JP2006185856A - Molding device and molding method of separator for fuel cell - Google Patents

Molding device and molding method of separator for fuel cell Download PDF

Info

Publication number
JP2006185856A
JP2006185856A JP2004380813A JP2004380813A JP2006185856A JP 2006185856 A JP2006185856 A JP 2006185856A JP 2004380813 A JP2004380813 A JP 2004380813A JP 2004380813 A JP2004380813 A JP 2004380813A JP 2006185856 A JP2006185856 A JP 2006185856A
Authority
JP
Japan
Prior art keywords
molding
separator
fuel cell
pressure
convex shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004380813A
Other languages
Japanese (ja)
Inventor
Fumio Saito
史生 齊藤
Kazuyoshi Takada
和義 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004380813A priority Critical patent/JP2006185856A/en
Publication of JP2006185856A publication Critical patent/JP2006185856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding device of a separator for a fuel cell capable of pressure-molding a separator with uniform density by molding the separator in uniform thickness. <P>SOLUTION: The molding device of the separator 10 for a fuel cell is provided with a molding mold 30 for pressure-molding a powdery molding material prepared by mixing graphite and thermosetting resin. Molding faces 31a, 32a are of convex shapes with a center protruded further toward a molding space side from a periphery part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用セパレータの成形装置および成形方法に関する。   The present invention relates to a fuel cell separator molding apparatus and molding method.

燃料電池の単セルは、電極から電気を取り出す役目を果たすセパレータを有している。セパレータは、成形型において、黒鉛と熱硬化性樹脂とを混合した粉末状の成形材料を加圧成形することによって成形されている(特許文献1参照)。
特開2003−22814号公報
A single cell of a fuel cell has a separator that serves to extract electricity from an electrode. The separator is molded by pressure molding a powdery molding material obtained by mixing graphite and a thermosetting resin in a molding die (see Patent Document 1).
JP 2003-22814 A

成形型によって粉末状の成形材料を加圧成形する際に、成形型の成形面に歪みが生じ、成形されたセパレータの肉厚が均一にならないことがある。   When a powdery molding material is pressure-molded with a molding die, the molding surface of the molding die may be distorted, and the thickness of the molded separator may not be uniform.

すなわち、セパレータには水素、酸素、冷却水の流路溝が形成され、この流路溝は凹凸形状となっていることから、加圧成形する際に流動しにくい傾向にある。そのため、加圧成形の際に、周辺部に位置する成形材料は外側に流動し、一部はバリとして流出するものの、前記流路溝が位置する中央部は流動性が小さいことから局部的に圧縮応力が増大する。   In other words, hydrogen, oxygen, and cooling water channel grooves are formed in the separator, and the channel grooves have an uneven shape, so that they tend not to flow during pressure molding. Therefore, during pressure molding, the molding material located in the peripheral part flows to the outside and partly flows out as burrs, but the central part where the flow channel groove is located has a low fluidity, so it is locally Compressive stress increases.

そのため、成形型の成形面は、その中央部に過大な応力が作用するとともに、成形型も周辺部より中央部の方が応力が開放されにくいことから、成形面に歪みが生じるのである。   For this reason, the molding surface of the molding die is subjected to excessive stress at the central portion thereof, and the molding die is also less likely to release stress at the central portion than at the peripheral portion, so that the molding surface is distorted.

そのため、セパレータの肉厚が均一にならないことがあり、規定寸法以上に不均一になった場含には、複数のセパレータを積層・加圧してスタックした際に割れが生じたり、あるいはシール性が十分確保できない虞があり、検査工程で不良品として廃棄せざるを得ない場含がある。   For this reason, the thickness of the separator may not be uniform, and if it is not uniform beyond the specified dimensions, cracks may occur when multiple separators are stacked and pressed and stacked, or the sealing performance may be reduced. There is a possibility that it cannot be secured sufficiently, and there is a case where it must be discarded as a defective product in the inspection process.

本発明の目的は、セパレータの肉厚を高精度に均一化するセパレータを加圧成形し得る燃料電池用セパレータの成形装置および成形方法を提供することにある。   An object of the present invention is to provide a fuel cell separator molding apparatus and molding method capable of pressure-molding a separator that equalizes the thickness of the separator with high accuracy.

上記目的を達成するための本発明は、黒鉛と樹脂とを混合した粉未状の成形材料を加圧成形する成形型を有し、前記成形型の成形面は、周辺部に比べて中央部が成形空間側に突出した凸形状を有してなる燃料電池用セパレータの成形装置である。   In order to achieve the above object, the present invention has a molding die for pressure-molding a powdery molding material in which graphite and a resin are mixed, and the molding surface of the molding die is a central portion compared to the peripheral portion. Is a molding apparatus for a fuel cell separator having a convex shape protruding toward the molding space.

また、周辺部に比べて中央都が成形空間側に突出する凸形状の成形面を有した成形型に、黒鉛と樹脂とを混合した粉未状の成形材料を供給し、前記成形型を型締めして加圧成形する際に、加圧力によって前記成形面の凸形状が周辺部と同一面上に近づくよう変形させるようにした燃料電池用セパレータの成形方法である。   In addition, a powdered molding material obtained by mixing graphite and resin is supplied to a molding die having a convex molding surface in which the central city protrudes toward the molding space as compared with the peripheral portion, and the molding die is This is a method for molding a fuel cell separator in which the convex shape of the molding surface is deformed so that the convex shape of the molding surface approaches the same surface as the peripheral portion by pressurizing when tightening and pressure molding.

本発明によれば、成形型の成形面が、周辺部に比べて中央部が成形空間側に突出した凸形状を有しているので、黒鉛と樹脂とを混合した粉未状の成形材料を供給して、成形型を型締めして加圧成形する際に、加圧力によって成形面の凸形状が周辺部と同一面上に近づくよう変形するので、セパレータの肉厚を均一に成形し、均一な密度を有するセパレータを加圧成形することが可能となる。   According to the present invention, since the molding surface of the molding die has a convex shape with the central portion protruding to the molding space side as compared with the peripheral portion, the powdery molding material in which graphite and resin are mixed is used. When supplying and clamping the mold and pressure forming, the convex shape of the molding surface is deformed so as to approach the same surface as the peripheral part by the applied pressure, so the thickness of the separator is uniformly molded, It becomes possible to press-mold a separator having a uniform density.

以下、図面を参照しつつ、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る燃料電池用セパレータの成形装置20の成形型30を示す断面図、図2(A)は、成形型30に成形材料40を投入した状態を示す断面図、図2(B)は、成形型30によってセパレータ10を加圧成形した状態を示す断面図、図3(A)(B)は、本実施形態の成形型30によって加圧成形されたセパレータ10を示す断面図および平面図である。また、図4(A)は、対比例の成形型130に成形材料40を投入した状態を示す断面図、図4(B)は、対比例の成形型130によってセパレータ110を加圧成形した状態を示す断面図、図5(A)(B)は、対比例の成形型130によって加圧成形されたセパレータ110を示す断面図および平面図である。   FIG. 1 is a sectional view showing a molding die 30 of a fuel cell separator molding apparatus 20 according to an embodiment of the present invention. FIG. 2A is a sectional view showing a state in which a molding material 40 is put into the molding die 30. 2B is a cross-sectional view showing a state in which the separator 10 is pressure-molded by the molding die 30, and FIGS. 3A and 3B are separators 10 pressure-molded by the molding die 30 of the present embodiment. It is sectional drawing and a top view which show. 4A is a cross-sectional view showing a state in which the molding material 40 is put into the proportional mold 130, and FIG. 4B is a state in which the separator 110 is pressure-molded by the proportional mold 130. FIGS. 5A and 5B are a cross-sectional view and a plan view showing the separator 110 press-molded by the proportional mold 130, respectively.

周知のように、燃料電池は、単セルを多数積層して燃料電池スタックの形態で、例えば、自動車の駆動源として使用される。単セルは、水の電気分解の逆の原理を利用し、水素と酸素とを反応させて水を得る過程で電気を得ることができる電池である。例えば、固体高分子型燃料電池の単セルは、陽イオン交換膜としての固体高分子電解質膜と、触媒層が形成され固体高分子電解質膜の両面に配置される一対の電極と、電極の両側に配置される一対のセパレータと、を有する。セパレータは、燃料ガス、空気、冷却水などを流通させるための流路溝をなす微小な凹凸部が設けられている。   As is well known, a fuel cell is used in the form of a fuel cell stack in which a large number of single cells are stacked, for example, as a drive source for an automobile. A single cell is a battery that uses the reverse principle of electrolysis of water to obtain electricity in the process of obtaining water by reacting hydrogen and oxygen. For example, a unit cell of a solid polymer fuel cell includes a solid polymer electrolyte membrane as a cation exchange membrane, a pair of electrodes on which both sides of the solid polymer electrolyte membrane are formed and a catalyst layer is formed, And a pair of separators. The separator is provided with minute concavo-convex portions that form flow channel grooves for circulating fuel gas, air, cooling water, and the like.

図1および図2を参照して、燃料電池用のセパレータ10を成形するために使用される成形装置20は、黒鉛と熱硬化性樹脂とを混合した粉末状の成形材料40を加圧成形する成形型30を有している。熱硬化性樹脂は、例えば、フェノール樹脂やエポキシ樹脂である。成形材料40に含まれる樹脂は、小径であることが好ましく、これにより、反応速度が上昇し、かつ黒鉛間の空間が小さくなることで、得られるセパレータ10の強度を向上させることが可能である。   1 and 2, a molding apparatus 20 used for molding a fuel cell separator 10 press-molds a powdery molding material 40 in which graphite and a thermosetting resin are mixed. A mold 30 is provided. The thermosetting resin is, for example, a phenol resin or an epoxy resin. The resin contained in the molding material 40 preferably has a small diameter, thereby increasing the reaction rate and reducing the space between the graphite, thereby improving the strength of the separator 10 obtained. .

前記成形型30は、相対的に接近離反移動自在な上型31および下型32を有する。成形型30内のキャビティに充填された成形材料40は、上型31および下型32により加圧成形される。図示省略するが、上型31の成形面31aおよび下型32の成形面32aには、セパレータ10の流路溝をなす凹凸部を成形するための微小な凸条部および凹条部が形成されている。また、成形型30には、上型31および下型32を型締めするための機構、成形材料40を加圧するための加圧機構、成形後のセパレータ10を下型32から押し上げて取り出すための抜き出しロッドなどの周知の機構や部材が設けられている。   The mold 30 has an upper mold 31 and a lower mold 32 that are relatively close to and away from each other. The molding material 40 filled in the cavity in the molding die 30 is pressure-molded by the upper die 31 and the lower die 32. Although not shown in the drawings, on the molding surface 31 a of the upper mold 31 and the molding surface 32 a of the lower mold 32, minute ridges and ridges for forming the concavo-convex parts forming the flow path grooves of the separator 10 are formed. ing. The molding die 30 has a mechanism for clamping the upper die 31 and the lower die 32, a pressure mechanism for pressurizing the molding material 40, and a separator 10 after molding is pushed out from the lower die 32 and taken out. A known mechanism or member such as an extraction rod is provided.

加圧成形時には、成形型30の成形面31a、32aに歪みが生じ、成形されたセパレータの肉厚が均一にならないことがある。   At the time of pressure molding, the molding surfaces 31a and 32a of the mold 30 may be distorted, and the thickness of the molded separator may not be uniform.

対比例を示す図4(A)(B)および図5(A)(B)を参照して、成形型130の成形面131a、132aに加圧成形時に歪みdが生じることを考慮しないと、成形されたセパレータ110の肉厚が均一にならず、セパレータ110に、中央部に位置する厚肉部110aと、周辺部に位置する薄肉部110bとが形成されてしまう。このため、成形されたセパレータ110には、成形材料40が適正な加圧力によって加圧された適正部111aと、成形材料40が適正加圧力よりも過剰な加圧力によって加圧された過加圧部111bとが生じる。ここで、セパレータ110には水素、酸素(空気)、冷却水の流路溝1が形成され、この流路溝1は凹凸形状となっていることから、加圧成形する際に成形材料40が流動しにくい傾向にある。そのため、加圧成形の際に、周辺部に位置する成形材料40は外側に流動し、一部はバリ110cとして上下の成形型130の接合面より流出するものの、前記流路溝1が位置する中央部は流動性が小さいことから局部的に圧縮応力が増大する。そのため、成形型130の成形面131a、132aは、その中央部に過大な応力が作用するとともに、成形型130も周辺部より中央部の方が応力が開放されにくいことから、成形面に歪みが生じるのである。そのため、セパレータ110の肉厚が均一にならないことがあり、規定寸法以上に不均一になった場合には、不良品として廃棄せざるを得ない場合がある。   With reference to FIGS. 4 (A), 4 (B) and FIGS. 5 (A), (B) showing the proportionality, it is necessary to consider that distortion d occurs on the molding surfaces 131a, 132a of the molding die 130 during pressure molding. The thickness of the molded separator 110 is not uniform, and the separator 110 is formed with a thick portion 110a located at the center and a thin portion 110b located at the periphery. For this reason, the molded separator 110 has an appropriate portion 111a in which the molding material 40 is pressurized with an appropriate pressure, and an overpressure in which the molding material 40 is pressurized with an excess pressure beyond the appropriate pressure. Part 111b occurs. Here, the flow path groove 1 of hydrogen, oxygen (air), and cooling water is formed in the separator 110, and the flow path groove 1 has an uneven shape. It tends to be difficult to flow. Therefore, at the time of pressure molding, the molding material 40 located in the peripheral portion flows to the outside, and a part of the molding material 40 flows out from the joining surface of the upper and lower molding dies 130 as the burr 110c, but the flow channel 1 is located. Since the central portion has low fluidity, the compressive stress locally increases. Therefore, the molding surfaces 131a and 132a of the molding die 130 are subjected to excessive stress at the central portion thereof, and the molding die 130 is also less likely to release the stress at the central portion than the peripheral portion, so that the molding surface is distorted. It happens. For this reason, the thickness of the separator 110 may not be uniform, and if it becomes more than the specified dimension, it may be unavoidable to be discarded as a defective product.

なお、図5に示す2、3、4は、それぞれ水素、冷却水、酸素(空気)が導通するマニホールドで、図外のシール部材の形状により、水素、冷却水、酸素(空気)を選択的に流路溝1に導通するようになっている。   In addition, 2, 3, and 4 shown in FIG. 5 are manifolds through which hydrogen, cooling water, and oxygen (air) are conducted, respectively, and hydrogen, cooling water, and oxygen (air) are selectively used depending on the shape of the seal member outside the figure. It is made to conduct to the channel groove 1.

そこで、本実施形態にあっては、図1および図2に示すように、成形型30の成形面31a、32aは、凹凸状の流路溝1を形成する部位の外周側に位置する平面状の周辺部31b、32bに比べて中央部nが成形空間側に突出した凸形状を有している。   Therefore, in the present embodiment, as shown in FIGS. 1 and 2, the molding surfaces 31 a and 32 a of the molding die 30 have a planar shape located on the outer peripheral side of the portion where the uneven channel groove 1 is formed. Compared to the peripheral portions 31b and 32b, the central portion n has a convex shape protruding toward the molding space.

これら凸形状は、後述するシミュレーションにより求めたもので、図1に示すように、周辺部31b、32bから中央部nに向けて成形空間側になだらかに突出するように曲率を有し、図3に示すように、セパレータの流路溝1を形成する部位に形成され、この流路溝1の外周に内接する円状、より具体的には、長方形の成形面の長手方向に沿った長軸を有する楕円状となっている。   These convex shapes are obtained by a simulation which will be described later. As shown in FIG. 1, the convex shapes have curvatures so as to gently protrude from the peripheral portions 31b and 32b toward the central portion n toward the molding space side. As shown in FIG. 2, a long axis along the longitudinal direction of the circular molding surface, more specifically, a circular shape inscribed in the outer periphery of the flow channel groove 1 is formed at a portion where the flow channel groove 1 of the separator is formed. It has an elliptical shape.

これにより、成形型を型締めして加圧成形する際に、加圧力によって前記成形面の凸形状が周辺部と同一面上に近づくよう変形し、セパレータの厚さが全体的に高精度に均一化することが可能となる。   As a result, when the molding die is clamped and pressure-molded, the convex shape of the molding surface is deformed by the applied pressure so that it approaches the same surface as the peripheral portion, and the thickness of the separator is highly accurate as a whole. It becomes possible to make uniform.

なお、図1に示す32cは、成形型30を型締めして加圧成形する際に、成形材料40がバリとして流出する流出通路であり、さらにその外側には、バリを収容する収容室32dが形成してある。特に、成形面に延長した方向にバリの流出通路32cと、収容室32dとが形成されているので、積極的に成形材料を外部に流出するようにして成形材料の加圧力をより均一にすることができ、セパレータをより高精度に成形することが可能となる。   In addition, 32c shown in FIG. 1 is an outflow passage through which the molding material 40 flows out as burrs when the molding die 30 is clamped and pressure-molded, and further outside is a storage chamber 32d for storing burrs. Is formed. In particular, the burr outflow passage 32c and the storage chamber 32d are formed in a direction extending to the molding surface, so that the molding material is actively flowed out to make the pressure of the molding material more uniform. It is possible to mold the separator with higher accuracy.

そこで、本実施形態にあっては、図1および図2に示すように、成形型30の成形面31a、32aは、加圧成形時における成形面31a、32aの変形について予測された変形量を反映した形状を有している。例えば、シミュレーションによって、加圧成形時において成形面31a、32aの中央部が周辺部に比べて凹むように変形するという結果が得られた場合(図4(B)に示される形状を参照)には、成形面31a、32aを、シミュレーション結果を反映し、周辺部に比べて中央部が凸形状となる形状を有するように形成する。予測された変形量がd(図4(B))で、図1における符号Lが、予測された変形量dを反映した成形面の凸量となる。凸の寸法Lは、適宜採用できるが、例えば、0.01〜0.5mmの範囲である。凸の寸法Lは、成形材料40の種類によって異なる。このため、加圧成形時における成形面31a、32aの変形について変形量を予測するにあたっては、成形材料40の種類を条件の1つとしたシミュレーションを行う。   Therefore, in the present embodiment, as shown in FIGS. 1 and 2, the molding surfaces 31 a and 32 a of the mold 30 have deformation amounts predicted for the deformation of the molding surfaces 31 a and 32 a during pressure molding. It has a reflected shape. For example, when a result is obtained by simulation that the center part of the molding surfaces 31a and 32a is deformed so as to be recessed compared to the peripheral part during pressure molding (see the shape shown in FIG. 4B). The molding surfaces 31a and 32a are formed so as to reflect the simulation result and have a shape in which the central portion is convex compared to the peripheral portion. The predicted deformation amount is d (FIG. 4B), and the symbol L in FIG. 1 is the convex amount of the molding surface reflecting the predicted deformation amount d. The convex dimension L can be adopted as appropriate, but is, for example, in the range of 0.01 to 0.5 mm. The convex dimension L varies depending on the type of the molding material 40. For this reason, in predicting the amount of deformation for the deformation of the molding surfaces 31a and 32a during pressure molding, a simulation is performed with the type of the molding material 40 as one of the conditions.

このシミュレーションは、公知のFEM解析により行われ、成形型30の弾性係数、成形面31a、32aおよび流路溝を含む成形型30の寸法、成形型30を型締めする際の加圧力、成形材料の変形量(特に流路溝の凹凸部)を入力して演算し、成形面が成形面より後退するよう歪むかを判別し、加圧力により成形面が平面となるように凸形状を設計する。   This simulation is performed by a well-known FEM analysis. The elastic modulus of the mold 30, the dimensions of the mold 30 including the molding surfaces 31 a and 32 a and the channel grooves, the pressure applied when the mold 30 is clamped, and the molding material The amount of deformation (especially the uneven portion of the channel groove) is input and calculated to determine whether the molding surface is distorted so as to recede from the molding surface, and the convex shape is designed so that the molding surface becomes flat by the applied pressure .

なお、加圧成形時に成形材料の中央部が周辺部よりも応力が大きく作用するため、加圧力によっては、中央部が大きくスプリングバックする場含もあるので、その際には予め実験あるいはFEM解析によりスプリングバック量を求め、凸形状の設計の際に反映させるようにしてもよい。   In addition, since the central part of the molding material is more stressed than the peripheral part during pressure molding, depending on the applied pressure, there may be cases where the central part greatly springs back. Thus, the spring back amount may be obtained and reflected in the design of the convex shape.

セパレータ成形装置20はさらに、公知の加熱手段および冷却手段(いずれも図示せず)を有している。   Separator molding apparatus 20 further includes known heating means and cooling means (both not shown).

加熱手段は、成形型30を加熱することで、成形材料40の温度を上昇させ、成形材料40に含まれる熱硬化性樹脂を熱硬化させるために使用される。加熱手段は、上型31および下型32の内部に配置され、熱媒が導入される熱媒通路を有する。熱媒は、特に限定されないが、コストや取扱い性を考慮し、高温の油が好ましい。熱媒は、熱容量が大きく、加熱性能が良好であるため、成形材料40に含まれる樹脂の熱硬化温度まで、成形材料40を急速加熱することが可能である。   The heating means is used to heat the molding die 30 to increase the temperature of the molding material 40 and to thermoset the thermosetting resin contained in the molding material 40. The heating means is disposed inside the upper mold 31 and the lower mold 32 and has a heat medium passage through which a heat medium is introduced. The heat medium is not particularly limited, but high-temperature oil is preferable in consideration of cost and handleability. Since the heat medium has a large heat capacity and good heating performance, the molding material 40 can be rapidly heated to the thermosetting temperature of the resin contained in the molding material 40.

冷却手段は、熱硬化の完了後において、成形型30を冷却することで、成形されたセパレータ10の温度を降下させ、取り出すために使用される。冷却手段は、上型31および下型32の内部に配置され、冷媒が導入される冷媒通路を有する。冷媒は、特に限定されないが、コストや取扱い性を考慮し、低温の水が好ましい。   The cooling means is used for lowering and taking out the temperature of the molded separator 10 by cooling the molding die 30 after completion of thermosetting. The cooling means is disposed inside the upper mold 31 and the lower mold 32 and has a refrigerant passage into which a refrigerant is introduced. The refrigerant is not particularly limited, but low temperature water is preferable in consideration of cost and handleability.

次に、作用を説明する。   Next, the operation will be described.

図2(A)に示すように、上下型31、32を開き、黒鉛と熱硬化性樹脂とを混合した粉末状の成形材料40を、図示しないノズルから吐出し、下型32のキャビティに均等に供給する。成形材料40の供給を継続し、必要量に達すると、ノズルからの成形材料40の吐出を停止する。   As shown in FIG. 2 (A), the upper and lower molds 31 and 32 are opened, and a powdery molding material 40 in which graphite and a thermosetting resin are mixed is discharged from a nozzle (not shown) and is evenly distributed in the cavity of the lower mold 32. To supply. When the supply of the molding material 40 is continued and the required amount is reached, the discharge of the molding material 40 from the nozzle is stopped.

次いで、図2(B)に示すように、上下型31、32を閉じ、上下型31、32により成形材料40からセパレータ10を加圧成形する。本実施形態では、成形型30の成形面31a、32aに加圧成形時に歪みが生じることを考慮し、成形面31a、32aを、加圧成形時の変形量を予測してこれを反映し、周辺部に比べて中央部が凸形状となる形状としてある(図1、図2(A)参照)。このため、加圧成形時には、成形面31a、32aがフラットになり、均一な肉厚のセパレータ10が加圧成形される。図2(B)における符号nは、成形面31a、32aに変形が生じ、凸形状からフラットになる範囲を示している。セパレータ10の肉厚が均一に成形される結果、均一な密度を有するセパレータ10を加圧成形することができる。   Next, as shown in FIG. 2B, the upper and lower molds 31 and 32 are closed, and the separator 10 is pressure-molded from the molding material 40 by the upper and lower molds 31 and 32. In the present embodiment, considering that the molding surfaces 31a and 32a of the molding die 30 are distorted during pressure molding, the molding surfaces 31a and 32a are reflected by predicting the deformation amount during pressure molding, The central part has a convex shape as compared with the peripheral part (see FIGS. 1 and 2A). For this reason, at the time of pressure molding, the molding surfaces 31a and 32a become flat, and the separator 10 having a uniform thickness is pressure molded. Reference sign n in FIG. 2B indicates a range in which the molding surfaces 31a and 32a are deformed and become flat from the convex shape. As a result of the uniform thickness of the separator 10, the separator 10 having a uniform density can be pressure-molded.

その後、熱媒通路に熱媒を導入し、成形型30を加熱することで、成形材料40の温度を上昇させ、成形材料40に含まれる樹脂を熱硬化させる。成形材料40の加熱速度が遅いと、硬化途中の樹脂が表面や隅に移動して局所的に集中することで、樹脂リッチな部位が形成されてしまい、黒鉛の分散不良が生じてしまう。本実施形態にあっては、成形材料40は熱媒によって急速加熱されるため、樹脂リッチな部位が形成されることが防がれ、黒鉛の分散不良が抑制される。   Thereafter, the heat medium is introduced into the heat medium passage and the mold 30 is heated, whereby the temperature of the molding material 40 is raised and the resin contained in the molding material 40 is thermoset. When the heating rate of the molding material 40 is slow, the resin in the middle of curing moves to the surface and corners and concentrates locally, thereby forming a resin-rich portion, resulting in poor graphite dispersion. In the present embodiment, since the molding material 40 is rapidly heated by the heat medium, formation of a resin-rich portion is prevented, and poor graphite dispersion is suppressed.

熱硬化が完了し、熱媒通路に対する熱媒の導入を停止する一方、冷媒通路に冷媒を導入し、成形型30を冷却する。そして、セパレータ10の温度が例えば常温まで降下すると、上下型31、32が開かれ、セパレータ10が取り出される。   The thermosetting is completed and the introduction of the heat medium into the heat medium passage is stopped, while the refrigerant is introduced into the refrigerant passage and the mold 30 is cooled. When the temperature of the separator 10 falls to, for example, room temperature, the upper and lower molds 31 and 32 are opened, and the separator 10 is taken out.

以上のように、本実施形態によれば、成形型30の成形面31a、32aに加圧成形時に歪みが生じることを考慮し、成形面31a、32aを、加圧成形時の変形量を予測してこれを反映した形状としてあるので、セパレータ10の肉厚を均一に成形し、均一な密度を有するセパレータ10を加圧成形することができる。   As described above, according to the present embodiment, in consideration of the occurrence of distortion on the molding surfaces 31a and 32a of the molding die 30 during pressure molding, the deformation amounts of the molding surfaces 31a and 32a during pressure molding are predicted. Since the shape reflects this, the thickness of the separator 10 can be uniformly formed, and the separator 10 having a uniform density can be pressure-molded.

本発明の実施形態に係る燃料電池用セパレータの成形装置の成形型を示す断面図である。It is sectional drawing which shows the shaping | molding die of the shaping | molding apparatus of the separator for fuel cells which concerns on embodiment of this invention. 図2(A)は、成形型に成形材料を投入した状態を示す断面図、図2(B)は、成形型によってセパレータを加圧成形した状態を示す断面図である。FIG. 2A is a cross-sectional view showing a state in which a molding material is charged into a mold, and FIG. 2B is a cross-sectional view showing a state in which a separator is pressure-formed by the mold. 図3(A)(B)は、本実施形態の成形型によって加圧成形されたセパレータを示す断面図および平面図である。FIGS. 3A and 3B are a cross-sectional view and a plan view showing a separator press-molded by the molding die of the present embodiment. 図4(A)は、対比例の成形型に成形材料を投入した状態を示す断面図、図4(B)は、対比例の成形型によってセパレータを加圧成形した状態を示す断面図である。FIG. 4A is a cross-sectional view showing a state in which a molding material is put into a proportional mold, and FIG. 4B is a cross-sectional view showing a state in which a separator is pressure-formed by a proportional mold. . 図5(A)(B)は、対比例の成形型によって加圧成形されたセパレータを示す断面図および平面図である。5A and 5B are a cross-sectional view and a plan view showing a separator press-molded by a proportional mold.

符号の説明Explanation of symbols

10 セパレータ、
20 セパレータの成形装置、
30 成形型、
31 上型、
31a 成形面、
31b 周辺部、
32 下型、
32a 成形面、
32b 周辺部、
40 成形材料、
n 中央部、
d 加圧成形時における成形面の変形について予測された変形量、
L 予測された変形量を反映した成形面の凸量。
10 separator,
20 Separator molding device,
30 Mold,
31 Upper mold,
31a molding surface,
31b peripheral part,
32 Lower mold,
32a molding surface,
32b peripheral part,
40 molding materials,
n Central part,
d The amount of deformation predicted for deformation of the molding surface during pressure molding,
L Projection amount of the molding surface reflecting the predicted deformation amount.

Claims (7)

黒鉛と樹脂とを混合した粉未状の成形材料を加圧成形する成形型を有し、
前記成形型の成形面は、周辺部に比べて中央部が成形空間側に突出した凸形状を有してなる燃料電池用セパレータの成形装置。
It has a molding die that press-molds a powdery molding material in which graphite and resin are mixed
The molding surface of the said shaping | molding die is a shaping | molding apparatus of the separator for fuel cells in which the center part has the convex shape which protruded in the shaping | molding space side compared with the peripheral part.
前記成形面の凸形状は、周辺部から中央部に向けて成形空間側になだらかに突出するよう曲率を有していることを特徴とする請求項1に記載の燃料電池用セパレータの成形装置。   2. The fuel cell separator molding apparatus according to claim 1, wherein the convex shape of the molding surface has a curvature so as to project gently toward the molding space from the peripheral part toward the central part. 前記成形面の凸形状は、少なくともセパレータの流路溝を形成する部位に形成されていることを特徴とする請求項1または請求項2に記載の燃料電池用セパレータの成形装置。   3. The fuel cell separator molding apparatus according to claim 1, wherein the convex shape of the molding surface is formed at least at a portion where a flow path groove of the separator is formed. 4. 前記成形面の凸形状は、前記セパレータの流路溝を形成する部位を円で囲むよう形成されていることを特徴とする請求項3に記載の燃料電池用セパレータの成形装置。   4. The apparatus for forming a separator for a fuel cell according to claim 3, wherein the convex shape of the molding surface is formed so as to surround a part of the separator that forms a flow channel groove with a circle. 前記成形面は全体が長方形となっており、前記凸形状は、前記成形面の長手方向に沿った長軸を有する楕円状であることを特徴とする請求項4に記載の燃料電池用セパレータの成形装置。   5. The fuel cell separator according to claim 4, wherein the molding surface is rectangular as a whole, and the convex shape is an ellipse having a major axis along a longitudinal direction of the molding surface. Molding equipment. 周辺部に比べて中央部が成形空間側に突出する凸形状の成形面を有した成形型に、黒鉛と樹脂とを混合した粉未状の成形材料を供給し、
前記成形型を型締めして加圧成形する際に、加圧力によって前記成形面の凸形状が周辺部と同一面上に近づくよう変形するようにした燃料電池用セパレータの成形方法。
Supplying a powder-free molding material in which graphite and resin are mixed to a molding die having a convex molding surface whose central part protrudes toward the molding space compared to the peripheral part,
A method for molding a fuel cell separator, wherein when the molding die is clamped and pressure-molded, the convex shape of the molding surface is deformed so as to approach the same surface as a peripheral portion by pressure.
前記成形面の凸形状は、前記成形型を型締めして加圧成形する際の加圧力による成形面の変形について予測された変形量に基づいて形成されていることを特徴とする請求項6に記載の燃料電池用セパレータの成形方法。   The convex shape of the molding surface is formed on the basis of a deformation amount predicted for deformation of the molding surface due to a pressing force when the molding die is clamped and pressure-molded. A method for forming a fuel cell separator as described in 1. above.
JP2004380813A 2004-12-28 2004-12-28 Molding device and molding method of separator for fuel cell Pending JP2006185856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380813A JP2006185856A (en) 2004-12-28 2004-12-28 Molding device and molding method of separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380813A JP2006185856A (en) 2004-12-28 2004-12-28 Molding device and molding method of separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2006185856A true JP2006185856A (en) 2006-07-13

Family

ID=36738799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380813A Pending JP2006185856A (en) 2004-12-28 2004-12-28 Molding device and molding method of separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2006185856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504741A (en) * 2013-01-17 2016-02-12 インテリジェント エナジー リミテッドIntelligent Energy Limited Flow field plate in fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504741A (en) * 2013-01-17 2016-02-12 インテリジェント エナジー リミテッドIntelligent Energy Limited Flow field plate in fuel cell
US10615427B2 (en) 2013-01-17 2020-04-07 Intelligent Energy Limited Flow field plates in fuel cells
EP2946428B1 (en) * 2013-01-17 2020-10-21 Intelligent Energy Ltd Methods of producing flow field plates for fuel cells

Similar Documents

Publication Publication Date Title
US20090117441A1 (en) Molding Die for Fuel Cell Bipolar Plate, Manufacturing Method of Fuel Cell Bipolar Plate, and Fuel Cell Bipolar Plate
US9450252B2 (en) Insulating structure, fuel cell and fuel cell stack
JP2004039436A (en) Separator for fuel cell and its manufacturing method
WO2003092104A1 (en) Separator for fuel cell
JP4065832B2 (en) Press forming apparatus and press forming method for metal separator for fuel cell
US20200287231A1 (en) Fuel cell stack and method of producing dummy cell
JP2007080549A (en) Integral gasket molding method of fuel cell constitution member and its molding device
JP2001198921A (en) Mold for producing fuel cell separator
JP2006286545A (en) Manufacturing method of separator for fuel cell, and manufacturing device of separator for fuel cell
JP2006185856A (en) Molding device and molding method of separator for fuel cell
JP5298511B2 (en) Membrane electrode assembly manufacturing method, membrane electrode assembly, and apparatus for manufacturing the same
JP2005268077A (en) Manufacturing method of separator for fuel cell
JP2010055994A (en) Fuel cell and method for manufacturing metallic separator for fuel cell
JP2007141724A (en) Molding die for fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
CN114361498A (en) Sealing structure of fuel cell bipolar plate
JP2008171826A (en) Molding die of fuel cell separator, manufacturing method of fuel cell separator, and fuel cell separator
CN110514084B (en) Fuel cell polar plate flow passage forming precision detection method
JP2006185667A (en) Molding method and molding device of metal separator for fuel cell
JP2005203300A (en) Manufacturing method of separator for fuel cell
JP2014159091A (en) Metal mold and production method of resin composition made flat plate
JP3981695B2 (en) Fuel cell separator molding die, fuel cell separator manufacturing method, and fuel cell separator
JP6947048B2 (en) Manufacturing method of separator for fuel cell
JP4623264B2 (en) Manufacturing method of fuel cell component
JP2007283506A (en) Mold for compression molding and method for producing separator for fuel cell
US10964968B2 (en) Fuel cell stack and method of producing dummy cell