン ユニバーシティ Markingless all-optical neuromodulation and imaging method and apparatus
JP7290360B2 (en) 2019-07-09 2023-06-13 ヂェァジァン ユニバーシティ Markingless all-optical neuromodulation and imaging method and apparatus

Also Published As

Publication number Publication date
JP4399666B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2005034761A1 (en) Organism information signal processing system comprising combination of organism light measuring device and brain wave measuring device, and probe used for same
Chiarelli et al. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review
Franceschini et al. Diffuse optical imaging of the whole head
US8761866B2 (en) Examination and imaging of brain cognitive functions
JP4399666B2 (en) Biological signal processing device
US5853370A (en) Optical system and method for non-invasive imaging of biological tissue
US20040082862A1 (en) Examination and imaging of brain cognitive functions
EP2346387B1 (en) Blood analysis
Blasi et al. Test–retest reliability of functional near infrared spectroscopy in infants
EP1413244B1 (en) Measuremant system for living bodies
Kurz et al. Towards using fNIRS recordings of mental arithmetic for the detection of residual cognitive activity in patients with disorders of consciousness (DOC)
US20040064052A1 (en) Non-invasive imaging of biological tissue
Koch et al. Synchronization between background activity and visually evoked potential is not mirrored by focal hyperoxygenation: implications for the interpretation of vascular brain imaging
Karen et al. Cerebral hemodynamic responses in preterm-born neonates to visual stimulation: classification according to subgroups and analysis of frontotemporal–occipital functional connectivity
KR20140103560A (en) Electroencephalogram detection apparatus of hair band type providing sleep electroencephalogram learning memory consolidation analysis function of brain and method thereof
JP2019115561A (en) Psychological state determination method, determination device, determination system, and determination program
Branco The development and evaluation of head probes for optical imaging of the infant head
JP2010057718A (en) Bioluminescence measuring instrument with evaluation function
EP3861930A1 (en) Apparatus for monitoring of a patient undergoing a magnetic resonance image scan
JP2007105383A (en) Sleep gauge, and method for determining state of sleep
Juliana et al. Simple coordination and cognitive stimulation activities for cognitive function assessments using functional near-infrared spectroscopy
Kawaguchi et al. Clinically available optical topography system
Chen et al. Wavelet real time monitoring system: a case study of the musical influence on electroencephalography
Wieczorek et al. Custom-made Near Infrared Spectroscope as a Tool for Obtaining Information Regarding the Brain Condition
Lacerenza et al. “Walking” into freely moving brain monitoring via real-time TD-NIRS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees