JP2006185487A - Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method - Google Patents

Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method Download PDF

Info

Publication number
JP2006185487A
JP2006185487A JP2004376865A JP2004376865A JP2006185487A JP 2006185487 A JP2006185487 A JP 2006185487A JP 2004376865 A JP2004376865 A JP 2004376865A JP 2004376865 A JP2004376865 A JP 2004376865A JP 2006185487 A JP2006185487 A JP 2006185487A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
organic compound
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376865A
Other languages
Japanese (ja)
Inventor
Kazuko Hanai
和子 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004376865A priority Critical patent/JP2006185487A/en
Publication of JP2006185487A publication Critical patent/JP2006185487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of analyzing an organic compound by which quantity of the organic compound absorbed to or reacted with inorganic powder on a magnetic recording medium surface can be analyzed simply and surely, and to provide a magnetic recording medium manufacturing method using the analisis method, and the magnetic recording medium obtained by the manufacturing method. <P>SOLUTION: In the method of analyzing the organic compound absorbed or reacting to inorganic powder of a coating layer surface of a coating type magnetic recording medium, in which the coating layer including at least the inorganic powder and binder is formed on a substrate, the absorption of total reflection (ATR) spectrum of the coating layer surface including the absorption wave number being intrinsic to the organic compound to be analyzed is measured by using a Fourier transform infrared spectrophotometer (FT-IO), and the organic compound is analyzed. And the magnetic recording medium is manufactured by providing a process including this analysis method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気記録媒体表面の有機化合物の分析方法、該方法を用いた磁気記録媒体の製造方法およびこれにより得られた磁気記録媒体に関するものであり、詳しくは、磁気記録媒体表面の無機粉体に吸着または反応している有機化合物の量を、簡単かつ正確に分析可能な有機化合物の分析方法、走行耐久性、電磁変換特性等に優れた磁気記録媒体を、前記分析方法を用いて製造する方法、並びに該製造方法により得られた磁気記録媒体に関するものである。   The present invention relates to a method for analyzing an organic compound on the surface of a magnetic recording medium, a method for producing a magnetic recording medium using the method, and a magnetic recording medium obtained thereby, and more specifically, an inorganic powder on the surface of the magnetic recording medium. Manufactures an organic compound analysis method that can easily and accurately analyze the amount of organic compounds adsorbed or reacting on the body, a magnetic recording medium excellent in running durability, electromagnetic conversion characteristics, etc. And a magnetic recording medium obtained by the manufacturing method.

支持体上に少なくとも無機粉体と結合剤からなる塗布層を設けた塗布物は、例えば磁気記録媒体として用いられている。このような塗布型磁気記録媒体は、コンピューター用あるいは放送用として用途を拡大しているが、これらの分野では耐久性や保存性に関わる信頼性が非常に重要である。塗布型磁気記録媒体はヘッドや機構部品と接触するために、これらの間で安定な摺動特性を保持することが必要である。良好な摺動性を付与するために磁性層や磁性層下層の非磁性層には高級脂肪酸や高級脂肪酸エステル等の化合物が配合されている。
これらの化合物のうち高級脂肪酸は酸性の極性基であるカルボキシル基を有しており、このカルボキシル基が磁性体や無機粉体の塩基性点に吸着し、比較的低速の摺動性確保に大きく寄与している。また、磁性体や無機粉体の表面を被覆して粉体の分散性向上に役立っている。
しかし、磁性体や無機粉体あるいは配合した他の素材中に微量の無機陽イオンが存在すると、長期の経時や高温高湿雰囲気下に試料を保存した場合、配合された高級脂肪酸と無機陽イオンは徐々に反応して脂肪酸金属塩を生成する場合がある。たとえば、脂肪酸のカルシウム塩が磁性層表面に生成すると表面に突起を形成してスペーシングにより電磁変換特性を低下し、また走行によりヘッドに付着し、あるいはドロップアウトやエラーレート劣化の原因となり、走行耐久性、電磁変換特性を悪化させる。また微量の鉄イオンと脂肪酸が反応した脂肪酸鉄塩はやや粘着性を有するため摩擦係数を上昇させ、テープ表面でデブリを生じ、さらにヘッド汚れやヘッド目詰まりを引き起こし、著しく走行耐久性を悪化させる。
高級脂肪酸エステルは比較的高速の摩擦係数を低下させるが、高温高湿等の悪条件が重なると加水分解により脂肪酸を生成し、生成した脂肪酸は前記のようにして微量の無機陽イオンと反応して金属塩を生成する場合もある。
以上より、高信頼性を求められるコンピューター用や放送用の塗布型磁気記録媒体の開発においては、磁性層表層の脂肪酸金属塩生成を抑制することが重要である。したがって、磁性層表層の脂肪酸金属塩の評価方法が必要となる。
A coated product in which a coated layer made of at least an inorganic powder and a binder is provided on a support is used as a magnetic recording medium, for example. Such a coating type magnetic recording medium has been expanded in use for computers or broadcasts, but in these fields, reliability relating to durability and storability is very important. Since the coating type magnetic recording medium comes into contact with the head and the mechanical parts, it is necessary to maintain stable sliding characteristics between them. In order to provide good slidability, compounds such as higher fatty acids and higher fatty acid esters are blended in the magnetic layer and the nonmagnetic layer under the magnetic layer.
Among these compounds, higher fatty acids have a carboxyl group that is an acidic polar group, and this carboxyl group is adsorbed to the basic point of the magnetic substance or inorganic powder, which is great for ensuring relatively low sliding properties. Has contributed. In addition, the surface of the magnetic material or inorganic powder is covered to help improve the dispersibility of the powder.
However, if trace amounts of inorganic cations are present in magnetic materials, inorganic powders, or other blended materials, blended higher fatty acids and inorganic cations when the sample is stored over a long period of time or in a high-temperature, high-humidity atmosphere. May react gradually to produce a fatty acid metal salt. For example, when calcium salt of fatty acid is generated on the surface of the magnetic layer, protrusions are formed on the surface and the electromagnetic conversion characteristics are deteriorated by spacing, and it adheres to the head by running, or it causes dropout and error rate degradation, running. Deteriorates durability and electromagnetic characteristics. In addition, fatty acid iron salt that reacts with a small amount of iron ions and fatty acid has a little stickiness, so it increases the coefficient of friction, causes debris on the tape surface, further causes head dirt and head clogging, and remarkably deteriorates running durability. .
Higher fatty acid esters reduce the coefficient of friction at a relatively high speed, but when adverse conditions such as high temperature and high humidity overlap, fatty acids are produced by hydrolysis, and the produced fatty acids react with trace amounts of inorganic cations as described above. In some cases, a metal salt is produced.
From the above, it is important to suppress the formation of fatty acid metal salts on the surface of the magnetic layer in the development of a coating type magnetic recording medium for computers and broadcasts that requires high reliability. Therefore, a method for evaluating the fatty acid metal salt on the surface layer of the magnetic layer is required.

磁気記録媒体に存在する脂肪酸金属塩は有機溶媒に溶解しがたく、分離・検出するためには、HCl等の酸やアルカリを反応させて吸着あるいは反応している物質を脱離させ、抽出を行う必要がある。
また、本発明者らは特許文献1において、シリル化剤のような誘導体化剤と、無機粉体に吸着あるいは結合している脂肪酸のような化合物とを反応させ、得られた誘導体を無機粉体から分離して分析する無機粉体吸着化合物の分析方法を提案した。その結果、無機粉体に強く吸着または反応している極性化合物を誘導体として分離検出することが可能となった。
しかし、この方法は塗布層あるいは磁性層全体に含まれる極性化合物の分析には適しているが、信頼性と最も関係する塗布層あるいは磁性層表層に存在する有機化合物の量を分析するには不適である。
Fatty acid metal salts present in magnetic recording media are difficult to dissolve in organic solvents, and for separation and detection, acid or alkali such as HCl is reacted to desorb the adsorbed or reacted substance, and extraction is performed. There is a need to do.
In addition, in Patent Document 1, the present inventors reacted a derivatizing agent such as a silylating agent with a compound such as a fatty acid adsorbed or bonded to the inorganic powder, and the resulting derivative was converted to an inorganic powder. A method for analyzing inorganic powder adsorbing compounds separated from the body was proposed. As a result, polar compounds that are strongly adsorbed or reacted with inorganic powder can be separated and detected as derivatives.
However, this method is suitable for the analysis of polar compounds contained in the entire coating layer or magnetic layer, but is not suitable for analyzing the amount of organic compounds present in the coating layer or the surface layer of the magnetic layer that is most relevant to reliability. It is.

そこで本発明者らは特許文献2において、塗布層を設けた支持体から溶剤によって未吸着の物質を抽出除去した後に、塗布層表面の物質をX線光電子分光分析装置(XPS)によって測定し、次いで誘導体化試薬を加えて無機粉体表面の吸着化合物を反応させて除去した後に塗布層表面の物質をX線光電子分光分析装置によって測定し、誘導体化試薬による処理前後の測定値の差から吸着あるいは化学反応により塩を形成している化合物を分析する無機粉体含有塗布層表面の吸着化合物の分析方法を提案した。
この方法は塗布物表層、特に磁気記録媒体の磁性層表層に存在する吸着化合物の分析方法として非常に有用である。
しかし、この方法は化学的な前処理を行う必要があり、また高度な分析装置であるXPSを用いるため専門的な技能や熟練を要し、結果を得るまでに数日を要するという問題点がある。
Therefore, in Patent Document 2, the present inventors have extracted and removed unadsorbed substances from the support provided with the coating layer with a solvent, and then measured the substance on the surface of the coating layer with an X-ray photoelectron spectrometer (XPS). Next, after adding the derivatization reagent and reacting and removing the adsorbed compound on the surface of the inorganic powder, the substance on the surface of the coating layer is measured with an X-ray photoelectron spectrometer, and adsorbed based on the difference in the measured value before and after the treatment with the derivatizing reagent Alternatively, a method for analyzing an adsorbed compound on the surface of an inorganic powder-containing coating layer for analyzing a compound forming a salt by a chemical reaction was proposed.
This method is very useful as a method for analyzing adsorbed compounds present on the surface of the coated product, particularly the magnetic layer of the magnetic recording medium.
However, this method requires chemical pretreatment, and requires XPS, which is an advanced analyzer, requiring specialized skills and skill, and it takes several days to obtain results. is there.

特開平11−211712号公報Japanese Patent Laid-Open No. 11-211712 特開2001−6163号公報JP 2001-6163 A

したがって本発明の目的は、磁気記録媒体表面の無機粉体に吸着または反応している有機化合物の量を、簡単かつ正確に分析可能な有機化合物の分析方法、走行耐久性、電磁変換特性等に優れた磁気記録媒体を、前記分析方法を用いて製造する方法、並びに該製造方法により得られた磁気記録媒体を提供することである。   Accordingly, an object of the present invention is to provide an organic compound analysis method, running durability, electromagnetic conversion characteristics, and the like that can easily and accurately analyze the amount of an organic compound adsorbed or reacted on an inorganic powder on the surface of a magnetic recording medium. It is an object to provide a method for producing an excellent magnetic recording medium using the analysis method and a magnetic recording medium obtained by the production method.

本発明は、以下のとおりである。
1)支持体上に少なくとも無機粉体および結合剤を含む塗布層を設けた塗布型磁気記録媒体の、前記塗布層表面の無機粉体に吸着または反応している有機化合物を分析する方法において、フーリエ変換赤外分光光度計(FT−IR)を用い、分析対象となる有機化合物に固有の吸収波数を含む前記塗布層表面の全反射吸収(ATR)スペクトルを測定し、前記塗布層表面の無機粉体に吸着または反応している有機化合物を分析することを特徴とする有機化合物の分析方法である。
2)支持体上に、少なくとも強磁性粉末および結合剤を含む塗布層を設けてなる磁気記録媒体の製造方法において、フーリエ変換赤外分光光度計(FT−IR)を用い、分析対象となる有機化合物に固有の吸収波数を含む前記塗布層表面の全反射吸収(ATR)スペクトルを測定し、前記塗布層表面の強磁性粉末に吸着または反応している有機化合物を分析する工程を有することを特徴とする磁気記録媒体の製造方法。
3)前記分析対象となる有機化合物が、脂肪酸金属塩であることを特徴とする上記2)に記載の磁気記録媒体の製造方法。
4)上記2)または3)に記載の磁気記録媒体の製造方法により製造されたことを特徴とする磁気記録媒体。
5)脂肪酸金属塩の量の指標が、0.01以下であることを特徴とする上記4)に記載の磁気記録媒体。
The present invention is as follows.
1) In a method of analyzing an organic compound adsorbed or reacted on an inorganic powder on the surface of a coating layer of a coating type magnetic recording medium provided with a coating layer containing at least an inorganic powder and a binder on a support. Using a Fourier transform infrared spectrophotometer (FT-IR), the total reflection absorption (ATR) spectrum of the coating layer surface including the absorption wave number specific to the organic compound to be analyzed is measured, and the coating layer surface inorganic An organic compound analysis method comprising analyzing an organic compound adsorbed or reacted on a powder.
2) In a method for producing a magnetic recording medium in which a coating layer containing at least a ferromagnetic powder and a binder is provided on a support, an organic to be analyzed using a Fourier transform infrared spectrophotometer (FT-IR) Measuring the total reflection absorption (ATR) spectrum of the coating layer surface including the absorption wave number inherent to the compound, and analyzing the organic compound adsorbed or reacting with the ferromagnetic powder on the coating layer surface. A method for manufacturing a magnetic recording medium.
3) The method for producing a magnetic recording medium according to 2) above, wherein the organic compound to be analyzed is a fatty acid metal salt.
4) A magnetic recording medium manufactured by the method for manufacturing a magnetic recording medium according to 2) or 3) above.
5) The magnetic recording medium as described in 4) above, wherein the index of the amount of the fatty acid metal salt is 0.01 or less.

本発明によれば、塗布層表面の無機粉体に吸着または反応している有機化合物、とくに強磁性粉末と反応して塩を形成している脂肪酸金属塩を、フーリエ変換赤外分光光度計(FT−IR)を用いた全反射吸収(ATR)スペクトルに基づいて測定するので、従来のXPSや、あるいはオージェ電子分光装置(AES)等の表面分析装置に比べ、特別な技術を必要とせず、簡単かつ正確に分析することができる。したがって、本発明の分析方法を利用すれば、塗布層表面の無機粉体に吸着または反応している有機化合物、とくに脂肪酸金属塩の量が一定値以下である、走行耐久性、電磁変換特性等に優れた磁気記録媒体を得ることができる。   According to the present invention, an organic compound adsorbed or reacted on the inorganic powder on the surface of the coating layer, particularly a fatty acid metal salt that forms a salt by reacting with a ferromagnetic powder is converted into a Fourier transform infrared spectrophotometer ( Since it measures based on the total reflection absorption (ATR) spectrum using FT-IR), it does not require any special technique compared to a conventional XPS or surface analyzer such as an Auger electron spectrometer (AES). Easy and accurate analysis. Therefore, if the analysis method of the present invention is used, the amount of the organic compound adsorbed or reacted to the inorganic powder on the surface of the coating layer, particularly the amount of the fatty acid metal salt is below a certain value, running durability, electromagnetic conversion characteristics, etc. Excellent magnetic recording media can be obtained.

本発明の分析方法は、磁気記録媒体の塗布層表面の無機粉体に吸着または反応している有機化合物を、フーリエ変換赤外分光光度計を用いた全反射吸収スペクトル(以下、ATR−FT−IRという)に基づいて測定することを特徴としている。
本発明の分析方法が適用される試料は、好ましいものとして強磁性粉末を結合剤に分散してなる磁性層を備えた磁気記録媒体が挙げられる。また、分析対象の有機化合物としては、塗布層表面の無機粉体に吸着または反応している有機化合物であればとくに制限されない。
本発明において、塗布層表面とは、ATR-FT-IRにおいて測定可能な塗布層表面から厚み方向、通常、0.1μm程度を含む塗布層表層を含む概念である。
また、本発明において、無機粉体に吸着または反応している有機化合物とは、 脂肪酸金属塩、脂肪酸、フェニルホスホン酸を意味する。
本発明において、分析対象の有機化合物として好ましいものとしては、強磁性粉末と反応して塩を形成している脂肪酸金属塩が挙げられる。
以下、分析される試料が磁気記録媒体であり、分析対象となる有機化合物が脂肪酸金属塩である場合について説明する。
In the analysis method of the present invention, an organic compound adsorbed or reacted with an inorganic powder on the surface of a coating layer of a magnetic recording medium is converted into a total reflection absorption spectrum (hereinafter referred to as ATR-FT-) using a Fourier transform infrared spectrophotometer. (Referred to as IR).
A sample to which the analysis method of the present invention is applied is preferably a magnetic recording medium having a magnetic layer formed by dispersing ferromagnetic powder in a binder. The organic compound to be analyzed is not particularly limited as long as it is an organic compound that is adsorbed or reacted with the inorganic powder on the surface of the coating layer.
In the present invention, the coating layer surface is a concept including a coating layer surface layer including a coating layer surface including about 0.1 μm in the thickness direction from the coating layer surface measurable by ATR-FT-IR.
In the present invention, the organic compound adsorbed or reacted on the inorganic powder means a fatty acid metal salt, a fatty acid, or phenylphosphonic acid.
In the present invention, a preferable organic compound to be analyzed includes a fatty acid metal salt that forms a salt by reacting with a ferromagnetic powder.
Hereinafter, the case where the sample to be analyzed is a magnetic recording medium and the organic compound to be analyzed is a fatty acid metal salt will be described.

本発明で使用されるフーリエ変換赤外分光光度計(FT−IR)は、当業界で広く知られており、汎用製品の中から適宜選択して用いることができる。なお本明細書におけるATR−FT−IRは、Thermo−Nicolet社製、商品名 Nexus670を用い、一回反射水平状ATRアクセサリーを用い、入射角60°、分解能1cm-1、200回積算にて測定を行って得られたスペクトルである。 The Fourier transform infrared spectrophotometer (FT-IR) used in the present invention is widely known in the art and can be appropriately selected from general-purpose products. In addition, ATR-FT-IR in this specification uses Thermo-Nicolet, product name Nexus670, and uses a single reflection horizontal ATR accessory, an incident angle of 60 °, resolution of 1 cm −1 , and 200 times integration. It is the spectrum obtained by performing.

本発明におけるATR−FT−IRに基づく脂肪酸金属塩の分析では、強磁性無機粉体を用いた磁性層では、検出深さ0.1μmの情報が得られる。これに対し、XPSやAESによる分析では、数nmの検出深さであり、ATR−FT−IRは、XPSやAESによる分析よりも、数十倍の深さを評価している。しかし、本発明者らの検討によれば、両者から得られた脂肪酸金属塩量は、非常によく相関することが判明したことから、高価なXPSやAESを用いることなく、ATR−FT−IRを測定することにより、より簡便に、かつ直接的に、問題となる磁性層表面の脂肪酸金属塩を分析することが可能となった。   In the analysis of the fatty acid metal salt based on ATR-FT-IR in the present invention, information with a detection depth of 0.1 μm is obtained in the magnetic layer using the ferromagnetic inorganic powder. On the other hand, in the analysis by XPS or AES, the detection depth is several nm, and ATR-FT-IR evaluates the depth several tens of times that in the analysis by XPS or AES. However, according to the study by the present inventors, it was found that the amount of fatty acid metal salt obtained from both correlated very well, so that ATR-FT-IR can be used without using expensive XPS or AES. It was possible to analyze the fatty acid metal salt on the surface of the magnetic layer in question more easily and directly.

脂肪酸金属塩に由来するカルボキシレートは、1610〜1550cm-1付近に逆対称伸縮振動、1400cm-1付近に対称伸縮振動に帰属される吸収を示す。したがって、得られたATR−FT−IRから、上記のような波数における脂肪酸金属塩の吸光度を求めれば、脂肪酸金属塩を定量することができる。
なお、磁気記録媒体における磁性層は、通常、バインダーとして塩化ビニル系樹脂、ポリウレタンおよびイソシアネート系硬化剤が併用されていることが多く、とくにポリウレタンや硬化剤の固有の吸収波数が、脂肪酸金属塩のそれと重なる場合がある。例えば、フェニル基を含むポリウレタンや硬化剤の場合、1600cm-1付近にそのフェニル基の吸収が見られる。また、ウレタン結合は、1530cm-1付近に吸収がある。したがって、これらの吸収の間、すなわち1600〜1530cm-1の間で最も吸光度の低い谷の位置(凸部乃至肩などを含む。以下同様。)をカルボキシレートの吸光度として採用することができる。
Carboxylate derived from fatty acid metal salt is antisymmetrical stretching vibration in the vicinity of 1610~1550Cm -1, indicating the absorption attributed to the symmetric stretching vibration near 1400 cm -1. Therefore, the fatty acid metal salt can be quantified by determining the absorbance of the fatty acid metal salt at the wave number as described above from the obtained ATR-FT-IR.
The magnetic layer in a magnetic recording medium usually contains a vinyl chloride resin, polyurethane, and an isocyanate curing agent in combination as a binder. In particular, the inherent absorption wave number of polyurethane or a curing agent is a fatty acid metal salt. It may overlap. For example, in the case of a polyurethane or a curing agent containing a phenyl group, absorption of the phenyl group is observed in the vicinity of 1600 cm −1 . Further, the urethane bond has absorption in the vicinity of 1530 cm −1 . Therefore, the position of the valley having the lowest absorbance between these absorptions, that is, between 1600 and 1530 cm −1 (including protrusions and shoulders, etc .; the same shall apply hereinafter) can be adopted as the absorbance of the carboxylate.

ATR−FT−IRにより脂肪酸金属塩を定量するには、具体的には次の(1)〜(5)のような工程を採用することができる。
(1)試料に誘導体化試薬を加え、脂肪酸金属塩、脂肪酸、脂肪酸エステル、フェニルホスホン酸を試料から除去し、対照試料を作製する。
(2)対照試料のATR−FT−IRを測定する。
(3)前記(1)、(2)とは別に、試料に誘導体化試薬を加えずに試料のATR−FT−IRを測定する。
(4)試料と対照試料のそれぞれのATR−FT−IRから、脂肪酸金属塩(カルボキシレート)に固有の吸収波数の吸光度を求める。なお、誘導体化処理は、脂肪酸金属塩、脂肪酸、脂肪酸エステル、フェニルホスホン酸を除去するが、ATR−FT−IRのカルボキシレートの吸収に影響は及ぼさない。
(5)上記脂肪酸金属塩(カルボキシレート)に固有の吸収波数において、試料の吸光度から対照試料の吸光度を減じ、その値を脂肪酸金属塩の量の指標とする。
なお本発明者らの検討によれば、磁気記録媒体の使用バインダー組成(樹脂成分、ポリイソシアネート等の硬化剤)が同じであれば、その他の組成や媒体の製造工程が異なっていたとしても、ベースラインがほぼ一定の同様のATR−FT−IRが得られる。したがって、磁気記録媒体の使用バインダー組成が同じである場合、対照試料のATR−FT−IRが存在すれば、新たな試料のATR−FT−IRを測定し、脂肪酸金属塩(カルボキシレート)に固有の吸収波数における吸光度と上記ベースラインの吸光度の差を求めるだけで、誘導体化処理を行う工程(1)を経ることなく、脂肪酸金属塩を定量することができる。なお、使用バインダーが異なる場合は、前記(1)〜(5)の工程を経ることが好ましい。
To quantify the fatty acid metal salt by ATR-FT-IR, specifically, the following steps (1) to (5) can be employed.
(1) A derivatizing reagent is added to the sample, and the fatty acid metal salt, fatty acid, fatty acid ester, and phenylphosphonic acid are removed from the sample to prepare a control sample.
(2) ATR-FT-IR of the control sample is measured.
(3) Separately from (1) and (2), the ATR-FT-IR of the sample is measured without adding a derivatization reagent to the sample.
(4) From the ATR-FT-IR of each of the sample and the control sample, the absorbance of the absorption wave number specific to the fatty acid metal salt (carboxylate) is determined. The derivatization treatment removes fatty acid metal salt, fatty acid, fatty acid ester, and phenylphosphonic acid, but does not affect the absorption of ATR-FT-IR carboxylate.
(5) In the absorption wave number specific to the fatty acid metal salt (carboxylate), the absorbance of the control sample is subtracted from the absorbance of the sample, and the value is used as an index of the amount of the fatty acid metal salt.
According to the study by the present inventors, if the binder composition used for the magnetic recording medium (resin component, curing agent such as polyisocyanate) is the same, even if the other composition and the production process of the medium are different, A similar ATR-FT-IR with a substantially constant baseline is obtained. Therefore, when the binder composition used in the magnetic recording medium is the same, if the ATR-FT-IR of the control sample is present, the ATR-FT-IR of the new sample is measured and is inherent to the fatty acid metal salt (carboxylate). The fatty acid metal salt can be quantified without going through the step (1) of performing the derivatization treatment only by obtaining the difference between the absorbance at the absorption wave number and the absorbance at the baseline. In addition, when a used binder differs, it is preferable to pass through the process of said (1)-(5).

ATR−FT−IRは、上述のようにバインダー組成の変更で、脂肪酸金属塩(カルボキシレート)の吸収波数及びその位置におけるベースラインが当該吸収波数に隣接するバインダー由来のピークとの重なり等により変動することがある場合は、適正なベースラインを選択する必要がある。バインダーとしてポリウレタン樹脂を用いた場合、ポリウレタンの1730cm-1のエステル結合と1600cm-1付近のフェニル基の間の最も低い位置の吸光度をベースラインとすることができる。 ATR-FT-IR is a change in the binder composition as described above, and the absorption wave number of the fatty acid metal salt (carboxylate) and the baseline at that position vary depending on the overlap with the peak derived from the binder adjacent to the absorption wave number. If so, it is necessary to select an appropriate baseline. When using the polyurethane resin as a binder, it can be the absorbance of the lowest position between the phenyl groups in the vicinity of an ester bond and 1600 cm -1 of the polyurethane of 1730 cm -1 baseline.

次に前記(1)工程における誘導体化処理について説明する。
誘導体化試薬としては、シリル化剤、エステル化剤、アシル化剤が挙げられ、特にシリル化剤を用いることが好ましい。シリル化剤を用いることによって、従来不可能とされていた活性水素のない脂肪酸金属塩と反応して誘導体を形成することができるので、脂肪酸金属塩を分離して検出することが可能となる。
シリル化剤としては、N−トリメチルシリルイミダゾール(TMSI)、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)、N,O−ビス(トリメチルシリル)アセトアミド(BSA)、N−メチル−N−トリメチルシリルトリフルオロアセトアミド(MSTFA)、N−(トリメチルシリル)ジメチルアミン(TMSDMA)、N−(トリメチルシリル)ジエチルアミン(TMS−DEA)、N−メチル−N−トリメチルシリルアセトアミド(MTMSA)、トリメチルクロロシラン(TMCS)、ヘキサメチレンジシラザン(HMDS)、N−メチル−N−(t−ブチルジメチルシリル)−トリフルオロアセトアミド(MTBSTFA)等が挙げられる。特にTMS(トリメチルシリル基)を有する化合物が好ましい。
Next, the derivatization process in the step (1) will be described.
Examples of the derivatizing reagent include a silylating agent, an esterifying agent, and an acylating agent, and it is particularly preferable to use a silylating agent. By using a silylating agent, a derivative can be formed by reacting with a fatty acid metal salt having no active hydrogen, which has conventionally been impossible, so that the fatty acid metal salt can be separated and detected.
Examples of silylating agents include N-trimethylsilylimidazole (TMSI), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), N, O-bis (trimethylsilyl) acetamide (BSA), N-methyl-N-trimethylsilyltri Fluoroacetamide (MSTFA), N- (trimethylsilyl) dimethylamine (TMSDMA), N- (trimethylsilyl) diethylamine (TMS-DEA), N-methyl-N-trimethylsilylacetamide (MTMSA), trimethylchlorosilane (TMCS), hexamethylenedi Examples include silazane (HMDS), N-methyl-N- (t-butyldimethylsilyl) -trifluoroacetamide (MTBSTFA), and the like. A compound having TMS (trimethylsilyl group) is particularly preferable.

誘導体化処理は、例えば磁気記録媒体の一部を取り出し、密閉可能な試料瓶に入れ、ヘキサンおよび誘導体化試薬(シリル化剤)を加え、適当な時間、反応させ誘導体として無機粉体から脱離させる。例えばジーエルサイエンス(株)製TMSI−H化剤(HMDS:TMCS:ピリジン混合物)を使用する場合は、60℃、30分程度である。続いて反応液を捨て、さらにバインダーを溶解しない溶媒、例えばエタノールで媒体をすすぎ、誘導体化した脂肪酸金属塩を除去する。得られた対照試料のATR−FT−IRを測定する。   For derivatization, for example, a part of the magnetic recording medium is taken out, put in a sealable sample bottle, added with hexane and a derivatizing reagent (silylating agent), reacted for an appropriate time, and desorbed from the inorganic powder as a derivative. Let For example, when using TMSI-H agent (HMDS: TMCS: pyridine mixture) manufactured by GL Sciences, the temperature is about 60 ° C. for about 30 minutes. Subsequently, the reaction solution is discarded, and the medium is rinsed with a solvent that does not dissolve the binder, such as ethanol, to remove the derivatized fatty acid metal salt. The ATR-FT-IR of the obtained control sample is measured.

なお、前記では脂肪酸金属塩の誘導体化処理を説明したが、分析対象の有機化合物が、脂肪酸金属塩以外の、活性水素を有する化合物である場合も、シリル化剤を好適に用いることができる。
上述したように、本発明はHClやアルカリあるいは極性溶媒による抽出等の煩雑な操作が不要であるという効果を有すると共に簡単かつ正確に無機粉体に吸着または反応している有機化合物の測定を行うことができる。
Although the derivatization treatment of the fatty acid metal salt has been described above, the silylating agent can also be suitably used when the organic compound to be analyzed is a compound having active hydrogen other than the fatty acid metal salt.
As described above, the present invention has an effect that a complicated operation such as extraction with HCl, alkali, or polar solvent is unnecessary, and easily and accurately measures an organic compound adsorbed or reacted on an inorganic powder. be able to.

次に、本発明で製造される磁気記録媒体の層構成について説明する。
[支持体]
本発明における支持体は、非磁性支持体であり、ポリエステル支持体(以下、単にポリエステルという)が好ましい。このようなポリエステルはポリエチレンテレフタレート、ポリエチレンナフタレートなどジカルボン酸およびジオールからなるポリエステルである。
主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。
また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。
これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸及び/または2,6−ナフタレンジカルボン酸、ジオール成分として、エチレングリコール及び/または1,4−シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。
中でも、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6−ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。特に好ましくはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルである。
なお、本発明に用いられるポリエステルは、二軸延伸されていてもよいし、2層以上の積層体であってもよい。
また、ポリエステルは、さらに他の共重合成分が共重合されていても良いし、他のポリエステルが混合されていても良い。これらの例としては、先に挙げたジカルボン酸成分やジオール成分、またはそれらから成るポリエステルを挙げることができる。
本発明に用いられるポリエステルには、フィルム時におけるデラミネーションを起こし難くするため、スルホネート基を有する芳香族ジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジオールなどを共重合してもよい。
中でもポリエステルの重合反応性やフィルムの透明性の点で、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、4−ナトリウムスルホフタル酸、4−ナトリウムスルホ−2,6−ナフタレンジカルボン酸およびこれらのナトリウムを他の金属(例えばカリウム、リチウムなど)やアンモニウム塩、ホスホニウム塩などで置換した化合物またはそのエステル形成性誘導体、ポリエチレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール−ポリプロピレングリコール共重合体およびこれらの両端のヒドロキシ基を酸化するなどしてカルボキシル基とした化合物などが好ましい。この目的で共重合される割合としては、ポリエステルを構成するジカルボン酸を基準として、0.1〜10モル%が好ましい。
また、耐熱性を向上する目的では、ビスフェノール系化合物、ナフタレン環またはシクロヘキサン環を有する化合物を共重合することができる。これらの共重合割合としては、ポリエステルを構成するジカルボン酸を基準として、1〜20モル%が好ましい。
Next, the layer structure of the magnetic recording medium manufactured according to the present invention will be described.
[Support]
The support in the present invention is a nonmagnetic support, and a polyester support (hereinafter simply referred to as polyester) is preferable. Such a polyester is a polyester composed of a dicarboxylic acid and a diol, such as polyethylene terephthalate and polyethylene naphthalate.
The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
Among the polyesters having these as main constituents, terephthalic acid and / or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a diol component from the viewpoint of transparency, mechanical strength, dimensional stability, etc. And / or a polyester mainly composed of 1,4-cyclohexanedimethanol is preferred.
Among them, a polyester mainly composed of polyethylene terephthalate or polyethylene-2,6-naphthalate, a copolymer polyester composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more kinds of these polyesters A polyester having a mixture as a main constituent is preferred. Particularly preferred is a polyester having polyethylene-2,6-naphthalate as a main constituent.
The polyester used in the present invention may be biaxially stretched or a laminate of two or more layers.
The polyester may be further copolymerized with other copolymerization components, or may be mixed with other polyesters. Examples of these include the dicarboxylic acid components and diol components mentioned above, or polyesters composed thereof.
In the polyester used in the present invention, an aromatic dicarboxylic acid having a sulfonate group or an ester-forming derivative thereof, a dicarboxylic acid having a polyoxyalkylene group or an ester-forming derivative thereof, in order to make it difficult for delamination during film formation. A diol having a polyoxyalkylene group may be copolymerized.
Of these, 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 4-sodium sulfophthalic acid, 4-sodium sulfo-2,6-naphthalenedicarboxylic acid, and the like in terms of polyester polymerization reactivity and film transparency. Compounds in which sodium is substituted with other metals (for example, potassium, lithium, etc.), ammonium salts, phosphonium salts, etc., or ester-forming derivatives thereof, polyethylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymers and their A compound obtained by oxidizing the hydroxy groups at both ends to form a carboxyl group is preferred. The proportion of copolymerization for this purpose is preferably 0.1 to 10 mol% based on the dicarboxylic acid constituting the polyester.
For the purpose of improving heat resistance, a bisphenol compound, a compound having a naphthalene ring or a cyclohexane ring can be copolymerized. The copolymerization ratio is preferably 1 to 20 mol% based on the dicarboxylic acid constituting the polyester.

本発明において、ポリエステルの合成方法は、特に限定があるわけではなく、従来公知のポリエステルの製造方法に従って製造できる。例えば、ジカルボン酸成分をジオール成分と直接エステル化反応させる直接エステル化法、初めにジカルボン酸成分としてジアルキルエステルを用いて、これとジオール成分とでエステル交換反応させ、これを減圧下で加熱して余剰のジオール成分を除去することにより重合させるエステル交換法を用いることができる。この際、必要に応じてエステル交換触媒あるいは重合反応触媒を用い、あるいは耐熱安定剤を添加することができる。
また、合成時の各過程で着色防止剤、酸化防止剤、結晶核剤、すべり剤、安定剤、ブロッキング防止剤、紫外線吸収剤、粘度調節剤、消泡透明化剤、帯電防止剤、pH調整剤、染料、顔料、反応停止剤などの各種添加剤の1種又は2種以上を添加させてもよい。
In the present invention, the method for synthesizing the polyester is not particularly limited, and can be produced according to a conventionally known polyester production method. For example, a direct esterification method in which a dicarboxylic acid component is directly esterified with a diol component. First, a dialkyl ester is used as a dicarboxylic acid component, this is transesterified with the diol component, and this is heated under reduced pressure. A transesterification method of polymerizing by removing excess diol component can be used. At this time, if necessary, a transesterification catalyst or a polymerization reaction catalyst can be used, or a heat-resistant stabilizer can be added.
In addition, anti-coloring agents, antioxidants, crystal nucleating agents, slipping agents, stabilizers, anti-blocking agents, UV absorbers, viscosity modifiers, antifoaming and clearing agents, antistatic agents, pH adjustments in each process during synthesis One or more of various additives such as an agent, a dye, a pigment, and a reaction terminator may be added.

また、ポリエステルにはフィラーが添加されてもよい。フィラーの種類としては、球形シリカ、コロイダルシリカ、酸化チタン、アルミナ等の無機粉体、架橋ポリスチレン、シリコーン樹脂等の有機フィラー等が挙げられる。   Further, a filler may be added to the polyester. Examples of the filler include inorganic powders such as spherical silica, colloidal silica, titanium oxide, and alumina, and organic fillers such as crosslinked polystyrene and silicone resin.

本発明において、支持体であるポリエステルの厚みは、好ましくは3〜80μm、より好ましくは3〜50μm、とくに好ましくは3〜10μmである。また支持体表面の中心線平均粗さ(Ra)は、8nm以下、より好ましくは6nm以下である。このRaは、WYKO社製TOPO−3Dで測定した。   In the present invention, the thickness of the polyester as the support is preferably 3 to 80 μm, more preferably 3 to 50 μm, and particularly preferably 3 to 10 μm. The center line average roughness (Ra) of the support surface is 8 nm or less, more preferably 6 nm or less. This Ra was measured with TOPO-3D manufactured by WYKO.

本発明の磁気記録媒体は、前記の非磁性支持体上に、塗布層として、強磁性粉末を結合剤に分散してなる磁性層を設けたものであり、必要に応じて支持体と磁性層との間に実質的に非磁性である非磁性層(下層)を設けてもよい。   In the magnetic recording medium of the present invention, a magnetic layer formed by dispersing ferromagnetic powder in a binder as a coating layer is provided on the nonmagnetic support, and the support and the magnetic layer are provided as necessary. A nonmagnetic layer (lower layer) that is substantially nonmagnetic may be provided between the two.

[磁性層]
磁性層に含まれる強磁性粉末として、その体積が(0.1〜8)×10-18mlであることが好ましく、(0.5〜5)×10-18mlであることが更に好ましい。この範囲とすることにより、熱揺らぎにより磁気特性の低下を有効に抑えることができると共に低ノイズを維持したまま良好なC/N(S/N)を得ることができる。また、強磁性粉末としては、強磁性金属粉末が挙げられる。
強磁性金属粉末の体積は、以下により求めることができる。
強磁性金属粉末は、形状を円柱と想定して長軸長、短軸長から体積を求める。磁性体のサイズは、磁性層を適当量剥ぎ取る。剥ぎ取った磁性層30〜70mgにn−ブチルアミンを加え、ガラス管中に封かんし熱分解装置にセットして140℃で約1日加熱する。冷却後にガラス管から内容物を取り出し、遠心分離し、液と固形分を分離する。分離した固形分をアセトンで洗浄し、TEM用の粉末試料を得る。この試料を日立製透過型電子顕微鏡H−9000型を用いて粒子を撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粒子写真を得る。粒子写真から目的の磁性体を選びkontron製画像解析装置KS−400デジタイザー上に載せ、粉体の輪郭をトレースしてそれぞれの粒子のサイズを測定する。500個の粒子のサイズを測定し、測定値を平均して平均粒径とする。
[Magnetic layer]
The ferromagnetic powder contained in the magnetic layer preferably has a volume of (0.1 to 8) × 10 −18 ml, more preferably (0.5 to 5) × 10 −18 ml. By setting it within this range, it is possible to effectively suppress a decrease in magnetic characteristics due to thermal fluctuations, and to obtain good C / N (S / N) while maintaining low noise. Examples of the ferromagnetic powder include ferromagnetic metal powder.
The volume of the ferromagnetic metal powder can be determined as follows.
As for the ferromagnetic metal powder, the volume is determined from the major axis length and minor axis length assuming the shape as a cylinder. As for the size of the magnetic material, an appropriate amount of the magnetic layer is peeled off. N-Butylamine is added to 30 to 70 mg of the peeled magnetic layer, sealed in a glass tube, set in a thermal decomposition apparatus, and heated at 140 ° C. for about 1 day. After cooling, the contents are taken out from the glass tube and centrifuged to separate the liquid and solids. The separated solid is washed with acetone to obtain a powder sample for TEM. This sample is photographed with a Hitachi transmission electron microscope H-9000, and the particles are photographed at a photographing magnification of 100000 times and printed on a photographic paper to obtain a total magnification of 500,000 times to obtain a particle photograph. A target magnetic substance is selected from the particle photograph and placed on an image analyzer KS-400 digitizer manufactured by kontron, and the size of each particle is measured by tracing the outline of the powder. The size of 500 particles is measured, and the measured values are averaged to obtain the average particle size.

<強磁性金属粉末>
本発明の磁気記録媒体における磁性層に用いられる強磁性金属粉末としては、Feを主成分とするもの(合金も含む)であれば、特に限定されないが、α−Feを主成分とする強磁性合金粉末が好ましい。これらの強磁性粉末には所定の原子以外にAl、Si、S、Sc、Ca、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、Bなどの原子を含んでもかまわない。Al、Si、Ca、Y、Ba、La、Nd、Co、Ni、Bの少なくとも1つがα−Fe以外に含まれるものが好ましく、特に、Co,Al,Yが含まれるのが好ましい。さらに具体的には、CoがFeに対して10〜40原子%、Alが2〜20原子%、Yが1〜15原子%含まれるのが好ましい。
<Ferromagnetic metal powder>
The ferromagnetic metal powder used for the magnetic layer in the magnetic recording medium of the present invention is not particularly limited as long as it contains Fe as a main component (including an alloy), but is ferromagnetic with α-Fe as a main component. Alloy powder is preferred. These ferromagnetic powders include Al, Si, S, Sc, Ca, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, other than predetermined atoms. It may contain atoms such as W, Re, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, Sr, and B. It is preferable that at least one of Al, Si, Ca, Y, Ba, La, Nd, Co, Ni, and B is included in addition to α-Fe, and it is particularly preferable that Co, Al, and Y are included. More specifically, it is preferable that Co is contained in an amount of 10 to 40 atomic%, Fe is contained in an amount of 2 to 20 atomic%, and Y is contained in an amount of 1 to 15 atomic%.

上記強磁性金属粉末には後述する分散剤、潤滑剤、界面活性剤、帯電防止剤などで分散前にあらかじめ処理を行ってもかまわない。また、強磁性金属粉末は、少量の水、水酸化物又は酸化物を含むものであってもよい。強磁性金属粉末の含水率は0.01〜2%とするのが好ましい。結合剤の種類によって強磁性金属粉末の含水率は最適化するのが好ましい。強磁性金属粉末のpHは、用いる結合剤との組合せにより最適化することが好ましい。その範囲は通常、6〜12であるが、好ましくは7〜11である。また強磁性粉末には可溶性のNa、Ca、Fe、Ni、Sr、NH4、SO4、Cl、NO2、NO3などの無機イオンを含む場合がある。これらは、本質的に無い方が好ましい。各イオンの総和が300ppm以下程度であれば、特性には影響しない。また、本発明に用いられる強磁性粉末は空孔が少ないほうが好ましくその値は20容量%以下、さらに好ましくは5容量%以下である。 The ferromagnetic metal powder may be previously treated with a dispersant, a lubricant, a surfactant, an antistatic agent or the like, which will be described later. The ferromagnetic metal powder may contain a small amount of water, hydroxide or oxide. The moisture content of the ferromagnetic metal powder is preferably 0.01-2%. It is preferable to optimize the moisture content of the ferromagnetic metal powder depending on the type of the binder. The pH of the ferromagnetic metal powder is preferably optimized depending on the combination with the binder used. The range is usually from 6 to 12, but preferably from 7 to 11. The ferromagnetic powder may contain inorganic ions such as soluble Na, Ca, Fe, Ni, Sr, NH 4 , SO 4 , Cl, NO 2 and NO 3 . These are preferably essentially absent. If the total of each ion is about 300 ppm or less, the characteristics are not affected. The ferromagnetic powder used in the present invention preferably has fewer pores, and its value is 20% by volume or less, and more preferably 5% by volume or less.

強磁性金属粉末の結晶子サイズは8〜20nmであることが好ましく、10〜18nmであることが更に好ましく、12〜16nmであることが特に好ましい。この結晶子サイズは、X線回折装置(理学電機製RINT2000シリーズ)を使用し、線源CuKα1、管電圧50kV、管電流300mAの条件で回折ピークの半値幅からScherrer法により求めた平均値である。   The crystallite size of the ferromagnetic metal powder is preferably 8 to 20 nm, more preferably 10 to 18 nm, and particularly preferably 12 to 16 nm. This crystallite size is an average value obtained by a Scherrer method from a half-value width of a diffraction peak using an X-ray diffractometer (RINT2000 series manufactured by Rigaku Corporation) under the conditions of a radiation source CuKα1, a tube voltage 50 kV, and a tube current 300 mA. .

強磁性金属粉末のBET法による比表面積(SBET)は、30m2/g以上80m2/g未満が好ましく、50〜70m2/gであることがさらに好ましい。この範囲であれば良好な表面性と低いノイズの両立が可能となる。強磁性金属粉末のpHは、用いる結合剤との組合せにより最適化することが好ましい。その範囲は4〜12であるが、好ましくは7〜10である。強磁性金属粉末は必要に応じ、Al、Si、P又はこれらの酸化物などで表面処理を施してもかまわない。その量は強磁性金属粉末に対し0.1〜10%であり表面処理を施すと脂肪酸などの潤滑剤の吸着が100mg/m2以下になり好ましい。強磁性金属粉末には可溶性のNa、Ca、Fe、Ni、Srなどの無機イオンを含む場合があるが200ppm以下であれば特に特性に影響を与える事は少ない。また、本発明に用いられる強磁性金属粉末は、空孔が少ないほうが好ましく、その値は20容量%以下、さらに好ましくは5容量%以下である。 The specific surface area by BET method of the ferromagnetic metal powder (S BET) is preferably less than 30 m 2 / g or more 80 m 2 / g, more preferably from 50 to 70 m 2 / g. Within this range, both good surface properties and low noise can be achieved. The pH of the ferromagnetic metal powder is preferably optimized depending on the combination with the binder used. The range is 4-12, preferably 7-10. The ferromagnetic metal powder may be surface-treated with Al, Si, P, or an oxide thereof as required. The amount thereof is 0.1 to 10% with respect to the ferromagnetic metal powder. When the surface treatment is performed, the adsorption of a lubricant such as a fatty acid is preferably 100 mg / m 2 or less. The ferromagnetic metal powder may contain soluble inorganic ions such as Na, Ca, Fe, Ni, and Sr. However, if it is 200 ppm or less, it does not particularly affect the characteristics. Further, the ferromagnetic metal powder used in the present invention preferably has fewer vacancies, and its value is 20% by volume or less, more preferably 5% by volume or less.

また強磁性金属粉末の形状については、先に示した粒子体積を満足すれば針状、粒状、米粒状又は板状いずれでもかまわないが、特に針状の強磁性粉末を使用することが好ましい。針状強磁性金属粉末の場合、針状比は4〜12が好ましく、さらに好ましくは5〜12である。強磁性金属粉末の抗磁力(Hc)は、好ましくは159.2〜238.8kA/m(2000〜3000Oe)であり、さらに好ましくは167.2〜230.8kA/m(2100〜2900Oe)である。また、飽和磁束密度は、好ましくは150〜300mT(1500〜3000G)であり、さらに好ましくは160〜290mTである。また飽和磁化(σs)は、好ましくは140〜170A・m2/kg(140〜170emu/g)であり、さらに好ましくは145〜160A・m2/kgである。磁性体自体のSFD(switching field distribution)は小さい方が好ましく、0.8以下であることが好ましい。SFDが0.8以下であると、電磁変換特性が良好で、出力が高く、また磁化反転がシャープでピークシフトが小さくなり、高密度デジタル磁気記録に好適である。Hc分布を小さくするためには、強磁性金属粉末においてはゲータイトの粒度分布を良くする、単分散αFe23を使用する、粒子間の焼結を防止するなどの方法がある。 The shape of the ferromagnetic metal powder may be needle-like, granular, rice-grained or plate-like as long as the particle volume shown above is satisfied, but it is particularly preferable to use a needle-like ferromagnetic powder. In the case of acicular ferromagnetic metal powder, the acicular ratio is preferably 4-12, more preferably 5-12. The coercive force (Hc) of the ferromagnetic metal powder is preferably 159.2 to 238.8 kA / m (2000 to 3000 Oe), more preferably 167.2 to 230.8 kA / m (2100 to 2900 Oe). . The saturation magnetic flux density is preferably 150 to 300 mT (1500 to 3000 G), and more preferably 160 to 290 mT. The saturation magnetization (σs) is preferably 140 to 170 A · m 2 / kg (140 to 170 emu / g), and more preferably 145 to 160 A · m 2 / kg. The SFD (switching field distribution) of the magnetic material itself is preferably small and is preferably 0.8 or less. When the SFD is 0.8 or less, the electromagnetic conversion characteristics are good, the output is high, the magnetization reversal is sharp, the peak shift is small, and it is suitable for high-density digital magnetic recording. In order to reduce the Hc distribution, there are methods such as improving the particle size distribution of goethite in the ferromagnetic metal powder, using monodispersed αFe 2 O 3 , and preventing sintering between particles.

強磁性金属粉末は、公知の製造方法により得られたものを用いることができ、下記の方法を挙げることができる。焼結防止処理を行った含水酸化鉄、酸化鉄を水素などの還元性気体で還元してFe又はFe−Co粒子などを得る方法、複合有機酸塩(主としてシュウ酸塩)と水素などの還元性気体で還元する方法、金属カルボニル化合物を熱分解する方法、強磁性金属の水溶液に水素化ホウ素ナトリウム、次亜リン酸塩あるいはヒドラジンなどの還元剤を添加して還元する方法、金属を低圧の不活性気体中で蒸発させて粉末を得る方法などである。このようにして得られた強磁性金属粉末は公知の徐酸化処理が施される。含水酸化鉄、酸化鉄を水素などの還元性気体で還元し、酸素含有ガスと不活性ガスの分圧、温度、時間を制御して表面に酸化皮膜を形成する方法が、減磁量が少なく好ましい。   As the ferromagnetic metal powder, those obtained by a known production method can be used, and the following methods can be mentioned. Reduction of hydrous iron oxide and iron oxide with anti-sintering treatment using iron or other reducing gas to obtain Fe or Fe-Co particles, reduction of complex organic acid salt (mainly oxalate) and hydrogen A method of reducing with a reactive gas, a method of thermally decomposing a metal carbonyl compound, a method of reducing by adding a reducing agent such as sodium borohydride, hypophosphite or hydrazine to an aqueous solution of a ferromagnetic metal, a metal at a low pressure For example, the powder is obtained by evaporating in an inert gas. The ferromagnetic metal powder thus obtained is subjected to a known slow oxidation treatment. A method of reducing the amount of demagnetization by reducing the hydrous iron oxide and iron oxide with a reducing gas such as hydrogen and controlling the partial pressure, temperature and time of the oxygen-containing gas and inert gas to form an oxide film on the surface. preferable.

<結合剤>
本発明の磁性層に用いられる結合剤(バインダー)は、従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物である。熱可塑性樹脂としては、例えば、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクルリ酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラール、ビニルアセタール、ビニルエーテル等を構成単位として含む重合体又は共重合体、ポリウレタン樹脂、各種ゴム系樹脂を挙げることができる。
<Binder>
The binder (binder) used in the magnetic layer of the present invention is a conventionally known thermoplastic resin, thermosetting resin, reactive resin, or a mixture thereof. Examples of the thermoplastic resin include vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic ester, vinylidene chloride, acrylonitrile, methacrylic acid, methacrylic ester, styrene, butadiene, ethylene, vinyl butyral, vinyl acetal. And polymers or copolymers containing vinyl ether as a constituent unit, polyurethane resins, and various rubber resins.

また、熱硬化性樹脂又は反応型樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネートプレポリマーの混合物、ポリエステルポリオールとポリイソシアネートの混合物、ポリウレタンとポリイソシアネートの混合物等を挙げることができる。熱可塑性樹脂、熱硬化性樹脂及び反応型樹脂については、いずれも朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。   Examples of thermosetting resins or reactive resins include phenolic resins, epoxy resins, polyurethane curable resins, urea resins, melamine resins, alkyd resins, acrylic reactive resins, formaldehyde resins, silicone resins, and epoxy-polyamide resins. And a mixture of polyester resin and isocyanate prepolymer, a mixture of polyester polyol and polyisocyanate, a mixture of polyurethane and polyisocyanate, and the like. The thermoplastic resin, thermosetting resin and reactive resin are all described in detail in “Plastic Handbook” issued by Asakura Shoten.

また、電子線硬化型樹脂を磁性層に使用すると、塗膜強度が向上し耐久性が改善されるだけでなく、表面が平滑され電磁変換特性もさらに向上する。これらの例とその製造方法については、特開昭62−256219号公報に詳細に記載されている。   Further, when an electron beam curable resin is used for the magnetic layer, not only the coating film strength is improved and the durability is improved, but also the surface is smoothed and the electromagnetic conversion characteristics are further improved. These examples and their production methods are described in detail in JP-A No. 62-256219.

以上の樹脂は単独又はこれらを組み合わせた態様で使用することができる。中でもポリウレタン樹脂を使用することが好ましく、さらには水素化ビスフェノールA、水素化ビスフェノールAのポリプロピレンオキサイド付加物などの環状構造体と、アルキレンオキサイド鎖を有する分子量500〜5000のポリオールと、鎖延長剤として環状構造を有する分子量200〜500のポリオールと、有機ジイソシアネートとを反応させ、かつ極性基を導入したポリウレタン樹脂、又はコハク酸、アジピン酸、セバシン酸などの脂肪族二塩基酸と、2,2−ジメチル−1,3−プロパンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール等のアルキル分岐側鎖を有する環状構造を持たない脂肪族ジオールからなるポリエステルポリオールと、鎖延長剤として2−エチル−2−ブチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール等の炭素数が3以上の分岐アルキル側鎖をもつ脂肪族ジオールと、有機ジイソシアネート化合物とを反応させ、かつ極性基を導入したポリウレタン樹脂、又はダイマージオール等の環状構造体と、長鎖アルキル鎖を有するポリオール化合物と、有機ジイソシアネートとを反応させ、かつ極性基を導入したポリウレタン樹脂を使用することが好ましい。   The above resins can be used alone or in combination. Among them, it is preferable to use a polyurethane resin, and further, a cyclic structure such as hydrogenated bisphenol A or a polypropylene oxide adduct of hydrogenated bisphenol A, a polyol having an alkylene oxide chain with a molecular weight of 500 to 5000, and a chain extender. A polyurethane resin having a cyclic structure and a molecular weight of 200 to 500 reacted with an organic diisocyanate and having a polar group introduced, or an aliphatic dibasic acid such as succinic acid, adipic acid, or sebacic acid; Fat having no cyclic structure having an alkyl branched side chain such as dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol Polyester polyol composed of a group diol and 2 as a chain extender Reaction of an aliphatic diol having a branched alkyl side chain having 3 or more carbon atoms such as ethyl-2-butyl-1,3-propanediol and 2,2-diethyl-1,3-propanediol with an organic diisocyanate compound And a polyurethane resin into which a polar group is introduced, or a cyclic structure such as dimer diol, a polyol compound having a long-chain alkyl chain, and an organic diisocyanate, and a polyurethane resin into which a polar group is introduced are used. Is preferred.

本発明で使用される極性基含有ポリウレタン系樹脂の平均分子量は、5,000〜100,000であることが好ましく、さらには10,000〜50,000であることが好ましい。平均分子量が5,000以上であれば、得られる磁性塗膜が脆い等といった物理的強度の低下もなく、磁気記録媒体の耐久性に影響を与えることはないため好ましい。また、分子量が100,000以下であれば、溶剤への溶解性が低下することもないため、分散性も良好である。また、所定濃度における塗料粘度も高くなることはないので、作業性が良好で取り扱いも容易となる。   The average molecular weight of the polar group-containing polyurethane resin used in the present invention is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000. If the average molecular weight is 5,000 or more, it is preferable because the obtained magnetic coating film is not brittle and the physical strength is not lowered, and the durability of the magnetic recording medium is not affected. Further, when the molecular weight is 100,000 or less, the solubility in the solvent does not decrease, and the dispersibility is also good. Further, since the viscosity of the paint at a predetermined concentration does not increase, the workability is good and the handling is easy.

上記ポリウレタン系樹脂に含まれる極性基としては、例えば、−COOM、−SO3M、−OSO3M、−P=O(OM)2、−O−P=O(OM)2(以上につき、Mは水素原子又はアルカリ金属塩基)、−OH、−NR2、−N+3(Rは炭化水素基)、エポキシ基、−SH、−CNなどが挙げられ、これらの極性基の少なくとも1つ以上を共重合又は付加反応で導入したものを用いることができる。また、この極性基含有ポリウレタン系樹脂がOH基を有する場合、分岐OH基を有することが硬化性、耐久性の面から好ましく、1分子当たり2〜40個の分岐OH基を有することが好ましく、1分子当たり3〜20個有することがさらに好ましい。また、このような極性基の量は10-1〜10-8モル/gであり、好ましくは10-2〜10-6モル/gである。 Examples of the polar group contained in the polyurethane resin, for example, -COOM, -SO 3 M, -OSO 3 M, -P = O (OM) 2, -O-P = O (OM) per 2 (or more, M is a hydrogen atom or an alkali metal base), —OH, —NR 2 , —N + R 3 (R is a hydrocarbon group), an epoxy group, —SH, —CN, etc., and at least one of these polar groups One in which two or more are introduced by copolymerization or addition reaction can be used. Moreover, when this polar group-containing polyurethane-based resin has an OH group, it preferably has a branched OH group from the viewpoint of curability and durability, and preferably has 2 to 40 branched OH groups per molecule. It is more preferable to have 3 to 20 molecules per molecule. The amount of such a polar group is 10 −1 to 10 −8 mol / g, preferably 10 −2 to 10 −6 mol / g.

結合剤の具体例としては、例えば、ユニオンカーバイト社製VAGH、VYHH、VMCH、VAGF、VAGD、VROH、VYES、VYNC、VMCC、XYHL、XYSG、PKHH、PKHJ、PKHC、PKFE、日信化学工業社製MPR−TA、MPR−TA5、MPR−TAL、MPR−TSN、MPR−TMF、MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80、DX81、DX82、DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バーノックD−400、D−210−80、クリスボン6109、7209、東洋紡社製バイロンUR8200、UR8300、UR−8700、RV530、RV280、大日精化社製ダイフェラミン4020、5020、5100、5300、9020、9022、7020、三菱化成社製MX5004、三洋化成社製サンプレンSP−150、旭化成社製サランF310、F210などを挙げることができる。   Specific examples of the binder include, for example, VAGH, VYHH, VMCH, VAGF, VAGD, VROH, VYES, VYNC, VMCC, XYHL, XYSG, PKHH, PKHJ, PKHC, PKFE, Nissin Chemical Industry Co., Ltd. MPR-TA, MPR-TA5, MPR-TAL, MPR-TSN, MPR-TMF, MPR-TS, MPR-TM, MPR-TAO, Denki Kagaku 1000W, DX80, DX81, DX82, DX83, 100FD, Japan MR-104, MR-105, MR110, MR100, MR555, 400X-110A manufactured by ZEON Co., Ltd. NIPPOLAN N2301, N2302, N2304 manufactured by Nippon Polyurethane Co., Ltd. Pandex T-5105, T-R3080, T-5201 manufactured by Dainippon Ink, Inc. , Barnock D 400, D-210-80, Crisbon 6109, 7209, Byron UR8200, UR8300, UR-8700, RV530, RV280, Toyobo Co., Ltd. Daiferamin 4020, 5020, 5100, 5300, 9020, 9022, 7020, Mitsubishi Examples include MX5004 manufactured by Kasei Co., Ltd., Sanprene SP-150 manufactured by Sanyo Kasei Co., Ltd., and Saran F310 and F210 manufactured by Asahi Kasei.

本発明の磁性層に用いられる結合剤の添加量は、強磁性金属粉末の質量に対して5〜50質量%の範囲、好ましくは10〜30質量%の範囲である。ポリウレタン樹脂合を用いる場合は2〜20質量%、ポリイソシアネートは2〜20質量%の範囲でこれらを組み合わせて用いることが好ましいが、例えば、微量の脱塩素によりヘッド腐食が起こる場合には、ポリウレタンのみ又はポリウレタンとイソシアネートのみを使用することも可能である。その他の樹脂として塩化ビニル系樹脂を用いる場合には5〜30質量%の範囲であることが好ましい。本発明において、ポリウレタンを用いる場合はガラス転移温度が−50〜150℃、好ましくは0〜100℃、破断伸びが100〜2000%、破断応力は0.49〜98MPa(0.05〜10kg/mm2)、降伏点は0.49〜98MPa(0.05〜10kg/mm2)が好ましい。 The amount of the binder used in the magnetic layer of the present invention is in the range of 5 to 50% by mass, preferably in the range of 10 to 30% by mass with respect to the mass of the ferromagnetic metal powder. When a polyurethane resin is used, it is preferable to use a combination of 2 to 20% by mass and polyisocyanate in a range of 2 to 20% by mass. For example, when head corrosion occurs due to a small amount of dechlorination, polyurethane is used. It is also possible to use only polyurethane or only isocyanate and polyurethane. When using a vinyl chloride resin as the other resin, it is preferably in the range of 5 to 30% by mass. In the present invention, when polyurethane is used, the glass transition temperature is −50 to 150 ° C., preferably 0 to 100 ° C., the breaking elongation is 100 to 2000%, and the breaking stress is 0.49 to 98 MPa (0.05 to 10 kg / mm). 2 ) The yield point is preferably 0.49 to 98 MPa (0.05 to 10 kg / mm 2 ).

本発明で用いる磁気記録媒体は、例えばフロッピーディスクである場合、支持体の両面に2層以上から構成できる。したがって、結合剤量、結合剤中に占める塩化ビニル系樹脂、ポリウレタン樹脂、ポリイソシアネート、あるいはそれ以外の樹脂量、磁性層を形成する各樹脂の分子量、極性基量、あるいは先に述べた樹脂の物理特性などを必要に応じ非磁性層、各磁性層とで変えることはもちろん可能であり、むしろ各層で最適化すべきであり、多層磁性層に関する公知技術を適用できる。例えば、各層で結合剤量を変更する場合、磁性層表面の擦傷を減らすためには磁性層の結合剤量を増量することが有効であり、ヘッドに対するヘッドタッチを良好にするためには、非磁性層の結合剤量を多くして柔軟性を持たせることができる。   When the magnetic recording medium used in the present invention is, for example, a floppy disk, it can be composed of two or more layers on both sides of the support. Therefore, the amount of the binder, the amount of vinyl chloride resin, polyurethane resin, polyisocyanate, or other resin in the binder, the molecular weight of each resin forming the magnetic layer, the polar group amount, or the resin described above It is of course possible to change the physical characteristics and the like between the non-magnetic layer and each magnetic layer as required, and rather it should be optimized for each layer, and a known technique relating to a multilayer magnetic layer can be applied. For example, when changing the amount of binder in each layer, it is effective to increase the amount of binder in the magnetic layer in order to reduce scratches on the surface of the magnetic layer. The amount of binder in the magnetic layer can be increased to provide flexibility.

本発明で使用可能なポリイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等を挙げることができる。これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製コロネートL、コロネートHL、コロネート2030、コロネート2031、ミリオネートMRミリオネートMTL、武田薬品社製タケネートD−102、タケネートD−110N、タケネートD−200、タケネートD−202、住友バイエル社製デスモジュールL,デスモジュールIL、デスモジュールN、デスモジュールHL等があり、これらを単独又は硬化反応性の差を利用して二つもしくはそれ以上の組み合せで各層とも用いることができる。   Examples of the polyisocyanate usable in the present invention include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, naphthylene-1,5-diisocyanate, o-toluidine diisocyanate, isophorone diisocyanate, triol. Examples thereof include isocyanates such as phenylmethane triisocyanate, products of these isocyanates and polyalcohols, and polyisocyanates generated by condensation of isocyanates. Commercially available product names of these isocyanates include Coronate L, Coronate HL, Coronate 2030, Coronate 2031, Millionate MR Millionate MTL, Takeda Pharmaceutical Takenate D-102, Takenate D-110N, Takenate. There are D-200, Takenate D-202, Death Module L, Death Module IL, Death Module N, Death Module HL, etc. manufactured by Sumitomo Bayer, and these are used alone or two or more using the difference in curing reactivity. Each layer can be used in combination.

本発明における磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。これら添加剤としては、例えば、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、フッ化黒鉛、シリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸及びそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、イソノニルホスホン酸、イソデシルホスホン酸、イソウンデシルホスホン酸、イソドデシルホスホン酸、イソヘキサデシルホスホン酸、イソオクタデシルホスホン酸、イソエイコシルホスホン酸等のアルキルホスホン酸及びそのアルカリ金属塩、リン酸フェニル、リン酸ベンジル、リン酸フェネチル、リン酸α−メチルベンジル、リン酸1−メチル−1−フェネチル、リン酸ジフェニルメチル、リン酸ビフェニル、リン酸ベンジルフェニル、リン酸α−クミル、リン酸トルイル、リン酸キシリル、リン酸エチルフェニル、リン酸クメニル、リン酸プロピルフェニル、リン酸ブチルフェニル、リン酸ヘプチルフェニル、リン酸オクチルフェニル、リン酸ノニルフェニル等の芳香族リン酸エステル及びそのアルカリ金属塩、リン酸オクチル、リン酸2−エチルヘキシル、リン酸イソオクチル、リン酸イソノニル、リン酸イソデシル、リン酸イソウンデシル、リン酸イソドデシル、リン酸イソヘキサデシル、リン酸イソオクタデシル、リン酸イソエイコシル等のリン酸アルキルエステル及びそのアルカリ金属塩、アルキルスルホン酸エステル及びそのアルカリ金属塩、フッ素含有アルキル硫酸エステル及びそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸及びこれらの金属塩、又はステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸と、炭素数2〜22の不飽和結合を含んでも分岐していても良い1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していても良いアルコキシアルコールまたはアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステル又は多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基およびF、Cl、Br、CF3、CCl3、CBr3等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基を持つものでもよい。 Additives can be added to the magnetic layer in the present invention as necessary. Examples of the additive include an abrasive, a lubricant, a dispersant / dispersion aid, an antifungal agent, an antistatic agent, an antioxidant, a solvent, and carbon black. Examples of these additives include molybdenum disulfide, tungsten disulfide, graphite, boron nitride, graphite fluoride, silicone oil, silicone having a polar group, fatty acid-modified silicone, fluorine-containing silicone, fluorine-containing alcohol, fluorine-containing ester, Polyolefin, polyglycol, polyphenyl ether, phenylphosphonic acid, benzylphosphonic acid, phenethylphosphonic acid, α-methylbenzylphosphonic acid, 1-methyl-1-phenethylphosphonic acid, diphenylmethylphosphonic acid, biphenylphosphonic acid, benzylphenylphosphonic acid , Α-cumylphosphonic acid, toluylphosphonic acid, xylylphosphonic acid, ethylphenylphosphonic acid, cumenylphosphonic acid, propylphenylphosphonic acid, butylphenylphosphonic acid, heptylph Aromatic ring-containing organic phosphonic acids such as enylphosphonic acid, octylphenylphosphonic acid, nonylphenylphosphonic acid and alkali metal salts thereof, octylphosphonic acid, 2-ethylhexylphosphonic acid, isooctylphosphonic acid, isononylphosphonic acid, isodecylphosphonic acid Acids, isoundecyl phosphonic acid, isododecyl phosphonic acid, isohexadecyl phosphonic acid, isooctadecyl phosphonic acid, isoeicosyl phosphonic acid, alkylphosphonic acid and alkali metal salts thereof, phenyl phosphate, benzyl phosphate, phosphoric acid Phenethyl, α-methylbenzyl phosphate, 1-methyl-1-phenethyl phosphate, diphenylmethyl phosphate, biphenyl phosphate, benzylphenyl phosphate, α-cumyl phosphate, toluyl phosphate, xylyl phosphate, ethyl phosphate Phenyl, Li Aromatic phosphates such as cumenyl phosphate, propylphenyl phosphate, butylphenyl phosphate, heptylphenyl phosphate, octylphenyl phosphate, nonylphenyl phosphate, and alkali metal salts thereof, octyl phosphate, 2-ethylhexyl phosphate , Isooctyl phosphate, isononyl phosphate, isodecyl phosphate, isoundecyl phosphate, isododecyl phosphate, isohexadecyl phosphate, isooctadecyl phosphate, isoeicosyl phosphate, and alkali metal salts thereof, alkylsulfonic acid Esters and alkali metal salts thereof, fluorine-containing alkyl sulfates and alkali metal salts thereof, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, butyl stearate, oleic acid, linoleic acid, linolenic acid, Eleiji Monobasic fatty acids that may contain or be branched, such as acids and erucic acids, and their metal salts, or butyl stearate, octyl stearate, amyl stearate, isooctyl stearate Monobasic, which may contain or be branched, containing an unsaturated bond having 10 to 24 carbon atoms, such as octyl myristate, butyl laurate, butoxyethyl stearate, anhydrosorbitan monostearate, anhydrosorbitan tristearate Fatty acid and 1-6 hexahydric alcohol which may contain or be branched including an unsaturated bond having 2 to 22 carbon atoms, alkoxy alcohol or alkylene oxide which may contain or be branched an unsaturated bond having 12 to 22 carbon atoms Mono-fatty acid ester comprising any one of polymer monoalkyl ethers Di-fatty acid esters or polyvalent fatty acid esters, fatty acid amides having 2 to 22 carbon atoms, and aliphatic amines having 8 to 22 carbon atoms can be used. In addition to the above hydrocarbon groups, alkyl groups, aryl groups, and aralkyl groups substituted with nitro groups and groups other than hydrocarbon groups such as halogen-containing hydrocarbons such as F, Cl, Br, CF 3 , CCl 3 , and CBr 3 You may have something.

また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウム又はスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸又はリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。   In addition, nonionic surfactants such as alkylene oxide, glycerin, glycidol, and alkylphenol ethylene oxide adducts, cyclic amines, ester amides, quaternary ammonium salts, hydantoin derivatives, heterocyclics, phosphonium or sulfoniums, etc. Amphoteric interfaces such as cationic surfactants, anionic surfactants containing acidic groups such as carboxylic acid, sulfonic acid, and sulfate ester groups, amino acids, aminosulfonic acids, sulfuric or phosphate esters of aminoalcohols, and alkylbetaines An activator or the like can also be used. These surfactants are described in detail in “Surfactant Handbook” (published by Sangyo Tosho Co., Ltd.).

上記潤滑剤、帯電防止剤等は必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30質量%以下が好ましく、さらに好ましくは10質量%以下である。   The above-mentioned lubricant, antistatic agent and the like are not necessarily pure and may contain impurities such as isomers, unreacted materials, side reaction products, decomposition products, oxides, etc. in addition to the main components. These impurities are preferably 30% by mass or less, more preferably 10% by mass or less.

これらの添加物の具体例としては、例えば、日本油脂社製:NAA−102、ヒマシ油硬化脂肪酸、NAA−42、カチオンSA、ナイミーンL−201、ノニオンE−208、アノンBF、アノンLG、竹本油脂社製:FAL−205、FAL−123、新日本理化社製:エヌジエルブOL、信越化学社製:TA−3、ライオンアーマー社製:アーマイドP、ライオン社製:デュオミンTDO、日清製油社製:BA−41G、三洋化成社製:プロフアン2012E、ニューポールPE61、イオネットMS−400等が挙げられる。   Specific examples of these additives include, for example, NAF-102, castor oil hardened fatty acid, NAA-42, cation SA, Naimine L-201, Nonion E-208, Anon BF, Anon LG, Takemoto, manufactured by NOF Corporation. Oil and fat: FAL-205, FAL-123, Shin Nippon Chemical Co., Ltd .: NS : BA-41G, Sanyo Kasei Co., Ltd .: Profan 2012E, New Pole PE61, Ionette MS-400 and the like.

また、本発明における磁性層には、必要に応じてカーボンブラックを添加することができる。磁性層で使用可能なカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を挙げることができる。比表面積は5〜500m2/g、DBP吸油量は10〜400ml/100g、粒子径は5〜300mμ、pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。 In addition, carbon black can be added to the magnetic layer in the present invention as necessary. Examples of carbon black that can be used in the magnetic layer include rubber furnace, rubber thermal, color black, and acetylene black. Specific surface area is 5 to 500 m 2 / g, DBP oil absorption is 10 to 400 ml / 100 g, particle size is 5 to 300 mμ, pH is 2 to 10, moisture content is 0.1 to 10%, tap density is 0.1 to 1 g / ml is preferred.

本発明に用いられるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、905、800、700、VULCAN XC−72、旭カーボン社製#80、#60、#55、#50、#35、三菱化成工業社製#2400B、#2300、#900、#1000、#30、#40、#10B、コロンビアンカーボン社製CONDUCTEX SC、RAVEN150、50、40、15、RAVEN−MT−P、日本EC社製ケッチェンブラックECなどが挙げられる。カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用したりしてもかまわない。また、カーボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは単独又は組み合せで使用することができる。カーボンブラックを使用する場合、磁性体の質量に対して0.1〜30質量%で用いることが好ましい。カーボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカーボンブラックにより異なる。したがって本発明で使用されるこれらのカーボンブラックは、磁性層及び非磁性層でその種類、量、組み合せを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性を基に目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。本発明の磁性層で使用できるカーボンブラックは、例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。   Specific examples of carbon black used in the present invention include Cabot's BLACKPEARLS 2000, 1300, 1000, 900, 905, 800, 700, VULCAN XC-72, Asahi Carbon Co., Ltd. # 80, # 60, # 55. , # 50, # 35, Mitsubishi Chemical Industries # 2400B, # 2300, # 900, # 1000, # 30, # 40, # 10B, Colombian Carbon Corporation CONDUCTEX SC, RAVEN150, 50, 40, 15, RAVEN -MT-P, Ketchen Black EC manufactured by Japan EC Co., etc. Carbon black may be surface-treated with a dispersant, or may be used after being grafted with a resin, or may be obtained by graphitizing a part of the surface. Carbon black may be dispersed with a binder in advance before being added to the magnetic coating. These carbon blacks can be used alone or in combination. When using carbon black, it is preferable to use 0.1-30 mass% with respect to the mass of a magnetic body. Carbon black functions to prevent the magnetic layer from being charged, reduce the coefficient of friction, impart light-shielding properties, and improve the film strength. These differ depending on the carbon black used. Therefore, these carbon blacks used in the present invention have different types, amounts, and combinations in the magnetic layer and the nonmagnetic layer, and are based on the above-mentioned characteristics such as particle size, oil absorption, conductivity, pH, etc. Of course, it is possible to use them properly according to the purpose, but rather they should be optimized in each layer. For the carbon black that can be used in the magnetic layer of the present invention, for example, “Carbon Black Handbook” edited by Carbon Black Association can be referred to.

本発明で用いられる有機溶剤は公知のものが使用できる。本発明で用いられる有機溶媒は、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン、等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノールなどのアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサンなどのグリコールエーテル系、ベンゼン、トルエン、キシレン、クレゾール、クロルベンゼンなどの芳香族炭化水素類、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロルヒドリン、ジクロルベンゼン等の塩素化炭化水素類、N,N−ジメチルホルムアミド、ヘキサン等を使用することができる。   Known organic solvents can be used in the present invention. The organic solvent used in the present invention is an arbitrary ratio of ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, tetrahydrofuran, methanol, ethanol, propanol, butanol, isobutyl alcohol, isopropyl alcohol, methyl Alcohols such as cyclohexanol, esters such as methyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate, ethyl lactate, glycol acetate, glycol ethers such as glycol dimethyl ether, glycol monoethyl ether, dioxane, benzene, toluene, xylene, Aromatic hydrocarbons such as cresol and chlorobenzene, methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, ethyl Nkuroruhidorin, chlorinated hydrocarbons such as dichlorobenzene, N, N- dimethylformamide, may be used hexane.

これら有機溶媒は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物、水分等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。本発明で用いる有機溶媒は磁性層と非磁性層でその種類は同じであることが好ましい。その添加量は変えてもかまわない。非磁性層に表面張力の高い溶媒(シクロヘキサノン、ジオキサンなど)を用い塗布の安定性を上げる、具体的には上層溶剤組成の算術平均値が非磁性層溶剤組成の算術平均値を下回らないことが肝要である。分散性を向上させるためにはある程度極性が強い方が好ましく、溶剤組成の内、誘電率が15以上の溶剤が50%以上含まれることが好ましい。また、溶解パラメータは8〜11であることが好ましい。   These organic solvents are not necessarily 100% pure, and may contain impurities such as isomers, unreacted materials, side reaction products, decomposition products, oxides, and moisture in addition to the main components. These impurities are preferably 30% or less, more preferably 10% or less. The organic solvent used in the present invention is preferably the same in the magnetic layer and the nonmagnetic layer. The amount added may be changed. Use non-magnetic layers with high surface tension solvents (cyclohexanone, dioxane, etc.) to increase coating stability. Specifically, the arithmetic average value of the upper layer solvent composition may not fall below the arithmetic average value of the nonmagnetic layer solvent composition. It is essential. In order to improve dispersibility, it is preferable that the polarity is somewhat strong, and it is preferable that 50% or more of a solvent having a dielectric constant of 15 or more is included in the solvent composition. Moreover, it is preferable that a solubility parameter is 8-11.

本発明で使用されるこれらの分散剤、潤滑剤、界面活性剤は、磁性層、さらに後述する非磁性層でその種類、量を必要に応じて使い分けることができる。例えば、無論ここに示した例のみに限られるものではないが、分散剤は極性基で吸着又は結合する性質を有しており、磁性層では主に強磁性金属粉末の表面に、また非磁性層では主に非磁性粉末の表面に前記の極性基で吸着又は結合し、例えば、一度吸着した有機リン化合物は、金属又は金属化合物等の表面から脱着し難いと推察される。したがって、本発明の強磁性金属粉末表面又は非磁性粉末表面は、アルキル基、芳香族基等で被覆されたような状態になるので、該強磁性金属粉末又は非磁性粉末の結合剤樹脂成分に対する親和性が向上し、さらに強磁性金属粉末あるいは非磁性粉末の分散安定性も改善される。また、潤滑剤としては遊離の状態で存在するため非磁性層、磁性層で融点の異なる脂肪酸を用い、表面へのにじみ出しを制御する、沸点や極性の異なるエステル類を用い表面へのにじみ出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を非磁性層で多くして潤滑効果を向上させるなどが考えられる。また本発明で用いられる添加剤のすべて又はその一部は、磁性層又は非磁性層用の塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。   These dispersants, lubricants, and surfactants used in the present invention can be properly used in the magnetic layer and further in the nonmagnetic layer described later as needed. For example, of course, the dispersant is not limited to the example shown here, but the dispersant has a property of adsorbing or binding with a polar group, and in the magnetic layer, mainly on the surface of the ferromagnetic metal powder and nonmagnetic. In the layer, it is presumed that the organic phosphorus compound adsorbed or bonded mainly to the surface of the non-magnetic powder with the polar group, for example, is difficult to desorb from the surface of the metal or metal compound. Accordingly, the surface of the ferromagnetic metal powder or the nonmagnetic powder of the present invention is in a state of being coated with an alkyl group, an aromatic group, etc., so that the binder resin component of the ferromagnetic metal powder or nonmagnetic powder is used. The affinity is improved and the dispersion stability of the ferromagnetic metal powder or nonmagnetic powder is also improved. In addition, since the lubricant exists in a free state, fatty acids with different melting points are used in the nonmagnetic layer and magnetic layer to control the bleeding to the surface, and leaching to the surface using esters with different boiling points and polarities. It is conceivable to improve the coating stability by controlling the amount of the surfactant, to improve the lubrication effect by increasing the additive amount of the lubricant in the nonmagnetic layer. All or part of the additives used in the present invention may be added in any step during the production of the coating solution for the magnetic layer or nonmagnetic layer. For example, when mixing with a ferromagnetic powder before the kneading step, when adding at a kneading step with a ferromagnetic powder, a binder and a solvent, when adding at a dispersing step, when adding after dispersing, when adding just before coating, etc. There is.

[非磁性層]
次に非磁性層に関する詳細な内容について説明する。本発明の磁気記録媒体は、支持体上に結合剤及び非磁性粉末を含む非磁性層を有することができる。非磁性層に使用できる非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。
[Nonmagnetic layer]
Next, detailed contents regarding the nonmagnetic layer will be described. The magnetic recording medium of the present invention can have a nonmagnetic layer containing a binder and a nonmagnetic powder on a support. The nonmagnetic powder that can be used in the nonmagnetic layer may be an inorganic substance or an organic substance. Carbon black or the like can also be used. Examples of the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides.

具体的には二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO2、SiO2、Cr23、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、2硫化モリブデン、酸化銅、MgCO3、CaCO3、BaCO3、SrCO3、BaSO4、炭化珪素、炭化チタンなどが単独又は2種類以上を組み合わせて使用される。好ましいのは、α−酸化鉄、酸化チタンである。 Specifically, titanium oxide such as titanium dioxide, cerium oxide, tin oxide, tungsten oxide, ZnO, ZrO 2 , SiO 2 , Cr 2 O 3 , α-alumina, β-alumina having an α conversion of 90 to 100%, γ-alumina, α-iron oxide, goethite, corundum, silicon nitride, titanium carbide, magnesium oxide, boron nitride, molybdenum disulfide, copper oxide, MgCO 3 , CaCO 3 , BaCO 3 , SrCO 3 , BaSO 4 , silicon carbide Titanium carbide or the like is used alone or in combination of two or more. Preferable are α-iron oxide and titanium oxide.

非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。非磁性粉末の結晶子サイズは、4nm〜1μmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜1μmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。これら非磁性粉末の平均粒径は、5nm〜2μmが好ましいが、必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。5nm〜2μmの範囲であれば、分散も良好で、かつ好適な表面粗さを有するため好ましい。   The shape of the nonmagnetic powder may be any of acicular, spherical, polyhedral and plate shapes. The crystallite size of the nonmagnetic powder is preferably 4 nm to 1 μm, and more preferably 40 to 100 nm. A crystallite size in the range of 4 nm to 1 μm is preferred because it does not become difficult to disperse and has a suitable surface roughness. The average particle size of these non-magnetic powders is preferably 5 nm to 2 μm. However, if necessary, non-magnetic powders having different average particle sizes may be combined, or even a single non-magnetic powder may have a wide particle size distribution. It can also have an effect. The average particle size of the particularly preferred nonmagnetic powder is 10 to 200 nm. The range of 5 nm to 2 μm is preferable because the dispersion is good and the surface roughness is suitable.

非磁性粉末の比表面積は、1〜100m2/gであり、好ましくは5〜70m2/gであり、さらに好ましくは10〜65m2/gである。比表面積が1〜100m2/gの範囲内にあれば、好適な表面粗さを有し、かつ、所望の結合剤量で分散できるため好ましい。ジブチルフタレート(DBP)を用いた吸油量は、5〜100ml/100g、好ましくは10〜80ml/100g、さらに好ましくは20〜60ml/100gである。比重は1〜12、好ましくは3〜6である。タップ密度は0.05〜2g/ml、好ましくは0.2〜1.5g/mlである。タップ密度が0.05〜2g/mlの範囲であれば、飛散する粒子が少なく操作が容易であり、また装置にも固着しにくくなる傾向がある。非磁性粉末のpHは2〜11であることが好ましいが、pHは6〜9の間が特に好ましい。pHが2〜11の範囲にあれば、高温、高湿下又は脂肪酸の遊離により摩擦係数が大きくなることはない。非磁性粉末の含水率は、0.1〜5質量%、好ましくは0.2〜3質量%、さらに好ましくは0.3〜1.5質量%である。含水量が0.1〜5質量%の範囲であれば、分散も良好で、分散後の塗料粘度も安定するため好ましい。強熱減量は、20質量%以下であることが好ましく、強熱減量が小さいものが好ましい。 The specific surface area of the nonmagnetic powder is 1 to 100 m 2 / g, preferably 5 to 70 m 2 / g, and more preferably 10 to 65 m 2 / g. A specific surface area in the range of 1 to 100 m 2 / g is preferred because it has a suitable surface roughness and can be dispersed with a desired amount of binder. The oil absorption using dibutyl phthalate (DBP) is 5 to 100 ml / 100 g, preferably 10 to 80 ml / 100 g, and more preferably 20 to 60 ml / 100 g. The specific gravity is 1 to 12, preferably 3 to 6. The tap density is 0.05 to 2 g / ml, preferably 0.2 to 1.5 g / ml. When the tap density is in the range of 0.05 to 2 g / ml, there are few particles to be scattered, the operation is easy, and there is a tendency that it is difficult to adhere to the apparatus. The pH of the nonmagnetic powder is preferably 2 to 11, but is particularly preferably between 6 and 9. When the pH is in the range of 2 to 11, the friction coefficient does not increase due to high temperature, high humidity, or liberation of fatty acids. The moisture content of the nonmagnetic powder is 0.1 to 5% by mass, preferably 0.2 to 3% by mass, and more preferably 0.3 to 1.5% by mass. A water content in the range of 0.1 to 5% by mass is preferable because the dispersion is good and the viscosity of the paint after dispersion is stable. The ignition loss is preferably 20% by mass or less, and the ignition loss is preferably small.

また、非磁性粉末が無機粉体である場合には、モース硬度は4〜10のものが好ましい。モース硬度が4〜10の範囲であれば耐久性を確保することができる。非磁性粉末のステアリン酸吸着量は、1〜20μmol/m2であり、さらに好ましくは2〜15μmol/m2である。非磁性粉末の25℃での水への湿潤熱は、200〜600erg/cm2(200〜600mJ/m2)の範囲にあることが好ましい。また、この湿潤熱の範囲にある溶媒を使用することができる。100〜400℃での表面の水分子の量は1〜10個/100Åが適当である。水中での等電点のpHは、3〜9の間にあることが好ましい。これらの非磁性粉末の表面には表面処理が施されることによりAl23、SiO2、TiO2、ZrO2、SnO2、Sb23、ZnOが存在することが好ましい。特に分散性に好ましいのはAl23、SiO2、TiO2、ZrO2であるが、さらに好ましいのはAl23、SiO2、ZrO2である。これらは組み合わせて使用してもよいし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いてもよいし、先ずアルミナで処理した後にその表層をシリカで処理する方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。 When the nonmagnetic powder is an inorganic powder, the Mohs hardness is preferably 4-10. If the Mohs hardness is in the range of 4 to 10, durability can be ensured. The nonmagnetic powder has a stearic acid adsorption amount of 1 to 20 μmol / m 2 , more preferably 2 to 15 μmol / m 2 . The heat of wetting of the nonmagnetic powder into water at 25 ° C. is preferably in the range of 200 to 600 erg / cm 2 (200 to 600 mJ / m 2 ). Moreover, the solvent which exists in the range of this heat of wetting can be used. The amount of water molecules on the surface at 100 to 400 ° C. is suitably 1 to 10 / 100Å. The pH of the isoelectric point in water is preferably between 3 and 9. It is preferable that Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , SnO 2 , Sb 2 O 3 and ZnO are present on the surface of these nonmagnetic powders by surface treatment. Particularly preferred for dispersibility are Al 2 O 3 , SiO 2 , TiO 2 , and ZrO 2 , but more preferred are Al 2 O 3 , SiO 2 , and ZrO 2 . These may be used in combination or may be used alone. Further, a surface-treated layer co-precipitated according to the purpose may be used, or a method of treating the surface layer with silica after first treating with alumina, or vice versa may be employed. The surface treatment layer may be a porous layer depending on the purpose, but it is generally preferable that the surface treatment layer is homogeneous and dense.

本発明の非磁性層に用いられる非磁性粉末の具体的な例としては、例えば、昭和電工製ナノタイト、住友化学製HIT−100、ZA−G1、戸田工業社製DPN−250、DPN−250BX、DPN−245、DPN−270BX、DPB−550BX、DPN−550RX、石原産業製酸化チタンTTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、MJ−7、α−酸化鉄E270、E271、E300、チタン工業製STT−4D、STT−30D、STT−30、STT−65C、テイカ製MT−100S、MT−100T、MT−150W、MT−500B、T−600B、T−100F、T−500HDなどが挙げられる。堺化学製FINEX−25、BF−1、BF−10、BF−20、ST−M、同和鉱業製DEFIC−Y、DEFIC−R、日本アエロジル製AS2BM、TiO2P25、宇部興産製100A、500A、チタン工業製Y−LOP及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。   Specific examples of the non-magnetic powder used in the non-magnetic layer of the present invention include, for example, Showa Denko Nanotite, Sumitomo Chemical HIT-100, ZA-G1, Toda Kogyo DPN-250, DPN-250BX, DPN-245, DPN-270BX, DPB-550BX, DPN-550RX, Ishihara Sangyo Titanium oxide TTO-51B, TTO-55A, TTO-55B, TTO-55C, TTO-55S, TTO-55D, SN-100, MJ -7, α-iron oxide E270, E271, E300, STT-4D, STT-30D, STT-30, STT-65C manufactured by Titanium Industry, MT-100S, MT-100T, MT-150W, MT-500B manufactured by Teika T-600B, T-100F, T-500HD, etc. are mentioned. FINEX-25, BF-1, BF-10, BF-20, ST-M, Dowa Mining DEFIC-Y, DEFIC-R, Nippon Aerosil AS2BM, TiO2P25, Ube Industries 100A, 500A, Titanium Industry Y-LOP manufactured and what baked it are mentioned. Particularly preferred nonmagnetic powders are titanium dioxide and α-iron oxide.

非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のマイクロビッカース硬度を得ることができる。非磁性層のマイクロビッカース硬度は、通常25〜60kg/mm2(245〜588MPa)、好ましくはヘッド当りを調整するために、30〜50kg/mm2(294〜490MPa)であり、薄膜硬度計(日本電気製HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。 Carbon black can be mixed in the nonmagnetic layer together with nonmagnetic powder to lower the surface electrical resistance, reduce the light transmittance, and obtain a desired micro Vickers hardness. The micro-Vickers hardness of the nonmagnetic layer is generally 25~60kg / mm 2 (245~588MPa), preferably in order to adjust the head contact, a 30~50kg / mm 2 (294~490MPa), thin film hardness meter ( Using a HMA-400 manufactured by NEC, measurement can be performed using a diamond triangular pyramid needle having a ridge angle of 80 degrees and a tip radius of 0.1 μm at the tip of the indenter. It is standardized that the light transmittance is generally 3% or less for absorption of infrared rays having a wavelength of about 900 nm, for example, 0.8% or less for a VHS magnetic tape. For this purpose, rubber furnace, rubber thermal, color black, acetylene black and the like can be used.

本発明の非磁性層に用いられるカーボンブラックの比表面積は100〜500m2/g、好ましくは150〜400m2/g、DBP吸油量は20〜400ml/100g、好ましくは30〜200ml/100gである。カーボンブラックの粒子径は5〜80nm、好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。 Non specific surface area of the carbon black used in the magnetic layer is 100 to 500 m 2 / g, preferably 150~400m 2 / g, DBP oil absorption of the present invention are 20 to 400 ml / 100 g, preferably 30 to 200 ml / 100 g . The particle size of carbon black is 5 to 80 nm, preferably 10 to 50 nm, and more preferably 10 to 40 nm. Carbon black preferably has a pH of 2 to 10, a water content of 0.1 to 10%, and a tap density of 0.1 to 1 g / ml.

本発明の非磁性層に用いることができるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、800、880、700、VULCAN XC−72、三菱化成工業社製#3050B、#3150B、#3250B、#3750B、#3950B、#950、#650B、#970B、#850B、MA−600、コロンビアカーボン社製CONDUCTEX SC、RAVEN8800、8000、7000、5750、5250、3500、2100、2000、1800、1500、1255、1250、アクゾー社製ケッチェンブラックECなどが挙げられる。   Specific examples of carbon black that can be used in the non-magnetic layer of the present invention include BLACKPEARLS 2000, 1300, 1000, 900, 800, 880, 700, VULCAN XC-72, manufactured by Mitsubishi Kasei Kogyo Co., Ltd. 3050B, # 3150B, # 3250B, # 3750B, # 3950B, # 950, # 650B, # 970B, # 850B, MA-600, Columbia Carbon's CONDUCTEX SC, RAVEN8800, 8000, 7000, 5750, 5250, 3500, 2100 2000, 1800, 1500, 1255, 1250, Ketjen Black EC manufactured by Akzo Corporation, and the like.

また、カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記無機粉末に対して50質量%を越えない範囲、非磁性層総質量の40%を越えない範囲で使用できる。これらのカーボンブラックは単独、または組み合せで使用することができる。本発明の非磁性層で使用できるカーボンブラックは例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。   Carbon black may be surface-treated with a dispersant, or may be grafted with a resin, or may be obtained by graphitizing a part of the surface. Moreover, before adding carbon black to a coating material, you may disperse | distribute with a binder beforehand. These carbon blacks can be used in a range not exceeding 50% by mass with respect to the inorganic powder and in a range not exceeding 40% of the total mass of the nonmagnetic layer. These carbon blacks can be used alone or in combination. The carbon black that can be used in the nonmagnetic layer of the present invention can be referred to, for example, “Carbon Black Handbook” edited by Carbon Black Association.

また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末としては、例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は、特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。   Further, an organic powder can be added to the nonmagnetic layer according to the purpose. Examples of such organic powder include acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, and phthalocyanine pigment, but polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin, and the like. Resin powder and polyfluorinated ethylene resin can also be used. As the production method, those described in JP-A Nos. 62-18564 and 60-255827 can be used.

非磁性層の結合剤樹脂、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤樹脂量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。   As the binder resin, lubricant, dispersant, additive, solvent, dispersion method and the like of the nonmagnetic layer, those of the magnetic layer can be applied. In particular, with respect to the binder resin amount, type, additive, and dispersant addition amount and type, known techniques relating to the magnetic layer can be applied.

また、本発明の磁気記録媒体は、下塗り層を設けてもよい。下塗り層を設けることによって支持体と磁性層又は非磁性層との接着力を向上させることができる。下塗り層としては、溶剤への可溶性のポリエステル樹脂が使用される。   The magnetic recording medium of the present invention may be provided with an undercoat layer. By providing the undercoat layer, the adhesive force between the support and the magnetic layer or the nonmagnetic layer can be improved. As the undercoat layer, a polyester resin that is soluble in a solvent is used.

[層構成]
本発明で用いられる磁気記録媒体の厚み構成は、支持体の好ましい厚みが3〜80μmである。また、支持体と非磁性層又は磁性層の間に下塗り層を設けた場合、下塗り層の厚みは、0.01〜0.8μm、好ましくは0.02〜0.6μmである。
[Layer structure]
In the thickness structure of the magnetic recording medium used in the present invention, the preferable thickness of the support is 3 to 80 μm. When an undercoat layer is provided between the support and the nonmagnetic layer or the magnetic layer, the thickness of the undercoat layer is 0.01 to 0.8 μm, preferably 0.02 to 0.6 μm.

磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には10〜150nmであり、好ましくは20〜120nmであり、さらに好ましくは30〜100nmであり、とくに好ましくは30〜80nmである。また、磁性層の厚み変動率は±50%以内が好ましく、さらに好ましくは±40%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。   The thickness of the magnetic layer is optimized depending on the saturation magnetization amount, head gap length, and recording signal band of the magnetic head to be used, but is generally 10 to 150 nm, preferably 20 to 120 nm, and more preferably. Is 30 to 100 nm, particularly preferably 30 to 80 nm. Further, the thickness variation rate of the magnetic layer is preferably within ± 50%, and more preferably within ± 40%. There may be at least one magnetic layer, and the magnetic layer may be separated into two or more layers having different magnetic characteristics, and a configuration related to a known multilayer magnetic layer can be applied.

本発明の非磁性層の厚みは、0.5〜2.0μmであり、0.8〜1.5μmであることが好ましく、0.8〜1.2μmであることが更に好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT以下又は抗磁力が7.96kA/m(100Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。   The thickness of the nonmagnetic layer of the present invention is 0.5 to 2.0 μm, preferably 0.8 to 1.5 μm, and more preferably 0.8 to 1.2 μm. The non-magnetic layer of the magnetic recording medium of the present invention exhibits its effect if it is substantially non-magnetic. For example, even if it contains a small amount of magnetic material as an impurity or intentionally, This shows the effect of the invention and can be regarded as substantially the same configuration as the magnetic recording medium of the invention. Note that “substantially the same” means that the residual magnetic flux density of the nonmagnetic layer is 10 mT or less or the coercive force is 7.96 kA / m (100 Oe) or less, and preferably has no residual magnetic flux density and coercive force. Means.

[製造方法]
本発明で用いられる磁気記録媒体の磁性層塗布液を製造する工程は、少なくとも混練工程、分散工程、及びこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性金属粉末、非磁性粉末、結合剤、カーボンブラック、研磨材、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初又は途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニーダを用いる場合は磁性粉末又は非磁性粉末と結合剤のすべて又はその一部(但し、全結合剤の30%以上が好ましい)及び磁性体100質量部に対し15〜500質量部の範囲で混練処理される。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用液及び非磁性層用液を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
[Production method]
The step of producing the magnetic layer coating liquid for the magnetic recording medium used in the present invention comprises at least a kneading step, a dispersing step, and a mixing step provided before and after these steps. Each process may be divided into two or more stages. All raw materials such as ferromagnetic metal powder, non-magnetic powder, binder, carbon black, abrasive, antistatic agent, lubricant, and solvent used in the present invention may be added at the beginning or middle of any step. In addition, individual raw materials may be added in two or more steps. For example, polyurethane may be divided and added in a kneading step, a dispersing step, and a mixing step for adjusting the viscosity after dispersion. In order to achieve the object of the present invention, a conventional known manufacturing technique can be used as a partial process. In the kneading step, it is preferable to use a kneading force such as an open kneader, a continuous kneader, a pressure kneader, or an extruder. When using a kneader, magnetic powder or non-magnetic powder and all or a part of the binder (however, preferably 30% or more of the total binder) and 100 parts by mass of the magnetic material are kneaded in the range of 15 to 500 parts by mass. It is processed. Details of these kneading treatments are described in JP-A-1-106338 and JP-A-1-79274. Further, glass beads can be used to disperse the magnetic layer solution and the nonmagnetic layer solution. Such glass beads are preferably zirconia beads, titania beads, and steel beads, which are high specific gravity dispersion media. The particle diameter and filling rate of these dispersion media are optimized. A well-known thing can be used for a disperser.

本発明の磁気記録媒体の製造方法では、例えば、走行下にある支持体の表面に磁性塗布液を所定の膜厚となるようにして磁性層を塗布して形成する。ここで複数の磁性層塗布液を逐次又は同時に重層塗布してもよく、非磁性層塗布液と磁性層塗布液とを逐次又は同時に重層塗布してもよい。上記磁性塗布液又は非磁性層塗布液を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。   In the method for producing a magnetic recording medium of the present invention, for example, a magnetic layer is applied to the surface of a support under running so as to have a predetermined film thickness. Here, a plurality of magnetic layer coating solutions may be applied sequentially or simultaneously, and a nonmagnetic layer coating solution and a magnetic layer coating solution may be applied sequentially or simultaneously. The coating machine for applying the above magnetic coating solution or non-magnetic layer coating solution includes air doctor coat, blade coat, rod coat, extrusion coat, air knife coat, squeeze coat, impregnation coat, reverse roll coat, transfer roll coat, gravure coat Kiss coat, cast coat, spray coat, spin coat, etc. can be used. As for these, for example, “Latest Coating Technology” (May 31, 1983) issued by General Technology Center Co., Ltd. can be referred to.

磁性層塗布液の塗布層は、磁気テープの場合、磁性層塗布液の塗布層中に含まれる強磁性金属粉末にコバルト磁石やソレノイドを用いて長手方向に磁場配向処理を施す。ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、コバルト磁石を斜めに交互に配置すること、ソレノイドで交流磁場を印加するなど公知のランダム配向装置を用いることが好ましい。等方的な配向とは強磁性金属粉末の場合、一般的には面内2次元ランダムが好ましいが、垂直成分をもたせて3次元ランダムとすることもできる。また異極対向磁石など公知の方法を用い、垂直配向とすることで円周方向に等方的な磁気特性を付与することもできる。特に高密度記録を行う場合は垂直配向が好ましい。また、スピンコートを用いて円周配向することもできる。   In the case of a magnetic tape, the magnetic layer coating solution is subjected to magnetic field orientation treatment in the longitudinal direction using a cobalt magnet or a solenoid on the ferromagnetic metal powder contained in the magnetic layer coating solution. In the case of a disk, a sufficiently isotropic orientation may be obtained even without non-orientation without using an orientation device, but known random methods such as alternately arranging cobalt magnets obliquely and applying an alternating magnetic field with a solenoid. It is preferable to use an alignment device. In the case of a ferromagnetic metal powder, the isotropic orientation is generally preferably in-plane two-dimensional random, but can also be three-dimensional random with a vertical component. Further, isotropic magnetic characteristics can be imparted in the circumferential direction by using a well-known method such as a counter-polarized magnet and making it vertically oriented. In particular, when performing high density recording, vertical alignment is preferable. Moreover, circumferential orientation can also be achieved using spin coating.

乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できる様にすることが好ましく、塗布速度は20m/分〜1000m/分、乾燥風の温度は60℃以上が好ましい、また磁石ゾーンに入る前に適度の予備乾燥を行うこともできる。   It is preferable that the drying position of the coating film can be controlled by controlling the temperature, air volume, and coating speed of the drying air, the coating speed is preferably 20 m / min to 1000 m / min, and the temperature of the drying air is preferably 60 ° C. or higher. Also, moderate pre-drying can be performed before entering the magnet zone.

乾燥された後、通常、塗布層に表面平滑化処理が施される。表面平滑化処理には、例えばスーパーカレンダーロールなどが利用される。表面平滑化処理を行うことにより、乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の強磁性金属粉末の充填率が向上するので、電磁変換特性の高い磁気記録媒体を得ることができる。カレンダ処理ロールとしてはエポキシ、ポリイミド、ポリアミド、ポリアミドイミド等の耐熱性プラスチックロールを使用する。また金属ロールで処理することもできる。
本発明の磁気記録媒体は、表面の中心面平均粗さが、カットオフ値0.25mmにおいて0.1〜4nm、好ましくは1〜3nmの範囲という極めて優れた平滑性を有する表面であることが好ましい。その方法として、例えば上述したように特定の強磁性金属粉末と結合剤とを選んで形成した磁性層を上記カレンダ処理を施すことにより行われる。カレンダ処理条件としては、カレンダーロールの温度を60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cm(98〜490kN/m)の範囲であり、好ましくは200〜450kg/cm(196〜441kN/m)の範囲であり、特に好ましくは300〜400kg/cm(294〜392kN/m)の範囲の条件で作動させることによって行われることが好ましい。
After drying, the coating layer is usually subjected to a surface smoothing treatment. For the surface smoothing process, for example, a super calendar roll or the like is used. By performing the surface smoothing treatment, voids generated by the removal of the solvent during drying disappear and the filling rate of the ferromagnetic metal powder in the magnetic layer is improved, so that a magnetic recording medium having high electromagnetic conversion characteristics can be obtained. Can do. As the calendering roll, a heat-resistant plastic roll such as epoxy, polyimide, polyamide, polyamideimide or the like is used. Moreover, it can also process with a metal roll.
The magnetic recording medium of the present invention has a surface having extremely excellent smoothness with a center surface average roughness of 0.1 to 4 nm, preferably 1 to 3 nm at a cutoff value of 0.25 mm. preferable. As the method, for example, as described above, a magnetic layer formed by selecting a specific ferromagnetic metal powder and a binder is subjected to the calendar treatment. As calendering conditions, the temperature of the calendar roll is in the range of 60 to 100 ° C., preferably in the range of 70 to 100 ° C., particularly preferably in the range of 80 to 100 ° C., and the pressure is 100 to 500 kg / cm (98 to 490 kN). / M), preferably 200 to 450 kg / cm (196 to 441 kN / m), particularly preferably 300 to 400 kg / cm (294 to 392 kN / m). Is preferably carried out by

得られた磁気記録媒体は、裁断機などを使用して所望の大きさに裁断して使用することができる。裁断機としては、特に制限はないが、回転する上刃(雄刃)と下刃(雌刃)の組が複数設けられたものが好ましく、適宜、スリット速度、噛み合い深さ、上刃(雄刃)と下刃(雌刃)の周速比(上刃周速/下刃周速)、スリット刃の連続使用時間等が選定される。   The obtained magnetic recording medium can be cut into a desired size using a cutting machine or the like. The cutting machine is not particularly limited, but is preferably provided with a plurality of pairs of rotating upper blades (male blades) and lower blades (female blades). The slitting speed, the meshing depth, and the upper blade (male blade) are appropriately selected. The peripheral speed ratio (upper blade peripheral speed / lower blade peripheral speed) of the blade and the lower blade (female blade), the continuous use time of the slit blade, and the like are selected.

[物理特性]
本発明に用いられる磁気記録媒体の磁性層の飽和磁束密度は100〜300mTが好ましい。また磁性層の抗磁力(Hr)は、143.3〜318.4kA/m(1800〜4000Oe)が好ましく、159.2〜278.6kA/m(2000〜3500Oe)が更に好ましい。抗磁力の分布は狭い方が好ましく、SFD及びSFDrは0.6以下、さらに好ましくは0.2以下である。
[Physical properties]
The saturation magnetic flux density of the magnetic layer of the magnetic recording medium used in the present invention is preferably 100 to 300 mT. The coercive force (Hr) of the magnetic layer is preferably 143.3 to 318.4 kA / m (1800 to 4000 Oe), more preferably 159.2 to 278.6 kA / m (2000 to 3500 Oe). The coercive force distribution is preferably narrow, and SFD and SFDr are 0.6 or less, more preferably 0.2 or less.

本発明で用いられる磁気記録媒体のヘッドに対する摩擦係数は、温度−10〜40℃、湿度0〜95%の範囲において0.50以下であり、好ましくは0.3以下である。また、表面固有抵抗は、好ましくは磁性面104〜1012Ω/sq、帯電位は−500V〜+500V以内が好ましい。磁性層の0.5%伸びでの弾性率は、面内各方向で好ましくは0.98〜19.6GPa(100〜2000kg/mm2)、破断強度は、好ましくは98〜686MPa(10〜70kg/mm2)、磁気記録媒体の弾性率は、面内各方向で好ましくは0.98〜14.7GPa(100〜1500kg/mm2)、残留のびは、好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。 The friction coefficient with respect to the head of the magnetic recording medium used in the present invention is 0.50 or less, preferably 0.3 or less in the range of temperature -10 to 40 ° C. and humidity 0 to 95%. The surface resistivity is preferably 10 4 to 10 12 Ω / sq of the magnetic surface, and the charging position is preferably within −500 V to +500 V. The elastic modulus at 0.5% elongation of the magnetic layer is preferably 0.98 to 19.6 GPa (100 to 2000 kg / mm 2 ) in each in-plane direction, and the breaking strength is preferably 98 to 686 MPa (10 to 70 kg). / Mm 2 ), the elastic modulus of the magnetic recording medium is preferably 0.98 to 14.7 GPa (100 to 1500 kg / mm 2 ) in each in-plane direction, and the residual spread is preferably 0.5% or less, 100 ° C. The thermal shrinkage at any of the following temperatures is preferably 1% or less, more preferably 0.5% or less, and most preferably 0.1% or less.

磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失弾性率の極大点)は50〜180℃が好ましく、非磁性層のそれは0〜180℃が好ましい。損失弾性率は1×107〜8×108Pa(1×108〜8×109dyne/cm2)の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向において10%以内でほぼ等しいことが好ましい。 The glass transition temperature of the magnetic layer (maximum point of loss elastic modulus measured by dynamic viscoelasticity measured at 110 Hz) is preferably 50 to 180 ° C, and that of the nonmagnetic layer is preferably 0 to 180 ° C. The loss elastic modulus is preferably in the range of 1 × 10 7 to 8 × 10 8 Pa (1 × 10 8 to 8 × 10 9 dyne / cm 2 ), and the loss tangent is preferably 0.2 or less. If the loss tangent is too large, adhesion failure is likely to occur. These thermal characteristics and mechanical characteristics are preferably almost equal within 10% in each in-plane direction of the medium.

磁性層中に含まれる残留溶媒は好ましくは100mg/m2以下、さらに好ましくは10mg/m2以下である。塗布層が有する空隙率は非磁性層、磁性層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐久性は好ましいことが多い。 The residual solvent contained in the magnetic layer is preferably 100 mg / m 2 or less, more preferably 10 mg / m 2 or less. The porosity of the coating layer is preferably 30% by volume or less, more preferably 20% by volume or less for both the nonmagnetic layer and the magnetic layer. The porosity is preferably small in order to achieve high output, but it may be better to ensure a certain value depending on the purpose. For example, in the case of a disk medium in which repeated use is important, a larger void ratio is often preferable for running durability.

磁性層の最大高さSRmaxは、0.5μm以下、十点平均粗さSRzは0.3μm以下、中心面山高さSRpは0.3μm以下、中心面谷深さSRvは0.3μm以下、中心面面積率SSrは20〜80%、平均波長Sλaは5〜300μmが好ましい。これらは支持体のフィラーによる表面性のコントロールやカレンダ処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。 The maximum height SR max of the magnetic layer is 0.5 μm or less, the ten-point average roughness SRz is 0.3 μm or less, the center plane peak height SRp is 0.3 μm or less, and the center plane valley depth SRv is 0.3 μm or less. The center surface area ratio SSr is preferably 20 to 80%, and the average wavelength Sλa is preferably 5 to 300 μm. These can be easily controlled by controlling the surface properties with the filler of the support or the surface of the calendered roll. The curl is preferably within ± 3 mm.

本発明の磁気記録媒体として非磁性層と磁性層で構成した場合、目的に応じ非磁性層と磁性層でこれらの物理特性を変えることができる。例えば、磁性層の弾性率を高くし走行耐久性を向上させると同時に非磁性層の弾性率を磁性層より低くして磁気記録媒体のヘッドへの当りを良くすることができる。   When the magnetic recording medium of the present invention is composed of a nonmagnetic layer and a magnetic layer, these physical characteristics can be changed between the nonmagnetic layer and the magnetic layer according to the purpose. For example, the elastic modulus of the magnetic layer can be increased to improve running durability, and at the same time, the elastic modulus of the nonmagnetic layer can be made lower than that of the magnetic layer to improve the contact of the magnetic recording medium with the head.

前記のようにして得られた磁気記録媒体は、本発明に従い、ATR−FT−IRを測定することにより、例えば磁性層の強磁性金属粉末と反応して形成された脂肪酸金属塩を分析することができる。前述のように脂肪酸のカルシウム塩のような脂肪酸金属塩は、磁性層表面に突起を形成してスペーシングにより電磁変換特性を低下し、また走行によりヘッドに付着し、あるいはドロップアウトやエラーレート劣化の原因となり、走行耐久性、電磁変換特性を悪化させる。したがって本発明では、例えば、急激に脂肪酸金属塩が生成されるような条件を強制的にに作り出し、そこに得られた磁気記録媒体をおいた後、脂肪酸金属塩の量を分析し、脂肪酸金属塩の生成が一定値を超えた場合は、磁性層の構成成分の種類および量を適切に再設定したり、あるいはワイピング工程により脂肪酸金属塩を拭い去ることにより、走行耐久性や電磁変換特性の悪化を未然に防止することができる。
従って、本発明の磁気記録媒体の製造方法において、塗布層表面の強磁性粉末に吸着または反応している有機化合物を分析する工程は、磁気記録媒体の製造工程のいずれの工程後で行ってよいが、少なくとも最終段階後でのATR−FT−IR測定が含まれることが好ましい。該最終段階でのATR−FT−IR測定において、設定された脂肪酸金属塩量を超えている場合には、製品出荷から除外されると共に各製造工程における磁気記録媒体の組成及び処理条件が見直されることにより常に一定の品質の磁気記録媒体を製造することができる。
なお、ATR−FT−IRにより求めた磁性層表面における脂肪酸金属塩の量の指標は、0.01以下、好ましくは0.007以下、さらに好ましくは0.004以下である。
本発明において、上記脂肪酸金属塩量を制御する手段としては、例えば、以下の手段を挙げることができるが、これらに限定されるものではない。
(1)強磁性金属粉末に含まれるY等の塩形成原子の使用量を低減すること。
(2)塩化ビニル系樹脂を低減し、脂肪酸エステルなどからの加水分解による脂肪酸の生成を抑えること。また、加水分解性脂肪酸エステルの使用量を低減すること。
(3)脂肪酸の使用量を低減すること。
(4)フェニルホスホン酸などの強磁性粉末への表面処理剤を使用すること。
(5)ワイピング等の磁気テープ表面処理により、テープ表面を拭い去ること。
According to the present invention, the magnetic recording medium obtained as described above is analyzed for ATR-FT-IR, for example, to analyze a fatty acid metal salt formed by reacting with a ferromagnetic metal powder of a magnetic layer. Can do. As mentioned above, fatty acid metal salts such as calcium salts of fatty acids form protrusions on the surface of the magnetic layer and degrade the electromagnetic conversion characteristics by spacing, and adhere to the head by running, or dropout and error rate degradation Cause deterioration of running durability and electromagnetic conversion characteristics. Therefore, in the present invention, for example, the conditions under which a fatty acid metal salt is rapidly generated are forcibly created, and after placing the obtained magnetic recording medium, the amount of the fatty acid metal salt is analyzed, and the fatty acid metal salt is analyzed. If the salt formation exceeds a certain value, the type and amount of components of the magnetic layer can be reset appropriately, or the fatty acid metal salt can be wiped off by the wiping process to improve running durability and electromagnetic conversion characteristics. Deterioration can be prevented in advance.
Therefore, in the method for producing a magnetic recording medium of the present invention, the step of analyzing the organic compound adsorbed or reacting with the ferromagnetic powder on the surface of the coating layer may be performed after any step of the step of producing the magnetic recording medium. However, it is preferred that an ATR-FT-IR measurement at least after the final stage is included. In the ATR-FT-IR measurement at the final stage, when the amount of fatty acid metal salt set is exceeded, it is excluded from product shipment and the composition and processing conditions of the magnetic recording medium in each manufacturing process are reviewed. Thus, a magnetic recording medium having a constant quality can always be manufactured.
The index of the amount of fatty acid metal salt on the magnetic layer surface determined by ATR-FT-IR is 0.01 or less, preferably 0.007 or less, more preferably 0.004 or less.
In the present invention, examples of means for controlling the amount of the fatty acid metal salt include, but are not limited to, the following means.
(1) To reduce the amount of salt-forming atoms such as Y contained in the ferromagnetic metal powder.
(2) Reduce vinyl chloride resin and suppress fatty acid generation from hydrolysis from fatty acid esters. Also, reduce the amount of hydrolyzable fatty acid ester used.
(3) To reduce the amount of fatty acid used.
(4) Use a surface treating agent for ferromagnetic powder such as phenylphosphonic acid.
(5) The tape surface is wiped off by a magnetic tape surface treatment such as wiping.

以下、本発明を実施例によって説明するが、本発明下記例に限定されるものではない。
なお実施例中の「部」の表示は「質量部」を示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to the following example.
In addition, the display of "part" in an Example shows "mass part".

(例1)
磁性層組成
強磁性金属粉末(表1記載)100部をオープンニーダーで10分間粉砕し、次いで
塩化ビニル樹脂(日本ゼオン社製MR−110) 10部
ポリウレタン(東洋紡社製UR−8300) 6部(固形分)
メチルエチルケトン/シクロヘキサノン=1/1 40部
を加えて60分間混練した。
次いで、
α−Al23(平均粒径0.2μm) 10部
カーボンブラック(平均粒径80nm) 2部
メチルエチルケトン/シクロヘキサノン=1/1 200部
を加えてサンドミルで120分間分散した。
さらに
ポリイソシアネート 4部(固形分)
(日本ポリウレタン製コロネート3041)
ステアリン酸 (表1記載)
脂肪酸エステル(表1記載) 1部
トルエン 50部
を加えて20分間攪拌混合した。
その後、1μmの平均孔径を有するフィルターを用いて濾過し、磁性塗料を調製した。
(Example 1)
Magnetic layer composition 100 parts of ferromagnetic metal powder (shown in Table 1) was pulverized with an open kneader for 10 minutes, then vinyl chloride resin (MR-110 manufactured by Nippon Zeon Co., Ltd.) 10 parts polyurethane (UR-8300 manufactured by Toyobo Co., Ltd.) 6 parts ( Solids)
40 parts of methyl ethyl ketone / cyclohexanone = 1/1 were added and kneaded for 60 minutes.
Then
α-Al 2 O 3 (average particle size 0.2 μm) 10 parts Carbon black (average particle size 80 nm) 2 parts Methyl ethyl ketone / cyclohexanone = 1/200 parts were added and dispersed in a sand mill for 120 minutes.
4 parts of polyisocyanate (solid content)
(Japan Polyurethane Coronate 3041)
Stearic acid (described in Table 1)
Fatty acid ester (described in Table 1) 1 part Toluene 50 parts was added and stirred and mixed for 20 minutes.
Then, it filtered using the filter which has an average hole diameter of 1 micrometer, and prepared the magnetic coating material.

非磁性層組成
下記の成分をそれぞれニーダーで混練したのち、サンドミルを用いて分散させた。得られた分散液にポリイソシアネート(日本ポリウレタン(株)製コロネートL)を3部加え、更にメチルエチルケトン、シクロヘキサノン混合溶液40部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用塗布液を調製した。
非磁性粉体 αFe23 ヘマタイト 80部
平均長軸長:0.15μm
BET法による比表面積:58m2/g
平均針状比:7.5
カーボンブラック(三菱カーボン(株)製) 20部
平均一次粒子径:16nm
DBP吸油量:80ml/100g
pH:8.0
BET法による比表面積:250m2/g
揮発分:1.5%
塩化ビニル系共重合体 12部
日本ゼオン製MR-110
ポリエステルポリウレタン樹脂 12部
東洋紡製UR−8200
ステアリン酸 2部
メチルエチルケトン 150部
シクロヘキサン 50部
トルエン 50部
Nonmagnetic layer composition The following components were each kneaded with a kneader and then dispersed using a sand mill. To the obtained dispersion, 3 parts of polyisocyanate (Coronate L manufactured by Nippon Polyurethane Co., Ltd.) is added, 40 parts of methyl ethyl ketone and cyclohexanone mixed solution are added, and the mixture is filtered using a filter having an average pore size of 1 μm, and a nonmagnetic layer A forming coating solution was prepared.
Nonmagnetic powder αFe 2 O 3 hematite 80 parts Average long axis length: 0.15μm
Specific surface area by BET method: 58m 2 / g
Average needle ratio: 7.5
Carbon black (Mitsubishi Carbon Co., Ltd.) 20 parts Average primary particle size: 16nm
DBP oil absorption: 80ml / 100g
pH: 8.0
Specific surface area by BET method: 250m 2 / g
Volatile content: 1.5%
12 parts of vinyl chloride copolymer MR-110 made by Nippon Zeon
Polyester polyurethane resin 12 parts Toyobo UR-8200
Stearic acid 2 parts Methyl ethyl ketone 150 parts Cyclohexane 50 parts Toluene 50 parts

得られた磁性塗料を乾燥後の厚さが0.1μmになるように、また非磁性塗料を乾燥後の厚さが1.5μmになるように、厚さ10μmのポリエチレンテレフタレート(PET)支持体の表面にエクストルージョン型塗布ヘッドを用いて塗布し、磁性塗料が未乾燥の状態で300mT(3000ガウス)の磁石で磁場配向を行ない、更に下記のバック液を乾燥後の厚さが0.5μmになるように塗布乾燥した。その後、金属ロールと耐熱性プラスチックロールの組み合せによる5段のカレンダー処理を(速度100m/min、線圧294kN/m(300kg/cm)、温度90℃)行った。
その後、1/2吋幅にスリットし、磁気テープを作製した。
Polyethylene terephthalate (PET) support having a thickness of 10 μm so that the thickness after drying of the obtained magnetic coating is 0.1 μm and the thickness after drying of the non-magnetic coating is 1.5 μm The surface is coated with an extrusion coating head, the magnetic coating is undried, magnetic field orientation is performed with a 300 mT (3000 gauss) magnet, and the following back solution is dried to a thickness of 0.5 μm. The coating was dried so that Thereafter, a five-step calendering process (speed 100 m / min, linear pressure 294 kN / m (300 kg / cm), temperature 90 ° C.) using a combination of a metal roll and a heat-resistant plastic roll was performed.
Thereafter, it was slit to a width of ½ mm to produce a magnetic tape.

(バック液組成)
カーボンブラック(粒径18nm) 100部
ニトロセルロース(旭化成社製HIG1/2) 60部
ポリウレタン(東洋紡社製UR−8300) 60部
ポリイソシアネート(日本ポリウレタン社製コロネートL) 20部
メチルエチルケトン 1000部
トルエン 1000部
(Back liquid composition)
Carbon black (particle size 18 nm) 100 parts Nitrocellulose (HIG1 / 2 manufactured by Asahi Kasei Co., Ltd.) 60 parts Polyurethane (UR-8300 manufactured by Toyobo Co., Ltd.) 60 parts Polyisocyanate (Coronate L manufactured by Nippon Polyurethane Co., Ltd.) 20 parts Methyl ethyl ketone 1000 parts Toluene 1000 parts

(例2〜10)
強磁性体金属粉末の種類、ステアリン酸の量、および高級脂肪酸エステルの種類を下記表1のように変更するか、例1または2の磁気テープの保存条件を下記表1のように別に設定し、脂肪酸金属塩の生成を促進したこと以外は、例1と同様にして、磁気テープを作製した。
(Examples 2 to 10)
Change the type of ferromagnetic metal powder, the amount of stearic acid, and the type of higher fatty acid ester as shown in Table 1 below, or set the storage conditions for the magnetic tape of Example 1 or 2 as shown in Table 1 below. A magnetic tape was produced in the same manner as in Example 1 except that the production of the fatty acid metal salt was promoted.

(例11)
作製後の例6のテープに、起毛タイプのポリエステル布を用いてワイピング加工を施した。
(Example 11)
The tape of Example 6 after production was subjected to wiping using a raised polyester cloth.

Figure 2006185487
Figure 2006185487

(磁性層表層に存在する脂肪酸金属塩の定量)
磁気テープ3cmをバイエル瓶に入れ、金属塩を形成していない未吸着の脂肪酸を除去するためにn−ヘキサンを10ml、誘導体化処理のためにジーエルサイエンス(株)製TMSI−H化剤を0.3mlを加え、60℃,1時間加熱し誘導体化反応を行った。反応した磁気テープを取り出し、エタノールによりよくすすぎ、対照試料を得た。この対照試料のATR−FT−IRを測定した。これとは別に、先と同じ磁気テープである試料のATR−FT−IRを測定した。カルボキシレートの吸収に対応する波数(1550cm-1)の吸光度と吸収のない1630cm-1の吸光度との差を求め、試料の吸光度とし、同様に対照試料の吸光度の差を求めて減じ、その値を脂肪酸金属塩の量の指標とした。また比較のために、誘導体化処理前後の磁性層表面をAESにより測定した。
(Quantification of fatty acid metal salts present on the surface of the magnetic layer)
Place 3 cm of magnetic tape in a Bayer bottle, 10 ml of n-hexane to remove unadsorbed fatty acids not forming metal salt, and 0 TMSI-H agent from GL Sciences for derivatization treatment. .3 ml was added, and derivatization reaction was performed by heating at 60 ° C. for 1 hour. The reacted magnetic tape was removed and rinsed well with ethanol to obtain a control sample. The ATR-FT-IR of this control sample was measured. Separately from this, ATR-FT-IR of a sample which is the same magnetic tape as described above was measured. Obtain the difference between the absorbance at wavenumber (1550 cm −1 ) corresponding to the absorption of carboxylate and the absorbance at 1630 cm −1 without absorption, and use it as the absorbance of the sample. Was used as an indicator of the amount of fatty acid metal salt. For comparison, the surface of the magnetic layer before and after the derivatization treatment was measured by AES.

ATR−FT−IRの測定には、Thermo−Nicolet社製、商品名 Nexus670を用い、1回反射水平状ATRアクセサリーを用い、入射角60°、分解能1cm-1、200回積算にて測定を行った。
AES測定には、アルバック・ファイ社製、商品名μ−AES PHI660を用い、FeおよびCの強度を求め、比(ΔC/Fe)を算出した。
ATR-FT-IR is measured using Thermo-Nicolet, product name Nexus 670, with a single reflection horizontal ATR accessory, incident angle 60 °, resolution 1 cm −1 , 200 times integration. It was.
For the AES measurement, a product name μ-AES PHI660 manufactured by ULVAC-PHI was used to determine the strength of Fe and C, and the ratio (ΔC / Fe) was calculated.

摩擦係数の測定
磁気テープとステンレスポール(SUS420J)とを50gの張力(T1)で接触(巻き付け角180゜)させて、この条件下で磁気テープを3.0cm/secの速度で走行させるのに必要な張力(T2)を測定した。測定は23℃、70%RHの環境下で測定し1パス目の測定値を採用した。なお、100パス目の測定も行った。
この測定値をもとに,下記計算式により磁気テープの摩擦係数(μ)を求めた。
μ=(1/π)×ln(T2/T1)
Measurement of friction coefficient To contact the magnetic tape and stainless steel pole (SUS420J) with 50g tension (T1) (wrapping angle 180 °) and run the magnetic tape at a speed of 3.0cm / sec under this condition. The required tension (T2) was measured. The measurement was performed in an environment of 23 ° C. and 70% RH, and the measured value of the first pass was adopted. The measurement at the 100th pass was also performed.
Based on this measured value, the friction coefficient (μ) of the magnetic tape was obtained by the following formula.
μ = (1 / π) × ln (T2 / T1)

ヘッド汚れの評価
ソニー株式会社製のデジタルベータカムVTR DVW−A500型を用いて732m長の磁気テープを20℃、50%RH環境下で、1巻2パスを連続25巻走行させて、走行後のヘッド汚れの状態を以下の観点で評価した。
汚れなし:◎、汚れややあり:○、汚れあり:△、汚れがヘッドギャップ部にあり:×とした。
結果を表2に示す。
Evaluation of head contamination Using a digital beta cam VTR DVW-A500 model manufactured by Sony Corporation, a 732m long magnetic tape was run at 20 ° C in a 50% RH environment, running 1 volume 2 passes continuously 25 volumes. The state of head contamination was evaluated from the following viewpoints.
No dirt: ◎, dirt somewhat: ◯, dirt: △, dirt in head gap: x
The results are shown in Table 2.

Figure 2006185487
Figure 2006185487

表2から、ATR−FT−IRによる脂肪酸金属塩量と、AESによる脂肪酸金属塩量値とはよく相関しており、ATR−FT−IRを測定することにより、簡便かつ正確に磁性層表面の脂肪酸金属塩を評価できることがわかった。
また、表2から脂肪酸金属塩の量が多いほど、摩擦係数は高くなり走行後のヘッドの汚れが多くなることが確認された。これは磁性層表面に生成した脂肪酸金属塩が摩擦係数を上昇しヘッド汚れの起因となるためと考えられる。
また走行後の汚れや摩擦係数との対応から、磁気記録媒体の磁性層表面の脂肪酸金属塩量は、吸光度の差としては0.01以下、さらに望ましくは0.007以下、さらに望ましくは0.004以下であることが分かる。
From Table 2, the amount of fatty acid metal salt by ATR-FT-IR and the value of fatty acid metal salt by AES are well correlated. By measuring ATR-FT-IR, the surface of the magnetic layer can be measured easily and accurately. It was found that fatty acid metal salts can be evaluated.
Further, from Table 2, it was confirmed that the greater the amount of fatty acid metal salt, the higher the coefficient of friction and the more dirty the head after running. This is presumably because the fatty acid metal salt formed on the surface of the magnetic layer increases the coefficient of friction and causes head contamination.
In addition, the amount of fatty acid metal salt on the surface of the magnetic layer of the magnetic recording medium is 0.01 or less, more preferably 0.007 or less, and more preferably 0. It turns out that it is 004 or less.

Claims (5)

支持体上に少なくとも無機粉体および結合剤を含む塗布層を設けた塗布型磁気記録媒体の、前記塗布層表面の無機粉体に吸着または反応している有機化合物を分析する方法において、フーリエ変換赤外分光光度計(FT−IR)を用い、分析対象となる有機化合物に固有の吸収波数を含む前記塗布層表面の全反射吸収(ATR)スペクトルを測定し、前記塗布層表面の無機粉体に吸着または反応している有機化合物を分析することを特徴とする有機化合物の分析方法。   In a method for analyzing an organic compound adsorbed or reacted on an inorganic powder on the surface of a coating layer of a coating type magnetic recording medium provided with a coating layer containing at least an inorganic powder and a binder on a support, Fourier transform is performed. Using an infrared spectrophotometer (FT-IR), the total reflection absorption (ATR) spectrum of the coating layer surface including the absorption wave number specific to the organic compound to be analyzed is measured, and the inorganic powder on the coating layer surface An organic compound analysis method, comprising: analyzing an organic compound adsorbed or reacted on the organic compound. 支持体上に、少なくとも強磁性粉末および結合剤を含む塗布層を設けてなる磁気記録媒体の製造方法において、フーリエ変換赤外分光光度計(FT−IR)を用い、分析対象となる有機化合物に固有の吸収波数を含む前記塗布層表面の全反射吸収(ATR)スペクトルを測定し、前記塗布層表面の強磁性粉末に吸着または反応している有機化合物を分析する工程を有することを特徴とする磁気記録媒体の製造方法。   In a method for manufacturing a magnetic recording medium, wherein a coating layer containing at least a ferromagnetic powder and a binder is provided on a support, a Fourier transform infrared spectrophotometer (FT-IR) is used to convert an organic compound to be analyzed. Measuring the total reflection absorption (ATR) spectrum of the coating layer surface including a specific absorption wave number, and analyzing an organic compound adsorbed or reacting with the ferromagnetic powder on the coating layer surface. A method of manufacturing a magnetic recording medium. 前記分析対象となる有機化合物が、脂肪酸金属塩であることを特徴とする請求項2に記載の磁気記録媒体の製造方法。   The method for producing a magnetic recording medium according to claim 2, wherein the organic compound to be analyzed is a fatty acid metal salt. 請求項2または3に記載の磁気記録媒体の製造方法により製造されたことを特徴とする磁気記録媒体。   A magnetic recording medium manufactured by the method for manufacturing a magnetic recording medium according to claim 2. 脂肪酸金属塩の量の指標が、0.01以下であることを特徴とする請求項4に記載の磁気記録媒体。   The magnetic recording medium according to claim 4, wherein an index of the amount of the fatty acid metal salt is 0.01 or less.
JP2004376865A 2004-12-27 2004-12-27 Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method Pending JP2006185487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376865A JP2006185487A (en) 2004-12-27 2004-12-27 Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376865A JP2006185487A (en) 2004-12-27 2004-12-27 Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method

Publications (1)

Publication Number Publication Date
JP2006185487A true JP2006185487A (en) 2006-07-13

Family

ID=36738496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376865A Pending JP2006185487A (en) 2004-12-27 2004-12-27 Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method

Country Status (1)

Country Link
JP (1) JP2006185487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077799A (en) * 2006-09-25 2008-04-03 Fujifilm Corp Measuring method of amount of fatty acid ester, and manufacturing method of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077799A (en) * 2006-09-25 2008-04-03 Fujifilm Corp Measuring method of amount of fatty acid ester, and manufacturing method of magnetic recording medium

Similar Documents

Publication Publication Date Title
US20050260459A1 (en) Magnetic recording medium
US20050260456A1 (en) Magnetic recording medium
JP2007273037A (en) Magnetic recording medium and its manufacturing method
JP2006286114A (en) Magnetic recording medium
JP2007305197A (en) Magnetic recording medium
JP2007273038A (en) Magnetic recording medium
JP4459248B2 (en) Magnetic recording medium, magnetic signal reproduction system, and magnetic signal reproduction method
US20090168265A1 (en) Magnetic recording medium, magnetic signal reproduction system and magnetic signal reproduction method
JP2006114152A (en) Magnetic recording medium
JP2007294085A (en) Magnetic recording medium, magnetic signal reproducing system and magnetic signal reproducing method
US20070231615A1 (en) Magnetic recording medium
US7438983B2 (en) Magnetic recording medium
US20070231613A1 (en) Magnetic recording medium
JP2006277838A (en) Magnetic recording medium
US7368189B2 (en) Magnetic recording medium
JP2006107543A (en) Magnetic tape cartridge
JP2007305208A (en) Magnetic recording medium and its manufacturing method
JP2005222603A (en) Magnetic recording medium
JP2006286074A (en) Magnetic recording medium
JP2007273040A (en) Magnetic recording medium
JP2007272956A (en) Magnetic recording medium
JP2006185487A (en) Method of analyzing organic compound on magnetic recording medium surface, magnetic recording medium manufacturing method using the method, and magnetic recording medium obtained by the method
JP2006236409A (en) Analyzing method of organic compound on surface of magnetic recording medium, manufacturing method of magnetic recording medium using the method, and magnetic recording medium obtained by the manufacturing method
JP2007004842A (en) Magnetic recording medium
JP2006269026A (en) Magnetic recording medium and magnetic recording reproducing method using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124