JP2006181472A - Nano-separation beads - Google Patents

Nano-separation beads Download PDF

Info

Publication number
JP2006181472A
JP2006181472A JP2004377593A JP2004377593A JP2006181472A JP 2006181472 A JP2006181472 A JP 2006181472A JP 2004377593 A JP2004377593 A JP 2004377593A JP 2004377593 A JP2004377593 A JP 2004377593A JP 2006181472 A JP2006181472 A JP 2006181472A
Authority
JP
Japan
Prior art keywords
nano
beads
ligand
separation
separation beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004377593A
Other languages
Japanese (ja)
Inventor
Masaru Kondo
近藤賢
Takao Fukuoka
福岡隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YMC Co Ltd
Original Assignee
YMC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YMC Co Ltd filed Critical YMC Co Ltd
Priority to JP2004377593A priority Critical patent/JP2006181472A/en
Publication of JP2006181472A publication Critical patent/JP2006181472A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide nano-separation beads having a nano-scale of 1 μm or below. <P>SOLUTION: The nano-separation beads (1) for liquid chromatography are formed by modifying the surfaces of porous/non-porous silica beads, which have a nano-size of 1 μm or below, with a ligand and the ligand (2) is obtained by bonding an alcoholic organosilane agent to the silanol group of the silica beads. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、1μm以下のナノサイズの分離ビーズに関する。   The present invention relates to nano-sized separation beads of 1 μm or less.

さて、液体クロマトグラフィーの領域では、従前からマイクロスケールのビーズをステンレス製、ガラス製のカラムに充填して物質(タンパク、核酸、中低分子化合物)の分析が行われてきた。このようなカラムのサイズは、通常、内径4.6mmで長さ15cmが標準的とされていた。   In the field of liquid chromatography, microscale beads have been packed in stainless steel and glass columns for analysis of substances (proteins, nucleic acids, medium and low molecular weight compounds). The size of such a column was usually standard with an inner diameter of 4.6 mm and a length of 15 cm.

液体クロマトグラフィーでは、周知のとおり、溶剤を多く使う。このことが古くから技術者に抵抗感があった。一例を示すと、ひとつのサンプルを分析するのに、最適条件を決定するまで100mlの溶剤を何度も繰り返し調整しなければならないか、ポンプで、自動的に溶剤の組成を変化させるとしても、原液を多量に使用しなければならない。更には、分析の安定性・再現性を確保するためにカラム容積の数倍の量の溶剤を流すので実際の分析では、より多くの溶剤を使用せざるを得ない実情がある。   As is well known, liquid chromatography uses many solvents. This has long been an engineer's resistance. For example, to analyze a single sample, 100 ml of solvent must be adjusted over and over until the optimum condition is determined, or even if the pump automatically changes the solvent composition, The stock solution must be used in large quantities. Furthermore, in order to ensure the stability and reproducibility of the analysis, a solvent several times larger than the column volume is flowed, so that there is a fact that more solvent must be used in the actual analysis.

更に、生体機構の解明のために極微量の物質の分析が求められるようになってきたが、カラム内での物質の拡散の影響が比較的大きい従前のカラムでは、極微量の物質測定には、蛍光修飾などにより検出感度を上げるなどの工夫をして対処せざるを得なかった。   Furthermore, in order to elucidate biological mechanisms, analysis of trace amounts of substances has been required. However, in conventional columns, where the influence of diffusion of substances in the column is relatively large, In addition, they had to deal with it by improving the detection sensitivity by fluorescent modification.

このようなニーズに応えるものとして、キヤピラリーカラムがある。これは、フューズドシリカの内面をリガンド修飾したものである。
或いは、キヤピラリー状のカラム管に従前の分離ビーズを充填したタイプのものがある。これらのものでも、溶剤使用量の削減、感度の向上を図ることはある程度可能であ。その反面、配管接続や、検出器との接続の面などで煩雑さは否めなかった。
As a response to such needs, there is a capillary column. This is obtained by ligand-modifying the inner surface of fused silica.
Alternatively, there is a type in which a previous separation bead is packed in accordance with a capillary column tube. Even with these, it is possible to reduce the amount of solvent used and improve the sensitivity to some extent. On the other hand, the complexity of piping connection and detector connection could not be denied.

このようなカラムのマイクロ化とpTAS(MICROTOTAL ANALITICAL SYSTEM)の技術とを融合し、接続の問題を解決し得る技術として、下記非特許文献に記載されたチップ上に形成されたマイクロカラムがある。これは、カラムへのインジェクションと分離と検出器への注入(場合によっては、検出自体)を一枚のチップ上で実施するというコンパクトな液体クロマトグラフィーを実現したものである。
アジレント社ホームページ
There is a microcolumn formed on a chip described in the following non-patent document as a technology that can solve the connection problem by fusing such column micronization and pTAS (MICROTOTAL ANALYTIC SYSTEM) technology. This realizes a compact liquid chromatography in which injection and separation into a column and injection into a detector (in some cases, detection itself) are performed on a single chip.
Agilent website

しかし、上記マイクロチップで使用するカラム用の分離ビーズは、孔径が300オングストロームのもので、被表面積が小さい、タンパク質分析用に特化された分離ビーズである。これでは、理論段数も低く、特に、中低分子化合物の優れた分離能を得る事が難しい。また、今後、更なるマイクロ化が進むと思われ、つまり、カラムの内径自体が数マイクロのサイズになる可能性も考えられ、その場合には、分離ビーズ自体も従来の大きさのマイクロサイズのものは用いることができず、更に小さい分離ビーズも求められると思われる。そこで、本発明は、1μm以下のナノスケールの分離ビーズを提供することを目的としてなされた発明である。   However, the separation beads for columns used in the microchip are separation beads specialized for protein analysis having a pore size of 300 angstroms and a small surface area. With this, the number of theoretical plates is low, and in particular, it is difficult to obtain an excellent resolution of medium and low molecular weight compounds. In addition, further microfabrication is expected in the future, that is, there is a possibility that the inner diameter of the column itself may be several micrometers in size. In that case, the separation beads themselves are of the micro size of the conventional size. Cannot be used, and even smaller separation beads would be required. Therefore, the present invention is an invention made for the purpose of providing nano-scale separation beads of 1 μm or less.

上記目的を達成するために、本発明は、
(1) 1μm以下のナノサイズの多孔性/無多孔性のシリカビーズの表面をリガンド修飾してなる液体クロマトグラフィー用のナノ分離ビーズ。
(2) 前記リガンドは、アルコール系有機シラン剤をシリカビーズのシラノール基と結合させたものである(1)に記載のナノ分離ビーズである。
In order to achieve the above object, the present invention provides:
(1) Nano separation beads for liquid chromatography obtained by ligand-modifying the surface of 1 μm or less nano-sized porous / non-porous silica beads.
(2) The said ligand is a nano separation bead as described in (1) which couple | bonded the alcohol type organosilane agent with the silanol group of the silica bead.

上記ナノ分離ビーズにより、カラムサイズが小さくなっても、被表面積が従来一般のマロレベルの分離ビーズよりも格段に大きいので、理論段数も高いカラムが実現でき、低分子の化合物にも高い分離能を発揮することが可能となる。   Even if the column size is reduced by the nano separation beads, the surface area is much larger than the conventional malo-level separation beads, so a column with a high theoretical plate can be realized, and high resolution is achieved even for low molecular compounds. It becomes possible to demonstrate.

以下に、本発明の一実施形態を説明するが、本発明は、下記に限定されるものではないことは言うまでもない。
シリカナノ粒子は、多孔性/無多孔性いずれでもいい。多孔性の方が、被表面積を増大させられるので望ましい。シリカ表面へのリガンドの導入には、塩素系有機シラン剤を用いる方法や、アルコール系有機シラン剤を用いる方法など周知の方法を適用することができる。後者の反応によりリガンドを導入する方法では、塩の析出がないので、微粒子表面へのリガンド導入率が高いと思われるので、その意味でこれを用いることが望ましい。リガンド種は、いわゆるC18、C8,C4、Cl、CN、Ph(以上逆相系)、アミド(順相系)、イオン交換、OH(サイズ排除)など周知のものを適用することができる。
カラムは、チップ基板上に金型成型により形成された数マイクロのチャネル内に上記ナノ分離ビーズを充填乃至壁面に配置する。充填タイプでは、送液する流速にもよるがカラム圧が高くなることで液漏れなどの可能性が高まる。よって、この場合には、配管接続系を液漏れしない強固な構造を採用する必要がある。壁面配置では、現在の薄層クロマトの原理であって、液相(層流)と固定相との間で物質交換が行われるというものである。
Although one embodiment of the present invention is described below, it goes without saying that the present invention is not limited to the following.
Silica nanoparticles may be either porous or non-porous. The porosity is desirable because the surface area can be increased. A known method such as a method using a chlorine-based organic silane agent or a method using an alcohol-based organic silane agent can be applied to introduce a ligand onto the silica surface. In the latter method in which the ligand is introduced, since salt is not precipitated, it is considered that the ligand introduction rate to the surface of the fine particles is high. Therefore, it is desirable to use this in that sense. Ligand species such as so-called C18, C8, C4, Cl, CN, Ph (reverse phase system), amide (normal phase system), ion exchange, and OH (size exclusion) can be applied.
In the column, the nano separation beads are filled or arranged on the wall surface in a channel of several micrometers formed by die molding on the chip substrate. In the packed type, although it depends on the flow rate of the liquid to be fed, the possibility of liquid leakage increases as the column pressure increases. Therefore, in this case, it is necessary to adopt a strong structure that does not leak the pipe connection system. The wall arrangement is the current thin-layer chromatography principle, in which mass exchange is performed between the liquid phase (laminar flow) and the stationary phase.

本発明にかかるナノ分離ビーズは、バイオ領域、臨床領域などの液体クロマトグラフィーに適用できる。   The nano-separation beads according to the present invention can be applied to liquid chromatography in the bio region, clinical region, and the like.

Claims (2)

1μm以下のナノサイズのシリカビーズの表面をリガンド修飾してなる液体クロマトグラフィー用のナノ分離ビーズ。 Nano-separated beads for liquid chromatography, wherein the surface of nano-sized silica beads of 1 μm or less is modified with a ligand. 前記リガンドは、アルコール系有機シラン剤をシリカビーズのシラノール基と結合させたものである請求項1に記載のナノ分離ビーズ。 The nano-separated beads according to claim 1, wherein the ligand is obtained by binding an alcohol-based organosilane agent to a silanol group of silica beads.
JP2004377593A 2004-12-27 2004-12-27 Nano-separation beads Pending JP2006181472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377593A JP2006181472A (en) 2004-12-27 2004-12-27 Nano-separation beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377593A JP2006181472A (en) 2004-12-27 2004-12-27 Nano-separation beads

Publications (1)

Publication Number Publication Date
JP2006181472A true JP2006181472A (en) 2006-07-13

Family

ID=36734960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377593A Pending JP2006181472A (en) 2004-12-27 2004-12-27 Nano-separation beads

Country Status (1)

Country Link
JP (1) JP2006181472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524240A (en) * 2010-04-05 2013-06-17 パーデュー リサーチ ファウンデーション Packing in a chromatographic column

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524240A (en) * 2010-04-05 2013-06-17 パーデュー リサーチ ファウンデーション Packing in a chromatographic column
JP2016065877A (en) * 2010-04-05 2016-04-28 パーデュー リサーチ ファウンデーション Method of packing chromatographic columns
US9504936B2 (en) 2010-04-05 2016-11-29 Purdue Research Foundation Method of packing chromatographic columns

Similar Documents

Publication Publication Date Title
Breadmore et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016)
Breadmore et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014)
Souverain et al. Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis
Buszewski et al. Past, present, and future of solid phase extraction: a review
Millet et al. Modular microfluidics for point-of-care protein purifications
Faure Liquid chromatography on chip
Liu et al. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths
Ramos‐Payán et al. Recent trends in capillary electrophoresis for complex samples analysis: a review
Guihen Nanoparticles in modern separation science
Ramautar et al. Recent developments in coupled SPE‐CE
Fresco-Cala et al. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques
Miró et al. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences–A critical review
Reichmuth et al. Microchip HPLC of peptides and proteins
Slysz et al. Blending protein separation and peptide analysis through real-time proteolytic digestion
Kato et al. Femto liquid chromatography with attoliter sample separation in the extended nanospace channel
Connolly et al. Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: a review
Borges Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography
Pont et al. A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis
Thurmann et al. High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements
Knob et al. Surface-area expansion with monolithic open tubular columns
Krenkova et al. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering
JP6367172B2 (en) Packing in a chromatographic column
Huang et al. Recent developments of extraction and micro-extraction technologies with porous monoliths
Baca et al. Achieving a peak capacity of 1800 using an 8 m long pillar array column
Liu et al. Recent advances in microscale separation