JP2006184060A - Instrument and method for measuring film thickness - Google Patents

Instrument and method for measuring film thickness Download PDF

Info

Publication number
JP2006184060A
JP2006184060A JP2004375881A JP2004375881A JP2006184060A JP 2006184060 A JP2006184060 A JP 2006184060A JP 2004375881 A JP2004375881 A JP 2004375881A JP 2004375881 A JP2004375881 A JP 2004375881A JP 2006184060 A JP2006184060 A JP 2006184060A
Authority
JP
Japan
Prior art keywords
measurement
optical system
film thickness
light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375881A
Other languages
Japanese (ja)
Other versions
JP4715199B2 (en
Inventor
Hideki Nakakuki
秀樹 中久木
Yutaka Fujiwara
豊 藤原
Masashi Kubota
正志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004375881A priority Critical patent/JP4715199B2/en
Publication of JP2006184060A publication Critical patent/JP2006184060A/en
Application granted granted Critical
Publication of JP4715199B2 publication Critical patent/JP4715199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and a method for measuring a film thickness prevented from affecting color measurement in a cell domain by performing accurate measurement positioning when measuring the film thickness of an object under measurement with a thin film formed in the minute cellular domain of a color filter, etc. by a spectral reflection interference method. <P>SOLUTION: A measurement head is disposed in the vicinity of a cell to be measured to image the vicinity while performing illumination by a light source for photographing. Minute displacement is calculated from photographed image data to perform positional correction. Then, the illumination light source is switched to a light source of infrared light with wavelengths of 900nm or more for minute spot measurement. Its reflected light is measured to measure a film thickness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は分光干渉法によりカラーフィルタ等の微小薄膜セル内の膜厚を非接触で測定する装置及び測定方法に関する。 The present invention relates to an apparatus and a measurement method for measuring a film thickness in a minute thin film cell such as a color filter in a non-contact manner by spectral interference.

微小なセル状のRGB薄膜パターンが形成されたカラーフィルタのR、G、B各膜の膜厚は液晶ディスプレイの表示特性に大きく影響する因子であるので、その製造工程内で厳しく管理されている。その膜厚測定は膜の一部を鋭利な刃物で掻き取って膜表面と基板表面との段差を作り、触針式の段差計による測定で行われている。フォトリソ法によるカラーフィルタの製造では複数の工程で微小なRGBセル内の膜厚測定が行われるが、このような方法は測定のための準備が煩わしく、測定時間も掛かるうえに被測定物を破壊する破壊計測であるため、測定に伴うロスが多いという問題があった。   The film thicknesses of the R, G, and B films of the color filter on which the minute cell-like RGB thin film pattern is formed are factors that greatly affect the display characteristics of the liquid crystal display, and thus are strictly controlled within the manufacturing process. . The film thickness is measured by scraping a part of the film with a sharp blade to create a step between the film surface and the substrate surface, and measuring with a stylus type step gauge. In the production of color filters by the photolithographic method, film thickness measurement in minute RGB cells is performed in a plurality of steps. However, such a method is troublesome to prepare for measurement, takes time, and destroys the object to be measured. Therefore, there is a problem that there is a lot of loss accompanying the measurement.

一方、非破壊で検査する方法としては、膜厚測定対象に光を照射し、その試料から反射された光を分光し、分光反射率を測定し、膜が形成されていない場合の分光反射率との比を取って分光反射比率を求め、このデータとあらかじめ求めた検量線データとから膜厚を求める方法を用いた測定方法が知られている。   On the other hand, as a non-destructive inspection method, the film thickness measurement target is irradiated with light, the light reflected from the sample is dispersed, the spectral reflectance is measured, and the spectral reflectance when no film is formed. There is known a measuring method using a method of obtaining a spectral reflection ratio by taking the ratio of the above and obtaining a film thickness from this data and previously obtained calibration curve data.

さらに上記の測定装置及び測定方法を改良したものとして、特許文献1には、測定に用いる対物レンズの開口数が大きい場合に発生する誤差を補正する方法及び装置が開示されている。   Furthermore, as an improvement of the above-described measurement apparatus and measurement method, Patent Document 1 discloses a method and apparatus for correcting an error that occurs when the numerical aperture of an objective lens used for measurement is large.

しかしながら上記の2方法および装置とも非破壊ではあるものの、測定データから真のデータを得るために複雑な計算をする必要があり、また補正の計算誤差により測定精度が低下するという問題があった。   However, although both the above-described two methods and apparatuses are non-destructive, it is necessary to perform complicated calculations in order to obtain true data from measurement data, and there is a problem that measurement accuracy is reduced due to a calculation error in correction.

特開平6−249620号公報JP-A-6-249620 特開2002−318106号公報JP 2002-318106 A

本発明は上記の問題に鑑みなされたものであり、その課題とするところは微小セル内膜厚を非破壊で測定でき、かつ複雑なデータ処理を必要とせず精度の良い測定を行うことができる膜厚測定装置及び膜厚測定方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the problem is that the inner cell thickness of a minute cell can be measured nondestructively, and accurate measurement can be performed without requiring complicated data processing. It is in providing a film thickness measuring apparatus and a film thickness measuring method.

本発明の請求項1の発明は、基板上に微小セル状の薄膜パターンが形成された被測定物の表面に照明光を入射し、その反射光を分光し分光反射率を求め、その分光干渉波形から膜厚を計算する分光反射干渉式の膜厚測定装置であって、分光器と、基板上の所定の測定位置に測定ヘッド部を配置するための移動機構と、測定位置近傍の画像を撮像するための撮像装置と、撮像領域全体を均一に照明する撮像用照明光学系と、撮像された画像データを処理する画像処理部と、照明領域が微小セル内である測定用照明光学系と、撮像用照明光学系と測定用照明光学系とを切り替える機構を有することを特徴とする膜厚測定装置である。位置決め用の照明と測定用の照明とを切り替えることで、照明ムラの影響がなく、精度の良い測定を行うことが可能となる。   According to the first aspect of the present invention, illumination light is incident on the surface of an object to be measured on which a microcellular thin film pattern is formed on a substrate, the reflected light is dispersed to obtain a spectral reflectance, and the spectral interference is obtained. A spectral reflection interference type film thickness measuring device that calculates a film thickness from a waveform, including a spectroscope, a moving mechanism for placing a measurement head at a predetermined measurement position on a substrate, and an image near the measurement position. An imaging device for imaging, an imaging illumination optical system that uniformly illuminates the entire imaging area, an image processing unit that processes captured image data, and a measurement illumination optical system in which the illumination area is in a minute cell A film thickness measuring apparatus having a mechanism for switching between an imaging illumination optical system and a measurement illumination optical system. By switching between the illumination for positioning and the illumination for measurement, it is possible to perform measurement with high accuracy without being affected by uneven illumination.

本発明の請求項2の発明は、前記測定用照明光学系が、可視光と波長900nm以上の近赤外域の光を照射する光源と、集光光学系と、近赤外光を透過する光ファイバーと、赤外光透過・反射各50%のビームスプリッタと、可視光を透過し近赤外光を反射するホットミラーと、赤外対物レンズとを有し、前記光源からの照射光を前記集光光学系、前記光ファイバー、前記ビームスプリッタを順次介し、前記ホットミラーで赤外光成分を反射して前記赤外対物レンズに導き被測定物に照射することを特徴とする請求項1に記載の膜厚測定装置である。測定光を光ファイバーで絞ることにより、光路差による測定値の誤差を無くすことができ、あるいは誤差を補正するための複雑な計算を無くすことが可能になる。また赤外光を用いることで被測定物の可視光部の吸収による影響を無くすことができる。   According to a second aspect of the present invention, the measurement illumination optical system includes a light source that irradiates visible light and light in the near infrared region having a wavelength of 900 nm or more, a condensing optical system, and an optical fiber that transmits near infrared light. A 50% beam splitter that transmits and reflects infrared light, a hot mirror that transmits visible light and reflects near-infrared light, and an infrared objective lens. The infrared light component is reflected by the hot mirror sequentially through an optical optical system, the optical fiber, and the beam splitter, guided to the infrared objective lens, and irradiated on the object to be measured. It is a film thickness measuring device. By narrowing the measurement light with an optical fiber, it is possible to eliminate an error in a measurement value due to an optical path difference, or it is possible to eliminate a complicated calculation for correcting the error. Moreover, the influence by absorption of the visible light part of a to-be-measured object can be eliminated by using infrared light.

本発明の請求項3の発明は、前記光ファイバーのコア径が0.8mmから0.2mmであることを特徴とする請求項2に記載の膜厚測定装置である。被測定物の微小セルに対し好適な照射スポット径が得られる。   The invention according to claim 3 of the present invention is the film thickness measuring apparatus according to claim 2, wherein the core diameter of the optical fiber is 0.8 mm to 0.2 mm. A suitable irradiation spot diameter can be obtained for a minute cell of the object to be measured.

本発明の請求項4の発明は、前記撮像用照明光学系が、ケラー照明系と、可視光透過・反射各50%のビームスプリッタを有し、前記赤外対物レンズを介して被測定物に照射することを特徴とする請求項1から3のいずれかに記載の膜厚測定装置である。撮像領域において均一な照明が容易に得られる。   According to a fourth aspect of the present invention, the imaging illumination optical system includes a Keller illumination system and a 50% beam splitter that transmits and reflects visible light, and the object to be measured is passed through the infrared objective lens. The film thickness measuring device according to any one of claims 1 to 3, wherein irradiation is performed. Uniform illumination can be easily obtained in the imaging region.

本発明の請求項5の発明は、前記ホットミラーが、前記撮像用光学系からの照射光を透過して前記赤外対物レンズを介して被測定物を照射し、その反射光を透過して前記撮像装置へと導き、前記測定用照明光学系からの照射光の赤外光成分を反射して前記赤外対物レンズを介して被測定物を照射し、その反射光を反射して前記分光器へと導くように配置され、前記測定用照明光学系と前記撮像用照明光学系とが同軸落射照明できるように配置されていることを特徴とする請求項1から4のいずれかに記載の膜厚測定装置である。撮影は可視光で、測定は赤外光で行えるよう、容易に光源の切り替えが出来る。   According to a fifth aspect of the present invention, the hot mirror transmits the irradiation light from the imaging optical system, irradiates the object to be measured through the infrared objective lens, and transmits the reflected light. Guide to the imaging device, reflect the infrared light component of the irradiation light from the measurement illumination optical system, irradiate the object to be measured through the infrared objective lens, reflect the reflected light and reflect the spectral light 5. The apparatus according to claim 1, wherein the measurement illumination optical system and the imaging illumination optical system are arranged so as to perform coaxial epi-illumination. It is a film thickness measuring device. The light source can be easily switched so that imaging can be performed with visible light and measurement with infrared light.

本発明の請求項6の発明は、前記被測定物が基板上にRGB各色からなる微小セル状薄膜パターンが形成されたカラーフィルタであることを特徴とする請求項1から5のいずれかに記載の膜厚測定装置である。異なる色の被測定部でも、色の影響を受けずに微小な領域の精密な膜厚の測定が可能となる。   The invention according to claim 6 of the present invention is the color filter in which the object to be measured is a color filter in which a microcellular thin film pattern of RGB colors is formed on a substrate. This is a film thickness measuring apparatus. It is possible to accurately measure the film thickness of a minute region without being affected by the color even in the measurement target parts of different colors.

本発明の請求項7の発明は、請求項1から6のいずれかの膜厚測定装置を用い、基板上の所定の測定位置近傍に測定ヘッド部を配置した後、撮像用照明光学系で照明して撮像装置で撮像し、得られた画像から画像処理部で測定ヘッド部の位置と測定位置との微小な位置ズレ量を計算し、測定用照明光学系の照明領域が微小セルの中央部となる様測定ヘッド部を微移動した後、照明を測定用照明光学系に切り替えて、その反射光を分光器に入力することを特徴とする膜厚測定方法である。正確な測定位置で周辺からの影響を受けることなく測定を行うことが可能である。   The invention according to claim 7 of the present invention uses the film thickness measuring device according to any one of claims 1 to 6 and illuminates with an imaging illumination optical system after the measurement head portion is arranged in the vicinity of a predetermined measurement position on the substrate. Then, from the obtained image, the image processing unit calculates the minute positional deviation between the position of the measurement head unit and the measurement position, and the illumination area of the measurement illumination optical system is the central part of the minute cell. The film thickness measurement method is characterized in that after the measurement head portion is moved slightly so as to become, the illumination is switched to the measurement illumination optical system and the reflected light is input to the spectroscope. It is possible to measure at an accurate measurement position without being affected by the surroundings.

本発明の膜厚測定装置および膜厚測定方法によれば、例えばカラーフィルタのように微小な領域で精密な膜厚の管理が必要とされる製品において、微小なセル内にて膜厚を非破壊計測できるので、測定によるロス低減が図れ、従来の触針式段差計のように測定前の準備も不要で測定作業の効率化も可能となる。また複雑なデータ計算も不要で、測定精度の良い結果が得られる。   According to the film thickness measurement apparatus and the film thickness measurement method of the present invention, for example, in a product that requires precise film thickness management in a minute area such as a color filter, the film thickness can be reduced in a minute cell. Since destructive measurement is possible, it is possible to reduce the loss due to measurement, and it is not necessary to prepare before measurement as in the case of a conventional stylus type step meter, and the measurement work can be made more efficient. In addition, complicated data calculation is unnecessary, and results with good measurement accuracy can be obtained.

以下、本発明の実施形態について図を参照しながら説明する。図1は本発明の装置の概略構成を示している。まず、測定に使用する光の波長について説明する。分光干渉方式膜厚測定では被測定物の膜面に光を入射する。被測定物の膜表面で反射する成分と膜を透過し基板との境界で反射してくる成分との間に位相差が生じ、位相差がちょうど2πで強められ、πでは弱められ、干渉が観察される。位相差は空気、膜、基板の光学定数と膜厚により決まるので、反射光を分光し分光反射率から膜厚を計算することができる。膜を透過して基板界面で反射してくる光の光量が膜表面での反射に比べて著しく小さいと干渉は観察されない。つまり、膜で吸収されずに、透過する波長を選択することが必要である。カラーレジスト膜厚測定の場合、可視光ではR、G、Bの各膜で吸収が起こるのに対して、900nm以上程度の近赤外域では吸収が見られないため近赤外域の光を使用するのが好適である。カラーレジスト以外の可視域に吸収を持つ膜の測定においても好適であることは言うまでもない。波長の上限は特にないが、実際的には1600nm程度である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of the apparatus of the present invention. First, the wavelength of light used for measurement will be described. In the spectral interference type film thickness measurement, light is incident on the film surface of the object to be measured. A phase difference occurs between the component reflected on the film surface of the object to be measured and the component transmitted through the film and reflected at the boundary with the substrate. The phase difference is strengthened by exactly 2π, attenuated by π, and interference occurs. Observed. Since the phase difference is determined by the optical constants and film thicknesses of air, film, and substrate, the reflected light is dispersed and the film thickness can be calculated from the spectral reflectance. If the amount of light transmitted through the film and reflected at the substrate interface is significantly smaller than the reflection at the film surface, no interference is observed. That is, it is necessary to select a wavelength that is transmitted without being absorbed by the film. For color resist film thickness measurement, absorption occurs in each of the R, G, and B films in visible light, whereas absorption is not observed in the near infrared region of about 900 nm or more, so light in the near infrared region is used. Is preferred. Needless to say, it is also suitable for measuring a film having absorption in the visible region other than the color resist. Although there is no upper limit of the wavelength, it is practically about 1600 nm.

カラーフィルタの基板サイズは近年大型化し、一辺の長さが1mを越えるようになっているので、それに対応した図3のようなXYステージを設け、被測定物6を載せ、測定ヘッド26を移動させて所望の測定場所に測定スポットを移動させる。尚、図3では測定ヘッド26を移動させる場合を示したが、測定ヘッド26は固定し、被測定物6を移動させるXYステージ、または測定ヘッドとステージ両方が移動可能なXYステージとしても良い。   The substrate size of the color filter has been increased in recent years, and the length of one side exceeds 1 m. Therefore, an XY stage as shown in FIG. 3 is provided, the object to be measured 6 is placed, and the measuring head 26 is moved. The measurement spot is moved to a desired measurement location. Although FIG. 3 shows the case where the measurement head 26 is moved, the measurement head 26 may be fixed, and an XY stage that moves the object 6 to be measured, or an XY stage that can move both the measurement head and the stage may be used.

撮像用照明光源22にはハロゲンランプなどを使用する。撮像用照明光源22よりの出射光は500nm以下をカットするカットフィルタ17を経て、単レンズ10、明るさ絞り14、単レンズ9、視野絞り13を経てビームスプリッタ2に至る。ここで、カットフィルタ17は被測定物の膜が感光性のある場合に備えて設置している。前記単レンズ10から単レンズ8は一般に顕微鏡のケラー照明と呼ばれる照明機構と同構成であり、明るさ絞り14と視野絞り13を適宜調整することで、均一な照明を得られる。   A halogen lamp or the like is used as the imaging illumination light source 22. The light emitted from the imaging illumination light source 22 passes through the cut filter 17 that cuts 500 nm or less, passes through the single lens 10, the brightness stop 14, the single lens 9, and the field stop 13 and reaches the beam splitter 2. Here, the cut filter 17 is installed in preparation for the case where the film of the object to be measured is photosensitive. The single lens 10 to the single lens 8 have the same configuration as an illumination mechanism generally called a microscopic Keller illumination, and uniform illumination can be obtained by appropriately adjusting the brightness stop 14 and the field stop 13.

ビームスプリッタ2は45度入射で可視光を反射、透過50%ずつになるように設計し、入射面を45度の位置に設置すると撮像用照明光源22からの入射光はホットミラー3に至る。ホットミラー3は45度入射時に可視光を透過し、近赤外光を反射するように設計する。従って、ホットミラー3より透過した可視光は赤外対物レンズ5を経て、被測定物6が照明される。   The beam splitter 2 is designed so that visible light is reflected and transmitted by 50% at 45 degrees, and the incident light from the imaging illumination light source 22 reaches the hot mirror 3 when the incident surface is installed at a position of 45 degrees. The hot mirror 3 is designed to transmit visible light and reflect near-infrared light when incident at 45 degrees. Therefore, the visible light transmitted through the hot mirror 3 passes through the infrared objective lens 5 and the object to be measured 6 is illuminated.

その反射光は対物レンズ5、ホットミラー3、ビームスプリッタ2、単レンズ7を経てカラーCCDカメラ1に至り、被測定物6の測定位置近傍の画像を撮像できるので、自動または手動でフォーカスを合わせる。撮像範囲に関しては赤外対物レンズ5の倍率とカラーCCDカメラ1のCCD素子サイズを適宜選択することで、図2のような撮像画像が得られる。図2はRGBのピッチ100μmのカラーフィルタを10倍の赤外対物レンズと1/3インチカラーCCDカメラで撮像した場合を模式的に示した図である。また測定スポット101は図1の光ファイバー20としてコア径0.8mmを使用したときに相当する大きさを示した。   The reflected light passes through the objective lens 5, the hot mirror 3, the beam splitter 2, and the single lens 7 and reaches the color CCD camera 1, and an image in the vicinity of the measurement position of the object to be measured 6 can be picked up. . With respect to the imaging range, a captured image as shown in FIG. 2 can be obtained by appropriately selecting the magnification of the infrared objective lens 5 and the CCD element size of the color CCD camera 1. FIG. 2 is a diagram schematically showing a case where an RGB color filter with a pitch of 100 μm is imaged with a 10 × infrared objective lens and a 1/3 inch color CCD camera. Further, the measurement spot 101 showed a size corresponding to the case where a core diameter of 0.8 mm was used as the optical fiber 20 of FIG.

カラーCCDカメラ1の映像信号はコンピュータ24に送られ、画像入力部よりメモリに取り込まれる。撮像エリアと測定スポットの位置関係は機械的に決まる。通常は撮像エリアの中央に測定スポットが位置するようにするので、その場合で説明する。撮像画像の中央が測定しようとするセルの中央と一致するように測定ヘッド部26を微移動させるための処理を行う。反射率が低く、等ピッチで平行に並んでいるブラックマトリックスパターン部とR部、G部、B部を撮像画像のR,G、B各成分の割合から認識し、各領域の境界を求めることで、測定を行いたいセルの中央位置を求め、現在位置からの移動量を画素数と空間分解能から計算してXYステージ制御部25に移動量を設定して微移動を行う。図3は測定スポット101の位置合わせが完了した状態を模式的に示した図である。測定スポットはセル内の膜厚を測定するのに好適な位置であれば良いが、通常は測定しようとするセルの中央が好適である。   The video signal of the color CCD camera 1 is sent to the computer 24 and taken into the memory from the image input unit. The positional relationship between the imaging area and the measurement spot is mechanically determined. Usually, the measurement spot is positioned at the center of the imaging area. Processing for finely moving the measurement head unit 26 is performed so that the center of the captured image coincides with the center of the cell to be measured. Recognizing the black matrix pattern portion, R portion, G portion, and B portion, which are low in reflectance and arranged in parallel at equal pitches, from the ratios of the R, G, and B components of the captured image, and determine the boundary between the regions Then, the center position of the cell to be measured is obtained, the amount of movement from the current position is calculated from the number of pixels and the spatial resolution, the amount of movement is set in the XY stage control unit 25, and fine movement is performed. FIG. 3 is a diagram schematically showing a state where the alignment of the measurement spot 101 is completed. The measurement spot may be a position suitable for measuring the film thickness in the cell, but usually the center of the cell to be measured is preferable.

続いて膜厚測定を行うために、撮像用照明光源22後段のシャッター15を閉じ、測定用光源21後段のシャッター16を開ける。測定用光源21は近赤外光を効率良く出射するように、例えばハロゲン電球に金コートリフレクタを付けたものを使うと良いがこれに限定されるものではない。これを集光光学系27で集光して光ファイバー20に入射する。光ファイバーは近赤外光を透過するものが好適であり、例えばゲルマニウムドープ石英ファイバーなどを用いる。光ファイバー20の先端から出射した光は単レンズ12を経てビームスプリッタ4に至る。ここで、ビームスプリッタ4は45度入射時に近赤外光を反射、透過50%ずつになるように設計する。   Subsequently, in order to measure the film thickness, the shutter 15 after the imaging illumination light source 22 is closed, and the shutter 16 after the measurement light source 21 is opened. The measurement light source 21 may be, for example, a halogen light bulb provided with a gold coat reflector so as to efficiently emit near-infrared light, but is not limited thereto. This is condensed by the condensing optical system 27 and incident on the optical fiber 20. The optical fiber is preferably one that transmits near-infrared light. For example, germanium-doped quartz fiber is used. The light emitted from the tip of the optical fiber 20 reaches the beam splitter 4 through the single lens 12. Here, the beam splitter 4 is designed so as to reflect and transmit near-infrared light by 50% when incident at 45 degrees.

ビームスプリッタ4を透過した光はホットミラー3で可視光は透過するので、赤外光だけが反射し90度向きを変えて赤外対物レンズ5を経て、被測定物6が照明される。このときに照射されるスポットサイズは光ファイバー20のコア径を対物レンズ5の倍率で除した径になる。従って入射瞳径を一杯に使用すると、照明光の入射角度は0°から赤外対物レンズ5の開口数に応じた角度までの範囲におよぶことになる。この場合、膜表面からの反射光と、膜と基板との境界面からの反射光との位相差を発生させる光路差が、厳密な垂直入射時とは異なってしまう。そのため、比較的開口数の大きい対物レンズを使用する場合は、例えば、特許文献1に記載の膜厚測定方法のように補正計算が必要となり、精度良い測定が期待できない。それに対し本発明の方式では測定用の光源を光ファイバー20のコア径にまで絞り、対物レンズ5への入射瞳径をレンズ中心に限定することで、膜面への入射角度を垂直として扱うことが可能となり補正計算不要で精度良い測定が可能である。   The light that has passed through the beam splitter 4 passes through the hot mirror 3 so that visible light is transmitted. Therefore, only infrared light is reflected, and the object to be measured 6 is illuminated through the infrared objective lens 5 by turning 90 degrees. The spot size irradiated at this time is a diameter obtained by dividing the core diameter of the optical fiber 20 by the magnification of the objective lens 5. Therefore, when the entrance pupil diameter is fully used, the incident angle of the illumination light ranges from 0 ° to an angle corresponding to the numerical aperture of the infrared objective lens 5. In this case, the optical path difference that generates the phase difference between the reflected light from the film surface and the reflected light from the boundary surface between the film and the substrate is different from that at the time of strict vertical incidence. Therefore, when an objective lens having a relatively large numerical aperture is used, for example, correction calculation is required as in the film thickness measurement method described in Patent Document 1, and accurate measurement cannot be expected. On the other hand, in the method of the present invention, the light source for measurement is limited to the core diameter of the optical fiber 20, and the entrance pupil diameter to the objective lens 5 is limited to the center of the lens so that the incident angle on the film surface can be treated as vertical. This enables measurement with high accuracy without the need for correction calculation.

また、通常の顕微鏡に付属の照明を測定用の光源に使用する装置が市販されているが、カラーフィルタのようにパターンのある被測定物で測定を行うとスポット部以外の光が入射し、干渉波形が変化するという現象も見られ、やはり測定精度を落とす原因となるので、本発明の方式のように測定用光源を別に用意する必要がある。   In addition, devices that use the illumination attached to a normal microscope as a light source for measurement are commercially available, but when measuring with an object to be measured with a pattern such as a color filter, light other than the spot is incident, There is also a phenomenon that the interference waveform changes, which again causes a drop in measurement accuracy. Therefore, it is necessary to prepare a separate measurement light source as in the method of the present invention.

膜表面、膜と基板の界面で反射して干渉した反射光は対物レンズ5を経てホットミラー3にて反射し、ビームスプリッタ4で反射して単レンズ11を経て光ファイバー19の先端に入射する。光ファイバー19は分光器23に接続しており、内部の回折格子により分光スペクトルデータを得てコンピュータ24にデータが送られる。   The reflected light reflected and interfered by the film surface and the interface between the film and the substrate is reflected by the hot mirror 3 through the objective lens 5, reflected by the beam splitter 4, and incident on the tip of the optical fiber 19 through the single lens 11. The optical fiber 19 is connected to the spectroscope 23, and spectral data is obtained by an internal diffraction grating, and the data is sent to the computer 24.

得られた分光スペクトルデータから膜厚を計算する方法については種々の手法があり特に限定するものではないが、特許文献2に開示された方法などが適用できる。   There are various methods for calculating the film thickness from the obtained spectral data, and there is no particular limitation, but the method disclosed in Patent Document 2 can be applied.

本発明の微小セル膜厚測定装置は、たとえばディスプレイ用、撮像素子用などのカラーフィルタのように微小なセル状領域に薄膜が形成されたものの膜厚測定に好適に利用可能である。   The micro cell film thickness measuring apparatus of the present invention can be suitably used for measuring the film thickness of a thin film formed in a micro cell area such as a color filter for a display or an image sensor.

本発明の実施例を示す装置構成概略図。1 is a schematic diagram of a device configuration showing an embodiment of the present invention. 位置決め前の撮像画像例の模式図。The schematic diagram of the captured image example before positioning. 位置決め完了時の撮像画像例の模式図。The schematic diagram of the captured image example at the time of completion of positioning. XYステージの図。Diagram of XY stage.

符号の説明Explanation of symbols

1 ・・ カラーCCDカメラ
2 ・・ ビームスプリッタ
3 ・・ ホットミラー
4 ・・ ビームスプリッタ
5 ・・ 対物レンズ
6 ・・ 被測定物
7、8、9、10、11、12
・・ 単レンズ
13 ・・ 視野絞り
14 ・・ 明るさ絞り
15、16 ・・ シャッター
17 ・・ カットフィルタ
19、20 ・・ 光ファイバー
21 ・・ 測定用光源
22 ・・ 撮像用光源
23 ・・ 分光器
24 ・・ コンピュータ
25 ・・ XYステージ制御部
26 ・・ 測定ヘッド部
27 ・・ 集光光学系
1 Color CCD camera 2 Beam splitter 3 Hot mirror 4 Beam splitter 5 Objective lens 6 Object to be measured 7, 8, 9, 10, 11, 12
Single lens 13 Field diaphragm 14 Brightness diaphragm 15, 16 Shutter 17 Cut filter 19, 20 Optical fiber 21 Measurement light source 22 Imaging light source 23 Spectrometer 24 · · Computer 25 · · XY stage controller 26 · · Measurement head 27 · · Condensing optical system

Claims (7)

基板上に微小セル状の薄膜パターンが形成された被測定物の表面に照明光を入射し、その反射光を分光し分光反射率を求め、その分光干渉波形から膜厚を計算する分光反射干渉式の膜厚測定装置であって、分光器と、基板上の所定の測定位置に測定ヘッド部を配置するための移動機構と、測定位置近傍の画像を撮像するための撮像装置と、撮像領域全体を均一に照明する撮像用照明光学系と、撮像された画像データを処理する画像処理部と、照明領域が微小セル内である測定用照明光学系と、撮像用照明光学系と測定用照明光学系とを切り替える機構を有することを特徴とする膜厚測定装置。   Spectral reflection interference where incident light is incident on the surface of the object to be measured on which a microcellular thin film pattern is formed on a substrate, the reflected light is dispersed to obtain the spectral reflectance, and the film thickness is calculated from the spectral interference waveform Type film thickness measuring device, a spectroscope, a moving mechanism for disposing a measuring head portion at a predetermined measurement position on a substrate, an imaging device for imaging an image near the measurement position, and an imaging region An imaging illumination optical system that uniformly illuminates the entire image, an image processing unit that processes captured image data, a measurement illumination optical system in which an illumination area is in a minute cell, an imaging illumination optical system, and a measurement illumination A film thickness measuring apparatus having a mechanism for switching between an optical system and an optical system. 前記測定用照明光学系は、可視光と波長900nm以上の近赤外域の光を照射する光源と、集光光学系と、近赤外光を透過する光ファイバーと、赤外光透過・反射各50%のビームスプリッタと、可視光を透過し近赤外光を反射するホットミラーと、赤外対物レンズとを有し、前記光源からの照射光を前記集光光学系、前記光ファイバー、前記ビームスプリッタを順次介し、前記ホットミラーで赤外光成分を反射して前記赤外対物レンズに導き被測定物に照射することを特徴とする請求項1に記載の膜厚測定装置。   The illumination optical system for measurement includes a light source that irradiates visible light and near-infrared light having a wavelength of 900 nm or more, a condensing optical system, an optical fiber that transmits near-infrared light, and infrared light transmission / reflection 50 each. % Beam splitter, a hot mirror that transmits visible light and reflects near-infrared light, and an infrared objective lens, and irradiates light from the light source with the condensing optical system, the optical fiber, and the beam splitter. The film thickness measuring apparatus according to claim 1, wherein an infrared light component is reflected by the hot mirror, guided to the infrared objective lens, and irradiated on the object to be measured. 前記光ファイバーのコア径が0.8mmから0.2mmであることを特徴とする請求項2に記載の膜厚測定装置。   The film thickness measuring apparatus according to claim 2, wherein the core diameter of the optical fiber is 0.8 mm to 0.2 mm. 前記撮像用照明光学系は、ケラー照明系と、可視光透過・反射各50%のビームスプリッタを有し、前記赤外対物レンズを介して被測定物に照射することを特徴とする請求項1から3のいずれかに記載の膜厚測定装置。   The imaging optical system for imaging has a Keller illumination system and a 50% beam splitter for visible light transmission and reflection, respectively, and irradiates the object to be measured through the infrared objective lens. To 4. The film thickness measuring apparatus according to any one of 3 to 4. 前記ホットミラーが、前記撮像用光学系からの照射光を透過して前記赤外対物レンズを介して被測定物を照射し、その反射光を透過して前記撮像装置へと導き、前記測定用照明光学系からの照射光の赤外光成分を反射して前記赤外対物レンズを介して被測定物を照射し、その反射光を反射して前記分光器へと導くように配置され、前記測定用照明光学系と前記撮像用照明光学系とが同軸落射照明できるように配置されていることを特徴とする請求項1から4のいずれかに記載の膜厚測定装置。   The hot mirror transmits the irradiation light from the imaging optical system, irradiates the object to be measured through the infrared objective lens, transmits the reflected light to the imaging apparatus, and performs the measurement. The infrared light component of the irradiation light from the illumination optical system is reflected to irradiate the object to be measured through the infrared objective lens, and the reflected light is arranged to be reflected and guided to the spectrometer. 5. The film thickness measuring apparatus according to claim 1, wherein the measurement illumination optical system and the imaging illumination optical system are arranged so as to perform coaxial epi-illumination. 前記被測定物が基板上にRGB各色からなる微小セル状薄膜パターンが形成されたカラーフィルタであることを特徴とする請求項1から5のいずれかに記載の膜厚測定装置。   6. The film thickness measuring apparatus according to claim 1, wherein the object to be measured is a color filter in which a minute cellular thin film pattern composed of RGB colors is formed on a substrate. 請求項1から6のいずれかの膜厚測定装置を用い、基板上の所定の測定位置近傍に測定ヘッド部を配置した後、撮像用光学系で照明して撮像装置で撮像し、得られた画像から画像処理部で測定ヘッド部の位置と測定位置との微小な位置ズレ量を計算し、測定用照明光学系の照明領域が微小セルの中央部となる様測定ヘッド部を微移動した後、照明を測定用照明光学系に切り替えて、その反射光を分光器に入力することを特徴とする膜厚測定方法。   Using the film thickness measuring device according to any one of claims 1 to 6, the measurement head portion was arranged in the vicinity of a predetermined measurement position on the substrate, and then illuminated with an imaging optical system and imaged with the imaging device. After the image processing unit calculates a small amount of misalignment between the position of the measurement head and the measurement position from the image, and finely moves the measurement head so that the illumination area of the measurement illumination optical system becomes the center of the small cell A method for measuring a film thickness, wherein the illumination is switched to an illumination optical system for measurement and the reflected light is input to a spectrometer.
JP2004375881A 2004-12-27 2004-12-27 Film thickness measuring apparatus and film thickness measuring method Expired - Fee Related JP4715199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375881A JP4715199B2 (en) 2004-12-27 2004-12-27 Film thickness measuring apparatus and film thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375881A JP4715199B2 (en) 2004-12-27 2004-12-27 Film thickness measuring apparatus and film thickness measuring method

Publications (2)

Publication Number Publication Date
JP2006184060A true JP2006184060A (en) 2006-07-13
JP4715199B2 JP4715199B2 (en) 2011-07-06

Family

ID=36737295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375881A Expired - Fee Related JP4715199B2 (en) 2004-12-27 2004-12-27 Film thickness measuring apparatus and film thickness measuring method

Country Status (1)

Country Link
JP (1) JP4715199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205791A (en) * 2006-01-31 2007-08-16 Toppan Printing Co Ltd Intra-cell film thickness measuring apparatus
JP2009300205A (en) * 2008-06-12 2009-12-24 Horiba Ltd End point detecting apparatus
WO2015096225A1 (en) * 2013-12-27 2015-07-02 深圳市华星光电技术有限公司 Method and apparatus for measuring film thickness of color filter
WO2022025385A1 (en) * 2020-07-31 2022-02-03 서울대학교산학협력단 System for measuring thickness and physical properties of thin film using spatial light modulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123015A (en) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd Detecting method for defect in formed pattern
JPH10325795A (en) * 1996-08-04 1998-12-08 Matsushita Electric Ind Co Ltd Method and apparatus for measurement of medium
JP2000180124A (en) * 1998-12-15 2000-06-30 Inst Of Physical & Chemical Res Instrument and method for measuring geometric thickness and refractive index of sample
JP2001153620A (en) * 1999-11-29 2001-06-08 Dainippon Screen Mfg Co Ltd Film thickness measuring device and film thickness measuring method
JP2002006226A (en) * 2000-06-19 2002-01-09 Sony Corp Inspecting device
JP2002005823A (en) * 2000-06-19 2002-01-09 Dainippon Screen Mfg Co Ltd Thin-film measuring apparatus
JP2002267937A (en) * 2001-03-08 2002-09-18 Olympus Optical Co Ltd Measuring optical system correcting device and spectrophotometer
JP2002318106A (en) * 2001-04-24 2002-10-31 Toppan Printing Co Ltd Thickness measuring device of colored film and thickness measuring method of colored film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325795A (en) * 1996-08-04 1998-12-08 Matsushita Electric Ind Co Ltd Method and apparatus for measurement of medium
JPH10123015A (en) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd Detecting method for defect in formed pattern
JP2000180124A (en) * 1998-12-15 2000-06-30 Inst Of Physical & Chemical Res Instrument and method for measuring geometric thickness and refractive index of sample
JP2001153620A (en) * 1999-11-29 2001-06-08 Dainippon Screen Mfg Co Ltd Film thickness measuring device and film thickness measuring method
JP2002006226A (en) * 2000-06-19 2002-01-09 Sony Corp Inspecting device
JP2002005823A (en) * 2000-06-19 2002-01-09 Dainippon Screen Mfg Co Ltd Thin-film measuring apparatus
JP2002267937A (en) * 2001-03-08 2002-09-18 Olympus Optical Co Ltd Measuring optical system correcting device and spectrophotometer
JP2002318106A (en) * 2001-04-24 2002-10-31 Toppan Printing Co Ltd Thickness measuring device of colored film and thickness measuring method of colored film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205791A (en) * 2006-01-31 2007-08-16 Toppan Printing Co Ltd Intra-cell film thickness measuring apparatus
JP2009300205A (en) * 2008-06-12 2009-12-24 Horiba Ltd End point detecting apparatus
WO2015096225A1 (en) * 2013-12-27 2015-07-02 深圳市华星光电技术有限公司 Method and apparatus for measuring film thickness of color filter
WO2022025385A1 (en) * 2020-07-31 2022-02-03 서울대학교산학협력단 System for measuring thickness and physical properties of thin film using spatial light modulator

Also Published As

Publication number Publication date
JP4715199B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US10054862B2 (en) Inspection apparatus, inspection method, lithographic apparatus, patterning device and manufacturing method
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
TWI405046B (en) A method of assessing a model, an inspection apparatus and a lithographic apparatus
TW201629469A (en) Spectroscopic beam profile metrology
CN113348361B (en) Method and system for co-location metering
KR20180005697A (en) Optical measurement with small illumination spot size
TWI544287B (en) Inspection apparatus and method, lithographic apparatus, lithographic processing cell and device manufacturing method
US11835752B2 (en) Broad spectrum radiation by supercontinuum generation using a tapered optical fiber
JP2011027461A (en) Method of measuring pattern shape, method of manufacturing semiconductor device, and process control system
JP2005091003A (en) Two-dimensional spectral apparatus and film thickness measuring instrument
US9268124B2 (en) Microscope and method for characterizing structures on an object
KR20160093021A (en) Device and method for positioning a photolithography mask by means of a contactless optical method
TW201107735A (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
KR20210110897A (en) Scaling metrics to quantify instrumentation sensitivity to process variations
US10969697B1 (en) Overlay metrology tool and methods of performing overlay measurements
US7557934B2 (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US10288810B2 (en) Method and apparatus for optical fiber connection
JP4807659B2 (en) Cell thickness measuring device
CN101510051A (en) Inspection method and equipment, photolithography equipment and method for manufacturing photolithography processing unit and device
JP4715199B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP4844069B2 (en) In-pixel thickness measuring apparatus and measuring method
KR20220043339A (en) An Apparatus For Measuring Phase Shift For Blank Phase Shift Mask
JP2003247912A (en) Inspection device for minute object element, inspection device for color filter, inspection method for minute object element, manufacturing method for substrate with picture element, and program
TWI729439B (en) Method and apparatus for determining an effect of one or more pixels to be introduced into a substrate of a photolithographic mask
JP2007085979A (en) Method and instrument for measuring film thickness of transparent colored film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees