JP2006184149A - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP2006184149A
JP2006184149A JP2004378875A JP2004378875A JP2006184149A JP 2006184149 A JP2006184149 A JP 2006184149A JP 2004378875 A JP2004378875 A JP 2004378875A JP 2004378875 A JP2004378875 A JP 2004378875A JP 2006184149 A JP2006184149 A JP 2006184149A
Authority
JP
Japan
Prior art keywords
heater
detection element
heating element
gas
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004378875A
Other languages
Japanese (ja)
Other versions
JP4762539B2 (en
Inventor
Yoshihito Igai
良仁 猪飼
Kuniharu Tanaka
邦治 田中
Katsura Matsubara
桂 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004378875A priority Critical patent/JP4762539B2/en
Publication of JP2006184149A publication Critical patent/JP2006184149A/en
Application granted granted Critical
Publication of JP4762539B2 publication Critical patent/JP4762539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor enabling local temperature rise of a gas detection element efficiently in a short time, capable of detecting early a gas concentration by activating early the gas detection element, and elongating a lifetime by suppressing crack generation or the like. <P>SOLUTION: In a resistance heating element 31, a plurality of body parts 312 extending along the axial direction of a heater are arranged at intervals in the circumferential direction, and are formed to have a meandering shape wherein adjacent body parts 312 are connected at both ends successively by each connection part 313. Each body part 312 has a line width W reduced stepwise toward the center near an element contact part T. The ratio (Re/Rs) of a resistance value (highest resistance value) Rc per unit length of a center part having the line width Wc to a resistance value (lowest resistance value) Rs of a part having the line width Ws is 1.5-3.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば内燃機関の排気ガス中の酸素など、被測定ガス中の特定のガスを検出するためのガスセンサに関する。   The present invention relates to a gas sensor for detecting a specific gas in a gas to be measured, such as oxygen in an exhaust gas of an internal combustion engine.

従来から、ガスセンサの一つとして、先端部が閉じた中空軸状で内外面に電極層を有するガス検出素子を備えた酸素センサが知られている。このような酸素センサでは、基準ガスとしての大気を酸素検出素子の内側に導入し、外側に被測定ガスを接触させ、内外の酸素濃度差に応じて生じる酸素濃淡電池起電力を測定することによって、酸素濃度を検出する。   2. Description of the Related Art Conventionally, as one of gas sensors, an oxygen sensor including a gas detecting element having a hollow shaft shape with a closed tip and electrode layers on inner and outer surfaces is known. In such an oxygen sensor, the atmosphere as a reference gas is introduced inside the oxygen detection element, the gas to be measured is brought into contact with the outside, and the oxygen concentration cell electromotive force generated according to the difference in oxygen concentration inside and outside is measured. , Detect oxygen concentration.

ところで、上記の酸素センサでは、温度が低い場合は固体電解質部材で構成された酸素検出素子の活性が充分でない。このため、発熱部を有するヒータを酸素検出素子の中空部に挿入したものがある。   By the way, in said oxygen sensor, when temperature is low, the activity of the oxygen detection element comprised by the solid electrolyte member is not enough. For this reason, there is one in which a heater having a heat generating portion is inserted into the hollow portion of the oxygen detecting element.

さらに、ヒータの中心軸線が酸素検出素子中空部の中心軸線に対して偏心して配置されるとともに、ヒータの酸素検出素子との接触部分に高温発熱部を配した構成の酸素センサも知られている(例えば、特許文献1、特許文献2参照。)。このような酸素センサでは、発熱部が酸素検出素子の必要部位に対して効率的に加熱を行い、酸素検出素子の局部的な昇温を効率良く短時間で行うことができる。これによって、酸素検出素子を早期に活性化し、早期に酸素濃度を検出することができる。
特開2000−266718号公報 特開2001−74687号公報
Further, there is also known an oxygen sensor having a configuration in which the central axis of the heater is arranged eccentrically with respect to the central axis of the hollow portion of the oxygen detection element, and a high-temperature heat generating portion is disposed at a contact portion with the oxygen detection element of the heater. (For example, refer to Patent Document 1 and Patent Document 2.) In such an oxygen sensor, the heat generating portion efficiently heats a necessary portion of the oxygen detection element, and the local temperature rise of the oxygen detection element can be efficiently performed in a short time. Thereby, the oxygen detection element can be activated early and the oxygen concentration can be detected early.
JP 2000-266718 A JP 2001-74687 A

しかしながら、上述したヒータの中心軸線が酸素検出素子中空部の中心軸線に対して偏心して配置されるとともに、ヒータと酸素検出素子の接触位置に高温発熱部を配した構成の酸素センサでは、次のような課題があることが判明した。すなわち、このような酸素センサでは、接触位置のヒータ発熱を大きくし過ぎると、ヒータ内部の発熱体とヒータ表面の温度差が大きくなり、ヒータ表面部において、周方向の引張応力が高くなり、軸方向クラックが発生する可能性が高くなるという課題がある。   However, in the oxygen sensor having the configuration in which the central axis of the heater described above is arranged eccentrically with respect to the central axis of the hollow portion of the oxygen detection element and the high temperature heat generating portion is arranged at the contact position between the heater and the oxygen detection element, It became clear that there was such a problem. That is, in such an oxygen sensor, if the heater heat generation at the contact position is excessively large, the temperature difference between the heating element inside the heater and the heater surface increases, and the tensile stress in the circumferential direction increases at the heater surface portion. There exists a subject that possibility that a direction crack will generate | occur | produce becomes high.

本発明は、上記課題を解決するためになされたものである。本発明は、ガス検出素子の局部的な昇温を効率良く短時間で行うことができ、ガス検出素子を早期に活性化して、早期にガス濃度の検出を可能とすることができるとともに、クラックの発生等を抑制して寿命の長期化を図ることのできるガスセンサを提供することを目的とする。   The present invention has been made to solve the above problems. The present invention can efficiently raise the local temperature of the gas detection element in a short time, activate the gas detection element at an early stage, enable detection of the gas concentration at an early stage, and An object of the present invention is to provide a gas sensor capable of suppressing the generation of gas and the like and extending the life of the gas sensor.

(請求項1)
上記目的を達成するために、本発明のガスセンサは、先端部が閉じた有底筒状で内外面に電極層を有するガス検出素子と、前記ガス検出素子の中空部に挿入され、その先端部に発熱部を有する棒状のヒータとを備え、前記ヒータの中心軸線が前記ガス検出素子の中空部の中心軸線に対して片側に寄るように偏心して配置されたガスセンサであって、前記ヒータは、セラミック基体と、該セラミック基体の内部に周方向に沿って埋設された発熱体とを具備し、前記ヒータの発熱部は、前記ガス検出素子の内壁に接触する接触部位に対応して設けられた高温発熱部と当該高温発熱部以外の発熱部とを有し、前記高温発熱部における前記発熱体の単位長さ当たりの最高抵抗値をRcとし、前記高温発熱部以外の発熱部における前記発熱体の単位長さ当たりの最低抵抗値をRsとしたとき、Rc/Rsが1.5〜3.0であることを特徴とする。
(Claim 1)
In order to achieve the above object, a gas sensor according to the present invention includes a gas detection element having a bottomed cylindrical shape with a closed end and an electrode layer on the inner and outer surfaces, and a gas detection element inserted into a hollow portion of the gas detection element. And a rod-shaped heater having a heat generating portion, and a gas sensor arranged eccentrically so that a central axis of the heater is closer to one side with respect to a central axis of the hollow portion of the gas detection element, A ceramic base and a heating element embedded along the circumferential direction inside the ceramic base, wherein the heat generating portion of the heater is provided corresponding to a contact portion that contacts the inner wall of the gas detection element. The heating element having a high temperature heating part and a heating part other than the high temperature heating part, wherein the maximum resistance value per unit length of the heating element in the high temperature heating part is Rc, and the heating element in the heating part other than the high temperature heating part Unit length When the minimum resistance value of or was Rs, Rc / Rs is characterized in that 1.5 to 3.0.

上記構成の本発明のガスセンサによれば、ヒータ各部の発生熱量とガス検出素子への伝熱量がバランスして、ヒータ各部に大きな温度差が生じないようにすることによって、クラックの発生を抑制し、寿命の長期化を図ることができる。   According to the gas sensor of the present invention configured as described above, the generation of cracks is suppressed by balancing the amount of heat generated in each part of the heater and the amount of heat transferred to the gas detection element so that no large temperature difference occurs in each part of the heater. The life can be extended.

(請求項2)
また、本発明のガスセンサでは、前記ヒータの発熱部は、軸方向に沿って延び、周方向に列設された複数の本体部と、複数の該本体部のそれぞれについて、隣り合う本体部の端部を連結する接続部と、により一本に連なる前記発熱体が前記セラミック基体の内部に周方向に沿って埋設され、前記高温発熱部が、前記複数の本体部のうち中央に配設された本体部にあることを特徴とする。高温発熱部を発熱体の本体部のうち中央部に形成することで、ガス検出素子との接触位置を正確に形成することができる。
(Claim 2)
In the gas sensor of the present invention, the heat generating portion of the heater extends in the axial direction, and the plurality of main body portions arranged in the circumferential direction and the end of the adjacent main body portion for each of the plurality of main body portions. The heating elements connected to each other are embedded in the ceramic base body along the circumferential direction, and the high temperature heating section is disposed at the center of the plurality of main body sections. It is in the main body. By forming the high temperature heat generating part in the center part of the main body part of the heating element, the contact position with the gas detection element can be accurately formed.

(請求項3,4)
また、本発明のガスセンサでは、前記発熱体は前記セラミック基体の厚さ方向中央より外側の位置に周方向に沿って埋設され、前記ヒータの外側表面と前記発熱体までの距離をd、前記ヒータの半径をRとしたとき、dが5μmより大、2Rが1〜5mmであり、且つ、d/Rが0.16以下であることを特徴とする。また、本発明のガスセンサでは、前記ヒータの外側表面と前記発熱体までの距離dが、5μm<d<250μmであることを特徴とする。これによって、ガス検出素子へのリーク電流が生じたり、温度差によるクラックの発生を抑制し、寿命の長期化を図ることができる。
(Claims 3 and 4)
In the gas sensor of the present invention, the heating element is embedded along the circumferential direction at a position outside the center of the ceramic substrate in the thickness direction, and the distance between the outer surface of the heater and the heating element is d, and the heater When R is R, d is larger than 5 μm, 2R is 1 to 5 mm, and d / R is 0.16 or less. In the gas sensor of the present invention, the distance d between the outer surface of the heater and the heating element is 5 μm <d <250 μm. As a result, leakage current to the gas detection element or cracks due to temperature differences can be suppressed, and the life can be extended.

本発明によれば、ガス検出素子の局部的な昇温を効率良く短時間で行うことができ、ガス検出素子を早期に活性化して、早期にガス濃度の検出を可能とすることができるとともに、クラックの発生等を抑制して寿命の長期化を図ることのできるガスセンサを提供することができる。   According to the present invention, the local temperature rise of the gas detection element can be efficiently performed in a short time, the gas detection element can be activated early, and the gas concentration can be detected early. Further, it is possible to provide a gas sensor capable of suppressing the generation of cracks and the like and extending the lifetime.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本発明の一実施形態に係る酸素センサの概略構成を示すものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an oxygen sensor according to an embodiment of the present invention.

同図に示すように、酸素センサ1は、酸素検出素子2と、ヒータ3とを備えている。酸素検出素子2は、ジルコニア等を主体とする酸素イオン伝導性固体電解質部材から構成され、先端が閉じた有底筒状に形成されている。酸素検出素子2の外面及び内面には、そのほぼ全面を覆うように、例えばPtあるいはPt合金により多孔質に形成された外側電極層20と内側電極層21とが設けられている。また、ヒータ3は、酸素検出素子2の中空部分に挿入されている。   As shown in the figure, the oxygen sensor 1 includes an oxygen detection element 2 and a heater 3. The oxygen detection element 2 is composed of an oxygen ion conductive solid electrolyte member mainly composed of zirconia or the like, and is formed in a bottomed cylindrical shape with a closed end. An outer electrode layer 20 and an inner electrode layer 21 made of, for example, Pt or a Pt alloy are provided on the outer and inner surfaces of the oxygen detection element 2 so as to cover almost the entire surface thereof. The heater 3 is inserted into the hollow portion of the oxygen detection element 2.

上記酸素検出素子2の鍔部22付近の周囲を取り囲むSUS430製の主体金具5が設けられている。この主体金具5には、酸素センサ1を排気管等の取付部に取付けるためのねじ部51と、排気管の取付部への取付時に取付金具をあてがう六角部52と、ねじ部51と六角部52との間に突出部53を有している。なお、突出部53の先端面には、ガスケット7が設けられている。そして、主体金具5の内周面には、先端部に向かって縮径する金具側段部54が設けられており、この金具側段部54にパッキン55を介して後述するインシュレータ9を支持している。   A metal shell 5 made of SUS430 is provided to surround the vicinity of the flange portion 22 of the oxygen detection element 2. The metal shell 5 includes a screw portion 51 for attaching the oxygen sensor 1 to an attachment portion such as an exhaust pipe, a hexagonal portion 52 to which the attachment fitting is attached when the exhaust pipe is attached to the attachment portion, and the screw portion 51 and the hexagonal portion. A projection 53 is provided between the first projection 52 and the second projection 52. A gasket 7 is provided on the tip surface of the protruding portion 53. A metal side stepped portion 54 that decreases in diameter toward the tip end portion is provided on the inner peripheral surface of the metal shell 5, and an insulator 9 described later is supported on the metal side stepped portion 54 via a packing 55. ing.

主体金具5と酸素検出素子2との間には、絶縁性セラミックから形成されたインシュレータ8、9が設けられており、これらのインシュレータ8、9の間に、圧縮された状態で滑石(タルク)等の粉末層10が配置されている。この粉末層10によって、酸素検出素子2と主体金具5との間が封止され、気密性が確保されるようになっている。また、インシュレータ8の後端側には、環状リング57が設けられている。   Insulators 8 and 9 made of an insulating ceramic are provided between the metal shell 5 and the oxygen detection element 2, and talc is compressed between these insulators 8 and 9. A powder layer 10 such as is arranged. The powder layer 10 seals between the oxygen detection element 2 and the metal shell 5 so as to ensure airtightness. An annular ring 57 is provided on the rear end side of the insulator 8.

また、主体金具5の先端側には、酸素検出素子2の先端側(検知部)を覆うように、プロテクタ11が取り付けられている。このプロテクタ11には、被測定ガスを導入して酸素検出素子2の先端側(検知部)と接触させるための複数のガス透過口12が設けられている。   A protector 11 is attached to the front end side of the metal shell 5 so as to cover the front end side (detection unit) of the oxygen detection element 2. The protector 11 is provided with a plurality of gas permeation ports 12 for introducing the gas to be measured and bringing it into contact with the distal end side (detection unit) of the oxygen detection element 2.

そして、主体金具5の後端側には、主体金具5の後端部に設けられた加締め部56によって固定されるSUS304L製の内筒部材23が取付けられている。内筒部材23は略中間位置にて後端側に向かって径小となる段部24を有し、段部24よりも後端側に基準ガスをガス検出素子内部に取り込むガス導入孔25が周方向に沿って所定間隔で複数設けられている。また、内筒部材23の段部24よりも先端側にてSUS304L製の外筒部材26と加締められ、固定されている。この外筒部材26にもガス導入孔25に対応する位置に複数の補助ガス導入孔27が設けられている。そしてこのガス導入孔25と補助ガス導入孔27との間には、ガス導入孔25を覆うフィルタ13が形成されている。このフィルタ13は、外筒部材26の補助ガス導入孔27の先端側及び後端側を加締めることで固定されている。   An inner cylinder member 23 made of SUS304L is attached to the rear end side of the metal shell 5 and fixed by a caulking portion 56 provided at the rear end of the metal shell 5. The inner cylinder member 23 has a step portion 24 whose diameter decreases toward the rear end side at a substantially intermediate position, and a gas introduction hole 25 for taking the reference gas into the gas detection element is provided on the rear end side of the step portion 24. A plurality are provided at predetermined intervals along the circumferential direction. Further, the outer cylinder member 26 made of SUS304L is caulked and fixed at the front end side of the step portion 24 of the inner cylinder member 23. The outer cylinder member 26 is also provided with a plurality of auxiliary gas introduction holes 27 at positions corresponding to the gas introduction holes 25. A filter 13 that covers the gas introduction hole 25 is formed between the gas introduction hole 25 and the auxiliary gas introduction hole 27. The filter 13 is fixed by caulking the front end side and the rear end side of the auxiliary gas introduction hole 27 of the outer cylinder member 26.

また、内筒部材23の内側には、セラミックセパレータ15が形成されている。このセラミックセパレータ15は、外側電極と接続する外側電極接続金具19、内側電極と接続する内側電極接続金具18及びヒータ3と接続するヒータ接続端子28を、それぞれに対応するリード線16,17,29と接続するようにして内装する。また、リード線16,17,29は、外筒部材26の後端側に固定されたゴム製のグロメット14を貫通して外部と接続する。   A ceramic separator 15 is formed inside the inner cylinder member 23. The ceramic separator 15 includes lead wires 16, 17, 29 corresponding to an outer electrode connection fitting 19 connected to the outer electrode, an inner electrode connection fitting 18 connected to the inner electrode, and a heater connection terminal 28 connected to the heater 3, respectively. The interior should be connected to The lead wires 16, 17, and 29 are connected to the outside through the rubber grommet 14 fixed to the rear end side of the outer cylinder member 26.

内側電極接続金具18は、先端側に形成されたヒータ把持部181の内面でヒータ3の外面を把持する。また、金具本体部182の外面と酸素検出素子2の内面との接触により、内側電極接続金具18及びヒータ3を軸方向の所定位置に固定する役割を果たす。さらに、金具本体部182の周方向の一部が図中上方に延在するようにして引出し線部183が構成され、この引出し線部183のさらに上方にコネクタ184が設けられている。ヒータ把持部181は、ヒータ3の周囲を包囲するC字状の横断面形状を有している。そして、ヒータ3の挿入にともない拡径して弾性的にヒータ3を把持する。   The inner electrode connection fitting 18 holds the outer surface of the heater 3 with the inner surface of the heater holding portion 181 formed on the tip side. Further, the inner electrode connection fitting 18 and the heater 3 are fixed at predetermined positions in the axial direction by contact between the outer surface of the metal fitting main body 182 and the inner surface of the oxygen detection element 2. Further, the lead wire portion 183 is configured so that a part of the metal fitting main body portion 182 in the circumferential direction extends upward in the drawing, and the connector 184 is provided further above the lead wire portion 183. The heater grip 181 has a C-shaped cross-sectional shape that surrounds the periphery of the heater 3. Then, as the heater 3 is inserted, the diameter is increased and the heater 3 is elastically gripped.

金具本体部182は、左右両側の縁に鋸刃状の接触部185がそれぞれ複数形成された板状部分を円筒状に曲げ加工することにより、ヒータ3を包囲する形態で形成されている。そして、金具本体部182の外周面及び接触部185と酸素検出素子2の内壁面(内側電極層21内面)との間の摩擦力によって内側電極接続金具18及びヒータ3を酸素検出素子2に対し軸線方向に位置決めする役割を果たすとともに、複数の接触部185の各先端部において内側電極層21内面と接触・導通するようになっている。   The metal fitting main body 182 is formed in a form surrounding the heater 3 by bending a plate-like portion in which a plurality of saw blade-like contact portions 185 are formed on both left and right edges into a cylindrical shape. The inner electrode connection fitting 18 and the heater 3 are moved against the oxygen detection element 2 by the frictional force between the outer peripheral surface of the metal fitting main body 182 and the contact portion 185 and the inner wall surface of the oxygen detection element 2 (inner surface of the inner electrode layer 21). In addition to the role of positioning in the axial direction, each tip portion of the plurality of contact portions 185 contacts and conducts with the inner surface of the inner electrode layer 21.

一方、外側電極接続金具19は、円筒状の金具本体部191を有する。この金具本体部191の周方向の一部が図中上方に延在するようにして引出し線部192が構成され、この引出し線部192のさらに上方にコネクタ193が設けられている。金具本体部191は、酸素検出素子2の周囲を包囲するC字状の横断面形状を有している。そして、酸素検出素子2の挿入にともない拡径して弾性的に酸素検出素子2を把持する。   On the other hand, the outer electrode connection fitting 19 has a cylindrical fitting body 191. A lead wire portion 192 is configured such that a portion of the metal fitting main body portion 191 in the circumferential direction extends upward in the drawing, and a connector 193 is provided further above the lead wire portion 192. The metal fitting main body 191 has a C-shaped cross-sectional shape surrounding the periphery of the oxygen detection element 2. Then, as the oxygen detection element 2 is inserted, the diameter is expanded and the oxygen detection element 2 is elastically held.

この酸素センサ1は、ねじ部51より先端側(図1において下側)が排気管内等に位置し、それより後端側(図1において上側)が外部の大気中に位置した状態で使用される。そして、基準ガスとしての大気が酸素検出素子2の内側に導入される。一方、酸素検出素子2の外側にはプロテクタ11のガス透過口12を介して導入された排気ガスが接触し、酸素検出素子2には、その内外面の酸素濃度差に応じて酸素濃淡電池起電力が生じる。そして、この酸素濃淡電池起電力を、排気ガス中の酸素濃度の検出信号として内側電極層21、内側電極接続金具18、リード線17、及び外側電極層20、外側電極接続金具19、リード線16を介して取り出すことにより、排気ガス中の酸素濃度を検出できる。   This oxygen sensor 1 is used in a state in which the front end side (lower side in FIG. 1) from the screw portion 51 is located in the exhaust pipe and the rear end side (upper side in FIG. 1) is located in the outside atmosphere. The Then, the atmosphere as the reference gas is introduced inside the oxygen detection element 2. On the other hand, the exhaust gas introduced through the gas permeation port 12 of the protector 11 is in contact with the outside of the oxygen detecting element 2, and the oxygen detecting element 2 is activated according to the oxygen concentration difference between the inner and outer surfaces. Electric power is generated. The oxygen concentration cell electromotive force is used as a detection signal of the oxygen concentration in the exhaust gas, and the inner electrode layer 21, the inner electrode connection fitting 18, the lead wire 17, the outer electrode layer 20, the outer electrode connection fitting 19, and the lead wire 16 are used. The oxygen concentration in the exhaust gas can be detected by taking it out through.

ヒータ3は、図2にも示すように、ヒータ3の発熱部33表面を酸素検出素子2の内壁面に側方から押し付ける、いわゆる横当て接触方式において、発熱部33表面の先端部のみが内壁面に接触する状態となっている。この横当て接触方式では、接触位置を介した熱伝導により、また接触位置近傍での熱輻射により、発熱部33の接触位置の部分からは大量の熱が酸素検出素子2の内壁面へ熱伝達される。   As shown in FIG. 2, the heater 3 is a so-called lateral contact method in which the surface of the heat generating portion 33 of the heater 3 is pressed against the inner wall surface of the oxygen detecting element 2 from the side. It is in a state of contacting the wall surface. In this horizontal contact method, a large amount of heat is transferred from the contact position of the heat generating portion 33 to the inner wall surface of the oxygen detecting element 2 by heat conduction through the contact position and by heat radiation near the contact position. Is done.

ヒータ3は、図2に示すように、円筒状のセラミック基体30内に抵抗発熱体31及びリード部314(図4参照)を埋設して構成されている。このヒータ3は、例えば、図3に示すように、セラミックス粉末をバインダとともに板状に成形した粉末成形体301の板面に、抵抗発熱体31及びリード部314の原料粉末を含有するペーストを用いて、抵抗発熱体及びリード部のパターン311を印刷し、粉末成形体301と同様に作製された粉末成形体303を積層し、別途形成された円筒状の筒状成形体302の外周面に対し粉末成形体303が内側となるように巻き付け、これを焼成する方法等により製造される。   As shown in FIG. 2, the heater 3 is configured by embedding a resistance heating element 31 and a lead portion 314 (see FIG. 4) in a cylindrical ceramic base 30. For example, as shown in FIG. 3, the heater 3 uses a paste containing the raw material powder of the resistance heating element 31 and the lead portion 314 on the plate surface of a powder molded body 301 formed by molding ceramic powder into a plate shape together with a binder. Then, a resistance heating element and a lead pattern 311 are printed, and a powder molded body 303 produced in the same manner as the powder molded body 301 is laminated, and the outer peripheral surface of a cylindrical cylindrical molded body 302 formed separately is stacked. It is manufactured by a method of winding the powder compact 303 so that it is on the inside and firing it.

抵抗発熱体31は高融点金属を主体に構成されており、使用可能な高融点金属としては、Wが代表的であるがMo、Re、Pt、Ir、Rh、RuあるいはMoSi2 、Mo(Si、Al)3C、TiC、TiN、TiB等の化合物も使用可能であり、これらは単独で用いても複合させて用いてもいずれでもよい。また、セラミック基体30は、熱伝導性と高温強度及び高温耐食性に優れていることからAl2 3 を主体に構成できるが、このほかにもムライト、コージェライト、スピネル等のAl2 3 成分を含有したセラミックを使用することができる。なお、セラミック基体中には、SiO2 、MgO、CaO、B2 5 等の1種又は2種以上からなる焼結助剤成分が、合計で15重量%以下の範囲で含有されていてもよい。 The resistance heating element 31 is mainly composed of a refractory metal. As a refractory metal that can be used, W is typical, but Mo, Re, Pt, Ir, Rh, Ru, MoSi 2 , Mo (Si , Al) 3C, TiC, TiN, TiB and other compounds can also be used, and these may be used alone or in combination. In addition, the ceramic substrate 30 is mainly composed of Al 2 O 3 because of its excellent thermal conductivity, high temperature strength, and high temperature corrosion resistance. In addition, Al 2 O 3 components such as mullite, cordierite, and spinel can be used. Ceramics containing can be used. The ceramic substrate may contain a sintering aid component composed of one or more of SiO 2 , MgO, CaO, B 2 O 5 and the like in a total amount of 15% by weight or less. Good.

図4は、抵抗発熱体31の印刷パターンを展開して示す模式図である。抵抗発熱体31は、セラミック基体30の軸線方向に沿って延びる複数の本体部312が、周方向に間隔を設けて配置されるとともに、隣接する本体部312が、両端部において接続部313により順次連結された、つづら折れ状の一本の連続形態に形成されている。そして、抵抗発熱体31の後端側の両端には、電源接続用の2つのリード部314が一体化されて形成されている。   FIG. 4 is a schematic diagram showing a developed print pattern of the resistance heating element 31. In the resistance heating element 31, a plurality of main body portions 312 extending along the axial direction of the ceramic base 30 are arranged at intervals in the circumferential direction, and adjacent main body portions 312 are sequentially connected by connecting portions 313 at both ends. They are connected and formed in a single continuous form. Then, two lead portions 314 for connecting a power source are integrally formed at both ends on the rear end side of the resistance heating element 31.

そして、酸素検出素子2の内壁面と接触する位置(素子接触部)Tがほぼ中央にあり、各本体部312は、素子接触部Tに近い中央のものほどその線幅W(断面積S)が段階的に小さくなるものとされている。図中に示す中央部の本体部312の線幅はWcであり、最外側の本体部312の線幅はWsである。   And the position (element contact part) T which contacts the inner wall surface of the oxygen detection element 2 is substantially in the center, and each body part 312 has a line width W (cross-sectional area S) that is closer to the center of the element contact part T. Is supposed to be gradually reduced. The line width of the central body portion 312 shown in the figure is Wc, and the line width of the outermost body portion 312 is Ws.

抵抗発熱体31の線幅Wの大・小関係は、単位長さ当たりの電気抵抗値の大・小関係に反比例する。したがって、抵抗発熱体31の線幅Wの大・小関係は、発熱量の大・小関係に反比例する。すなわち、他の部分に較べて最も線幅が小さな中央部の線幅Wcの部分は、他の部分に較べて電気抵抗値及び発熱量が最大となっており、この部分が高温発熱部となっている。また、この高温発熱部以外の部分では、最も線幅が大きな最外側の線幅Wsの部分の電気抵抗値が最小となっている。   The magnitude relation of the line width W of the resistance heating element 31 is inversely proportional to the magnitude relation of the electric resistance value per unit length. Therefore, the magnitude relation of the line width W of the resistance heating element 31 is inversely proportional to the magnitude relation of the heat generation amount. That is, the portion of the central line width Wc that has the smallest line width compared to other portions has the maximum electrical resistance value and heat generation amount compared to the other portions, and this portion becomes the high temperature heat generating portion. ing. Further, in the portion other than the high temperature heat generating portion, the electric resistance value of the outermost line width Ws having the largest line width is minimum.

そして、本実施形態において、中央部の線幅Wcの部分の単位長さ当たりの抵抗値(最高抵抗値)Rcは、単位長さ当たりの抵抗値が最低となっている線幅Wsの部分の抵抗値(最低抵抗値)Rsに対する比(Rc/Rs)が1.5〜3.0となるように設定されている。   In the present embodiment, the resistance value per unit length (maximum resistance value) Rc of the central portion of the line width Wc is the portion of the line width Ws where the resistance value per unit length is the lowest. The ratio (Rc / Rs) to the resistance value (minimum resistance value) Rs is set to be 1.5 to 3.0.

本実施形態では、抵抗発熱体31が同一の材料から構成され、各部における単位断面積、の単位長さ当たりの抵抗が同一となっている。なお、抵抗発熱体31とリード部314との抵抗が3.7Ωとなっている。したがって、線幅の比の逆数が、抵抗値の比になっている。以下、本実施形態において、上記の比(Rc/Rs)を1.5〜3.0としている理由について説明する。   In this embodiment, the resistance heating element 31 is made of the same material, and the resistance per unit length of the unit cross-sectional area in each part is the same. The resistance between the resistance heating element 31 and the lead portion 314 is 3.7Ω. Therefore, the reciprocal of the line width ratio is the resistance value ratio. Hereinafter, the reason why the ratio (Rc / Rs) is set to 1.5 to 3.0 in the present embodiment will be described.

Rc/Rsの値が、耐クラック性に与える影響を次のようにしての評価した。まず、ヒータ3と酸素検出素子2を組み付けたものを用いて、ヒータ3に18Vの電圧を10秒印加したオンの状態と、電圧を印加しない120秒のオフ(空冷)の状態を1サイクルとして、このサイクルを100サイクル繰り返した。この後、酸素検出素子2からヒータ3を抜き取り、ヒータ3表面のクラック発生の有無を、拡大鏡にて観察することによって耐クラック性を評価した。各サンプル数は20本である。表1は、Rc/Rsの値が、耐クラック性に与える影響を評価した結果を示すものである。

Figure 2006184149
The influence of the value of Rc / Rs on crack resistance was evaluated as follows. First, using a combination of the heater 3 and the oxygen detection element 2, one cycle consists of an ON state in which a voltage of 18 V is applied to the heater 3 for 10 seconds and an OFF state (air cooling) in which no voltage is applied for 120 seconds. This cycle was repeated 100 cycles. Thereafter, the heater 3 was extracted from the oxygen detection element 2, and the crack resistance was evaluated by observing the occurrence of cracks on the surface of the heater 3 with a magnifying glass. There are 20 samples. Table 1 shows the results of evaluating the influence of the Rc / Rs value on crack resistance.
Figure 2006184149

表1に示すように、Rc/Rsが1.5未満の場合、発熱体中央に周方向クラックが発生し、クラック発生率はRc/Rs=1.0の場合100%(比較例1)、Rc/Rs=1.3の場合75%であった(比較例2)。   As shown in Table 1, when Rc / Rs is less than 1.5, a circumferential crack is generated at the center of the heating element, and the crack generation rate is 100% when Rc / Rs = 1.0 (Comparative Example 1). In the case of Rc / Rs = 1.3, it was 75% (Comparative Example 2).

また、Rc/Rsが3.0より大きい場合、発熱体中央部表面に軸方向クラックが発生し、クラック発生率はRc/Rs=3.2の場合80%(比較例3)、Rc/Rs=4.2の場合100%であった(比較例4)。   Further, when Rc / Rs is larger than 3.0, an axial crack is generated on the surface of the central portion of the heating element, and the crack generation rate is 80% when Rc / Rs = 3.2 (Comparative Example 3), Rc / Rs. = 4.2 in the case of 4.2 (Comparative Example 4).

これに対して、Rc/Rsが1.5〜3.0の場合、クラック発生率は0%であった (実施例1〜5)。この結果から明らかなように、Rc/Rsを1.5〜3.0とすることにより、クラックの発生を抑制し、酸素センサの寿命の長期化を図ることができる。   On the other hand, when Rc / Rs was 1.5 to 3.0, the crack generation rate was 0% (Examples 1 to 5). As is clear from this result, by setting Rc / Rs to 1.5 to 3.0, the occurrence of cracks can be suppressed and the life of the oxygen sensor can be extended.

上記のように、Rc/Rsを1.5〜3.0とすることにより、クラックの発生を抑制できるのは、以下のような理由によるものと推測される。   As described above, it is presumed that the occurrence of cracks can be suppressed by setting Rc / Rs to 1.5 to 3.0 for the following reason.

すなわち、前述したとおり、ヒータ3の高温発熱部は、酸素検出素子2の内壁部に横当て接触方式により接触しているので、この接触位置や接触位置の近傍からは大量の熱が奪われる。一方、高温発熱部以外の部分では、ヒータ3により発生した熱は熱輻射により酸素検出素子2の内壁に伝えられるので、伝熱量は、接触位置及びその近傍に較べて低くなる。   That is, as described above, since the high temperature heat generating portion of the heater 3 is in contact with the inner wall portion of the oxygen detecting element 2 by the lateral contact method, a large amount of heat is deprived from the contact position and the vicinity of the contact position. On the other hand, since heat generated by the heater 3 is transmitted to the inner wall of the oxygen detection element 2 by heat radiation at portions other than the high temperature heat generating portion, the heat transfer amount is lower than that at the contact position and the vicinity thereof.

このため、例えば、Rc/Rsが1.5より小さな場合は、酸素検出素子2に対して効率良くヒータ3の熱を伝えられず、ヒータ3内部の温度が接触部のヒータ3表面温度より高くなり、ヒータ3内部の温度差により周方向のクラックが発生してしまう。   For this reason, for example, when Rc / Rs is smaller than 1.5, the heat of the heater 3 cannot be efficiently transmitted to the oxygen detection element 2, and the temperature inside the heater 3 is higher than the surface temperature of the heater 3 at the contact portion. Thus, a crack in the circumferential direction occurs due to a temperature difference inside the heater 3.

また、Rc/Rsが3.0より大きくなると、発熱量が抵抗発熱体31中央部に集中してしまうため、昇温時におけるヒータ3内部の抵抗発熱体31中央とヒータ3表面の温度勾配が大きくなり、ヒータ3表面部において周方向の引張応力が高くなり、軸方向クラックが発生してしまう。   When Rc / Rs is greater than 3.0, the amount of heat generation is concentrated in the central portion of the resistance heating element 31, so that the temperature gradient between the center of the resistance heating element 31 inside the heater 3 and the surface of the heater 3 at the time of temperature rise. As a result, the tensile stress in the circumferential direction increases at the surface of the heater 3 and an axial crack occurs.

そして、Rc/Rsを1.5〜3.0とすることにより、ヒータ3各部の発生熱量と酸素検出素子2への伝熱量がバランスしてヒータ3各部に大きな温度差が生じないので、クラックの発生を抑制できる。   And, by setting Rc / Rs to 1.5 to 3.0, the amount of heat generated in each part of the heater 3 and the amount of heat transferred to the oxygen detection element 2 are balanced, and a large temperature difference does not occur in each part of the heater 3. Can be suppressed.

また、本実施形態では、図5に示されるように、抵抗発熱体31はセラミック基体30の厚さ方向中央より外側の位置に周方向に沿って埋設されている。そして、ヒータ3の外側表面と抵抗発熱体31までの距離d、ヒータ3の半径をRとしたとき、dが5μmより大、2Rが1〜5mmであり、且つ、d/Rが0.16以下とされている。これは、以下ような理由による。   Further, in the present embodiment, as shown in FIG. 5, the resistance heating element 31 is embedded along the circumferential direction at a position outside the center in the thickness direction of the ceramic base 30. When the distance d between the outer surface of the heater 3 and the resistance heating element 31 and the radius of the heater 3 are R, d is greater than 5 μm, 2R is 1 to 5 mm, and d / R is 0.16. It is as follows. This is due to the following reasons.

すなわち、表2は、上記のd/Rの値が、耐クラック性に与える影響を評価した結果を示すものである。耐クラック性の評価は、まずヒータ3と酸素検出素子2を組み付けたものを用いて、ヒータ3に20Vの電圧を10秒印加したオンの状態と、電圧を印加しない120秒のオフ(空冷)の状態を1サイクルとして、このサイクルを100サイクル繰り返した後、酸素検出素子2からヒータ3を抜き取り、ヒータ3表面のクラック発生の有無を、拡大鏡にて観察することによって行った。各サンプル数は20本である。   That is, Table 2 shows the results of evaluating the influence of the above d / R value on crack resistance. For evaluation of crack resistance, first, the heater 3 and the oxygen detection element 2 are assembled, and the heater 3 is turned on when a voltage of 20 V is applied for 10 seconds, and is turned off for 120 seconds when no voltage is applied (air cooling). This cycle was repeated 100 times, and after repeating this cycle 100 times, the heater 3 was extracted from the oxygen detecting element 2, and the presence or absence of cracks on the surface of the heater 3 was observed with a magnifier. There are 20 samples.

ヒータ3の外表面から埋設した抵抗発熱体31までの距離dは、ヒータ3のセラミック基体30を構成する筒状成形体302に巻き付ける抵抗発熱体31を形成したシートの厚さを調整することによって行った。また、ヒータ3の半径R、ヒータ3の外表面から抵抗発熱体31までの距離dは、ヒータ3の抵抗発熱体31中央を切断し、断面をデジタルマイクロスコープで観察して測定した。

Figure 2006184149
The distance d from the outer surface of the heater 3 to the embedded resistance heating element 31 is adjusted by adjusting the thickness of the sheet on which the resistance heating element 31 wound around the cylindrical molded body 302 constituting the ceramic base 30 of the heater 3 is formed. went. Further, the radius R of the heater 3 and the distance d from the outer surface of the heater 3 to the resistance heating element 31 were measured by cutting the center of the resistance heating element 31 of the heater 3 and observing the cross section with a digital microscope.
Figure 2006184149

表2に示されるように、d/Rの値が0.28の場合クラック発生率が75%(比較例5)、d/Rの値が0.21の場合クラック発生率が30%(比較例6)、d/Rの値が0.18の場合クラック発生率が20%であった(比較例7)。また、d=5μmとして、d/Rの値を0.01未満とした場合クラック発生率が20%となるとともに、酸素検出素子2へのリーク電流が生じ、酸素検出素子2の起電力測定ができなくなった(比較例8)。なお、この比較例8の場合は、助剤成分のマイグレーション(助剤成分の移動)により体積膨張してクラックが発生したものと推測される。   As shown in Table 2, when the d / R value is 0.28, the crack occurrence rate is 75% (Comparative Example 5), and when the d / R value is 0.21, the crack occurrence rate is 30% (Comparison). Example 6) When the d / R value was 0.18, the crack occurrence rate was 20% (Comparative Example 7). In addition, when d = 5 μm and the d / R value is less than 0.01, the crack generation rate is 20%, a leakage current to the oxygen detection element 2 is generated, and the electromotive force measurement of the oxygen detection element 2 is performed. It became impossible (Comparative Example 8). In the case of Comparative Example 8, it is presumed that cracks occurred due to volume expansion due to migration of the auxiliary component (movement of the auxiliary component).

一方、dが5μmより大きい範囲で、d/Rを0.16以下とすると、クラック発生率を0%とすることができた(実施例6〜13)。また、ヒータ3は、酸素検出素子2の内部に挿入するものであるため、その実用的な直径の範囲は、直径2Rが1〜5mmの範囲(半径Rが0.5〜2.5mmの範囲)である。また、表2に示されるように、半径Rが1.41mm程度の場合、ヒータ3の外側表面と抵抗発熱体31までの距離dは、5μm<d<250μmの範囲とすることが好ましい。   On the other hand, when d / R was 0.16 or less in the range where d was larger than 5 μm, the crack generation rate could be 0% (Examples 6 to 13). In addition, since the heater 3 is inserted into the oxygen detection element 2, the practical diameter range thereof is a range where the diameter 2R is 1 to 5 mm (a range where the radius R is 0.5 to 2.5 mm). ). As shown in Table 2, when the radius R is about 1.41 mm, the distance d between the outer surface of the heater 3 and the resistance heating element 31 is preferably in the range of 5 μm <d <250 μm.

上記のように、dが5μmより大、2Rが1〜5mmであり、且つ、d/Rが0.16以下とすることにより、クラックの発生を抑制することができる。また、半径Rが1.41mm程度の場合、5μm<d<250μmの範囲とすることにより、クラックの発生を抑制することができる。   As described above, when d is greater than 5 μm, 2R is 1 to 5 mm, and d / R is 0.16 or less, the occurrence of cracks can be suppressed. Further, when the radius R is about 1.41 mm, the occurrence of cracks can be suppressed by setting the range of 5 μm <d <250 μm.

なお、上記実施形態は、抵抗発熱体31の組成、厚さ等を変化させること無く、さらに、中央部の線幅Wcと最外部の線幅Wsを軸方向に略同一にすることで、最高抵抗値Rcと最低抵抗値Rsを特定したが、これに限らず、素子接触部Tの部分の単位長さ当たりの抵抗値が最高抵抗値Rcになっており、素子接触部T以外の部分に単位長さ当たりの抵抗値が最低抵抗値Rsとなっていればよい。つまり、素子接触部Tの部分と素子接触部T以外の部分の抵抗発熱体31の膜厚の調整、素子接触部Tの部分と素子接触部T以外の部分の抵抗発熱体31の材料の調整等を行うことができる。線幅に関しても、軸方向に略同一にするのではなく、素子接触部Tの線幅を最も狭くすることができる。   In the above embodiment, the composition, thickness, etc. of the resistance heating element 31 are not changed, and the center line width Wc and the outermost line width Ws are made substantially the same in the axial direction. Although the resistance value Rc and the minimum resistance value Rs are specified, the resistance value per unit length of the part of the element contact portion T is the maximum resistance value Rc, and the resistance value Rc is not limited to this. It is sufficient that the resistance value per unit length is the minimum resistance value Rs. That is, the adjustment of the film thickness of the resistance heating element 31 in the part other than the element contact part T and the part other than the element contact part T, and the adjustment of the material of the resistance heating element 31 in the part other than the element contact part T and the part of the element contact part T. Etc. can be performed. Also regarding the line width, the line width of the element contact portion T can be made the narrowest instead of being substantially the same in the axial direction.

本発明の一実施形態に係る酸素センサの断面概略構成を示す図。The figure which shows the cross-sectional schematic structure of the oxygen sensor which concerns on one Embodiment of this invention. 図1の酸素センサの要部断面概略構成を拡大して示す図。The figure which expands and shows the principal part cross-section schematic structure of the oxygen sensor of FIG. 図1の酸素センサのヒータの製造工程の例を説明するための図。The figure for demonstrating the example of the manufacturing process of the heater of the oxygen sensor of FIG. 図1の酸素センサのヒータの抵抗発熱パターンの構成を説明するための図。The figure for demonstrating the structure of the resistance heating pattern of the heater of the oxygen sensor of FIG. 図1の酸素センサのヒータの断面構成を示す図。The figure which shows the cross-sectional structure of the heater of the oxygen sensor of FIG.

符号の説明Explanation of symbols

1……酸素センサ、2……酸素検出素子、3……ヒータ、5……主体金具、31……抵抗発熱体、312……本体部、313……接続部、314……リード部。   DESCRIPTION OF SYMBOLS 1 ... Oxygen sensor, 2 ... Oxygen detection element, 3 ... Heater, 5 ... Metal fitting, 31 ... Resistance heating element, 312 ... Main part, 313 ... Connection part, 314 ... Lead part.

Claims (4)

先端部が閉じた有底筒状で内外面に電極層を有するガス検出素子と、
前記ガス検出素子の中空部に挿入され、その先端部に発熱部を有する棒状のヒータとを備え、
前記ヒータの中心軸線が前記ガス検出素子の中空部の中心軸線に対して片側に寄るように偏心して配置されたガスセンサであって、
前記ヒータは、セラミック基体と、該セラミック基体の内部に周方向に沿って埋設された発熱体とを具備し、
前記ヒータの発熱部は、前記ガス検出素子の内壁に接触する接触部位に対応して設けられた高温発熱部と当該高温発熱部以外の発熱部とを有し、
前記高温発熱部における前記発熱体の単位長さ当たりの最高抵抗値をRcとし、
前記高温発熱部以外の発熱部における前記発熱体の単位長さ当たりの最低抵抗値をRsとしたとき、
Rc/Rsが1.5〜3.0であることを特徴とするガスセンサ。
A gas detection element having an electrode layer on the inner and outer surfaces in a bottomed cylindrical shape with a closed tip, and
A rod-like heater inserted into the hollow portion of the gas detection element and having a heat generating portion at the tip thereof;
A gas sensor arranged eccentrically so that the central axis of the heater is closer to one side with respect to the central axis of the hollow portion of the gas detection element,
The heater comprises a ceramic base and a heating element embedded in the ceramic base along the circumferential direction,
The heating part of the heater has a high temperature heating part provided corresponding to a contact part that contacts the inner wall of the gas detection element and a heating part other than the high temperature heating part,
Rc is the maximum resistance value per unit length of the heating element in the high temperature heating part,
When the minimum resistance value per unit length of the heating element in the heating part other than the high temperature heating part is Rs,
Rc / Rs is 1.5-3.0, The gas sensor characterized by the above-mentioned.
請求項1記載のガスセンサにおいて、
前記ヒータの発熱部は、軸方向に沿って延び、周方向に列設された複数の本体部と、複数の該本体部のそれぞれについて、隣り合う本体部の端部連結する接続部と、により一本に連なる前記発熱体が前記セラミック基体の内部に周方向に沿って埋設され、
前記高温発熱部が、前記複数の本体部のうち中央に配設された本体部にあることを特徴とするガスセンサ。
The gas sensor according to claim 1, wherein
The heating portion of the heater extends in the axial direction and includes a plurality of main body portions arranged in a circumferential direction, and a connection portion that connects the end portions of adjacent main body portions for each of the plurality of main body portions. The heating element connected to one is embedded in the ceramic base along the circumferential direction,
The gas sensor according to claim 1, wherein the high temperature heat generating portion is in a main body portion disposed in the center among the plurality of main body portions.
請求項1又は2記載のガスセンサにおいて、
前記発熱体は前記セラミック基体の厚さ方向中央より外側の位置に周方向に沿って埋設され、前記ヒータの外側表面と前記発熱体までの距離をd、前記ヒータの半径をRとしたとき、dが5μmより大、2Rが1〜5mmであり、且つ、d/Rが0.16以下であることを特徴とするガスセンサ。
The gas sensor according to claim 1 or 2,
The heating element is embedded along the circumferential direction at a position outside the center of the ceramic substrate in the thickness direction, and the distance between the outer surface of the heater and the heating element is d, and the radius of the heater is R, d is larger than 5 μm, 2R is 1 to 5 mm, and d / R is 0.16 or less.
請求項1又は2記載のガスセンサにおいて、
前記ヒータの外側表面と前記発熱体までの距離dが、
5μm<d<250μm
であることを特徴とするガスセンサ。
The gas sensor according to claim 1 or 2,
The distance d between the outer surface of the heater and the heating element is:
5 μm <d <250 μm
The gas sensor characterized by being.
JP2004378875A 2004-12-28 2004-12-28 Gas sensor Expired - Fee Related JP4762539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378875A JP4762539B2 (en) 2004-12-28 2004-12-28 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378875A JP4762539B2 (en) 2004-12-28 2004-12-28 Gas sensor

Publications (2)

Publication Number Publication Date
JP2006184149A true JP2006184149A (en) 2006-07-13
JP4762539B2 JP4762539B2 (en) 2011-08-31

Family

ID=36737374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378875A Expired - Fee Related JP4762539B2 (en) 2004-12-28 2004-12-28 Gas sensor

Country Status (1)

Country Link
JP (1) JP4762539B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163867A (en) * 2013-02-27 2014-09-08 Ngk Spark Plug Co Ltd Gas sensor and heater element
JPWO2017159144A1 (en) * 2016-03-16 2018-03-22 日本特殊陶業株式会社 Ceramic heater
KR20180124029A (en) * 2016-03-30 2018-11-20 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic Heaters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266718A (en) * 1999-03-15 2000-09-29 Ngk Spark Plug Co Ltd Oxygen sensor
JP2001074687A (en) * 1999-09-08 2001-03-23 Ngk Spark Plug Co Ltd Oxygen sensor
JP2001289814A (en) * 2000-02-01 2001-10-19 Denso Corp Gas sensor
JP2002075596A (en) * 2000-08-25 2002-03-15 Ibiden Co Ltd Ceramic heater and manufacturing method therefor
JP2004319459A (en) * 2003-03-27 2004-11-11 Kyocera Corp Ceramic heating resistor and heater for oxygen probe using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266718A (en) * 1999-03-15 2000-09-29 Ngk Spark Plug Co Ltd Oxygen sensor
JP2001074687A (en) * 1999-09-08 2001-03-23 Ngk Spark Plug Co Ltd Oxygen sensor
JP2001289814A (en) * 2000-02-01 2001-10-19 Denso Corp Gas sensor
JP2002075596A (en) * 2000-08-25 2002-03-15 Ibiden Co Ltd Ceramic heater and manufacturing method therefor
JP2004319459A (en) * 2003-03-27 2004-11-11 Kyocera Corp Ceramic heating resistor and heater for oxygen probe using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163867A (en) * 2013-02-27 2014-09-08 Ngk Spark Plug Co Ltd Gas sensor and heater element
JPWO2017159144A1 (en) * 2016-03-16 2018-03-22 日本特殊陶業株式会社 Ceramic heater
CN108781482A (en) * 2016-03-16 2018-11-09 日本特殊陶业株式会社 Ceramic heater
KR20180124029A (en) * 2016-03-30 2018-11-20 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic Heaters
CN108886840A (en) * 2016-03-30 2018-11-23 日本特殊陶业株式会社 Ceramic heater
EP3439428A4 (en) * 2016-03-30 2019-11-13 NGK Spark Plug Co., Ltd. Ceramic heater
KR102136520B1 (en) * 2016-03-30 2020-07-22 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic heater

Also Published As

Publication number Publication date
JP4762539B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5500148B2 (en) Gas sensor element, method of manufacturing the same, and gas sensor
US9829462B2 (en) Gas sensor element and gas sensor
US9494548B2 (en) Gas sensor
JP4739042B2 (en) Gas sensor and manufacturing method thereof
JP2000206080A (en) Oxygen sensor fitted with heater and its production
JP4762539B2 (en) Gas sensor
JPH04157358A (en) Oxygen sensor
JP2019158554A (en) Sensor element and gas sensor
JP2007232481A (en) Oxygen sensor
JP2000266718A (en) Oxygen sensor
JP7399771B2 (en) gas sensor
JP5139955B2 (en) Ceramic heater, gas sensor element and gas sensor
JP2007218741A (en) Oxygen sensor and method of manufacturing same
JP2005201841A (en) Oxygen concentration detecting element and its manufacturing method
JP4015569B2 (en) Air-fuel ratio detection device
JP4490122B2 (en) Oxygen concentration detection element
JP6917207B2 (en) Gas sensor
JP2008096247A (en) Gas sensor
JP2007198970A (en) Gas sensor
JP6406786B2 (en) Gas sensor
JP2001074687A (en) Oxygen sensor
JP2013178228A (en) Gas sensor
JP2007139550A (en) Oxygen sensor
JP5166354B2 (en) Gas sensor element and gas sensor
JP4007892B2 (en) Gas sensor element and gas sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees