JP2006183581A - Combustion control device for internal combustion engine - Google Patents

Combustion control device for internal combustion engine Download PDF

Info

Publication number
JP2006183581A
JP2006183581A JP2004378686A JP2004378686A JP2006183581A JP 2006183581 A JP2006183581 A JP 2006183581A JP 2004378686 A JP2004378686 A JP 2004378686A JP 2004378686 A JP2004378686 A JP 2004378686A JP 2006183581 A JP2006183581 A JP 2006183581A
Authority
JP
Japan
Prior art keywords
injection
fuel injection
fuel
exhaust
cetane number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004378686A
Other languages
Japanese (ja)
Inventor
Motohiro Niizawa
元啓 新沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004378686A priority Critical patent/JP2006183581A/en
Publication of JP2006183581A publication Critical patent/JP2006183581A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize degradation in fuel economy and increase in HC or smoke even if a cetane number of fuel used is fluctuated, when an exhaust temperature is increased or an air-fuel ratio is enriched by combined injection. <P>SOLUTION: An operational status, a status of an exhaust emission control device and the cetane number of the fuel used are respectively detected. When the combined injection constituted of preliminary injection for controlling preliminary combustion generated near a top dead center and retard combustion started after the completion of the preliminary combustion is performed based on detection result of the operational status and the status of the exhaust emission control device, the fuel injection is controlled to control at least one of the preliminary combustion and the retard combustion based on the cetane number. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の燃焼制御装置に関する。   The present invention relates to a combustion control device for an internal combustion engine.

従来、特許文献1に開示されているように、ディーゼルエンジンの燃料噴射装置において、触媒等の活性を高めるために排気温度の昇温を促す時などに、燃料噴射弁から噴射する燃料を、各気筒の圧縮上死点近傍で複数回に分割して噴射する分割噴射が知られている。なお、これに併せて、エンジンの要求トルクを満足させて排気温度を昇温させるために燃料噴射量を増量(空燃比をリッチ化)することも知られている。
特開2000−320386号公報
Conventionally, as disclosed in Patent Document 1, in a fuel injection device of a diesel engine, when urging the temperature of the exhaust gas to increase the activity of a catalyst or the like, the fuel injected from the fuel injection valve is Divided injection is known in which injection is performed divided into a plurality of times in the vicinity of the compression top dead center of the cylinder. In addition, it is also known to increase the fuel injection amount (enrich the air-fuel ratio) in order to increase the exhaust temperature while satisfying the required torque of the engine.
JP 2000-320386 A

しかしながら、特許文献1に記載の装置において、排気温度を昇温または空燃比をリッチ化させるときには、分割噴射された燃料の燃焼が継続するように、最初に噴射された燃料の火炎中に燃料を噴射させることが必要である。この際には、2回目以降に噴射された燃料が拡散燃焼主体の燃焼になり易く、排気温度を昇温または空燃比をリッチ化させるとき、特に内燃機関の負荷(燃料噴射量)が増大するときに極力スモークを増加させないように燃焼制御(燃料噴射制御)することが大きな課題であった。   However, in the apparatus described in Patent Document 1, when the exhaust temperature is raised or the air-fuel ratio is made rich, the fuel is injected into the flame of the initially injected fuel so that the combustion of the separately injected fuel continues. It is necessary to inject. In this case, the fuel injected after the second time is likely to be mainly combustion by diffusion combustion, and particularly when the exhaust temperature is raised or the air-fuel ratio is made rich, the load (fuel injection amount) of the internal combustion engine increases. It has been a big problem to perform combustion control (fuel injection control) so as not to increase smoke as much as possible.

このため、本出願人は特願2003−193310号、特願2003−279629号、特願2003−282723号、および特願2003−284325号等において提案したように、少なくとも上死点近傍で1回行われる予備燃焼と、予備燃焼が終了した後に開始させるリタード燃焼(主燃焼)とで構成される燃焼によって必要トルクを発生させる燃料噴射制御(複合噴射)を行い、スモークを悪化させることなく排気温度の昇温または空燃比のリッチ化要求を実現できるようにした。   Therefore, as proposed in Japanese Patent Application No. 2003-193310, Japanese Patent Application No. 2003-279629, Japanese Patent Application No. 2003-282723, and Japanese Patent Application No. 2003-284325, the applicant of the present application at least once near the top dead center. Performs fuel injection control (composite injection) to generate the required torque by combustion consisting of pre-combustion that is performed and retarded combustion (main combustion) that is started after pre-combustion is completed, and exhaust temperature without deteriorating smoke It was made possible to meet demands for increasing the temperature or enriching the air-fuel ratio.

しかし、複合噴射の場合には、上死点近傍での予備燃焼と、予備燃焼が終了した後に開始されるリタード燃焼とによって必要な出力および排気温度上昇を得るのが目的であり、通常の燃料噴射で同じ量の燃料を噴射する場合に比べて全体として燃料噴射期間を拡大して遅延化しているので、分割予備噴射による予備燃焼の成否が、後続の分割リタード噴射によるリタード燃焼の成否に大きな影響を与え易く、通常の燃料噴射による燃焼に比べて、特に燃料の着火性変動等の影響が大きくなる傾向が強い。   However, in the case of combined injection, the purpose is to obtain the required output and exhaust gas temperature rise by pre-combustion near top dead center and retarded combustion started after the pre-combustion is completed. Compared to the case where the same amount of fuel is injected, the fuel injection period is extended and delayed as a whole, so the success or failure of preliminary combustion by split pre-injection is greater than the success or failure of retard combustion by subsequent split retard injection. It is easy to influence, and there is a strong tendency that the influence of the change in the ignitability of the fuel is particularly large as compared with the combustion by the normal fuel injection.

ところで、現在の市場における流通燃料は、燃料の性状や特性が製造メーカ、地域、あるいは季節によって変動することが一般的であり、特に着火性を律しているセタン価も変動することは周知である。
このため、セタン価の比較的低い燃料が使用されて予備噴射における燃料の着火性が低下する(着火遅れ期間が長くなる)と、リタード燃焼も非常に緩慢となって燃焼が不安定となる。この結果、通常の燃料噴射の場合に比べて燃料が増加されているので、燃料消費の悪化や未燃燃料成分であるHCなどの増加が大きくなる傾向がある。
By the way, it is well known that the fuel properties and characteristics of fuels in the current market generally vary depending on the manufacturer, region, or season, and in particular, the cetane number that regulates ignitability also varies. is there.
For this reason, when the fuel having a relatively low cetane number is used and the ignitability of the fuel in the preliminary injection is lowered (the ignition delay period becomes longer), the retarded combustion becomes very slow and the combustion becomes unstable. As a result, since the fuel is increased as compared with the case of the normal fuel injection, there is a tendency that the deterioration of the fuel consumption and the increase of HC, which is an unburned fuel component, increase.

また逆にセタン価の比較的高い燃料が使用されて着火性が向上する(着火遅れ期間が短くなる)と全体の燃焼における拡散燃焼の割合が増加する。この結果、やはり通常の燃料噴射の場合に比べて燃料が増加されているので、スモークが増加する。
つまり使用する燃料のセタン価が変動した場合に、複合噴射を通して生じる燃焼全体への影響を、少なくとも通常の燃料噴射の場合に比べて増幅されないように燃焼制御することが大きな課題であった。
Conversely, when a fuel having a relatively high cetane number is used to improve the ignitability (the ignition delay period is shortened), the ratio of diffusion combustion in the entire combustion increases. As a result, since the fuel is increased as compared with the case of the normal fuel injection, the smoke is increased.
That is, when the cetane number of the fuel to be used fluctuates, it has been a big problem to control the combustion so that the influence on the entire combustion generated through the composite injection is not amplified compared to at least the case of the normal fuel injection.

本発明は、このような実情を踏まえ、複合噴射によって排気温度を上昇または空燃比をリッチ化するときに、使用する燃料のセタン価が変動しても、燃費の悪化やHCの増加、またはスモークの増加を最小限に抑えることを目的とする。   In light of this situation, the present invention is based on the fact that when the exhaust gas temperature is increased or the air-fuel ratio is enriched by combined injection, even if the cetane number of the fuel used fluctuates, the fuel consumption deteriorates, the HC increases, or the smoke The purpose is to minimize the increase of.

そのため本発明では、排気通路に排気浄化装置を備える内燃機関において、内燃機関の燃焼室に直接燃料を噴射可能で、且つ燃料噴射を2回以上に分割して噴射可能な燃料噴射装置を備え、内燃機関の運転状態、排気浄化装置の状態、および使用している燃料のセタン価を検出し、運転状態および排気浄化装置状態による検出結果に基づき、上死点近傍で行われる燃料噴射による通常燃焼を制御する通常噴射か、または上死点近傍で生じさせる予備燃焼を制御するための予備噴射と、予備燃焼終了後に開始させるリタード燃焼を制御するためのリタード噴射と、によって構成される複合噴射か、の少なくとも一方の噴射を行い、複合噴射を行うときは、セタン価に基づいて予備燃焼またはリタード燃焼の少なくとも一方の燃焼を制御するように燃料噴射を制御する。   Therefore, in the present invention, in an internal combustion engine provided with an exhaust purification device in an exhaust passage, a fuel injection device capable of directly injecting fuel into a combustion chamber of the internal combustion engine and capable of performing injection by dividing fuel injection into two or more, Normal combustion by fuel injection performed near the top dead center based on the detection results of the operating state and exhaust purification device state, detecting the operating state of the internal combustion engine, the state of the exhaust purification device, and the cetane number of the fuel used Or a combined injection comprised of a pre-injection for controlling the pre-combustion that occurs near the top dead center and a retard injection for controlling the retarded combustion that is started after the pre-combustion is completed. When at least one of these injections is performed and combined injection is performed, the combustion of at least one of preliminary combustion and retarded combustion is controlled based on the cetane number To control the fuel injection.

本発明によれば、複合噴射によって排気温度を上昇、または空燃比をリッチ化するときに、使用する燃料のセタン価が変動しても、燃費の悪化やHCの増加、またはスモークの増加を最小限に抑えることが可能である。   According to the present invention, when the exhaust gas temperature is increased by the combined injection or the air-fuel ratio is enriched, even if the cetane number of the fuel used fluctuates, the deterioration of fuel consumption, the increase of HC, or the increase of smoke is minimized. It is possible to limit to the limit.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、本発明の内燃機関の燃焼制御装置を備えたエンジンシステムの構成図であり、内燃機関として軽油を燃料とするディーゼルエンジンを例にして構成したものである。
図1において、1はディーゼルエンジン(以下、単に「エンジン」という)を示し、3はこのエンジン1の排気通路を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an engine system provided with a combustion control device for an internal combustion engine according to the present invention, and is an example of a diesel engine using light oil as fuel as an internal combustion engine.
In FIG. 1, 1 indicates a diesel engine (hereinafter simply referred to as “engine”), and 3 indicates an exhaust passage of the engine 1.

エンジン1の排気通路3の上流側部分を構成する排気出口通路3aは、過給機のタービン3bに接続されている。過給機タービン3bの下流の排気通路3には、排気浄化のため、排気空燃比がリーンのときに排気中のNOxをトラップし、トラップしたNOxを排気空燃比がリッチのときに脱離浄化するNOxトラップ触媒16を配置している。また、このNOxトラップ触媒16には、予め酸化触媒(貴金属)を担持させて、流入する排気成分(HC、CO)を酸化する機能を持たせてある。   An exhaust outlet passage 3a constituting an upstream portion of the exhaust passage 3 of the engine 1 is connected to a turbocharger turbine 3b. In the exhaust passage 3 downstream of the turbocharger turbine 3b, NOx in the exhaust is trapped when the exhaust air-fuel ratio is lean, and the trapped NOx is desorbed and purified when the exhaust air-fuel ratio is rich, for exhaust purification. A NOx trap catalyst 16 is disposed. The NOx trap catalyst 16 has a function of previously supporting an oxidation catalyst (noble metal) to oxidize inflowing exhaust components (HC, CO).

更に、このNOxトラップ触媒16の下流には、排気微粒子であるPM(Particulate Matter)を捕集するフィルタとしてディーゼルパティキュレートフィルタ(以下、「DPF」という)17を配置している。また、このDPF17にも、予め酸化触媒(貴金属)を担持させて、流入する排気成分(HC、CO)を酸化する機能を持たせてある。尚、NOxトラップ触媒16とDPF17とは、逆に配置してもよいし、DPFにNOxトラップ触媒を担持させて一体に構成してもよい。   Further, a diesel particulate filter (hereinafter referred to as “DPF”) 17 is disposed downstream of the NOx trap catalyst 16 as a filter for collecting PM (Particulate Matter) which is exhaust particulate. The DPF 17 is also preloaded with an oxidation catalyst (noble metal) and has a function of oxidizing the inflowing exhaust components (HC, CO). Note that the NOx trap catalyst 16 and the DPF 17 may be disposed in reverse, or may be configured integrally by supporting the NOx trap catalyst on the DPF.

排気還流装置として、吸気通路2の吸気コレクタ2cと排気出口通路3aとの間に、排気の一部を還流するためのEGR通路4が設け、ここに、ステッピングモータにて開度が連続的に制御可能なEGR弁5が介装されている。
吸気通路2は、上流位置にエアクリーナ2aを備え、その下流に、吸入空気量Qair検出用のエアフローメータ7、そして過給機のコンプレッサ2bが配置されているとともに、このコンプレッサ2bと吸気コレクタ2cとの間に、アクチュエータ(例えばステッピングモータ式のもの)によって開閉駆動される吸気絞り弁6が介装されている。
As an exhaust gas recirculation device, an EGR passage 4 for recirculating a part of the exhaust gas is provided between the intake collector 2c and the exhaust outlet passage 3a of the intake passage 2, and the opening is continuously increased by a stepping motor. A controllable EGR valve 5 is interposed.
The intake passage 2 is provided with an air cleaner 2a at an upstream position, and an air flow meter 7 for detecting the intake air amount Qair and a compressor 2b of a supercharger are disposed downstream thereof, and the compressor 2b and the intake collector 2c In between, an intake throttle valve 6 that is driven to open and close by an actuator (for example, a stepping motor type) is interposed.

エンジン1の燃料噴射装置10は、公知のコモンレール式燃料噴射装置であって、サプライポンプ11と、コモンレール(蓄圧室)14と、気筒毎に設けられた燃料噴射弁15と、から大略構成され、サプライポンプ11により加圧された燃料が燃料供給通路12を介してコモンレール14に一旦蓄えられた後、コモンレール14内の高圧燃料が各気筒の燃料噴射弁15に分配される。   The fuel injection device 10 of the engine 1 is a well-known common rail fuel injection device, and generally includes a supply pump 11, a common rail (accumulation chamber) 14, and a fuel injection valve 15 provided for each cylinder. After the fuel pressurized by the supply pump 11 is temporarily stored in the common rail 14 via the fuel supply passage 12, the high-pressure fuel in the common rail 14 is distributed to the fuel injection valve 15 of each cylinder.

上記コモンレール14には、該コモンレール14内の燃料の圧力および温度を検出するために、圧力センサ34および温度センサ35が設けられている。また、コモンレール14内の燃料圧力を制御するために、サプライポンプ11からの吐出燃料の一部が圧力制御弁13を介して図示しないオーバーフロー通路から燃料供給通路に戻されるようになっており、この圧力制御弁13がエンジンコントロールユニット30からのデューティ信号に応じてオーバーフロー通路の流路面積を変化させる。これにより、サプライポンプ11からコモンレール14への実質的な燃料吐出量が調整され、コモンレール14内の燃料圧力が制御される。   The common rail 14 is provided with a pressure sensor 34 and a temperature sensor 35 in order to detect the pressure and temperature of the fuel in the common rail 14. Further, in order to control the fuel pressure in the common rail 14, a part of the fuel discharged from the supply pump 11 is returned from the overflow passage (not shown) to the fuel supply passage via the pressure control valve 13. The pressure control valve 13 changes the flow path area of the overflow passage according to the duty signal from the engine control unit 30. Thereby, the substantial fuel discharge amount from the supply pump 11 to the common rail 14 is adjusted, and the fuel pressure in the common rail 14 is controlled.

燃料噴射弁15は、エンジンコントロールユニット30からのON−OFF信号によって開閉される電子式の噴射弁であって、ON信号によって燃料を燃焼室に直接噴射し、OFF信号によって燃料噴射を停止する。燃料噴射弁15は、エンジンコントロールユニット30からのON−OFF信号を複数回受けることにより、燃料噴射を2回以上に分割して噴射可能である。そして、燃料噴射弁15へ印加されるON信号の期間が長いほど燃料噴射量が多くなり、またコモンレール14の燃料圧力が高いほど燃料噴射量が多くなる。   The fuel injection valve 15 is an electronic injection valve that is opened and closed by an ON-OFF signal from the engine control unit 30, and directly injects fuel into the combustion chamber by the ON signal and stops fuel injection by the OFF signal. The fuel injection valve 15 can divide the fuel injection into two or more times by receiving the ON-OFF signal from the engine control unit 30 a plurality of times. The fuel injection amount increases as the period of the ON signal applied to the fuel injection valve 15 increases, and the fuel injection amount increases as the fuel pressure of the common rail 14 increases.

また、エンジン1の適宜位置には、内燃機関の温度を代表するものとして、冷却水温度Twを検出する水温センサ31が取り付けられている。
エンジンコントロールユニット30には、水温センサ31の信号(冷却水温度Tw)、クランク角度検出用クランク角センサ32の信号(エンジン回転数Neの基礎となるクランク角度信号)、気筒判別用クランク角センサ33の信号(気筒判別信号Cy1)、コモンレール14の燃料圧力を検出する圧力センサ34の信号(コモンレール圧力Pcr)、燃料温度を検出する温度センサ35の信号(燃料温度Tf)、負荷に相当するアクセルペダルの踏み込み量を検出するアクセル開度センサ36の信号(アクセル開度(負荷)Acc)、エアフローメータ7の信号(吸入空気量Qair)がそれぞれ入力される。
Further, a water temperature sensor 31 for detecting the cooling water temperature Tw is attached to an appropriate position of the engine 1 as representative of the temperature of the internal combustion engine.
The engine control unit 30 includes a signal from the water temperature sensor 31 (cooling water temperature Tw), a signal from the crank angle sensor 32 for crank angle detection (a crank angle signal serving as a basis for the engine speed Ne), and a crank angle sensor 33 for determining the cylinder. Signal (cylinder discrimination signal Cy1), a signal of the pressure sensor 34 for detecting the fuel pressure of the common rail 14 (common rail pressure Pcr), a signal of the temperature sensor 35 for detecting the fuel temperature (fuel temperature Tf), and an accelerator pedal corresponding to the load A signal (accelerator opening (load) Acc) of the accelerator opening sensor 36 that detects the amount of depression of the air flow meter 7 and a signal (intake air amount Qair) of the air flow meter 7 are input.

また、NOxトラップ触媒16の温度(触媒温度T1)を検出する触媒温度センサ37、排気通路3のDPF17入口側にて排気圧力(P1)を検出する排気圧力センサ38、DPF17の温度(DPF温度T2)を検出するDPF温度センサ39、更に排気通路3のDPF17出口側にて排気空燃比(L:以下「λ」とする)を検出する空燃比センサ40が設けられ、これらの信号もコントロールユニット30に入力されている。但し、NOxトラップ触媒16の温度やDPF17の温度はこれらの下流側などに排気温度センサを設けて、排気温度より間接的に検出するようにしてもよい。   Further, a catalyst temperature sensor 37 for detecting the temperature of the NOx trap catalyst 16 (catalyst temperature T1), an exhaust pressure sensor 38 for detecting the exhaust pressure (P1) on the DPF 17 inlet side of the exhaust passage 3, and the temperature of the DPF 17 (DPF temperature T2). ) And an air / fuel ratio sensor 40 for detecting an exhaust air / fuel ratio (L: hereinafter referred to as “λ”) at the outlet side of the DPF 17 in the exhaust passage 3. Has been entered. However, the temperature of the NOx trap catalyst 16 and the temperature of the DPF 17 may be indirectly detected from the exhaust temperature by providing an exhaust temperature sensor on the downstream side thereof.

コントロールユニット30は、これらの入力信号に基づいて、燃料の噴射量及び噴射時期制御のための燃料噴射弁15への燃料噴射指令信号、吸気絞り弁6への開度指令信号、EGR弁5への開度指令信号等を出力する。
ここにおいて、コントロールユニット30では、DPF17に捕集されて堆積したPMの燃焼除去によるDPF17の再生、NOxトラップ触媒16にトラップされたNOxの脱離還元浄化、NOxトラップ触媒16の硫黄(S)被毒解除等を含む、排気浄化制御を行うようにしており、かかる排気浄化制御について以下に詳細に説明する。
Based on these input signals, the control unit 30 controls the fuel injection amount to the fuel injection valve 15 and the fuel injection command signal to the fuel injection valve 15, the opening degree command signal to the intake throttle valve 6, and the EGR valve 5. The opening command signal etc. of is output.
Here, the control unit 30 regenerates the DPF 17 by burning and removing the PM collected and accumulated in the DPF 17, desorbing and purifying NOx trapped in the NOx trap catalyst 16, and sulfur (S) coverage of the NOx trap catalyst 16. Exhaust gas purification control including removal of poison and the like is performed, and the exhaust gas purification control will be described in detail below.

図16〜図32は、コントロールユニット30にて実行される排気浄化制御のフローチャートである。
先ず、図16のフローに沿って説明する。
この制御モードは、排気浄化の基本制御モードである。
S1では、各種センサ信号を読込み、吸入空気量Qair、冷却水温度Tw、エンジン回転数Ne、気筒判別信号Cy1、コモンレール圧力Pcr、燃料温度Tf、アクセル開度(負荷)Acc、触媒温度T1、DPF入口排気圧力P1、DPF温度T2、排気空燃比λを検出する。
16 to 32 are flowcharts of the exhaust purification control executed by the control unit 30.
First, it demonstrates along the flow of FIG.
This control mode is a basic control mode for exhaust purification.
In S1, various sensor signals are read, the intake air amount Qair, the cooling water temperature Tw, the engine speed Ne, the cylinder discrimination signal Cy1, the common rail pressure Pcr, the fuel temperature Tf, the accelerator opening (load) Acc, the catalyst temperature T1, and the DPF. The inlet exhaust pressure P1, the DPF temperature T2, and the exhaust air / fuel ratio λ are detected.

S2では、使用燃料(軽油)のセタン価を検出する。前記セタン価の検出は、例えば本出願人によって出願された特開2004−239229号公報(特願2003−031832号)のようにして行われる。まず、エアフローメータ7によって検出される吸入空気流量Qairと、空燃比センサ40で検出される排気空燃比λとから、実燃料供給重量Gmainを求める。次いで、前記実燃料供給重量Gmainと、燃料噴射弁15による実際の燃料噴射量(燃料供給量)Qmainとに基づいて実比重Gfuelを求める。そして、上記の実比重Gfuelと燃料温度Tfとから標準比重(基準温度、例えば標準温度20℃での比重)Gstdを求め、該標準比重Gstdをパラメータとして、軽油のセタン価を求める。   In S2, the cetane number of the fuel (light oil) used is detected. The detection of the cetane number is performed, for example, as disclosed in Japanese Patent Application Laid-Open No. 2004-239229 (Japanese Patent Application No. 2003-031832) filed by the present applicant. First, the actual fuel supply weight Gmain is obtained from the intake air flow rate Qair detected by the air flow meter 7 and the exhaust air / fuel ratio λ detected by the air / fuel ratio sensor 40. Next, the actual specific gravity Gfuel is obtained based on the actual fuel supply weight Gmain and the actual fuel injection amount (fuel supply amount) Qmain by the fuel injection valve 15. Then, a standard specific gravity (specific gravity at a reference temperature, for example, a standard temperature of 20 ° C.) Gstd is obtained from the actual specific gravity Gfuel and the fuel temperature Tf, and the cetane number of light oil is obtained using the standard specific gravity Gstd as a parameter.

S3では、排気系のNOxトラップ触媒16の暖機・冷機状態を判定する。触媒温度T1が安定した活性を得られる所定温度であるT52(約220℃)未満の場合は、冷機状態と判定して、後述する図27の触媒暖機促進の制御モードへ移行する。触媒温度T1が所定温度以上(触媒温度≧T52)、すなわち暖機状態(暖機完了後)と判定した場合は、S4へ進む。   In S3, the warm-up / cold-down state of the exhaust system NOx trap catalyst 16 is determined. When the catalyst temperature T1 is lower than T52 (about 220 ° C.), which is a predetermined temperature at which stable activity can be obtained, it is determined that the engine is in the cold state, and the control proceeds to the catalyst warm-up promotion control mode shown in FIG. When it is determined that the catalyst temperature T1 is equal to or higher than the predetermined temperature (catalyst temperature ≧ T52), that is, the warm-up state (after completion of warm-up), the process proceeds to S4.

S4では、NOxトラップ触媒16にトラップされて堆積したNOx堆積量を計算する。例えば特許第2600492号公報第6頁に記載されているNOx吸収量の計算のようにエンジン回転数Neの積算値から推測してもよいし、走行距離から推測してもよい。尚、積算値を用いる場合は、NOxトラップ触媒16のNOx脱離還元浄化(以下単にNOx脱離還元浄化という)が完了した時点(硫黄被毒解除の実施によりNOx脱離還元浄化が同時になされた時点も含む)で、その積算値をリセットする。   In S4, the NOx deposition amount trapped and deposited on the NOx trap catalyst 16 is calculated. For example, it may be estimated from the integrated value of the engine speed Ne as in the calculation of the NOx absorption amount described in Japanese Patent No. 2600492 on page 6, or may be estimated from the travel distance. When the integrated value is used, NOx desorption reduction purification of the NOx trap catalyst 16 (hereinafter simply referred to as NOx desorption reduction purification) is completed (NOx desorption reduction purification is simultaneously performed by performing sulfur poisoning release). The total value is reset at the same time.

S5では、NOxトラップ触媒16に硫黄被毒により堆積した硫黄堆積量を計算する。ここでも、上記NOx堆積量の計算と同様に、エンジン回転数Neの積算値や走行距離から推測すればよい。尚、積算値を用いる場合は、NOxトラップ触媒16の硫黄被毒解除(以下単に硫黄被毒解除と称する)が完了した時点で、その積算値をリセットする。
S6では、DPF17に捕集されて堆積しているPM堆積量を、例えば次のように計算する。DPF17のPM堆積量が増えれば、当然DPF入口側排気圧力が上昇することから、排気圧力センサ38により、DPF入口側排気圧力P1を検出し、現在の運転状態(エンジン回転数Ne、負荷Acc)での基準排気圧力との比較により、PM堆積量を推定する。尚、前回のDPF再生からのエンジン回転数積算値や走行距離と、排気圧力とを組み合わせて、PM堆積量を推定するようにしてもよい。尚、積算値を用いる場合は、DPF17の再生が完了した時点で、その積算値をリセットする。
In S5, the amount of sulfur deposited on the NOx trap catalyst 16 due to sulfur poisoning is calculated. Here, similarly to the calculation of the NOx accumulation amount, it may be estimated from the integrated value of the engine speed Ne and the travel distance. When the integrated value is used, the integrated value is reset when the sulfur poisoning release of the NOx trap catalyst 16 (hereinafter simply referred to as sulfur poisoning release) is completed.
In S6, the PM accumulation amount collected and accumulated in the DPF 17 is calculated as follows, for example. When the amount of accumulated PM in the DPF 17 increases, the exhaust pressure on the DPF inlet side naturally increases. Therefore, the exhaust pressure sensor 38 detects the exhaust pressure P1 on the DPF inlet side, and the current operating state (engine speed Ne, load Acc) The PM accumulation amount is estimated by comparison with the reference exhaust pressure at. Note that the PM accumulation amount may be estimated by combining the engine rotational speed integrated value or travel distance from the previous DPF regeneration and the exhaust pressure. When using the integrated value, the integrated value is reset when the regeneration of the DPF 17 is completed.

S7では、DPF再生中であることを示すregフラグが立っているか否かを判定する。regフラグ=1の場合は、DPF再生中であるとして後述する図17のDPF再生の制御モードに進む。
S8では、硫黄被毒解除中であることを示すdesulフラグが立っているか否かを判定する。desulフラグ=1の場合は、後述する図18の硫黄被毒解除の制御モードに進む。
In S7, it is determined whether or not a reg flag indicating that DPF regeneration is in progress is set. If the reg flag = 1, it is determined that the DPF regeneration is in progress, and the process proceeds to the DPF regeneration control mode shown in FIG.
In S8, it is determined whether or not a desul flag indicating that sulfur poisoning is being released is set. When the desul flag = 1, the process proceeds to the sulfur poisoning release control mode of FIG.

S9では、NOx脱離還元浄化のためのリッチスパイクの制御モード中であることを示すspフラグが立っているか否かを判定する。spフラグ=1の場合は、後述する図19のリッチスパイクの制御モードに進む。
S10では、DPF再生及び硫黄被毒解除後の溶損防止の制御モード中であることを示すrecフラグが立っているか否かを判定する。recフラグ=1の場合は、後述する図20の溶損防止の制御モードへ進む。
In S9, it is determined whether or not the sp flag indicating that the rich spike control mode for NOx desorption reduction purification is being set is set. When the sp flag = 1, the process proceeds to a rich spike control mode shown in FIG.
In S10, it is determined whether or not a rec flag is set indicating that the control mode is in the prevention of melting damage after DPF regeneration and sulfur poisoning is released. When the rec flag = 1, the process proceeds to a flaw prevention control mode shown in FIG.

S11では、DPF再生要求が出ていることを示すrq−DPFフラグが立っているか否かを判定する。DPF再生要求が出ていてrq−DPFフラグ=1の場合は、後述する図21のフローへ進み、DPF再生要求が出ている場合の再生の優先順位を決定する。
S12では、硫黄被毒解除要求が出ていることを示すrq−desulフラグが立っているか否かを判定する。rq−desulフラグ=1で硫黄被毒解除要求が出ている場合は、後述する図22のフローへ進み、硫黄被毒解除要求が出ている場合の再生の優先順位を決定する。
In S11, it is determined whether or not an rq-DPF flag indicating that a DPF regeneration request has been issued is set. When the DPF regeneration request is issued and the rq-DPF flag = 1, the process proceeds to the flow of FIG. 21 described later, and the priority of regeneration when the DPF regeneration request is issued is determined.
In S12, it is determined whether or not an rq-desul flag indicating that a sulfur poisoning release request has been issued is set. When the sulfur poisoning release request is issued with the rq-desul flag = 1, the flow proceeds to the flow of FIG. 22 described later, and the priority of regeneration when the sulfur poisoning release request is issued is determined.

S13では、NOx脱離還元浄化のためのリッチスパイク要求が出ていることを示すrq−spフラグが立っているか否かを判定する。リッチスパイク要求が出ていてrq−spフラグ=1の場合は、後述する図23のフローへ進み、S701でspフラグを1にしてリッチスパイク制御モードに移行することを決定する。
S14では、S6で計算したDPFのPM堆積量が所定量PM1に達して、DPF再生時期になったか(PM堆積≧量PM1)否かを判定する。
In S13, it is determined whether or not an rq-sp flag indicating that a rich spike request for NOx desorption reduction purification has been issued is set. If the rich spike request has been issued and the rq-sp flag = 1, the process proceeds to the flow of FIG. 23 described later, and it is determined in S701 that the sp flag is set to 1 to shift to the rich spike control mode.
In S14, it is determined whether or not the PM accumulation amount of the DPF calculated in S6 has reached a predetermined amount PM1 and the DPF regeneration time has come (PM accumulation ≧ amount PM1).

PM堆積量≧PM1、すなわちDPF再生時期と判定された場合は、図24のフローへ進み、S801でrq−DPFフラグを1にして、DPF再生要求を出す。
S15では、S5で計算したNOxトラップ触媒16の硫黄堆積量が所定量S1に達して、硫黄被毒解除時期になったか(硫黄堆積量≧S1)否かを判定する。
硫黄堆積量≧S1、すなわち硫黄被毒解除時期と判定された場合は、図25のフローへ進み、S901でrq−desulフラグを1にして、硫黄被毒解除要求を出す。
If it is determined that the PM accumulation amount ≧ PM1, that is, the DPF regeneration timing, the flow proceeds to the flow of FIG. 24, and the rq-DPF flag is set to 1 in S801 to issue a DPF regeneration request.
In S15, it is determined whether or not the sulfur accumulation amount of the NOx trap catalyst 16 calculated in S5 has reached a predetermined amount S1 and the sulfur poisoning release time has come (sulfur accumulation amount ≧ S1).
If it is determined that the sulfur accumulation amount ≧ S1, that is, the sulfur poisoning release timing, the flow proceeds to the flow of FIG. 25, and the rq-desul flag is set to 1 in S901 to issue a sulfur poisoning release request.

S16では、S4で計算したNOxトラップ触媒16のNOx堆積量が所定量NOx1に達して、NOx脱離還元浄化時期になったか(NOx堆積量≧NOx1)否かを判定する。
NOx堆積量≧NOx1で、NOx脱離浄化時期と判定された場合は、図26のフローへ進み、S1001でrq−spフラグを1にして、NOx脱離浄化要求(リッチスパイク要求)を出す。
In S16, it is determined whether or not the NOx accumulation amount of the NOx trap catalyst 16 calculated in S4 has reached a predetermined amount NOx1 and the NOx desorption reduction purification time has come (NOx accumulation amount ≧ NOx1).
When NOx accumulation amount ≧ NOx1 and NOx desorption purification timing is determined, the flow proceeds to the flow of FIG. 26, and the rq-sp flag is set to 1 in S1001, and a NOx desorption purification request (rich spike request) is issued.

S14〜S16により、排気浄化装置(NOxトラップ触媒16、DPF17)の状態が通常時、またはそれ以外の時のいずれかであるか否かを検出する。それ以外の時とは、DPF再生要求時、NOx脱離再生要求時、硫黄被毒解除要求時、または活性度増強要求時(暖機促進要求時)をいう。
そしてS17ではDPF再生、硫黄被毒解除、リッチスパイク、およびDPF溶損防止も必要ないため、エンジン1の通常の基本制御を行う。
From S14 to S16, it is detected whether or not the state of the exhaust purification device (NOx trap catalyst 16, DPF 17) is either normal or other time. The time other than that means a DPF regeneration request, a NOx desorption regeneration request, a sulfur poisoning release request, or an activity enhancement request (warm-up promotion request).
In S17, normal basic control of the engine 1 is performed because there is no need for DPF regeneration, sulfur poisoning cancellation, rich spike, and DPF meltdown prevention.

次に、図17のDPF再生の制御モードについて説明する。
この制御モードは、PM堆積量が所定量PM1に達してrq−DPFフラグ=1となり、これを受けて後述する図21のフローによりregフラグ=1となると開始される。
S101では、DPF温度(T2)が既にDPF再生のための目標上限値T22(約650℃)以上であるか否かを判定する。S101でDPF温度≧T22の場合にはS109へ進んで、燃料噴射を通常の噴射モードに維持、または切換える。つまり、エンジン1の運転条件が高負荷、高回転条件であれば排気温度を昇温させなくてもDPF17を再生できる温度に達するため、DPF17は自然に再生される(自己再生と呼ばれる)。このようなときには昇温する必要がないし、逆に昇温すると温度が高くなりすぎてDPF17が急激に再生され、クラックや溶損等の事態を招く恐れがあるので昇温制御を行わないことにしている。
Next, the control mode of DPF regeneration in FIG. 17 will be described.
This control mode is started when the PM accumulation amount reaches the predetermined amount PM1, the rq-DPF flag = 1, and the reg flag = 1 is received in accordance with the flow of FIG.
In S101, it is determined whether or not the DPF temperature (T2) is already equal to or higher than a target upper limit value T22 (about 650 ° C.) for DPF regeneration. If the DPF temperature is equal to or greater than T22 in S101, the process proceeds to S109, and the fuel injection is maintained or switched to the normal injection mode. That is, if the operating condition of the engine 1 is a high load and high rotation condition, the temperature reaches a temperature at which the DPF 17 can be regenerated without increasing the exhaust temperature, so that the DPF 17 is regenerated naturally (referred to as self-regeneration). In such a case, it is not necessary to raise the temperature, and conversely, if the temperature is raised, the temperature becomes too high and the DPF 17 is regenerated suddenly, which may lead to a situation such as cracking or melting. ing.

S101でDPF温度<T22である場合は、S102に進み、DPF温度T2がDPF再生のための目標下限値T21(約600℃)以上であるか否かを判定する。S102でDPF温度<T21である場合、即ち再生下限温度未満である場合にはS103へ進んで、特に短時間昇温を重視した燃焼を実現する本発明の複合噴射(Div L)に切換え、燃料噴射量を再増量補正してS104に進む。   If the DPF temperature is less than T22 in S101, the process proceeds to S102, and it is determined whether or not the DPF temperature T2 is equal to or higher than a target lower limit T21 (about 600 ° C.) for DPF regeneration. If the DPF temperature is less than T21 in S102, that is, if it is less than the regeneration lower limit temperature, the routine proceeds to S103, where the fuel injection is switched to the combined injection (Div L) of the present invention that realizes combustion with an emphasis on short-time temperature rise. The injection amount is corrected to increase again, and the process proceeds to S104.

S102でDPF温度≧T21の場合、即ち再生下限温度以上である場合にはS110へ進んで、燃焼安定性を悪化させず、燃費悪化およびHCやスモーク増加を最小限に止めることを重視した燃焼を実現する本発明の複合噴射(Div S)に切換えてS104に進む。
ここで、本発明で行われる複合噴射について説明する。尚、本燃焼は、DPF再生の他、硫黄被毒解除、NOx脱離還元浄化(リッチスパイク)、触媒(酸化触媒も含む)暖機促進にも用いられる。
If the DPF temperature is greater than or equal to the regeneration lower limit temperature in S102, that is, if the regeneration lower limit temperature or higher, the routine proceeds to S110, and combustion that places importance on minimizing fuel consumption deterioration and HC and smoke increase without deteriorating combustion stability is performed. The process proceeds to S104 after switching to the combined injection (Div S) of the present invention to be realized.
Here, the composite injection performed in the present invention will be described. The combustion is used for DPF regeneration, sulfur poisoning release, NOx desorption reduction purification (rich spike), and catalyst (including oxidation catalyst) warm-up promotion.

DPFの再生を行う場合には、排気λを1.1〜1.4 の間で制御して、かつDPF温度T2を約600℃以上(上限温度は約650℃)に制御する必要がある。
また、硫黄被毒解除を行う場合には排気λをストイキにし、かつ触媒温度T1を600℃以上(上限温度は触媒の熱劣化を防ぐため約700℃)に制御する必要がある。
そして、NOx脱離還元浄化(リッチスパイク)を行う場合には、排気λをリッチ(約0.8程度)にして、かつNOxトラップ触媒の温度を最低でも約200℃以上(十分な活性を得るためには約220℃以上)に制御する必要がある。
When the DPF is regenerated, it is necessary to control the exhaust λ between 1.1 and 1.4 and to control the DPF temperature T2 to about 600 ° C. or higher (the upper limit temperature is about 650 ° C.).
Further, when releasing sulfur poisoning, it is necessary to make the exhaust λ stoichiometric and to control the catalyst temperature T1 to 600 ° C. or higher (the upper limit temperature is about 700 ° C. to prevent thermal deterioration of the catalyst).
When performing NOx desorption reduction purification (rich spike), the exhaust λ is made rich (about 0.8), and the temperature of the NOx trap catalyst is at least about 200 ° C. (sufficient activity is obtained). Therefore, it is necessary to control the temperature to about 220 ° C. or higher.

通常リーン燃焼で運転されるディーゼルエンジンで、DPF17の再生や硫黄被毒解除等を成立させるためには、高排気温度、または高排気温度で低排気λを実現することが必須であり、通常のリーン運転状態から吸気を絞る等により筒内作動ガス量を減じて運転する必要がある。ところが、作動ガス量を減じると筒内の圧縮端温度が低下してしまうことから、通常のリーン燃焼と同じ噴射設定では燃焼が不安定となり、甚だしい場合は失火を生じるため、エンジン1の出力制御が困難となって高排気温度や低排気λを実現することは難しい。   In order to establish DPF 17 regeneration, sulfur poisoning release, etc. in a diesel engine that is normally operated with lean combustion, it is essential to achieve a low exhaust λ at a high exhaust temperature or a high exhaust temperature. It is necessary to reduce the in-cylinder working gas amount by reducing the intake air from the lean operation state. However, if the amount of working gas is reduced, the compression end temperature in the cylinder will decrease, so that combustion becomes unstable at the same injection setting as normal lean combustion, and misfire will occur in extreme cases, so output control of the engine 1 It is difficult to realize a high exhaust temperature and a low exhaust λ.

そこで特許文献1では、エンジンの要求トルクを満足させて排気温度を昇温させるために主燃料噴射量を増量させ、かつ各気筒の圧縮上死点近傍で燃料を複数回(2ないし3回)に分割して噴射させ、燃焼の安定性を悪化させないようにして噴射期間を拡大することで高排気温度や低排気λの実現を図っている。
しかし、このような分割噴射制御においては、図2に示すように通常の噴射パターン(単段噴射)と異なり、複数回の燃料噴射を通して生じる燃焼全体によって、必要な出力および排気温度上昇を得るのが目的であり、通常の燃料噴射の場合に比べて全体の燃料噴射期間を拡大して遅延化しているので、排気温度を昇温または空燃比をリッチ化させるときには、分割噴射された燃料の燃焼が継続するように、最初に噴射された燃料の火炎中に次の燃料を噴射する必要があり、先に噴射された燃料の燃焼成否が次に噴射された燃料の燃焼成否に大きな影響を与える。つまり、分割噴射は複数回の燃料噴射によって生じる全体の燃焼が燃料のセタン価の影響を強く受けやすく、セタン価の比較的低い燃料(図には、低CN燃料と示す。以下同様)が使用されると、燃焼が非常に緩慢となって燃焼が不安定となり、燃料消費の悪化や未燃燃料成分のHCの増加が大きくなる。逆にセタン価の比較的高い燃料が使用されると、全体の燃焼における拡散燃焼の割合が増加して、スモークの増加が大きくなる。
Therefore, in Patent Document 1, the main fuel injection amount is increased to satisfy the required torque of the engine and the exhaust temperature is raised, and the fuel is supplied a plurality of times (2 to 3 times) near the compression top dead center of each cylinder. The injection period is divided and the injection period is extended so as not to deteriorate the combustion stability, thereby realizing high exhaust temperature and low exhaust λ.
However, in such divided injection control, unlike the normal injection pattern (single-stage injection) as shown in FIG. 2, the required output and exhaust gas temperature increase are obtained by the entire combustion that occurs through multiple fuel injections. This is because the overall fuel injection period is extended and delayed as compared with the case of normal fuel injection, so when the exhaust temperature is raised or the air-fuel ratio is made rich, the combustion of the separately injected fuel In order to continue, it is necessary to inject the next fuel into the flame of the first injected fuel, and the success or failure of the previously injected fuel has a great influence on the success or failure of the next injected fuel. . That is, in the split injection, the entire combustion caused by multiple fuel injections is easily influenced by the cetane number of the fuel, and a fuel having a relatively low cetane number (indicated as a low CN fuel in the figure, the same applies hereinafter) is used. Then, the combustion becomes very slow, the combustion becomes unstable, and the fuel consumption deteriorates and the HC of the unburned fuel component increases. On the other hand, when a fuel having a relatively high cetane number is used, the proportion of diffusion combustion in the entire combustion increases and the increase in smoke increases.

このため、本出願人は特願2003−193310(2003年7月8日出願)、特願2003−279629、特願2003−282723、および特願2003−284325等において、少なくとも上死点近傍で1回行われる予備燃焼と、予備燃焼が終了した後に開始されるリタード燃焼とで構成される燃焼を具現化する燃料噴射制御(複合噴射)を提案し、スモークを悪化させることなく排気温度の昇温または空燃比のリッチ化要求を実現できるようにした。   For this reason, the applicant of the present patent application in Japanese Patent Application No. 2003-193310 (filed on July 8, 2003), Japanese Patent Application No. 2003-279629, Japanese Patent Application No. 2003-282723, Japanese Patent Application No. 2003-284325, etc. Proposed fuel injection control (composite injection) that embodies combustion consisting of pre-combustion performed once and retarded combustion started after the pre-combustion is completed, and raising the exhaust temperature without deteriorating smoke Alternatively, the air-fuel ratio enrichment request can be realized.

しかし、この複合噴射の場合であっても、特許文献1の分割噴射の場合と同様に、通常の燃料噴射の場合に比べて全体の燃料噴射期間を拡大して遅延化しているので、分割予備噴射による予備燃焼の成否が、後続の分割リタード噴射によるリタード燃焼の成否に大きな影響を与え易く、通常の燃料噴射による燃焼に比べて、燃料のセタン価変動の影響が大きくなる傾向が強い。したがって、セタン価の比較的低い燃料が使用されると、燃焼も非常に緩慢となって燃焼が不安定となり、燃料消費の悪化や未燃燃料成分のHCの増加が大きくなる。逆にセタン価の比較的高い燃料が使用されると全体の燃焼における拡散燃焼の割合が増加して、スモークの増加が大きくなる。   However, even in the case of this combined injection, as in the case of the split injection in Patent Document 1, the entire fuel injection period is extended and delayed as compared with the case of the normal fuel injection. The success or failure of the preliminary combustion by injection tends to have a great influence on the success or failure of the retard combustion by the subsequent divided retard injection, and the influence of fluctuations in the cetane number of the fuel tends to be larger than the combustion by the normal fuel injection. Therefore, when a fuel having a relatively low cetane number is used, the combustion becomes very slow, the combustion becomes unstable, and the fuel consumption deteriorates and the HC of the unburned fuel component increases. On the contrary, when a fuel having a relatively high cetane number is used, the ratio of diffusion combustion in the entire combustion increases, and the increase in smoke increases.

そこで、本発明の複合噴射では図3および図4に示すように、排気温度を上昇または空燃比をリッチ化するときに、使用燃料のセタン価の高低に応じて最適な複合噴射制御を実施することで、常に安定した燃焼を実現するようにした。
具体的には、セタン価が高い燃料が使用されて着火が促進される場合には、相対的に着火性を抑制するように噴射制御する。
Therefore, in the composite injection of the present invention, as shown in FIGS. 3 and 4, when the exhaust temperature is raised or the air-fuel ratio is made rich, optimal composite injection control is performed according to the level of the cetane number of the fuel used. In this way, stable combustion was always realized.
Specifically, when a fuel having a high cetane number is used and ignition is promoted, injection control is performed so as to relatively suppress ignitability.

図3には実施例1として、使用している燃料はセタン価が高いもの、予備燃焼およびリタード燃焼のための燃料噴射期間(MP period、MR period)を不変とし、標準セタン価燃料における予備燃焼およびリタード燃焼のための燃料噴射開始時期との燃料噴射開始時期差ITC P,ITC RをITC P>ITC Rとし、ΔITを縮小した場合を示している。この場合には、燃焼パターンは破線にて示すようになる。   In FIG. 3, as Example 1, the fuel used has a high cetane number, the fuel injection period (MP period, MR period) for pre-combustion and retarded combustion is unchanged, and pre-combustion in standard cetane fuel In addition, the fuel injection start timing difference ITC P and ITCR R with respect to the fuel injection start timing for retarded combustion is set to ITC P> ITCR, and ΔIT is reduced. In this case, the combustion pattern is indicated by a broken line.

実施例2として、使用している燃料はセタン価が高いもの、MP period減少、MR period増大、ΔITを不変、噴射圧力増大とした場合を示している。この場合には、燃焼パターンは点線にて示すようになる。
また、セタン価が低い燃料が使用されて着火が後退される場合には、相対的に着火を促進するように噴射制御する。
As Example 2, the fuel used has a high cetane number, MP period decreased, MR period increased, ΔIT unchanged, and injection pressure increased. In this case, the combustion pattern is indicated by a dotted line.
In addition, when the fuel having a low cetane number is used and the ignition is retreated, the injection control is performed so as to relatively promote the ignition.

図4には実施例3として、使用している燃料はセタン価が低いもの、MP period不変、MR period不変、ITC P>ITC R、ΔITを拡大した場合を示している。この場合には、燃焼パターンは破線にて示すようになる。
実施例4として、使用している燃料はセタン価が低いもの、MP period増大、MR period減少、ΔIT不変、噴射圧力低下した場合を示している。この場合には、燃焼パターンは点線にて示すようになる。
FIG. 4 shows a case where the fuel used has a low cetane number, the MP period is unchanged, the MR period is unchanged, ITC P> ITCR, and ΔIT are expanded as Example 3. In this case, the combustion pattern is indicated by a broken line.
As Example 4, the fuel used has a low cetane number, MP period increased, MR period decreased, ΔIT unchanged, and injection pressure decreased. In this case, the combustion pattern is indicated by a dotted line.

また図10に示すように、複合噴射における分割予備噴射と分割リタード噴射との燃料噴射時期を、燃料のセタン価に基づいて可変制御し、燃料のセタン価が高いほど、分割予備噴射の遅角量を分割リタード噴射の遅角量よりも増大させる。これにより分割予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができる結果、分割リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることが可能になる。   Further, as shown in FIG. 10, the fuel injection timings of the divided preliminary injection and the divided retarded injection in the composite injection are variably controlled based on the cetane number of the fuel. The amount is made larger than the retard amount of the divided retard injection. As a result, the ignition combustion of the fuel in the divided pre-injection can be reliably or stably performed. As a result, the fuel combustion start timing (heat generation timing) and the combustion in the divided retard injection can be stabilized.

そして、図12に示すように、複合噴射における分割予備噴射と分割リタード噴射との燃料噴射量比率を、燃料のセタン価に基づいて可変制御し、燃料のセタン価が高いほど分割予備噴射の燃料噴射量比率を減少させる。言い換えれば、分割リタード噴射の燃料噴射量比率をセタン価が高いほど、増大させる。このことで、分割予備噴射における燃料の着火燃焼によって得られる燃焼室内の温度上昇が、セタン価が高いときには低く、逆にセタン価が低いときには高く設定できるため、分割リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることが可能になる。   Then, as shown in FIG. 12, the fuel injection amount ratio between the divided preliminary injection and the divided retarded injection in the composite injection is variably controlled based on the cetane number of the fuel. Decrease the injection amount ratio. In other words, the fuel injection amount ratio of the split retard injection is increased as the cetane number is higher. As a result, the temperature rise in the combustion chamber obtained by the ignition combustion of fuel in the split pre-injection can be set low when the cetane number is high, and conversely high when the cetane number is low. (Heat generation time) and combustion can be stabilized.

さらに図11に示すように、少なくとも複合噴射を実施するときには、燃料のセタン価が高いほど、燃料噴射圧力を増大させる(セタン価補正値を増加させる)。このことで、噴射燃料の拡散が、セタン価が高いときには促進され、逆にセタン価が低いときには抑制されて、着火燃焼が安定化される。
これらの結果、複合噴射による燃焼を安定化させ、燃料消費の悪化やHCの増加、またはスモークの排出量を増加させること無く、高排気温度や低排気λを実現できる。
Furthermore, as shown in FIG. 11, at least when performing the combined injection, the fuel injection pressure is increased (the cetane number correction value is increased) as the cetane number of the fuel is higher. Thus, the diffusion of the injected fuel is promoted when the cetane number is high, and conversely, it is suppressed when the cetane number is low, and ignition combustion is stabilized.
As a result, combustion by combined injection is stabilized, and high exhaust temperature and low exhaust λ can be realized without deteriorating fuel consumption, increasing HC, or increasing smoke emission.

またDPF17の再生や硫黄被毒解除を速やかに完了させるためには、目標とする高排気温度や低排気λを短時間で実現することが望ましい。このため、DPF17の再生制御の初期段階、あるいは硫黄被毒解除制御の初期段階においては、図6で示すように排気温度または排気浄化装置の温度に応じて、総燃料噴射量が異なる二通りの複合噴射(後述する図29および図30にて詳細に説明するDiv SおよびDiv L)を実施することで、目標とする高排気温度や低排気λに短時間で到達することができる。これについては後で詳細に説明する。   In order to quickly complete the regeneration of the DPF 17 and the release of sulfur poisoning, it is desirable to achieve the target high exhaust temperature and low exhaust λ in a short time. Therefore, in the initial stage of the regeneration control of the DPF 17 or the initial stage of the sulfur poisoning release control, as shown in FIG. 6, the total fuel injection amount differs depending on the exhaust temperature or the temperature of the exhaust purification device. By performing the composite injection (Div S and Div L described in detail in FIGS. 29 and 30 described later), the target high exhaust temperature and low exhaust λ can be reached in a short time. This will be described in detail later.

S104では、排気λを後述するフローに従って目標値に制御した後S105に進む。
ここで、前記したようにDPF17を再生するときの排気λの目標値(1.1〜1.4)はPM堆積量によって異なる。これはPM堆積量が多くなるほどPMの再燃焼が活発になるため、温度上昇が過大になってDPF17が焼損することを回避するのが目的であり、このため、図15に示すようにPM堆積量が多くなるほど目標λを小さく設定して酸素濃度を低下させ、PMの再燃焼速度を抑制する。
In S104, the exhaust λ is controlled to a target value according to a flow described later, and then the process proceeds to S105.
Here, as described above, the target value (1.1 to 1.4) of the exhaust λ when the DPF 17 is regenerated varies depending on the PM accumulation amount. The purpose of this is to prevent the DPF 17 from burning out due to excessive temperature rise because the PM re-combustion becomes more active as the PM deposition amount increases. For this reason, as shown in FIG. As the amount increases, the target λ is set smaller to lower the oxygen concentration, thereby suppressing the PM reburning rate.

S105では、DPF17の再生開始から所定時間t dpfreg経過したか否かを判定する。所定時間が経過した場合は、DPF17に堆積したPMが燃焼除去されているので、S106へ進む。
S106では、DPF17の再生制御が完了したので本発明に係る分割噴射から通常噴射に切換えて排気温度の昇温を停止し、DPF17の加熱を停止する。通常噴射は、上死点近傍で行われる燃料噴射により燃焼を行う。
In S105, it is determined whether or not a predetermined time t dpreg has elapsed since the start of regeneration of the DPF 17. If the predetermined time has elapsed, the PM accumulated in the DPF 17 has been removed by combustion, and the process proceeds to S106.
In S106, since the regeneration control of the DPF 17 is completed, the divisional injection according to the present invention is switched to the normal injection, the temperature rise of the exhaust gas is stopped, and the heating of the DPF 17 is stopped. In normal injection, combustion is performed by fuel injection performed near top dead center.

そしてS107に進んでDPF17の再生制御完了を示すためにregフラグを0にしてS108に進む。
S108ではDPF溶損防止の制御モードに入るために、recフラグを1にする。溶損防止の制御は、DPF17の再生制御が完了したときに、DPF17にPMの燃え残りがあった場合、排気λを急に大きくすると燃え残ったPMが一気に再燃焼してDPF17の急激な温度上昇を招きDPF17が溶損するという、稀に発生する危険性を回避するために行う。
In S107, the reg flag is set to 0 to indicate completion of regeneration control of the DPF 17, and the process proceeds to S108.
In S108, the rec flag is set to 1 in order to enter the control mode for preventing DPF melting damage. When the regeneration control of the DPF 17 is completed, if there is PM unburned in the DPF 17, if the exhaust λ is suddenly increased, the unburned PM is reburned at once and the DPF 17 has a sudden temperature. This is performed in order to avoid a rare danger that the DPF 17 melts due to an increase.

次に、図18の硫黄被毒解除の制御モードについて説明する。
この制御モードは、NOxトラップ触媒の硫黄堆積量が所定値S1に達してrq−desulフラグ=1となり、これを受けて後述する図22のフローによりdesulフラグ=1となると開始される。
S201では、NOxトラップ触媒16の温度T1が既に硫黄被毒解除のための目標上限値T42(約700℃)を以上であるか否かを判定する。S201でNOxトラップ触媒温度≧T42の場合はS211へ進んで、燃料噴射を通常の噴射モードに維持、または切換える。つまり、エンジン1の運転条件が高負荷、高回転条件等であれば排気温度を昇温させなくても硫黄被毒解除ができる温度に達するため、NOxトラップ触媒16は自然に硫黄被毒解除される温度が得られる。このようなときには昇温する必要がないし、逆に昇温すると温度が高くなりすぎてNOxトラップ触媒16の熱劣化を促進する事態を招く恐れがあるので昇温制御を行わない。S201でNOxトラップ触媒温度<T42である場合には、S202に進む。
Next, the control mode for canceling sulfur poisoning in FIG. 18 will be described.
This control mode is started when the sulfur accumulation amount of the NOx trap catalyst reaches the predetermined value S1 and the rq-desul flag = 1, and in response to this, the desul flag = 1 is established by the flow of FIG.
In S201, it is determined whether or not the temperature T1 of the NOx trap catalyst 16 has already exceeded the target upper limit value T42 (about 700 ° C.) for releasing sulfur poisoning. When NOx trap catalyst temperature ≧ T42 in S201, the process proceeds to S211 to maintain or switch the fuel injection to the normal injection mode. That is, if the operating conditions of the engine 1 are high load, high rotation conditions, etc., the NOx trap catalyst 16 is naturally released from sulfur poisoning because it reaches a temperature at which sulfur poisoning can be released without raising the exhaust temperature. Temperature is obtained. In such a case, it is not necessary to raise the temperature, and conversely, if the temperature is raised, the temperature becomes too high and there is a possibility that the thermal deterioration of the NOx trap catalyst 16 is promoted. If NOx trap catalyst temperature <T42 in S201, the process proceeds to S202.

S202では、NOxトラップ触媒温度T1が硫黄被毒解除のための目標下限値T41(約600℃)以上(触媒温度≧T41)であるか否かを判定する。S202でNOxトラップ触媒温度≧T41でない場合、即ち硫黄被毒解除下限温度未満(触媒温度<T41)である場合にはS203へ進んで、特に短時間昇温を重視した燃焼を実現する本発明の複合噴射(Div L)に切換えてS204に進む。   In S202, it is determined whether or not the NOx trap catalyst temperature T1 is equal to or higher than a target lower limit T41 (about 600 ° C.) for releasing sulfur poisoning (catalyst temperature ≧ T41). If NOx trap catalyst temperature ≧ T41 in S202, that is, if it is less than the sulfur poisoning release lower limit temperature (catalyst temperature <T41), the process proceeds to S203, and the combustion of the present invention that realizes combustion particularly focusing on short-time temperature rise is realized. Switch to combined injection (Div L) and proceed to S204.

S202でNOxトラップ触媒温度≧T41の場合、即ちNOxトラップ触媒16の温度T1が硫黄被毒解除下限温度T41以上である場合にはS212へ進んで、燃焼安定性を悪化させず、燃費悪化およびHCやスモーク増加を最小限に止めることを重視した燃焼を実現する本発明の複合噴射(Div S)に切換えてS204に進む。
S204では、排気λをストイキに制御する。すなわち、目標λをストイキに設定して後述するフローに従って制御した後、S205に進む。
When NOx trap catalyst temperature ≧ T41 in S202, that is, when the temperature T1 of the NOx trap catalyst 16 is equal to or higher than the sulfur poisoning release lower limit temperature T41, the routine proceeds to S212, the combustion stability is not deteriorated, the fuel consumption is deteriorated and the HC Then, the process proceeds to S204 after switching to the combined injection (Div S) of the present invention that realizes combustion focusing on minimizing the increase in smoke.
In S204, the exhaust λ is controlled stoichiometrically. That is, after setting the target λ to stoichiometric and controlling according to the flow described later, the process proceeds to S205.

S205では、硫黄被毒解除の制御モードで所定時間t desulが経過したか否かを判定する。所定時間が経過した場合は、硫黄被毒解除されているので、S206へ進む。
S206では、硫黄被毒解除制御が完了したので、本発明に係る分割噴射から通常噴射に切換えて排気温度の昇温を停止し、NOxトラップ触媒16の加熱を停止し、S207に進んで排気λ制御を解除する。
In S205, it is determined whether or not a predetermined time t desul has elapsed in the sulfur poisoning release control mode. If the predetermined time has elapsed, the sulfur poisoning has been released, and the process proceeds to S206.
In S206, since the sulfur poisoning release control is completed, switching from the divided injection according to the present invention to the normal injection is performed, the temperature increase of the exhaust gas temperature is stopped, the heating of the NOx trap catalyst 16 is stopped, the process proceeds to S207, and the exhaust λ Release control.

そしてS208に進んで硫黄被毒解除制御完了を示すためにdesulフラグを0にしてS209に進む。
S209ではDPF溶損防止の制御モードに入るために、recフラグを1にしてS210に進む。
ここで、硫黄被毒解除制御は、DPF17の再生を目的にはしていないものの、硫黄被毒解除制御が完了した段階でDPF17にPMが堆積していれば、このような高温の条件下で排気λを急に大きくすることで、DPF17に堆積したPMが一気に再燃焼してDPF17の急激な温度上昇を招きDPF17が溶損する恐れがある。このような危険性を回避するため、硫黄被毒解除制御完了後にもDPF溶損防止制御を行う。
Then, the process proceeds to S208, the desul flag is set to 0 to indicate the completion of the sulfur poisoning release control, and the process proceeds to S209.
In S209, in order to enter the control mode for preventing DPF melting, the rec flag is set to 1, and the process proceeds to S210.
Here, although the sulfur poisoning release control is not aimed at the regeneration of the DPF 17, if PM is deposited on the DPF 17 at the stage when the sulfur poisoning release control is completed, the sulfur poisoning release control is performed under such a high temperature condition. If the exhaust λ is suddenly increased, PM accumulated in the DPF 17 may be recombusted at once, causing a rapid temperature rise of the DPF 17 and causing the DPF 17 to melt. In order to avoid such a risk, the DPF melt damage prevention control is performed even after the sulfur poisoning release control is completed.

S210でspフラグを0にするが、これは硫黄被毒解除制御を行うと、NOxトラップ触媒16が長時間ストイキにさらされることで、NOx脱離還元浄化も同時に行われるためである。したがって、NOx脱離還元浄化要求(リッチスパイク要求)が出ていた場合に、これを取下げるためにrq−spフラグを0にする。
次に、図19のリッチスパイク(NOx脱離還元浄化)の制御モードについて説明する。
In S210, the sp flag is set to 0. This is because when the sulfur poisoning release control is performed, the NOx trap catalyst 16 is exposed to stoichiometry for a long time, so that NOx desorption reduction purification is also performed at the same time. Therefore, when a NOx desorption reduction purification request (rich spike request) has been issued, the rq-sp flag is set to 0 in order to cancel it.
Next, the control mode of the rich spike (NOx desorption reduction purification) of FIG. 19 will be described.

この制御モードは、NOxトラップ触媒16のNOx堆積量が所定値NOx1に達してrq−spフラグ=1となり、これを受けて後述する図21又は図22のフローによりspフラグ=1となると開始される。
S301では、排気λをリッチに制御する。すなわち、目標λをリッチに設定(λ<1)して後述するフローに従って制御した後、S302に進む。
This control mode is started when the NOx accumulation amount of the NOx trap catalyst 16 reaches the predetermined value NOx1 and becomes rq-sp flag = 1, and in response to this, the sp flag = 1 is established by the flow of FIG. 21 or FIG. The
In S301, the exhaust λ is controlled to be rich. That is, the target λ is set to be rich (λ <1) and controlled according to a flow described later, and then the process proceeds to S302.

S302では、リッチスパイクモードにて所定時間t spikeが経過したか否かを判定する。所定時間が経過した場合は、NOxトラップ触媒16からNOxが脱離還元浄化されているので、S303へ進む。
S303では、リッチスパイク制御が完了したので排気λ制御を解除してリッチ運転を解除し、S304に進む。
In S302, it is determined whether or not a predetermined time t spike has elapsed in the rich spike mode. When the predetermined time has elapsed, since NOx is desorbed and purified from the NOx trap catalyst 16, the process proceeds to S303.
In S303, since the rich spike control is completed, the exhaust λ control is canceled to release the rich operation, and the process proceeds to S304.

S304では、NOx脱離還元浄化の完了を示すためにspフラグおよびrq−spフラグを0にする。
次に、図20の溶損防止の制御モードについて説明する。
この制御モードは、DPF17の再生又はNOxトラップ触媒16の硫黄被毒解除が終了し、図17又は図18のフローによりrecフラグ=1になると開始される。
In S304, the sp flag and the rq-sp flag are set to 0 to indicate the completion of NOx desorption reduction purification.
Next, the control mode for preventing melting in FIG. 20 will be described.
This control mode is started when the regeneration of the DPF 17 or the sulfur poisoning release of the NOx trap catalyst 16 is completed and the rec flag is set to 1 according to the flow of FIG. 17 or FIG.

S401では排気λを目標値、例えばλ<1.4 に制御する。これはDPF再生あるいは硫黄被毒解除直後においては、未だDPF17が高温状態にあり、排気λを急激にリーン化すると、DPF17内の残存または堆積しているPMが一気に再燃焼してDPF17の急激な温度上昇を招きDPF17が溶損する恐れがあるため、排気λをλ<1.4 に制御して酸素濃度を低下させることで、このような危険性を回避するためである。   In S401, the exhaust λ is controlled to a target value, for example, λ <1.4. This is because immediately after DPF regeneration or sulfur poisoning is released, the DPF 17 is still in a high temperature state, and when the exhaust λ is leaned rapidly, the remaining or accumulated PM in the DPF 17 is reburned at once and the DPF 17 is rapidly This is to avoid such a danger by controlling the exhaust λ to λ <1.4 and lowering the oxygen concentration since the DPF 17 may be melted due to a temperature rise.

尚、溶損防止制御モードでは、排気温度を低下させる必要があり、図17または図18のフローで説明したように、燃料噴射は本発明に係る分割噴射ではなく通常噴射に戻されている。
S401で排気λを目標値に制御した後、S402では、DPF温度T2がPMの急激な再燃焼を誘導する恐れのない所定温度T3(例えば500℃)より低くなったか否かを判定する。DPF温度が所定温度T3以上(DPF温度≧T3)である場合には、排気λ制御を続行する。
In the melt prevention control mode, it is necessary to lower the exhaust gas temperature, and as described in the flow of FIG. 17 or FIG. 18, the fuel injection is returned to the normal injection instead of the divided injection according to the present invention.
After the exhaust λ is controlled to the target value in S401, in S402, it is determined whether or not the DPF temperature T2 has become lower than a predetermined temperature T3 (for example, 500 ° C.) that does not induce a rapid re-combustion of PM. When the DPF temperature is equal to or higher than the predetermined temperature T3 (DPF temperature ≧ T3), the exhaust λ control is continued.

T3より低い場合には、通常のリーン状態に戻してもDPF17の溶損が回避できるので、S403へ進んで排気λ制御を解除する。
そしてS404に進んで、溶損防止制御モードの終了を示すためにrecフラグを0にする。
次に、図21に示すDPF再生要求時における再生優先順位決定フローについて説明する。
If it is lower than T3, melting of the DPF 17 can be avoided even if the normal lean state is restored, so the routine proceeds to S403 and the exhaust λ control is canceled.
Then, the process proceeds to S404, and the rec flag is set to 0 to indicate the end of the melting prevention control mode.
Next, the regeneration priority order determination flow at the time of the DPF regeneration request shown in FIG. 21 will be described.

この制御モードは、DPF再生要求(rq−DPFフラグ=1)が出されると開始される。尚、本フローは、DPF再生要求と、硫黄被毒解除要求(rq−desulフラグ=1)またはNOx脱離還元浄化要求(rq−spフラグ=1)とが、同時に起きたときの再生優先順位について規定するものである。
S501では、DPF再生要求が出た後に、硫黄堆積量が所定値S1に達して硫黄被毒解除時期になっているか否かをS15と同じ手法で判定する。
This control mode is started when a DPF regeneration request (rq-DPF flag = 1) is issued. In this flow, the regeneration priority order when a DPF regeneration request and a sulfur poisoning release request (rq-desul flag = 1) or a NOx desorption reduction purification request (rq-sp flag = 1) occur simultaneously. It prescribes about.
In S501, after the DPF regeneration request is issued, it is determined by the same method as S15 whether or not the sulfur accumulation amount reaches the predetermined value S1 and the sulfur poisoning release timing is reached.

硫黄堆積量≧S1の場合は、図25のフローのS901へ進んで、rq−desulフラグ=1とし、硫黄被毒解除要求を出す。この場合、後述する図22の硫黄被毒解除要求時における再生優先順位決定フローにより優先順位が決定される。
硫黄堆積量が所定値S1に達していない(硫黄体積量<S1)場合は、S502へ進む。
When the sulfur accumulation amount ≧ S1, the process proceeds to S901 in the flow of FIG. 25, and the rq-desul flag = 1 is set, and a sulfur poisoning release request is issued. In this case, the priority order is determined by the regeneration priority order determination flow at the time of the sulfur poisoning release request shown in FIG.
When the sulfur deposition amount does not reach the predetermined value S1 (sulfur volume amount <S1), the process proceeds to S502.

S502では、rq−spフラグ=1、すなわちNOxトラップ触媒16のNOx脱離還元浄化要求(リッチスパイク要求)が出ているか否かを判定する。
S502でNOx脱離還元浄化要求が出ている場合はS506に進み、出ていない場合はS503へ進む。
S503では、DPF再生要求が出された後に、NOxトラップ触媒16におけるNOx堆積量が所定値NOx1に達してNOx脱離還元浄化時期になっているか否かをS16と同じ手法で判定する。
In S502, it is determined whether the rq-sp flag = 1, that is, whether the NOx desorption reduction purification request (rich spike request) of the NOx trap catalyst 16 is issued.
If a NOx desorption reduction purification request is issued in S502, the process proceeds to S506, and if not, the process proceeds to S503.
In S503, after the DPF regeneration request is issued, it is determined by the same method as S16 whether or not the NOx accumulation amount in the NOx trap catalyst 16 has reached the predetermined value NOx1 and the NOx desorption reduction purification time has come.

NOx堆積量≧NOx1の場合は、図26のフローのS1001へ進んで、rq−spフラグ=1とし、NOx脱離還元浄化要求(リッチスパイク要求)を出す。
NOx堆積量が所定値NOx1に達していない(NOx堆積量<NOx1)場合は、DPF再生要求のみが出ている場合であり、この場合は、S504へ進む。
S504では、図5に示すDPF再生および硫黄被毒解除の可能領域(低回転・低負荷以外の領域で昇温代が比較的少なく、本発明に係る複合噴射を実施しても排気性能の悪化代が許容値を超えない領域)であるか否かを判定する。そしてDPF再生可能領域(硫黄被毒解除可能領域)の場合は、S505へ進み、regフラグ=1として、DPF17の再生に移行する。
When NOx accumulation amount ≧ NOx1, the process proceeds to S1001 in the flow of FIG. 26, where the rq-sp flag = 1 is set, and a NOx desorption reduction purification request (rich spike request) is issued.
When the NOx accumulation amount does not reach the predetermined value NOx1 (NOx accumulation amount <NOx1), only the DPF regeneration request is issued. In this case, the process proceeds to S504.
In S504, the DPF regeneration and sulfur poisoning release possible region shown in FIG. 5 (the temperature rise margin is relatively small in the region other than the low rotation and low load, and the exhaust performance deteriorates even when the composite injection according to the present invention is performed. It is determined whether or not the allowance is an area that does not exceed the allowable value. In the case of the DPF recyclable region (sulfur poisoning releasable region), the process proceeds to S505, where the reg flag = 1 is set and the process proceeds to regeneration of the DPF 17.

S502での判定で、rq−spフラグ=1の場合は、DPF再生要求とNOx脱離還元浄化要求とが同時に出ている場合であり、この場合にはS506へ進む。
S506では、エンジンの運転条件がNOx排出量の少ない条件(例えば定常条件)であるか否かを判定する。NOx排出量が少ない条件であれば、NOxトラップ触媒16の再生を多少遅らせても、テールパイプでの排気の悪化は殆ど無いため、運転性に影響を大きく及ぼすDPF17の再生を優先させるのが望ましい。従って、この場合はS507へ進む。
If it is determined in S502 that the rq-sp flag = 1, the DPF regeneration request and the NOx desorption reduction purification request are issued simultaneously. In this case, the process proceeds to S506.
In step S506, it is determined whether or not the engine operating condition is a condition (for example, a steady condition) with a small NOx emission amount. If the amount of NOx emission is small, it is desirable to give priority to regeneration of the DPF 17 that greatly affects the operability because there is almost no deterioration of the exhaust in the tail pipe even if the regeneration of the NOx trap catalyst 16 is somewhat delayed. . Accordingly, in this case, the process proceeds to S507.

逆にNOx排出量が多い条件(例えば加速条件等)ではテールパイプでの排気悪化を防止するためにNOxトラップ触媒16の再生を優先させるのが望ましい。従って、この場合はS508へ進み、spフラグ=1として、NOx脱離還元浄化(リッチスパイク)に移行する。
S507では、DPF温度が所定温度T6(例えば450℃程度)以上であるか否かを判定する。昇温を開始するにあたり、DPF温度が所定温度T6未満(DPF温度<T6)である場合は、昇温を開始してもDPF17が再生可能温度に到達するまで時間がかかり、昇温中にテールパイプでのNOxの悪化も懸念されるため、NOxトラップ触媒16の再生を優先させるのが望ましい。従って、この場合もS508へ進み、spフラグ=1として、NOx脱離還元浄化(リッチスパイク)に移行する。
On the other hand, it is desirable to prioritize regeneration of the NOx trap catalyst 16 in order to prevent exhaust deterioration in the tail pipe under conditions where the amount of NOx emission is large (for example, acceleration conditions). Therefore, in this case, the process proceeds to S508, where the sp flag = 1 is set, and the process proceeds to NOx desorption reduction purification (rich spike).
In S507, it is determined whether or not the DPF temperature is equal to or higher than a predetermined temperature T6 (for example, about 450 ° C.). When starting the temperature rise, if the DPF temperature is lower than the predetermined temperature T6 (DPF temperature <T6), it takes time until the DPF 17 reaches the regenerative temperature even if the temperature rise is started. Since there is a concern about deterioration of NOx in the pipe, it is desirable to give priority to regeneration of the NOx trap catalyst 16. Accordingly, also in this case, the process proceeds to S508, where the sp flag = 1 is set, and the process proceeds to NOx desorption reduction purification (rich spike).

S507における判定で、DPF温度≧T6の場合は、DPF17の再生を優先させるため、前述のS504、505へ進む。
次に、図22に示す硫黄被毒解除要求時における再生優先順位決定フローについて説明する。
この制御モードは、硫黄被毒解除要求(rq−desulフラグ=1)が出されると開始される。尚、本フローは、硫黄被毒解除要求(rq−desulフラグ=1)とNOx脱離浄化要求(rq−spフラグ=1)とが同時に起きたときの再生優先順位について規定するものである。
If it is determined in S507 that DPF temperature ≧ T6, the process proceeds to S504 and 505 described above in order to prioritize regeneration of the DPF 17.
Next, the regeneration priority determination flow at the time of the sulfur poisoning release request shown in FIG. 22 will be described.
This control mode is started when a sulfur poisoning release request (rq-desul flag = 1) is issued. This flow defines the regeneration priority when a sulfur poisoning release request (rq-desul flag = 1) and a NOx desorption purification request (rq-sp flag = 1) occur at the same time.

S601では、硫黄被毒解除要求が出た後に、PM堆積量が所定値PM1に達してDPF再生時期になっているか否かを、S14と同じ手法で判定する。
PM堆積量≧PM1の場合は、図24のフローのS801へ進んで、rq−DPFフラグ=1とし、DPF再生要求を出す。この場合、前述の図21のDPF再生要求時における再生優先順位決定フローにより優先順位が決定される。
In S601, after the sulfur poisoning release request is issued, it is determined by the same method as in S14 whether or not the PM accumulation amount reaches the predetermined value PM1 and the DPF regeneration time has come.
When the PM accumulation amount ≧ PM1, the process proceeds to S801 in the flow of FIG. 24, and the rq-DPF flag = 1 is set and a DPF regeneration request is issued. In this case, the priority order is determined by the regeneration priority order determination flow at the time of the DPF regeneration request shown in FIG.

PM堆積量が所定値PM1に達していない(PM堆積量<PM1)場合は、S602へ進む。
S602では、触媒温度が所定温度T7(例えば450℃程度)以上であるか否かを判定し、所定温度T7以上である場合には、S603へ進む。
S603では、図5に示すDPF再生及び硫黄被毒解除の可能領域であるか否かを判定する。そして硫黄被毒解除可能領域(DPF再生可能領域)の場合は、S604へ進み、desulフラグ=1として、硫黄被毒解除に移行する。
When the PM accumulation amount does not reach the predetermined value PM1 (PM accumulation amount <PM1), the process proceeds to S602.
In S602, it is determined whether or not the catalyst temperature is equal to or higher than a predetermined temperature T7 (for example, about 450 ° C.). If it is equal to or higher than the predetermined temperature T7, the process proceeds to S603.
In S603, it is determined whether or not it is a DPF regeneration and sulfur poisoning release possible region shown in FIG. In the case of the sulfur poisoning releasable region (DPF reproducible region), the process proceeds to S604, and the desul flag = 1 is set, and the process shifts to sulfur poisoning cancellation.

S602での判定で、触媒温度が所定温度T7に達していない(触媒温度<T7)場合は、昇温を開始しても、硫黄被毒解除の可能温度に到達するまで時間がかかり、昇温中にテールパイプでのNOxの悪化も懸念されることから、NOx脱離還元浄化を優先させるのが望ましく、この場合はS605へ進む。
S605では、rq−spフラグ=1、すなわちNOx脱離還元浄化要求が出ているか否かを判定し、出ている場合は、S607へ進み、spフラグ=1として、NOx脱離還元浄化(リッチスパイク)に移行する。
If it is determined in S602 that the catalyst temperature has not reached the predetermined temperature T7 (catalyst temperature <T7), it takes time to reach the temperature at which sulfur poisoning can be released even if the temperature increase is started. Since there is a concern about deterioration of NOx in the tail pipe, it is desirable to give priority to NOx desorption reduction purification, and in this case, the process proceeds to S605.
In S605, it is determined whether or not the rq-sp flag = 1, that is, whether the NOx desorption reduction purification request has been issued. If so, the process proceeds to S607, where the sp flag = 1 is set to NOx desorption reduction purification (rich). (Spike).

S605でrq−spフラグ=0の場合、すなわちNOx脱離還元浄化要求が出ていない場合はS606へ進む。
S606では、硫黄被毒解除要求が出された後に、NOx堆積量が所定値NOx1に達してNOx脱離還元浄化時期になっているか否かをS16と同じ手法で判定する。
NOx堆積量≧NOx1の場合は、図26のフローのS1001へ進み、rq−spフラグ=1と、NOx脱離還元浄化要求(リッチスパイク要求)を出す。
If the rq-sp flag = 0 in S605, that is, if the NOx desorption reduction purification request is not issued, the process proceeds to S606.
In S606, after the sulfur poisoning release request is issued, it is determined by the same method as S16 whether or not the NOx accumulation amount reaches the predetermined value NOx1 and the NOx desorption reduction purification time has come.
When NOx accumulation amount ≧ NOx1, the process proceeds to S1001 in the flow of FIG. 26, and an rq-sp flag = 1 and a NOx desorption reduction purification request (rich spike request) are issued.

次に、図27の触媒暖機促進の制御モードについて説明する。
この制御モードは、S3で触媒温度がT52(約220℃)未満のときに実行される。
S1101では、触媒温度が活性温度下限であるT51(約200℃)に達しているか否かを判定する。触媒温度がT51に達している(触媒温度≧T51)場合にはS1102へ進み、達していない(触媒温度<T51)場合にはS1103に進む。
Next, the control mode for promoting catalyst warm-up in FIG. 27 will be described.
This control mode is executed when the catalyst temperature is lower than T52 (about 220 ° C.) in S3.
In S1101, it is determined whether the catalyst temperature has reached T51 (about 200 ° C.), which is the lower limit of the activation temperature. If the catalyst temperature has reached T51 (catalyst temperature ≧ T51), the process proceeds to S1102, and if it has not reached (catalyst temperature <T51), the process proceeds to S1103.

S1102では、触媒16が活性を得られる温度に達しているため(それまでに分割噴射Div Lが行われている場合は)、燃費悪化およびHCやスモーク増加を最小限に止めることを重視した燃焼を実現する分割噴射Div Sに切換えることで、触媒16の早期暖機促進運転から通常の暖機促進運転に切換える。
S1103では、触媒温度T1がまだ活性を得られる温度ではないので、短時間昇温を重視した燃焼を実現する分割噴射Div Lを実施し、早期暖機促進運転を行う。
In S1102, since the catalyst 16 has reached a temperature at which activity can be obtained (when split injection Div L has been performed so far), combustion that places importance on minimizing fuel consumption deterioration and increasing HC and smoke By switching to the divided injection Div S that realizes the above, the early warm-up promotion operation of the catalyst 16 is switched to the normal warm-up promotion operation.
In S1103, since the catalyst temperature T1 is not yet a temperature at which the activity can be obtained, the split injection Div L that realizes the combustion with an emphasis on short-time temperature rise is performed, and the early warm-up promotion operation is performed.

図28は、燃料の通常噴射制御モードのフローチャートである。
S1201では、基準燃料噴射量Q stdを算出する。基準燃料噴射量Q stdは、図5に示すように、予めアクセル開度Accおよびエンジン回転数Neに対応したマップデータとしてコンピューターコントロールユニットに記憶しておき、そのときのアクセル開度Accとエンジン回転数Neとから求める。
FIG. 28 is a flowchart of the normal fuel injection control mode.
In S1201, a reference fuel injection amount Qstd is calculated. As shown in FIG. 5, the reference fuel injection amount Qstd is stored in advance in the computer control unit as map data corresponding to the accelerator opening Acc and the engine speed Ne, and the accelerator opening Acc and the engine speed at that time are stored. Obtained from the number Ne.

S1202では、基準燃料噴射時期IT stdを算出する。基準燃料噴射時期IT stdは、図7に示すように、予め基準燃料噴射量Q std(またはアクセル開度Accでもよい)およびエンジン回転数Neに対応したマップデータとしてコンピューターコントロールユニットに記憶しておき、S1201で算出した基準燃料噴射量Q stdとそのときのエンジン回転数Neとから求める。   In S1202, the reference fuel injection timing IT std is calculated. As shown in FIG. 7, the reference fuel injection timing IT std is stored in advance in the computer control unit as map data corresponding to the reference fuel injection amount Q std (or may be the accelerator opening Acc) and the engine speed Ne. , From the reference fuel injection amount Qstd calculated in S1201 and the engine speed Ne at that time.

S1203では、基準燃料噴射圧力IP stdを算出する。基準燃料噴射圧力IP stdは、図8に示すように、これも予め基準燃料噴射量Q std(またはアクセル開度Accでもよい)およびエンジン回転数Neに対応したマップデータとしてコンピューターコントロールユニットに記憶しておき、S1201で算出した基準燃料噴射量Q stdと、そのときのエンジン回転数Neとから求める。   In S1203, a reference fuel injection pressure IP std is calculated. As shown in FIG. 8, the reference fuel injection pressure IP std is also stored in advance in the computer control unit as map data corresponding to the reference fuel injection amount Q std (or the accelerator opening Acc) and the engine speed Ne. It is obtained from the reference fuel injection amount Q std calculated in S1201 and the engine speed Ne at that time.

S1204では、燃料噴射時期を燃料のセタン価に応じて補正する(図にはCN補正と示す)。燃料噴射時期のセタン価補正は、前述の図10に示すそのときに使用されている燃料のセタン価が高いほど燃料噴射時期を遅角させるように補正する。そして、燃料のセタン価が高いほど、分割予備噴射の遅角量を分割リタード噴射の遅角量よりも増大させる。このことで分割予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができる結果、分割リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させる。   In S1204, the fuel injection timing is corrected according to the cetane number of the fuel (shown as CN correction in the figure). The cetane number correction of the fuel injection timing is corrected so that the fuel injection timing is retarded as the cetane number of the fuel used at that time shown in FIG. 10 is higher. Then, the higher the cetane number of the fuel, the larger the retardation amount of the divided preliminary injection is made larger than the retard amount of the divided retard injection. As a result, the ignition combustion of the fuel in the divided pre-injection can be performed reliably or stably. As a result, the combustion start timing (heat generation timing) and the combustion of the divided retard injection are stabilized.

なお、通常噴射の噴射開始時期と、複合噴射における分割予備噴射の噴射開始時期との適性値が、圧縮行程のほぼ同一時期(温度)になるため、通常噴射と分割予備噴射とのセタン価補正値(IT CN)も下記のように同一にするのが望ましい。
(IT std←IT std+IT CN)
S1205では、燃料噴射圧力を燃料のセタン価に応じて補正する。燃料噴射圧力のセタン価補正は、前述の図11に示すそのときに使用されている燃料のセタン価が高いほど燃料噴射圧力を低下させるように補正する。
In addition, since the appropriate values of the injection start timing of normal injection and the injection start timing of divided preliminary injection in combined injection are substantially the same time (temperature) in the compression stroke, cetane number correction between normal injection and split preliminary injection The value (IT CN) is preferably the same as described below.
(IT std ← IT std + IT CN)
In S1205, the fuel injection pressure is corrected according to the cetane number of the fuel. The cetane number correction of the fuel injection pressure is performed so that the fuel injection pressure is decreased as the cetane number of the fuel used at that time shown in FIG. 11 is higher.

なお、複合噴射における燃料噴射圧力が、下記のように通常の燃料噴射圧力と同一にするのが望ましい。
(IP std←IP std+IP CN)
S1206では、補正した後の燃料噴射時期IT stdと燃料噴射圧力IP stdとで燃料噴射量Q stdが得られるように燃料噴射弁15を駆動(開弁)制御する。
It is desirable that the fuel injection pressure in the composite injection is the same as the normal fuel injection pressure as described below.
(IP std ← IP std + IP CN)
In step S1206, the fuel injection valve 15 is driven (opened) so that the fuel injection amount Q std is obtained from the corrected fuel injection timing IT std and the fuel injection pressure IP std.

図29は、燃費悪化およびHCやスモーク増加を最小限に止めることを重視した燃焼を実現する本発明の複合噴射(Div S)の制御フローチャートである。
S1301では、下記のように燃料の総噴射量Q DivSと、夫々の分割噴射量(予備噴射量QS Preおよびリタード噴射量QS Ret)の分割予備噴射量比率Ratio P、Ratio Rとの乗算により、予備噴射量QS Preおよびリタード噴射量QS Retと、を算出する。
FIG. 29 is a control flowchart of the composite injection (Div S) of the present invention that realizes combustion with an emphasis on minimizing fuel consumption deterioration and increasing HC and smoke.
In S1301, by multiplying the total fuel injection amount Q DivS and the divided preliminary injection amount ratios Ratio P and Ratio R of the respective divided injection amounts (the preliminary injection amount QS Pre and the retarded injection amount QS Ret) as follows, The preliminary injection amount QS Pre and the retard injection amount QS Ret are calculated.

(QS Pre←Q DivS×Ratio P)
(QS Ret←Q DivS×Ratio R)
複合総噴射量Q DivSは、例えば、通常噴射量Q stdを求める場合と同様にそのときのアクセル開度Accとエンジン回転数Neとから求めるが、図5のA−A、B−B、C−C断面部を図6に示すように、通常噴射量Q stdに対して増量設定される。
(QS Pre ← Q DivS × Ratio P)
(QS Ret ← Q DivS x Ratio R)
The combined total injection amount Q DivS is obtained from the accelerator opening Acc and the engine speed Ne at that time, for example, as in the case of obtaining the normal injection amount Q std, but AA, BB, C in FIG. As shown in FIG. 6, the −C cross section is set to be increased with respect to the normal injection amount Q std.

なお、燃料の増量限界については、エンジン1への負担を適正な状態に保つという観点から、全負荷における燃料噴射量を超えないように設定するのが望ましい。
また複合総噴射量Q DivSの求め方として、予めアクセル開度Accとエンジン回転数Neとに対応して通常噴射量Q stdに対する増量比率を予めマップデータとしてコンピューターコントロールユニットに記憶させておき、通常噴射量Q stdに対して増量比率を乗じて求める方法を用いても構わない。
The fuel increase limit is desirably set so as not to exceed the fuel injection amount at the full load from the viewpoint of keeping the load on the engine 1 in an appropriate state.
Further, as a method of obtaining the combined total injection amount Q DivS, the increase ratio with respect to the normal injection amount Q std is previously stored in the computer control unit as map data in advance corresponding to the accelerator opening Acc and the engine speed Ne, A method of multiplying the injection amount Q std by the increase ratio may be used.

また複合総噴射量Q DivSを分割して夫々の分割噴射量(予備噴射量QS Preおよびリタード噴射量QS Ret)を噴射するが、その分割比率は、例えば図5のB−B断面部を図13に示すように、負荷(燃料噴射量Qを基準とするがQ stdまたはQ DivSのいずれでも良い)が増加するのに伴い、分割予備噴射量比率(Ratio P)が増大し、逆に分割リタード噴射量比率(Ratio R)が減少するように設定する。このように噴射量比率を設定することで、負荷の増大に伴って燃焼形態としては予混合燃焼を強化できるため、スモークの増加を抑制することができる。   Further, the combined total injection amount Q DivS is divided to inject the respective divided injection amounts (preliminary injection amount QS Pre and retarded injection amount QS Ret). As shown in FIG. 13, as the load (based on the fuel injection amount Q, which may be either Q std or Q DivS) increases, the split preliminary injection amount ratio (Ratio P) increases and conversely splits. The retard injection amount ratio (Ratio R) is set to decrease. By setting the injection amount ratio in this way, the premixed combustion can be strengthened as the combustion mode as the load increases, so that an increase in smoke can be suppressed.

また図5のD−D断面部を図14に示すように、エンジン回転数Neが増加するのに伴い、分割予備噴射量比率(Ratio P)が緩やかに増大し、逆に分割リタード噴射量比率(Ratio R)が緩やかに減少するように設定する。これはエンジン回転数Neの増大に伴って温度も上昇するため、この場合も予混合燃焼の比率を高め、燃焼を比較的速やかに終了させて燃料消費の悪化を抑制するためである。   Further, as shown in FIG. 14 in the DD cross section of FIG. 5, as the engine speed Ne increases, the divided preliminary injection amount ratio (Ratio P) gradually increases, and conversely the divided retard injection amount ratio. (Ratio R) is set so as to decrease gently. This is because the temperature also increases as the engine speed Ne increases, and in this case as well, the ratio of the premixed combustion is increased, and the combustion is terminated relatively quickly to suppress the deterioration of the fuel consumption.

S1302では、複合噴射Div Sにおける夫々の噴射開始時期(予備噴射開始時期ITS Preおよびリタード噴射開始時期ITS Ret)を算出し、S1303に進む。
なお、リタード間隔dIT S(図2から図4に示すΔIT)は、例えば図5(または図7、図8)のB−B断面部を、図9の実線で示すように、負荷(燃料噴射量Qを基準とするがQ stdまたはQ DivSのいずれでも良い)が増加するのに伴い、リタード間隔dIT Sが拡大するように設定する。
In S1302, the respective injection start timings (preliminary injection start timing ITS Pre and retard injection start timing ITS Ret) in the combined injection Div S are calculated, and the process proceeds to S1303.
Note that the retard interval dIT S (ΔIT shown in FIGS. 2 to 4) is, for example, a load (fuel injection) as shown by a solid line in FIG. 9 at the BB cross section in FIG. 5 (or FIGS. 7 and 8). The retard interval dIT S is set to increase as the quantity Q is used as a reference, but either Q std or Q DivS may be increased.

(ITS Pre←IT std)
(ITS Ret←ITS Pre−dIT S)
このように燃料噴射時期を設定することによっても、負荷の増大に伴う拡散燃焼の増加を抑制できる(拡散燃焼と予混合燃焼との比率を適正にできる)ため、スモークの増加を抑制することができる。
(ITS Pre ← IT std)
(ITS Ret ← ITS Pre-dIT S)
By setting the fuel injection timing in this way, it is possible to suppress an increase in diffusion combustion accompanying an increase in load (the ratio of diffusion combustion to premixed combustion can be made appropriate), so that an increase in smoke can be suppressed. it can.

S1303では、S1203と同じく基準燃料噴射圧力IP stdを算出し、S1304に進む。
S1304では、夫々の燃料噴射量(予備噴射量QS Preおよびリタード噴射量QS Ret)を前述の図12に示すそのときに使用されている燃料のセタン価に応じた補正値で補正して、S1305に進む。すなわち、予備噴射では、燃料のセタン価が高いほど燃料噴射量比率補正量(Ratio CNP)を減少させることで、予備燃料噴射量を減少させる。一方、リタード噴射では、セタン価が高いほど燃料噴射量比率補正量(Ratio CNR)を増大させることでリタード噴射量を増大させる。
In S1303, the reference fuel injection pressure IP std is calculated as in S1203, and the process proceeds to S1304.
In S1304, each fuel injection amount (preliminary injection amount QS Pre and retard injection amount QS Ret) is corrected with a correction value corresponding to the cetane number of the fuel used at that time shown in FIG. Proceed to That is, in the preliminary injection, the preliminary fuel injection amount is decreased by decreasing the fuel injection amount ratio correction amount (Ratio CNP) as the cetane number of the fuel is higher. On the other hand, in the retarded injection, the retarded injection amount is increased by increasing the fuel injection amount ratio correction amount (Ratio CNR) as the cetane number is higher.

(QS Pre←QS Pre×Ratio CNP)
(QS Ret←QS Ret×Ratio CNR)
これにより、予備噴射における燃料の着火燃焼によって得られる燃焼室内の温度上昇が、セタン価が高いときには低く、逆にセタン価が低いときには高く設定できるため、リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることが可能になる。
(QS Pre ← QS Pre × Ratio CNP)
(QS Ret ← QS Ret × Ratio CNR)
As a result, the temperature rise in the combustion chamber obtained by the ignition combustion of fuel in the preliminary injection can be set low when the cetane number is high, and conversely, it can be set high when the cetane number is low. Timing) and combustion can be stabilized.

S1305では、夫々の燃料噴射開始時期(ITS PreおよびITS Ret)を前述の図10に示すそのときに使用されている燃料のセタン価に応じた補正値で補正して、S1306に進む。すなわち予備噴射では、燃料のセタン価が高いほど燃料噴射時期の遅角量を分割リタード噴射の遅角量よりも増大させる。これにより分割予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができる結果、分割リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることが可能になる。   In S1305, each fuel injection start timing (ITS Pre and ITS Ret) is corrected with a correction value corresponding to the cetane number of the fuel used at that time shown in FIG. 10, and the process proceeds to S1306. That is, in the preliminary injection, the retard amount of the fuel injection timing is made larger than the retard amount of the divided retard injection as the cetane number of the fuel is higher. As a result, the ignition combustion of the fuel in the divided pre-injection can be reliably or stably performed. As a result, the fuel combustion start timing (heat generation timing) and the combustion in the divided retard injection can be stabilized.

(ITS Pre←ITS Pre+IT CN)
(ITS Ret←ITS Ret+IT CNR)
S1306では、基準燃料噴射圧力IP stdをS1205と同じく燃料のセタン価に応じた補正値で補正して、S1307に進む。
(IP std←IP std+IP CN)
S1307では、補正した夫々の燃料噴射開始時期(ITS PreおよびITS Ret)と燃料噴射圧力IP stdとで、夫々の分割噴射量(QS PreおよびQS Ret)が得られるように燃料噴射弁15を駆動(開弁)制御する。
(ITS Pre ← ITS Pre + IT CN)
(ITS Ret ITS Ret + IT CNR)
In S1306, the reference fuel injection pressure IP std is corrected with a correction value corresponding to the cetane number of the fuel as in S1205, and the process proceeds to S1307.
(IP std ← IP std + IP CN)
In S1307, the fuel injection valve 15 is driven so that the respective divided injection amounts (QS Pre and QS Ret) can be obtained at the corrected fuel injection start timings (ITS Pre and ITS Ret) and the fuel injection pressure IP std. (Valve open) Control.

図30は、本発明に係る短時間昇温を重視した燃焼を実現する複合噴射(Div L)の制御フローチャートである。
なお、機能的に分割噴射(Div S)と同じ部分については説明を省略する。
S1401では、総噴射量Q Div Lおよび夫々の分割噴射量(予備噴射量QL Preおよびリタード噴射量QL Ret)を算出する。
FIG. 30 is a control flowchart of combined injection (Div L) that realizes combustion with an emphasis on short-time temperature increase according to the present invention.
In addition, description is abbreviate | omitted about the part which is functionally the same as divided injection (Div S).
In S1401, the total injection amount Q Div L and the respective divided injection amounts (the preliminary injection amount QL Pre and the retarded injection amount QL Ret) are calculated.

(QL Pre←Q Div L×Ratio P)
(QL Ret←Q Div L×Ratio R)
複合総噴射量Q Div Lは、例えば、通常噴射量Q stdまたは複合噴射量Q Div Sを求める場合と同様にそのときのアクセル開度Accとエンジン回転数Neとから求めるが、図6に示すように、通常噴射量Q stdまたは複合噴射量Q Div Sよりもさらに増量して設定される。
(QL Pre ← Q Div L × Ratio P)
(QL Ret ← Q Div L × Ratio R)
The combined total injection amount Q Div L is obtained from the accelerator opening Acc and the engine speed Ne at the same time as in the case of obtaining the normal injection amount Q std or the combined injection amount Q Div S, for example, as shown in FIG. Thus, the fuel injection amount is set to be further increased from the normal injection amount Q std or the composite injection amount Q Div S.

S1402では、複合噴射Div Lにおける夫々の噴射開始時期(予備噴射開始時期ITL Preおよびリタード噴射開始時期ITL Ret)を算出し、S1403に進む。
なお、リタード間隔dIT Lは、図9の点線で示すように、複合噴射Div Sよりも噴射量を増量させているのでリタード間隔も増大するように設定する。
In S1402, the respective injection start timings (preliminary injection start timing ITL Pre and retard injection start timing ITL Ret) in the combined injection Div L are calculated, and the process proceeds to S1403.
The retard interval dIT L is set so that the retard interval also increases because the injection amount is increased as compared with the combined injection Div S, as indicated by the dotted line in FIG.

(ITL Pre←IT std)
(ITL Ret←ITL Pre−dIT L)
S1403では、S1203またはS1303と同じく基準燃料噴射圧力IP stdを算出し、S1404に進む。
S1404では、夫々の燃料噴射量(予備噴射量QL Preおよびリタード噴射量QL Ret)を前述の図12に示すそのときに使用されている燃料のセタン価に応じた補正値で補正して、S1405に進む。
(ITL Pre ← IT std)
(ITL Ret ← ITL Pre-dIT L)
In S1403, the reference fuel injection pressure IP std is calculated as in S1203 or S1303, and the process proceeds to S1404.
In S1404, each fuel injection amount (preliminary injection amount QL Pre and retard injection amount QL Ret) is corrected with a correction value corresponding to the cetane number of the fuel used at that time shown in FIG. Proceed to

(QL Pre←QL Pre×Ratio CNP)
(QL Ret←QL Ret×Ratio CNR)
S1405では、夫々の燃料噴射開始時期(ITL PreおよびITL Ret)をS1305と同様に燃料のセタン価に応じた補正値で補正して、S1406に進む。
(ITL Pre←ITL Pre+IT CN)
(ITL Ret←ITLRet+IT CNR)
S1406では、基準燃料噴射圧力IP stdをS1205またはS1306と同様に燃料のセタン価に応じた補正値で補正して、S1407に進む。
(QL Pre ← QL Pre × Ratio CNP)
(QL Ret ← QL Ret × Ratio CNR)
In S1405, each fuel injection start timing (ITL Pre and ITL Ret) is corrected with a correction value corresponding to the cetane number of the fuel in the same manner as in S1305, and the process proceeds to S1406.
(ITL Pre ← ITL Pre + IT CN)
(ITL Ret ← ITLRet + IT CNR)
In S1406, the reference fuel injection pressure IP std is corrected with a correction value corresponding to the cetane number of the fuel in the same manner as in S1205 or S1306, and the process proceeds to S1407.

(IP std←IP std+IP CN)
S1407では、補正した夫々の燃料噴射開始時期(ITL PreおよびITL Ret)と燃料噴射圧力IP stdで、夫々の分割噴射量(QL PreおよびQL Ret)が得られるように燃料噴射弁15を駆動(開弁)制御する。
図31は、排気λ制御のフローチャートである。
(IP std ← IP std + IP CN)
In S1407, the fuel injection valve 15 is driven so that the respective divided injection amounts (QL Pre and QL Ret) can be obtained at the corrected fuel injection start timings (ITL Pre and ITL Ret) and the fuel injection pressure IP std ( (Open valve) control.
FIG. 31 is a flowchart of the exhaust λ control.

S1501では、目標λと燃料噴射量とから目標空気量Q airtを算出する。尚、目標λは、既に述べたように、DPF再生、硫黄被毒解除、NOx脱離還元浄化、およびDPF溶損防止等のそれぞれに合わせて設定されており、燃料噴射量も通常噴射、複合噴射(Div SまたはDiv L)に合わせて設定されている。
そしてS1502へ進み、目標空気量Qairtを得るように、EGR弁5又は吸気絞り弁6を制御する。またこのとき、エアフローメータにより検出された実空気量Q airと目標空気量Q airtとを比較し、Qair=Qairtとなるように、フィードバック制御する。
In step S1501, the target air amount Q airt is calculated from the target λ and the fuel injection amount. As described above, the target λ is set in accordance with each of DPF regeneration, sulfur poisoning release, NOx desorption reduction purification, DPF erosion prevention, etc. It is set in accordance with the injection (Div S or Div L).
Then, the process proceeds to S1502, and the EGR valve 5 or the intake throttle valve 6 is controlled so as to obtain the target air amount Qairt. At this time, the actual air amount Q air detected by the air flow meter is compared with the target air amount Q air, and feedback control is performed so that Qair = Qairt.

図32は、エンジン基本制御のフローチャートである。
なお、エンジン基本制御は、既に述べたようにDPF再生、硫黄被毒解除、NOx脱離還元浄化、およびDPF溶損防止制御が必要ない場合に実行される。
S1601では、触媒暖機促進の制御モードが実行されているか否かを判定し、触媒暖気促進中であればS1603に進む。
FIG. 32 is a flowchart of engine basic control.
The basic engine control is executed when the DPF regeneration, the sulfur poisoning release, the NOx desorption reduction purification, and the DPF meltdown prevention control are not necessary as described above.
In S1601, it is determined whether or not the catalyst warm-up promotion control mode is being executed. If the catalyst warm-up is being promoted, the process proceeds to S1603.

S1601で触媒暖気促進中でなければS1602に進み、燃料噴射を通常噴射に切換えて(または通常噴射を保持して)、S1603に進む。
S1603では、通常のEGR制御、即ち目標とする排気性能が得られるように、エンジン1の暖機状態、回転数および負荷に応じて予め設定されたEGR弁5又は吸気絞り弁6の作動制御を実行する。
If the catalyst warm-up is not being promoted in S1601, the process proceeds to S1602, the fuel injection is switched to the normal injection (or the normal injection is maintained), and the process proceeds to S1603.
In step S1603, normal EGR control, that is, operation control of the EGR valve 5 or the intake throttle valve 6 set in advance according to the warm-up state of the engine 1, the rotational speed, and the load is performed so as to obtain the target exhaust performance. Execute.

本実施形態によれば、排気通路3に排気浄化装置(NOxトラップ触媒16、DPF17)を備える内燃機関1において、内燃機関1の燃焼室に直接燃料を噴射可能で、且つ燃料噴射を2回以上に分割して噴射可能な燃料噴射装置10と、内燃機関1の運転状態を検出する運転状態検出手段(S1)と、排気浄化装置16,17の状態を検出する排気浄化装置状態検出手段(S4〜S6)と、使用している燃料のセタン価を検出するセタン価検出手段(S2)と、運転状態検出手段および排気浄化装置状態検出手段による検出結果に基づき、上死点近傍で行われる燃料噴射による通常燃焼を制御する通常噴射(S109,S211)か、または上死点近傍で生じさせる予備燃焼を制御するための予備噴射と、予備燃焼終了後に開始させるリタード燃焼を制御するためのリタード噴射と、によって構成される複合噴射(S103,S110,S203,S212)か、の少なくとも一方の噴射を行い、複合噴射を行うときは、セタン価に基づいて予備燃焼またはリタード燃焼の少なくとも一方の燃焼を制御するように燃料噴射を制御する燃料噴射制御手段(S1301〜S1307,S1401〜S1407)と、を備える。このため、複合噴射によって排気温度を上昇、または空燃比をリッチ化するときに、使用する燃料のセタン価が変動しても、燃費の悪化やHCの増加、またはスモークの増加を最小限に抑えることが可能である。   According to this embodiment, in the internal combustion engine 1 having the exhaust gas purification device (NOx trap catalyst 16, DPF 17) in the exhaust passage 3, fuel can be directly injected into the combustion chamber of the internal combustion engine 1, and fuel injection is performed twice or more. The fuel injection device 10 that can be divided and injected, the operating state detection means (S1) that detects the operating state of the internal combustion engine 1, and the exhaust purification device state detection means (S4) that detect the states of the exhaust purification devices 16 and 17 To S6), the cetane number detection means (S2) for detecting the cetane number of the fuel being used, and the fuel to be performed in the vicinity of the top dead center based on the detection results by the operating state detection means and the exhaust purification device state detection means Normal injection for controlling normal combustion by injection (S109, S211), or preliminary injection for controlling preliminary combustion that occurs near top dead center, and a retarder that is started after completion of preliminary combustion When at least one of the combined injection (S103, S110, S203, S212) composed of retarded injection for controlling the combustion of the gas and performing the combined injection, the preliminary combustion is performed based on the cetane number. Or fuel injection control means (S1301 to S1307, S1401 to S1407) for controlling fuel injection so as to control at least one of the retarded combustion. For this reason, when exhaust gas temperature is increased or the air-fuel ratio is enriched by combined injection, even if the cetane number of the fuel used fluctuates, fuel consumption deterioration, HC increase, or smoke increase are minimized. It is possible.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段(S105,S205)により通常時と検出されたときに、運転状態検出手段(S1)により検出された運転状態と、セタン価検出手段(S2)により検出されたセタン価とに基づき、通常噴射を行う(S1201〜S1206)一方、排気浄化装置状態検出手段により通常時以外(DPF再生要求時、NOx脱離再生要求時、硫黄被毒解除要求時、または活性度増強要求時(暖機促進要求時))と検出されたときに、運転状態検出手段により検出された運転状態(例えば回転数Ne)と、セタン価検出手段により検出されたセタン価とに基づき、複合噴射を行う(S1307,S1407)。このため、運転状態およびセタン価に応じて適切な複合噴射を行うことができる。   Further, according to the present embodiment, the fuel injection control means detects the normal state by the exhaust purification device state detection means (S105, S205), the operation state detected by the operation state detection means (S1), Based on the cetane number detected by the cetane number detection means (S2), normal injection is performed (S1201 to S1206), while the exhaust gas purifier state detection means is not normal (during DPF regeneration request, NOx desorption regeneration request) When the sulfur poisoning release request or the activity enhancement request (warming-up promotion request) is detected, the operating state (for example, the rotational speed Ne) detected by the operating state detection means and the cetane number detection Based on the cetane number detected by the means, combined injection is performed (S1307, S1407). For this reason, an appropriate combined injection can be performed according to the operating state and the cetane number.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出されたときに、セタン価検出手段により検出されたセタン価に基づき、セタン価が高いほど、燃料噴射圧力を増大させる(S1306,S1406、図11)。このため、噴射燃料の拡散が、セタン価が高いときには促進され、逆にセタン価が低いときには抑制されて、着火燃焼が安定化される。   Further, according to the present embodiment, the fuel injection control means has a higher cetane number based on the cetane number detected by the cetane number detection means when it is detected by the exhaust gas purification apparatus state detection means to be other than normal time. The fuel injection pressure is increased (S1306, S1406, FIG. 11). For this reason, the diffusion of the injected fuel is promoted when the cetane number is high, and conversely, it is suppressed when the cetane number is low, and ignition combustion is stabilized.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出されたときに、セタン価検出手段により検出されたセタン価に基づき、複合噴射における予備噴射とリタード噴射との燃料噴射時期のうち、少なくとも予備噴射の燃料噴射時期を、セタン価が高いほど遅角させる(S1305、図10)。このため、予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができる。   Further, according to the present embodiment, the fuel injection control means is configured to perform preliminary injection in combined injection based on the cetane number detected by the cetane number detection means when the exhaust purification device state detection means detects that it is not normal. Among the fuel injection timings with the retard injection, at least the fuel injection timing of the preliminary injection is retarded as the cetane number is higher (S1305, FIG. 10). For this reason, the ignition combustion of the fuel in preliminary injection can be performed reliably or stably.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出され、且つ複合噴射における予備噴射とリタード噴射との両方の燃料噴射時期をセタン価が高いほど遅角させるときに、予備噴射の遅角量をリタード噴射の遅角量よりも増大させる(S1305、図10)。このため、予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができ、リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることが可能になる。   Further, according to the present embodiment, the fuel injection control means detects the fuel injection timing other than the normal time by the exhaust gas purification apparatus state detection means, and the higher the cetane number of the fuel injection timings of the preliminary injection and the retarded injection in the combined injection, When retarding, the retard amount of the preliminary injection is made larger than the retard amount of the retarded injection (S1305, FIG. 10). For this reason, the ignition combustion of the fuel in the preliminary injection can be performed reliably or stably, and the fuel combustion start timing (heat generation timing) and the combustion in the retard injection can be stabilized.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出されたときに、複合噴射における予備噴射とリタード噴射との燃料噴射量比率を、セタン価検出手段により検出されたセタン価に基づいて制御する(S1304,1404、図12)。このため、セタン価に応じてリタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることができる。   Further, according to the present embodiment, the fuel injection control means detects the cetane number detection ratio of the fuel injection amount between the preliminary injection and the retarded injection in the composite injection when the exhaust purification device state detection means detects that it is other than the normal time. Control is performed based on the cetane number detected by the means (S1304, 1404, FIG. 12). For this reason, it is possible to stabilize the combustion start timing (heat generation timing) and combustion of the fuel in the retard injection according to the cetane number.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出され、且つ複合噴射における予備噴射とリタード噴射との燃料噴射量比率をセタン価に基づいて制御するときに、セタン価が高いほど予備噴射の燃料噴射量比率を減少させる(S1304,1404、図12)。このため、分割予備噴射における燃料の着火燃焼によって得られる燃焼室内の温度上昇が、セタン価が高いときには低く、逆にセタン価が低いときには高く設定できるため、リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることができる。   Further, according to the present embodiment, the fuel injection control means controls the fuel injection amount ratio between the preliminary injection and the retarded injection in the composite injection based on the cetane number, which is detected by the exhaust gas purification device state detection means other than the normal time. In this case, the higher the cetane number, the lower the fuel injection amount ratio of the preliminary injection (S1304, 1404, FIG. 12). For this reason, the temperature rise in the combustion chamber obtained by the ignition combustion of fuel in the split pre-injection can be set low when the cetane number is high, and conversely, it can be set high when the cetane number is low. Generation time) and combustion can be stabilized.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出されたときに、運転状態検出手段により検出された運転状態(アクセル開度Acc、エンジン回転数Ne)に応じて、複合噴射の燃料噴射量(総噴射量Q Div L、予備噴射量QL Pre、リタード噴射量QL Ret)を通常時の燃料噴射量Q stdに対して増量補正する(S1301,S1401、図5,図6)。このため、運転状態に応じて適切な燃料噴射量にすることができる。   Further, according to the present embodiment, the fuel injection control means detects the operation state (accelerator opening degree Acc, engine speed) detected by the operation state detection means when the exhaust gas purification apparatus state detection means detects that it is not normal. Ne), the fuel injection amount (total injection amount Q Div L, preliminary injection amount QL Pre, retard injection amount QL Ret) of the composite injection is increased and corrected with respect to the normal fuel injection amount Q std (S1301, S1401, FIG. 5, FIG. 6). For this reason, it can be set as an appropriate fuel injection amount according to an operation state.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出され、且つ排気浄化装置内の温度(触媒温度T1,DPF温度T2)が上限の第一所定温度未満(S101,S201)で、下限の第二所定温度以上(S102,S202)のときには、複合噴射の燃料噴射量を通常時の燃料噴射量Q stdに対して増量補正し(S1301)、排気浄化装置内の温度T1,T2が第二所定温度未満(S102,S202)の場合には、複合噴射の燃料噴射量を増量する(S1401)。このため、排気浄化装置内の温度が第二所定温度以上で第一所定値温度未満の場合(T21≦DPF温度<T22、またはT41≦触媒温度<T42)には、複合噴射Div Sにより燃焼安定性を悪化させず、燃費悪化およびHCやスモーク増加を最小限に止めることを重視した燃焼を実現することができる。一方、排気浄化装置内の温度が第二所定温度未満の場合(DPF温度<T21、または触媒温度<T41)には、複合噴射Div Lにより短時間昇温を重視した燃焼を実現することができる。   Further, according to the present embodiment, the fuel injection control means is detected by the exhaust purification apparatus state detection means at times other than normal, and the temperature within the exhaust purification apparatus (catalyst temperature T1, DPF temperature T2) is the first predetermined upper limit. When the temperature is lower than the temperature (S101, S201) and the lower limit second predetermined temperature (S102, S202) or higher (S102, S202), the fuel injection amount of the composite injection is corrected to increase with respect to the normal fuel injection amount Qstd (S1301). When the temperatures T1 and T2 in the purification device are lower than the second predetermined temperature (S102, S202), the fuel injection amount of the combined injection is increased (S1401). For this reason, when the temperature in the exhaust purification apparatus is equal to or higher than the second predetermined temperature and lower than the first predetermined value temperature (T21 ≦ DPF temperature <T22 or T41 ≦ catalyst temperature <T42), the combustion is stabilized by the combined injection Div S. Therefore, it is possible to realize combustion that places importance on minimizing deterioration in fuel consumption and minimizing increase in HC and smoke. On the other hand, when the temperature in the exhaust purification device is lower than the second predetermined temperature (DPF temperature <T21 or catalyst temperature <T41), combustion with an emphasis on short-time temperature rise can be realized by the composite injection Div L. .

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時以外と検出され、且つ排気浄化装置内の温度に基づいて複合噴射の燃料噴射量を通常時の燃料噴射量に対して増量補正するときに、複合噴射における燃料噴射間隔(リタード間隔)を、増量補正されたときに拡大させる(S1302)。このため、負荷の増大に伴う拡散燃焼の増加を抑制できる(拡散燃焼と予混合燃焼との比率を適正にできる)ため、スモークの増加を抑制することができる。   Further, according to the present embodiment, the fuel injection control means detects the fuel injection amount of the combined injection based on the temperature in the exhaust purification apparatus based on the temperature inside the exhaust purification apparatus, and is detected by the exhaust purification apparatus state detection means. When the increase correction is made with respect to the amount, the fuel injection interval (retard interval) in the composite injection is expanded when the increase correction is made (S1302). For this reason, since the increase in diffusion combustion accompanying the increase in load can be suppressed (the ratio of diffusion combustion and premixed combustion can be made appropriate), the increase in smoke can be suppressed.

また本実施形態によれば、燃料噴射制御手段は、運転状態検出手段が内燃機関の負荷(燃料噴射量Q、アクセル開度Acc)若しくは回転数Neの少なくとも一方を検出すると共に、検出された負荷が高くなるほど、または回転数が上昇するほど、少なくともこれらのいずれかのときに、予備噴射の燃料噴射量比率(Ratio P)を増大させる(S1301,S1401、図13,図14)。このため、予備噴射量比率(Ratio P)が増大し、逆にリタード噴射量比率(Ratio R)が減少するように設定でき、負荷の増大に伴って燃焼形態としては予混合燃焼を強化でき、スモークの増加を抑制することができる。   Further, according to the present embodiment, the fuel injection control means detects the load while the operating state detection means detects at least one of the load (fuel injection amount Q, accelerator opening Acc) or the rotational speed Ne of the internal combustion engine. As the engine speed increases or the rotational speed increases, the fuel injection amount ratio (Ratio P) of the preliminary injection is increased at least at any of these times (S1301, S1401, FIGS. 13 and 14). For this reason, the preliminary injection amount ratio (Ratio P) can be increased and the retard injection amount ratio (Ratio R) can be decreased, and the premixed combustion can be strengthened as the combustion mode as the load increases. An increase in smoke can be suppressed.

また本実施形態によれば、燃料噴射制御手段は、排気浄化装置状態検出手段により通常時と検出されたときに、セタン価検出手段により検出されたセタン価に基づき、通常噴射の燃料噴射時期を、セタン価が高いほど遅角させる(S1204)。このため、予備噴射における燃料の着火燃焼を確実にあるいは安定して行わせることができ、リタード噴射における燃料の燃焼開始時期(熱発生時期)および燃焼を安定させることができる。   Further, according to the present embodiment, the fuel injection control means determines the fuel injection timing of normal injection based on the cetane number detected by the cetane number detection means when it is detected as normal time by the exhaust gas purification device state detection means. The higher the cetane number, the more retarded (S1204). For this reason, the ignition combustion of the fuel in the preliminary injection can be performed reliably or stably, and the combustion start timing (heat generation timing) and combustion of the fuel in the retard injection can be stabilized.

また本実施形態によれば、排気浄化装置として、排気中の排気微粒子を捕集する捕集フィルタ(DPF)17またはNOxトラップ触媒16の少なくとも一方を備える。このため、排気微粒子またはNOxの少なくとも一方を低減できる。
また本実施形態によれば、排気浄化装置状態検出手段により検出される通常時以外の状態は、排気温度を上昇させて捕集フィルタに堆積した排気微粒子を燃焼除去して捕集フィルタ17を再生する捕集フィルタの再生要求時(S14,S801)と、排気空燃比をリッチ化させてNOxトラップ触媒16にトラップしたNOxを脱離浄化させるNOxトラップ触媒16の再生要求時(S13,S701)と、排気温度を上昇させてNOxトラップ触媒16に吸着した硫黄分を被毒解除させるNOxトラップ触媒16の被毒解除要求時(S15,S901)と、排気温度を上昇させて排気浄化装置の活性を高める活性度増強要求時(S1601)と、のうち、少なくともいずれか一つの状態を含む。このため、これらの状態から排気浄化装置の排気浄化能力を回復させる時を判定することができる。
Further, according to the present embodiment, the exhaust gas purification device includes at least one of the collection filter (DPF) 17 or the NOx trap catalyst 16 that collects exhaust particulates in the exhaust gas. For this reason, at least one of exhaust particulates or NOx can be reduced.
Further, according to the present embodiment, in the state other than the normal state detected by the exhaust gas purification device state detecting means, the exhaust temperature is raised and the exhaust particulates accumulated on the collection filter are burned and removed to regenerate the collection filter 17. When the regeneration filter is requested to regenerate (S14, S801), and when the regeneration of the NOx trap catalyst 16 is performed to enrich the exhaust air-fuel ratio and desorb and purify NOx trapped in the NOx trap catalyst 16 (S13, S701). When the NOx trap catalyst 16 is requested to detoxify the sulfur adsorbed on the NOx trap catalyst 16 by raising the exhaust temperature (S15, S901), the exhaust temperature is raised to increase the activity of the exhaust purification device. It includes at least any one state of the activity enhancement request to increase (S1601). Therefore, it is possible to determine when to recover the exhaust purification capability of the exhaust purification device from these states.

本発明の燃焼制御装置を備えたディーゼルエンジンのシステム構成図System configuration diagram of a diesel engine equipped with the combustion control device of the present invention 燃料噴射方式と燃焼形態(熱発生率)との関係を示す特性図Characteristic diagram showing the relationship between fuel injection system and combustion mode (heat generation rate) 本発明の複合噴射の特性図Characteristics chart of compound injection of the present invention 本発明の複合噴射の特性図Characteristics chart of compound injection of the present invention アクセル開度とエンジン回転数と要求燃料噴射量との関係、およびDPF再生及び硫黄被毒解除の可能領域を示す特性図Characteristic diagram showing the relationship between accelerator opening, engine speed and required fuel injection amount, and possible region for DPF regeneration and sulfur poisoning release 通常噴射量と複合総噴射量との関係を示す特性図Characteristic diagram showing the relationship between normal injection amount and combined total injection amount 燃料噴射量とエンジン回転数と燃料噴射時期の関係を示す特性図Characteristic diagram showing the relationship between fuel injection amount, engine speed and fuel injection timing 燃料噴射量とエンジン回転数と燃料噴射圧力との関係を示す特性図Characteristic diagram showing the relationship between fuel injection amount, engine speed and fuel injection pressure 複合噴射における噴射時期の設定を説明するための図The figure for demonstrating the setting of the injection timing in compound injection セタン価による噴射時期の補正を説明するための図Diagram for explaining injection timing correction by cetane number セタン価による噴射圧力の補正を説明するための図Diagram for explaining correction of injection pressure by cetane number 複合噴射における複合噴射量比率の設定を説明するための図The figure for demonstrating the setting of the compound injection quantity ratio in compound injection 複合噴射における複合噴射量比率の設定を説明するための図The figure for demonstrating the setting of the compound injection quantity ratio in compound injection 複合噴射における複合噴射量比率の設定を説明するための図The figure for demonstrating the setting of the compound injection quantity ratio in compound injection DPF再生時の排気λ設定を説明するための図Diagram for explaining exhaust λ setting during DPF regeneration 排気浄化の基本制御モードを示すフローチャートFlow chart showing basic control mode of exhaust purification DPF再生の制御モードを示すフローチャートFlow chart showing control mode of DPF regeneration 硫黄被毒解除の制御モードを示すフローチャートFlow chart showing control mode of sulfur poisoning release リッチスパイク(NOx脱離還元浄化)の制御モードを示すフローチャートFlow chart showing control mode of rich spike (NOx desorption reduction purification) 溶損防止の制御モードを示すフローチャートFlow chart showing control mode for preventing melting DPF再生要求時の再生優先順位決定処理を示すフローチャートThe flowchart which shows the reproduction | regeneration priority determination processing at the time of a DPF reproduction | regeneration request | requirement 硫黄被毒解除要求時の再生優先順位決定処理を示すフローチャートThe flowchart which shows the reproduction | regeneration priority determination processing at the time of sulfur poisoning cancellation | release request リッチスパイク制御モードに移行するためのフローチャートFlow chart for shifting to rich spike control mode DPF再生を要求するためのフローチャートFlow chart for requesting DPF regeneration 硫黄被毒解除を要求するためのフローチャートFlow chart for requesting removal of sulfur poisoning リッチスパイクを要求するためのフローチャートFlowchart for requesting a rich spike 触媒暖機促進の制御モードを示すフローチャートFlow chart showing catalyst warm-up promotion control mode 通常噴射制御モードを示すフローチャートFlow chart showing normal injection control mode 複合噴射制御モード(Div S)を示すフローチャートFlow chart showing the composite injection control mode (Div S) 複合噴射制御モード(Div L)を示すフローチャートFlow chart showing the composite injection control mode (Div L) 排気λの制御モードを示すフローチャートFlow chart showing exhaust λ control mode エンジン基本制御モードを示すフローチャートFlow chart showing basic engine control mode

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 吸気通路
3 排気通路
5 EGR弁
6 吸気絞り弁
7 エアフローメータ
10 燃料噴射装置
16 NOxトラップ触媒
17 DPF
30 エンジンコントロールユニット
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Intake passage 3 Exhaust passage 5 EGR valve 6 Intake throttle valve 7 Air flow meter 10 Fuel injection device 16 NOx trap catalyst 17 DPF
30 Engine control unit

Claims (14)

排気通路に排気浄化装置を備える内燃機関において、
内燃機関の燃焼室に直接燃料を噴射可能で、且つ燃料噴射を2回以上に分割して噴射可能な燃料噴射装置と、
内燃機関の運転状態を検出する運転状態検出手段と、
排気浄化装置の状態を検出する排気浄化装置状態検出手段と、
使用している燃料のセタン価を検出するセタン価検出手段と、
運転状態検出手段および排気浄化装置状態検出手段による検出結果に基づき、
上死点近傍で行われる燃料噴射による通常燃焼を制御する通常噴射か、
または上死点近傍で生じさせる予備燃焼を制御するための予備噴射と、予備燃焼終了後に開始させるリタード燃焼を制御するためのリタード噴射と、によって構成される複合噴射か、の少なくとも一方の噴射を行い、
前記複合噴射を行うときは、前記セタン価に基づいて前記予備燃焼または前記リタード燃焼の少なくとも一方の燃焼を制御するように燃料噴射を制御する燃料噴射制御手段と、
を備えることを特徴とする内燃機関の燃焼制御装置。
In an internal combustion engine provided with an exhaust purification device in an exhaust passage,
A fuel injection device capable of directly injecting fuel into a combustion chamber of an internal combustion engine and capable of dividing the fuel injection into two or more injections;
An operating state detecting means for detecting an operating state of the internal combustion engine;
An exhaust purification device state detection means for detecting the state of the exhaust purification device;
Cetane number detection means for detecting the cetane number of the fuel used;
Based on the detection results by the operating state detection means and the exhaust purification device state detection means,
Ordinary injection that controls normal combustion by fuel injection near the top dead center,
Alternatively, at least one of the combined injection constituted by the preliminary injection for controlling the preliminary combustion generated in the vicinity of the top dead center and the retarded injection for controlling the retarded combustion to be started after the completion of the preliminary combustion is performed. Done
A fuel injection control means for controlling fuel injection so as to control at least one of the preliminary combustion and the retarded combustion based on the cetane number when performing the combined injection;
A combustion control device for an internal combustion engine, comprising:
前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時と検出されたときに、前記運転状態検出手段により検出された運転状態と、前記セタン価検出手段により検出されたセタン価とに基づき、通常噴射を行う一方、
前記排気浄化装置状態検出手段により通常時以外と検出されたときに、前記運転状態検出手段により検出された運転状態と、前記セタン価検出手段により検出されたセタン価とに基づき、複合噴射を行うことを特徴とする請求項1記載の内燃機関の燃焼制御装置。
The fuel injection control means includes an operation state detected by the operation state detection means and a cetane number detected by the cetane number detection means when the exhaust purification device state detection means detects normal time. Based on normal injection,
Combined injection is performed based on the operating state detected by the operating state detecting unit and the cetane number detected by the cetane number detecting unit when the exhaust gas purifying device state detecting unit detects that it is not normal. The combustion control apparatus for an internal combustion engine according to claim 1.
前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出されたときに、前記セタン価検出手段により検出されたセタン価に基づき、セタン価が高いほど、燃料噴射圧力を増大させることを特徴とする請求項1または請求項2記載の内燃機関の燃焼制御装置。   The fuel injection control means increases the fuel injection pressure as the cetane number is higher based on the cetane number detected by the cetane number detection means when the exhaust gas purification device state detection means detects that it is not normal. The combustion control device for an internal combustion engine according to claim 1 or 2, wherein 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出されたときに、前記セタン価検出手段により検出されたセタン価に基づき、前記複合噴射における予備噴射とリタード噴射との燃料噴射時期のうち、少なくとも予備噴射の燃料噴射時期を、セタン価が高いほど遅角させることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means determines whether the pre-injection and the retarded injection in the combined injection are based on the cetane number detected by the cetane number detection means when the exhaust gas purification apparatus state detection means detects that it is not normal. The combustion control device for an internal combustion engine according to any one of claims 1 to 3, wherein at least the fuel injection timing of the preliminary injection is retarded as the cetane number increases. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出され、且つ前記複合噴射における予備噴射とリタード噴射との両方の燃料噴射時期をセタン価が高いほど遅角させるときに、予備噴射の遅角量をリタード噴射の遅角量よりも増大させることを特徴とする請求項4記載の内燃機関の燃焼制御装置。   When the fuel injection control means is detected by the exhaust gas purification device state detection means at a time other than the normal time, and the fuel injection timing of both the preliminary injection and the retarded injection in the combined injection is delayed as the cetane number increases. 5. The combustion control device for an internal combustion engine according to claim 4, wherein the retard amount of the preliminary injection is made larger than the retard amount of the retard injection. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出されたときに、前記複合噴射における予備噴射とリタード噴射との燃料噴射量比率を、前記セタン価検出手段により検出されたセタン価に基づいて制御することを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means detects the fuel injection amount ratio between the preliminary injection and the retarded injection in the combined injection by the cetane number detection means when the exhaust purification device state detection means detects that it is not normal. 6. The combustion control apparatus for an internal combustion engine according to claim 1, wherein the control is performed based on the cetane number. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出され、且つ前記複合噴射における予備噴射とリタード噴射との燃料噴射量比率をセタン価に基づいて制御するときに、セタン価が高いほど予備噴射の燃料噴射量比率を減少させることを特徴とする請求項6記載の内燃機関の燃焼制御装置。   The fuel injection control means detects cetane when the exhaust gas purification device state detection means detects a fuel injection amount ratio between preliminary injection and retarded injection in the combined injection based on a cetane number. 7. The combustion control apparatus for an internal combustion engine according to claim 6, wherein the fuel injection amount ratio of the preliminary injection is decreased as the value is higher. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出されたときに、前記運転状態検出手段により検出された運転状態に応じて、前記複合噴射の燃料噴射量を通常時の燃料噴射量に対して増量補正することを特徴とする請求項1〜請求項7のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means sets the fuel injection amount of the combined injection at a normal time according to the operation state detected by the operation state detection means when the exhaust gas purifier state detection means detects that it is other than the normal time. The combustion control device for an internal combustion engine according to any one of claims 1 to 7, wherein an increase correction is made with respect to the fuel injection amount. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出され、且つ排気浄化装置内の温度が上限の第一所定温度未満で、下限の第二所定温度以上のときには、前記複合噴射の燃料噴射量を通常時の燃料噴射量に対して増量補正し、排気浄化装置内の温度が第二所定温度未満の場合には、前記複合噴射の燃料噴射量を増量することを特徴とする請求項1〜請求項8のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means is detected by the exhaust purification apparatus state detection means at a time other than normal time, and when the temperature in the exhaust purification apparatus is lower than the first predetermined temperature at the upper limit and equal to or higher than the second predetermined temperature at the lower limit. The fuel injection amount of the composite injection is corrected to be increased with respect to the fuel injection amount at the normal time, and the fuel injection amount of the composite injection is increased when the temperature in the exhaust emission control device is lower than the second predetermined temperature. A combustion control device for an internal combustion engine according to any one of claims 1 to 8. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時以外と検出され、且つ排気浄化装置内の温度に基づいて前記複合噴射の燃料噴射量を通常時の燃料噴射量に対して増量補正するときに、前記複合噴射における燃料噴射間隔を、増量補正されたときに拡大させることを特徴とする請求項1〜請求項9のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means is detected by the exhaust purification device state detection means to be other than normal time, and the fuel injection amount of the combined injection is increased with respect to the normal fuel injection amount based on the temperature in the exhaust purification device. 10. The combustion control device for an internal combustion engine according to claim 1, wherein when correcting, the fuel injection interval in the combined injection is increased when the increase correction is performed. 前記燃料噴射制御手段は、前記運転状態検出手段が内燃機関の負荷若しくは回転数の少なくとも一方を検出すると共に、検出された負荷が高くなるほど、または回転数が上昇するほど、少なくともこれらのいずれかのときに、予備噴射の燃料噴射量比率を増大させることを特徴とする請求項1〜請求項10のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means detects at least one of the load and the rotational speed of the internal combustion engine by the operating state detection means, and at least one of these increases as the detected load increases or the rotational speed increases. The combustion control device for an internal combustion engine according to any one of claims 1 to 10, wherein the fuel injection amount ratio of the preliminary injection is sometimes increased. 前記燃料噴射制御手段は、前記排気浄化装置状態検出手段により通常時と検出されたときに、前記セタン価検出手段により検出されたセタン価に基づき、通常噴射の燃料噴射時期を、セタン価が高いほど遅角させることを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の燃焼制御装置。   The fuel injection control means sets the fuel injection timing of normal injection to a high cetane number based on the cetane number detected by the cetane number detection means when the exhaust purification device state detection means detects normal time. The combustion control device for an internal combustion engine according to any one of claims 1 to 11, wherein the angle is retarded as much as possible. 前記排気浄化装置として、排気中の排気微粒子を捕集する捕集フィルタまたはNOxトラップ触媒の少なくとも一方を備えることを特徴とする請求項1〜請求項12のいずれか1つに記載の内燃機関の燃焼制御装置。   The internal combustion engine according to any one of claims 1 to 12, wherein the exhaust gas purification device includes at least one of a collection filter or a NOx trap catalyst that collects exhaust particulates in exhaust gas. Combustion control device. 前記排気浄化装置状態検出手段により検出される通常時以外の状態は、
排気温度を上昇させて捕集フィルタに堆積した排気微粒子を燃焼除去して捕集フィルタを再生する捕集フィルタの再生要求時と、
排気空燃比をリッチ化させてNOxトラップ触媒にトラップしたNOxを脱離浄化させるNOxトラップ触媒の再生要求時と、
排気温度を上昇させてNOxトラップ触媒に吸着した硫黄分を被毒解除させるNOxトラップ触媒の被毒解除要求時と、
排気温度を上昇させて排気浄化装置の活性を高める活性度増強要求時と、
のうち、少なくともいずれか一つの状態を含むことを特徴とする請求項13記載の内燃機関の燃焼制御装置。
The state other than the normal state detected by the exhaust gas purification device state detecting means is
When the regeneration filter is requested to regenerate the collection filter by burning and removing the exhaust particulate accumulated on the collection filter by raising the exhaust temperature,
A request for regeneration of a NOx trap catalyst that enriches the exhaust air-fuel ratio and desorbs and purifies NOx trapped in the NOx trap catalyst;
A NOx trap catalyst detoxification request for detoxifying sulfur adsorbed on the NOx trap catalyst by raising the exhaust temperature; and
At the time of an activity enhancement request to raise the exhaust temperature and increase the activity of the exhaust purification device,
The combustion control device for an internal combustion engine according to claim 13, wherein at least one of the states is included.
JP2004378686A 2004-12-28 2004-12-28 Combustion control device for internal combustion engine Pending JP2006183581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378686A JP2006183581A (en) 2004-12-28 2004-12-28 Combustion control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378686A JP2006183581A (en) 2004-12-28 2004-12-28 Combustion control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006183581A true JP2006183581A (en) 2006-07-13

Family

ID=36736859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378686A Pending JP2006183581A (en) 2004-12-28 2004-12-28 Combustion control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006183581A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146852A1 (en) 2007-05-28 2008-12-04 Toyota Jidosha Kabushiki Kaisha Cetane number estimating device and method
WO2009017228A1 (en) * 2007-08-01 2009-02-05 Toyota Jidosha Kabushiki Kaisha Internal combustion engine exhaust air purification device
JP2009215986A (en) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd Control device and fuel property determination device for internal combustion engine
JP2010096056A (en) * 2008-10-15 2010-04-30 Denso Corp Estimating device of internal combustion engine, and exhaust emission control device of the same
JP2010236414A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Control device for diesel engine
JP2011043079A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Control device of internal combustion engine
WO2015052566A3 (en) * 2013-10-07 2015-08-13 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
JP2016053351A (en) * 2014-09-04 2016-04-14 トヨタ自動車株式会社 Abnormality determination device of oxidation catalyst

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8266947B2 (en) 2007-05-28 2012-09-18 Toyota Jidosha Kabushiki Kaisha Cetane number estimating apparatus and method
WO2008146852A1 (en) 2007-05-28 2008-12-04 Toyota Jidosha Kabushiki Kaisha Cetane number estimating device and method
WO2009017228A1 (en) * 2007-08-01 2009-02-05 Toyota Jidosha Kabushiki Kaisha Internal combustion engine exhaust air purification device
JP2009036084A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US8365516B2 (en) 2007-08-01 2013-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2009215986A (en) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd Control device and fuel property determination device for internal combustion engine
JP2010096056A (en) * 2008-10-15 2010-04-30 Denso Corp Estimating device of internal combustion engine, and exhaust emission control device of the same
JP2010236414A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Control device for diesel engine
JP2011043079A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Control device of internal combustion engine
WO2015052566A3 (en) * 2013-10-07 2015-08-13 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
CN105612335A (en) * 2013-10-07 2016-05-25 丰田自动车株式会社 Control apparatus and control method for internal combustion engine
US20160251988A1 (en) * 2013-10-07 2016-09-01 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US9702290B2 (en) 2013-10-07 2017-07-11 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
KR101759852B1 (en) 2013-10-07 2017-07-19 도요타지도샤가부시키가이샤 Control apparatus and control method for internal combustion engine
RU2632470C1 (en) * 2013-10-07 2017-10-05 Тойота Дзидося Кабусики Кайся Control device and control method for internal combustion engines
JP2016053351A (en) * 2014-09-04 2016-04-14 トヨタ自動車株式会社 Abnormality determination device of oxidation catalyst

Similar Documents

Publication Publication Date Title
JP4158645B2 (en) Combustion control device for internal combustion engine
JP4175022B2 (en) Exhaust gas purification device for internal combustion engine
JP4225153B2 (en) Exhaust filter regeneration control device
JP4052178B2 (en) Exhaust gas purification device for internal combustion engine
JP4029795B2 (en) Combustion control device for internal combustion engine
JP2006183599A (en) Exhaust emission control device of internal combustion engine
KR100689921B1 (en) Combustion control for engine
JP2005240757A (en) Control device of internal-combustion engine
JP2005048749A (en) Engine control device
JP2005048746A (en) Fuel control device for internal combustion engine
JP2005048752A (en) Engine control device
JP2005042661A (en) Combustion control device for internal combustion engine
JP2005048747A (en) Combustion control device for internal combustion engine
JP2006250120A (en) Fuel injection control device of diesel engine
JP3104692B2 (en) Internal combustion engine
JP2005076508A (en) Exhaust gas recirculation device for engine
JP2006183581A (en) Combustion control device for internal combustion engine
JP2005042662A (en) Combustion control device for internal combustion engine
JP2005048692A (en) Combustion control device for internal combustion engine
JP2007231790A (en) Combustion control system of diesel engine
JP2005048748A (en) Automatic combustion control device of internal combustion engine
JP2005042663A (en) Combustion control device of internal combustion engine
EP1496223B1 (en) Combustion control apparatus for internal combustion engine
JP3558055B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042664A (en) Combustion controller of internal combustion engine