JP2006179576A - OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH. - Google Patents

OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH. Download PDF

Info

Publication number
JP2006179576A
JP2006179576A JP2004369372A JP2004369372A JP2006179576A JP 2006179576 A JP2006179576 A JP 2006179576A JP 2004369372 A JP2004369372 A JP 2004369372A JP 2004369372 A JP2004369372 A JP 2004369372A JP 2006179576 A JP2006179576 A JP 2006179576A
Authority
JP
Japan
Prior art keywords
soft magnetic
oxide film
flat metal
magnetic powder
metal soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004369372A
Other languages
Japanese (ja)
Inventor
Satoshi Uozumi
学司 魚住
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004369372A priority Critical patent/JP2006179576A/en
Priority to PCT/JP2005/023359 priority patent/WO2006068136A1/en
Publication of JP2006179576A publication Critical patent/JP2006179576A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide film-covered Fe-Ni-Mo flat metal soft magnetic powder having a high surface finish usable for such as radio wave absorbers having superior radio wave absorption characteristics, radio communication antenna cores having superior high frequency magnetic materials such as radio communication antenna cores. <P>SOLUTION: The oxide film-covered Fe-Ni-Mo flat metal soft magnetic power having a mean grain size of 30-150 μm, an aspect ratio (means grain size/mean thickness) of 5-500 and a high surface finish has a specific surface area in a range meeting the conditions SR=k×SI (k is the proportional coefficient=10-200). SR is the specific surface area of the oxide film-covered Fe-Ni-Mo flat metal soft magnetic power having a high surface finish, and SI is the calculated specific surface area of an oxide film-covered Fe-Ni-Mo flat metal soft magnetic power having a smooth surface without surface finish. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、優れた電波吸収特性を有する電波吸収体や優れた磁気特性を有する無線通信用アンテナコアなどの高周波用磁性材料に使用される高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末およびその製造方法に関するものである。また、この発明は、前記高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を樹脂中に配向させて分散させた高抵抗率および低保磁力を有する磁性複合シートに関するものである。   The present invention relates to an oxide film-coated Fe-Ni-Mo having a high surface roughness used for a high frequency magnetic material such as a radio wave absorber having excellent radio wave absorption characteristics and an antenna core for radio communication having excellent magnetic characteristics. The present invention relates to a flat metal soft magnetic powder and a method for producing the same. The present invention also relates to a magnetic composite sheet having a high resistivity and a low coercive force in which the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness is oriented and dispersed in a resin. Is.

一般に、パーマロイにMoを添加したMoパーマロイ(Fe−79%Ni−4%Mo)やスーパーマロイ(Fe−79%Ni−5%Mo)などのFe−Ni−Mo系軟磁性粉末は知られており、これら材料はMoの添加により熱処理後に徐冷しても、FeNi規則相の生成が抑制され、熱処理後の急冷を施さなくても結晶磁気異方性定数Kが零前後となり、結晶方位の上で等方的な多結晶体においても優れた透磁率を示すため、工業的にも広く使用されている。また、さらに透磁率を改善するためにMoのほかにさらにCu、Cr、Mnを添加した高透磁率軟磁性材料も知られている。 In general, Fe-Ni-Mo soft magnetic powders such as Mo permalloy (Fe-79% Ni-4% Mo) and supermalloy (Fe-79% Ni-5% Mo) in which Mo is added to permalloy are known. cage, even gradually cooled after the heat treatment of these materials by the addition of Mo, is suppressed generation of FeNi 3 ordered phase, the magnetocrystalline anisotropy constant K 1 without subjected to quenching after the heat treatment becomes zero before and after crystallization Polycrystalline materials that are isotropic in orientation are also widely used industrially because they exhibit excellent magnetic permeability. Further, a high magnetic permeability soft magnetic material in which Cu, Cr, or Mn is added in addition to Mo to further improve the magnetic permeability is also known.

前記Fe−Ni−Mo系軟磁性粉末は、一般に、扁平化して使用されることが多い。例えば、特許文献1には、質量%で(以下、%は質量%を示す。)、Fe−70〜83%Ni−2〜6%Mo−3〜6%Cu−1〜2%Mnの組成を有し、平均粒径:0.1〜30μm、平均厚さ:2μm以下を有する扁平金属軟磁性粉末が記載されており、この扁平金属軟磁性粉末は磁気シールド用に使用されることが記載されている。
また、特許文献2には、Fe−40〜80%Ni−2〜6%Moの組成を有し、厚さ:1〜5μm、厚さと長さの比が1:5〜200を有する扁平フレーク状軟磁性粉末が記載されており、この扁平フレーク状軟磁性粉末は路面などの標識体に使用されることが記載されている。
さらに、特許文献3には、Fe−60〜80%NiまたはFe−60〜80%Ni−5%以下Moの組成を有し、フレーク厚さ:30μm以下、フレーク径:50〜2000μmを有する扁平金属軟磁性粉末が記載されており、この扁平金属軟磁性粉末は高周波用磁性材料として使用することが記載されている。
In general, the Fe—Ni—Mo soft magnetic powder is often used after being flattened. For example, Patent Document 1 discloses the composition of Fe-70 to 83% Ni-2 to 6% Mo-3 to 6% Cu-1 to 2% Mn in mass% (hereinafter,% represents mass%). A flat metal soft magnetic powder having an average particle diameter of 0.1 to 30 μm and an average thickness of 2 μm or less is described. The flat metal soft magnetic powder is used for a magnetic shield. Has been.
Patent Document 2 discloses a flat flake having a composition of Fe-40 to 80% Ni-2 to 6% Mo, a thickness of 1 to 5 μm, and a thickness to length ratio of 1: 5 to 200. A soft magnetic powder is described, and it is described that this flat flaky soft magnetic powder is used for a marking body such as a road surface.
Further, Patent Document 3 discloses a flat composition having a composition of Fe-60 to 80% Ni or Fe-60 to 80% Ni-5% or less, a flake thickness: 30 μm or less, and a flake diameter: 50 to 2000 μm. A metal soft magnetic powder is described, and it is described that this flat metal soft magnetic powder is used as a magnetic material for high frequency.

これら従来のFe−Ni−Mo系扁平金属軟磁性粉末は、いずれも通常の粉砕またはアトマイズして得られたFe−Ni−Mo系粉末にエタノールや水を溶媒として添加し、さらに必要に応じて粉砕助剤を添加し、これらをアトライターやボールミルを使用して扁平化処理することにより製造されている。
このようにして製造したFe−Ni−Mo系扁平金属軟磁性粉末は、樹脂中に扁平面が磁性複合シートの厚さ方向に対して直角方向に配向するように分散させて磁性複合シートを作製し、数10MHz〜数GHzにて電波吸収特性を有する電波吸収体、または数10kHz〜数10MHzで磁気特性を有する無線通信用アンテナコアなどの高周波用磁性材料として使用されることも知られている。
かかる従来のFe−Ni−Mo系扁平金属軟磁性粉末を樹脂中に扁平面が磁性複合シートの厚さ方向に対して直角方向に配向するように分散させた磁性複合シートを電波吸収体または無線通信用アンテナコアなどの高周波用磁性材料として使用し、その特性を高めようとすると、磁性複合シートに含まれるFe−Ni−Mo系扁平金属軟磁性粉末の充填密度を上げる必要があるが、Fe−Ni−Mo系扁平金属軟磁性粉末の充填密度を上げると、隣接するFe−Ni−Mo系扁平金属軟磁性粉末が接触し、Fe−Ni−Mo系扁平金属軟磁性粉末相互の絶縁を保つことが難しくなって磁性複合シートの抵抗率が10Ωcm未満に低下し、電波吸収体および高周波用磁性材料としての特性が低下するので好ましくない。このような場合には、Fe−Ni−Mo系扁平金属軟磁性粉末を予め絶縁体でコーティングしておくことが好ましいことも知られている(特許文献4参照)。
特開平3−223401号公報 特開平3−232574号公報 特開平4−78112号公報 特開平4−213803号公報
Any of these conventional Fe-Ni-Mo-based flat metal soft magnetic powders is obtained by adding ethanol or water as a solvent to Fe-Ni-Mo-based powders obtained by normal pulverization or atomization, and further if necessary. It is manufactured by adding grinding aids and flattening them using an attritor or ball mill.
The Fe—Ni—Mo-based flat metal soft magnetic powder thus produced is dispersed in the resin so that the flat surface is oriented in a direction perpendicular to the thickness direction of the magnetic composite sheet to produce a magnetic composite sheet. It is also known to be used as a radio frequency magnetic material such as a radio wave absorber having radio wave absorption characteristics at several tens of MHz to several GHz, or an antenna core for wireless communication having magnetic characteristics at several tens of kHz to several tens of MHz. .
A magnetic composite sheet in which such a conventional Fe—Ni—Mo-based flat metal soft magnetic powder is dispersed in a resin so that the flat surface is oriented in a direction perpendicular to the thickness direction of the magnetic composite sheet is used as a radio wave absorber or wireless. When it is used as a magnetic material for high frequency such as a communication antenna core and its characteristics are to be improved, it is necessary to increase the packing density of the Fe-Ni-Mo-based flat metal soft magnetic powder contained in the magnetic composite sheet. -When the packing density of the Ni-Mo-based flat metal soft magnetic powder is increased, adjacent Fe-Ni-Mo-based flat metal soft magnetic powders come into contact with each other to maintain insulation between the Fe-Ni-Mo-based flat metal soft magnetic powders. This makes it difficult to reduce the resistivity of the magnetic composite sheet to less than 10 3 Ωcm, which lowers the properties as a radio wave absorber and a magnetic material for high frequency. In such a case, it is also known that it is preferable to coat the Fe—Ni—Mo-based flat metal soft magnetic powder with an insulator in advance (see Patent Document 4).
JP-A-3-223401 JP-A-3-232574 JP-A-4-78112 JP-A-4-213803

一般に、金属軟磁性粉末の表面に予め絶縁体でコーティングする方法の一つとして、金属軟磁性粉末の表面に酸化膜を形成することが知られていることから、Fe−Ni−Mo系扁平金属軟磁性粉末を酸化雰囲気中で加熱することによりFe−Ni−Mo系扁平金属軟磁性粉末の表面に前記絶縁を保つために一定以上の厚さの酸化膜を形成した酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を作製することが考えられる。この場合、前記絶縁を保つために必要な酸化膜の厚みは酸化膜の抵抗率に反比例する。しかし、Fe−Ni−Mo系扁平金属軟磁性粉末を酸化雰囲気中で加熱してFe−Ni−Mo系扁平金属軟磁性粉末の表面に前記絶縁を保つために必要な酸化膜を形成するには、Fe−Ni−Mo系扁平金属軟磁性粉末が比較的優れた耐食性を有することから、酸化雰囲気中でしかも比較的高温度の300〜400℃で加熱しなければならず、かかる高温で加熱すると、酸化膜として抵抗率の低いNiOが形成される。このため前記絶縁を保つために必要なNiO酸化膜の厚みは大きくする必要があり、この厚みの大きなNiOが形成されたFe−Ni−Mo系扁平金属軟磁性粉末は保磁力が大幅に上昇し、かかる高保磁力を有するFe−Ni−Mo系扁平金属軟磁性粉末を用いて作製した複合磁性シートは電波吸収体および高周波用磁性材料としての特性は大幅に低下するので好ましくない。   In general, as one method of coating the surface of the metal soft magnetic powder with an insulator in advance, it is known to form an oxide film on the surface of the metal soft magnetic powder. An oxide film coated Fe—Ni— in which an oxide film of a certain thickness or more is formed on the surface of the Fe—Ni—Mo flat metal soft magnetic powder by heating the soft magnetic powder in an oxidizing atmosphere. It is conceivable to prepare a Mo-based flat metal soft magnetic powder. In this case, the thickness of the oxide film necessary for maintaining the insulation is inversely proportional to the resistivity of the oxide film. However, in order to form an oxide film necessary for maintaining the insulation on the surface of the Fe-Ni-Mo flat metal soft magnetic powder by heating the Fe-Ni-Mo flat metal soft magnetic powder in an oxidizing atmosphere. Since the Fe—Ni—Mo-based flat metal soft magnetic powder has relatively excellent corrosion resistance, it must be heated in an oxidizing atmosphere and at a relatively high temperature of 300 to 400 ° C. When heated at such a high temperature, NiO having a low resistivity is formed as the oxide film. For this reason, it is necessary to increase the thickness of the NiO oxide film necessary for maintaining the insulation, and the coercive force of the Fe—Ni—Mo flat metal soft magnetic powder formed with NiO having a large thickness is greatly increased. A composite magnetic sheet produced using such a Fe—Ni—Mo-based flat metal soft magnetic powder having a high coercive force is not preferable because the characteristics as a radio wave absorber and a magnetic material for high frequency are greatly reduced.

そこで、本発明者らは、Fe−Ni−Mo系扁平金属軟磁性粉末の表面に酸化膜を被覆した酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を作製し、この酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を用いて電波吸収体または高周波用磁性材料として優れた特性を有する高抵抗率および低保磁力の磁性複合シートを得るべく研究を行った。その結果、
(イ)Fe−Ni−Mo系金属軟磁性粉末を溶媒とともにアトライタやボールミルを使用し扁平化処理して得られた平均粒径:30〜150μm、アスペクト比:5〜500の範囲内にある通常のFe−Ni−Mo系扁平金属軟磁性粉末を水(一層好ましくは蒸留水)中で煮沸すると、Fe−Ni−Mo系扁平金属軟磁性粉末の表面に高抵抗率を有する酸化膜が形成され、この煮沸により形成された酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積をSRとし、表面に凹凸のない平滑な表面を有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の計算で求めた比表面積をSIとし、SRをSIで除した比例係数をkとすると、前記煮沸により形成された高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末は、SR/SI=k(ただし、kは比例係数であって、k=10〜200)の条件を満たす比表面積を有し、
一方、大気中などの通常の酸化性雰囲気中で加熱することにより作製した酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比例係数kは8を越えることはないことから、煮沸することにより得られた酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比例係数kは大気中で加熱することにより作製した通常の酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比例係数に比べて格段に大きく、したがって、煮沸することにより得られた酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の表面粗さは、大気中などの通常の酸化雰囲気中で加熱することにより得られた通常の酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の表面粗さに比べて格段に大きい、
(ロ)この煮沸することにより得られたFe−Ni−Mo系扁平金属軟磁性粉末の表面に形成された酸化膜は組成式:NiFe3−xO4(ただし、0<x<3)で表され、この酸化膜は従来の酸化雰囲気中で加熱することによりFe−Ni−Mo系扁平金属軟磁性粉末の表面に形成された同じ厚さのNiO酸化膜と比べて抵抗率が高いところから、一層抵抗率の高い酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末が得られ、この酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末に樹脂を混合し固化して得られた複合磁性シートの抵抗率は一層向上する、
(ハ)また、この発明の煮沸することにより表面にNiFe3−xO4(ただし、0<x<3)の酸化膜が形成されたFe−Ni−Mo系扁平金属軟磁性粉末は、煮沸温度が100℃前後であるから比較的低温で加熱されることから、前記絶縁を保つために必要な酸化膜の厚みをNiO酸化膜と比べて小さくすることができ、このためにその製造過程でFe−Ni−Mo系扁平金属軟磁性粉末の保磁力を上昇させることがない、
(ニ)前記煮沸することにより得られた高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を作製するためのFe−Ni−Mo系扁平金属軟磁性粉末は、Ni:60〜90%、Mo:0.05〜1.95%を含有し、残部:Feおよび不可避不純物からなる成分組成を有することが一層好ましい、などの知見を得たのである。
Therefore, the present inventors produced an oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder in which an oxide film was coated on the surface of the Fe-Ni-Mo-based flat metal soft magnetic powder, and this oxide film-coated Fe Research was conducted to obtain a magnetic composite sheet having a high resistivity and a low coercive force having excellent characteristics as a radio wave absorber or a high-frequency magnetic material using a Ni-Mo flat metal soft magnetic powder. as a result,
(B) Average particle diameter obtained by flattening Fe—Ni—Mo based metal soft magnetic powder together with a solvent using an attritor or ball mill: 30 to 150 μm, aspect ratio: usually within the range of 5 to 500 When the Fe-Ni-Mo flat metal soft magnetic powder is boiled in water (more preferably distilled water), an oxide film having a high resistivity is formed on the surface of the Fe-Ni-Mo flat metal soft magnetic powder. The specific surface area of the oxide film coated Fe—Ni—Mo based flat metal soft magnetic powder formed by boiling is SR, and the oxide film coated Fe—Ni—Mo based flat metal soft powder having a smooth surface with no irregularities on the surface is used. When the specific surface area obtained by calculation of the magnetic powder is SI, and the proportionality coefficient obtained by dividing SR by SI is k, the oxide-coated Fe-Ni-Mo-based flat metal softening having a high surface roughness formed by the boiling is performed. Magnetic powder Is, SR / SI = k (however, k is a proportional coefficient, k = 10 to 200) has a satisfying specific surface area of,
On the other hand, since the proportionality coefficient k of the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder produced by heating in a normal oxidizing atmosphere such as the air does not exceed 8, boiling is performed. The proportionality coefficient k of the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder obtained by the above is proportional to the normal oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder prepared by heating in the atmosphere. Therefore, the surface roughness of the oxide film-coated Fe-Ni-Mo flat metal soft magnetic powder obtained by boiling is to be heated in a normal oxidizing atmosphere such as in the air. It is much larger than the surface roughness of the normal oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder obtained by
(B) The oxide film formed on the surface of the Fe—Ni—Mo-based flat metal soft magnetic powder obtained by boiling is represented by the composition formula: Ni x Fe 3-x O4 (where 0 <x <3) This oxide film has a higher resistivity than a NiO oxide film of the same thickness formed on the surface of a Fe-Ni-Mo flat metal soft magnetic powder by heating in a conventional oxidizing atmosphere. Thus, an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a higher resistivity is obtained, and this oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder is obtained by mixing and solidifying a resin. The resistivity of the composite magnetic sheet is further improved.
(C) In addition, the Fe—Ni—Mo-based flat metal soft magnetic powder in which an oxide film of Ni x Fe 3-x O4 (where 0 <x <3) is formed on the surface by boiling of the present invention, Since the boiling temperature is around 100 ° C., the oxide film is heated at a relatively low temperature, so that the thickness of the oxide film necessary for maintaining the insulation can be made smaller than that of the NiO oxide film. And does not increase the coercive force of the Fe-Ni-Mo flat metal soft magnetic powder,
(D) Fe-Ni-Mo-based flat metal soft magnetic powder for producing an oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness obtained by boiling is Ni : 60 to 90%, Mo: 0.05 to 1.95%, the balance: it is more preferable to have a component composition consisting of Fe and inevitable impurities.

この発明は、かかる知見に基づいて成されたものであって、
(1)平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有し高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末であって、
前記高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積をSR、
表面に凹凸のない平滑な表面を有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の計算で求めた比表面積をSIとすると、
前記SRとSIの比が、SR/SI=k(ただし、kは表面粗さを表現する比例係数であって、k=10〜200)の条件を満たす範囲内の比表面積を有する高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末、
(2)前記酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末は、質量%で(以下、%は質量%を示す)、Ni:60〜90%、Mo:0.05〜1.95%を含有し、残部:Feおよび不可避不純物からなる成分組成を有するFe−Ni−Mo系扁平金属軟磁性粉末の表面に酸化膜が形成されている粉末である前記(1)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末、
(3)前記Fe−Ni−Mo系扁平金属軟磁性粉末の表面に形成されている酸化膜は、NiFe3−xO4(ただし、0<x<3)である前記(1)または(2)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末、
(4)平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有するFe−Ni−Mo系扁平金属軟磁性粉末を水中で煮沸する前記(1)、(2)または(3)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法、
(5)平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有しかつ質量%で(以下、%は質量%を示す)Ni:60〜90%、Mo:0.05〜1.95%を含有し、残部:Feおよび不可避不純物からなる成分組成を有するFe−Ni−Mo系扁平金属軟磁性粉末を水中で煮沸する前記(1)、(2)または(3)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法、
(6)前記煮沸するための水は蒸留水である前記(4)または(5)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法、
(7)前記(1)、(2)または(3)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の扁平面が磁性複合シートの厚さ方向に対して直角方向に配向して分散している磁性複合シート、に特徴を有するものである。
This invention is made based on such knowledge,
(1) An oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having an average particle size of 30 to 150 μm and an aspect ratio (average particle size / average thickness) of 5 to 500 and having a high surface roughness. There,
The specific surface area of the oxide film-coated Fe—Ni—Mo based flat metal soft magnetic powder having high surface roughness is SR,
When the specific surface area obtained by calculation of the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a smooth surface without unevenness on the surface is defined as SI,
A high surface roughness having a specific surface area within a range where the ratio of SR and SI satisfies the condition of SR / SI = k (where k is a proportional coefficient expressing surface roughness, k = 10 to 200). Oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powder having thickness,
(2) The oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder is in mass% (hereinafter, “%” represents mass%), Ni: 60 to 90%, Mo: 0.05 to 1.95. The high surface roughness according to (1) above, which is a powder in which an oxide film is formed on the surface of a Fe—Ni—Mo-based flat metal soft magnetic powder having a component composition comprising:% and the balance: Fe and inevitable impurities Oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powder having thickness,
(3) The oxide film formed on the surface of the Fe—Ni—Mo-based flat metal soft magnetic powder is Ni x Fe 3-x O4 (where 0 <x <3) (1) or ( 2) Oxide film-coated Fe—Ni—Mo based flat metal soft magnetic powder having a high surface roughness according to the description;
(4) The above (1), wherein the Fe—Ni—Mo flat metal soft magnetic powder having an average particle size of 30 to 150 μm and an aspect ratio (average particle size / average thickness) of 5 to 500 is boiled in water. 2) or a method for producing an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to (3),
(5) Average particle diameter: 30 to 150 μm and aspect ratio (average particle diameter / average thickness): 5 to 500 and in mass% (hereinafter,% indicates mass%) Ni: 60 to 90%, The above (1), (2), wherein Fe: Ni-Mo-based flat metal soft magnetic powder containing Mo: 0.05 to 1.95% and having the composition of the balance: Fe and inevitable impurities is boiled in water. Or a method for producing an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to (3),
(6) The method for producing an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to (4) or (5), wherein the water for boiling is distilled water,
(7) The flat surface of the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having the high surface roughness described in (1), (2) or (3) is in the thickness direction of the magnetic composite sheet. The magnetic composite sheet is oriented and dispersed in a perpendicular direction.

前記(4)〜(6)記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法において、Fe−Ni−Mo系扁平金属軟磁性粉末を煮沸する時間は10分から10時間の範囲内であることが好ましい。煮沸時間が10分未満であると十分な厚さの酸化膜が形成されないので好ましくなく、一方、10時間を越えて煮沸すると、形成される酸化膜が厚くなり過ぎ、酸化膜が厚くなり過ぎると保磁力が増加するようになるので好ましくないという理由によるものである。
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を高密度に樹脂を混合し固化して得られた複合磁性シートの抵抗率はその表面粗さが粗いために上昇する。その理由としては、粉末の表面に形成されている凹凸によって隣接する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末相互の接触面積が小さくなり、粉末と粉末の隙間に樹脂がまんべんなく行き渡り、得られた複合磁性シートの抵抗率を上昇させるものと考えられる。
In the method for producing an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to (4) to (6), the time for boiling the Fe—Ni—Mo-based flat metal soft magnetic powder Is preferably in the range of 10 minutes to 10 hours. If the boiling time is less than 10 minutes, an oxide film having a sufficient thickness cannot be formed. On the other hand, if the boiling time exceeds 10 hours, the formed oxide film becomes too thick and the oxide film becomes too thick. This is because the coercive force increases, which is not preferable.
The resistivity of the composite magnetic sheet obtained by solidifying the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness and solidifying the resin according to the present invention is rough. To rise. The reason for this is that the contact area between adjacent oxide film-coated Fe-Ni-Mo flat metal soft magnetic powders is reduced by the unevenness formed on the surface of the powder, and the resin spreads evenly between the powder and the powder, It is considered that the resistivity of the obtained composite magnetic sheet is increased.

この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を製造するには、通常の市販のFe−Ni−Mo系扁平金属軟磁性粉末を水中、特に蒸留水中で煮沸したのち乾燥すれば良い。
また、この発明の磁性複合シートで使用する樹脂は、塩素化ポリエチレン、シリコーン、ウレタン、酢酸ビニル、エチレン-酢酸ビニル共重合体、ABS樹脂、塩化ビニル、ポリビニルブチラル、熱可塑性エラストマー、EM−PM−BD共重合ゴム、スチレン‐ブタジエン系ゴム、アクリロニトリル−ブタジエン系ゴムなどであり、さらにこれらをブレンドしたものまたはブレンドし変成したものであってもよい。
In order to produce the oxide film-coated Fe—Ni—Mo based flat metal soft magnetic powder having a high surface roughness according to the present invention, an ordinary commercially available Fe—Ni—Mo based flat metal soft magnetic powder is submerged in water, particularly distilled water. You can boil it and dry it.
The resin used in the magnetic composite sheet of the present invention is chlorinated polyethylene, silicone, urethane, vinyl acetate, ethylene-vinyl acetate copolymer, ABS resin, vinyl chloride, polyvinyl butyral, thermoplastic elastomer, EM-PM. -BD copolymer rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like, and those blended or blended and modified.

この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末において、成分組成、平均粒径、アスペクト比および比表面積を前述の如く限定した理由を説明する。   The reason why the component composition, average particle diameter, aspect ratio, and specific surface area of the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having high surface roughness according to the present invention are limited as described above will be described.

成分組成:
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を構成するFe−Ni−Mo系扁平金属軟磁性粉末に含まれるNiの含有量を60〜90%に限定した理由は、60%より少なくても90%より多くても磁気特性が低下するからであり、この範囲は通常知られている範囲であるが、この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末におけるNiの含有量は、70〜85%の範囲内にあることが一層好ましい。
また、Moが0.05%未満では熱処理後の徐冷によりFeNi規則相の生成が過剰になり、結晶磁気異方性定数Kが負でその絶対値が大きくなり過ぎて磁気特性が低下し、一方、1.95%よりも多く含有すると、FeNi規則相の生成が不十分となり、結晶磁気異方性定数Kが負でその絶対値が小さくなり過ぎたり、正になったりして、結晶磁気異方性により扁平面内をより一層磁化容易面とする効果が不十分となり、扁平面内の透磁率が低下するのでMoの添加量を0.05〜1.95%に限定することが好ましい。この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末においてMoの含有量の一層好ましい範囲は0.5〜1.95%(より一層好ましくは0.8〜1.9%)である。
Ingredient composition:
The content of Ni contained in the Fe-Ni-Mo-based flat metal soft magnetic powder constituting the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness of the present invention is 60 to 90%. The reason for the limitation is that the magnetic properties are deteriorated even if it is less than 60% or more than 90%, and this range is a generally known range, but the oxide film having a high surface roughness according to the present invention. The Ni content in the coated Fe—Ni—Mo-based flat metal soft magnetic powder is more preferably in the range of 70 to 85%.
Further, Mo is less than 0.05% becomes excessive generation of FeNi 3 ordered phase by slow cooling after the heat treatment, decreased magnetic properties magnetocrystalline anisotropy constant K 1 is the absolute value is too large in a negative On the other hand, if the content is more than 1.95%, the formation of the FeNi 3 ordered phase becomes insufficient, the magnetocrystalline anisotropy constant K 1 is negative, and its absolute value becomes too small or becomes positive. Thus, the effect of making the flat plane more easily magnetized due to the magnetocrystalline anisotropy becomes insufficient, and the magnetic permeability in the flat plane decreases, so the amount of Mo added is limited to 0.05 to 1.95% It is preferable to do. In the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention, the more preferable range of the Mo content is 0.5 to 1.95% (more preferably 0.8 to 1.9%).

平均粒径:
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末において平均粒径が30μmよりも小さいと、扁平化処理時の歪の導入が著しくなり、十分な磁気特性が得られないので好ましくなく、一方、150μmを超えると、シート等を作製する際の樹脂等との混練において、粉末が折れ曲がったり、ちぎれたりして磁気特性が低下するので好ましくない。したがって、この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の平均粒径は30〜150μmに定めた。平均粒径の一層好ましい範囲は35〜140μmである。
Average particle size:
In the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention, when the average particle size is smaller than 30 μm, the introduction of strain during the flattening treatment becomes remarkable and sufficient magnetic properties are obtained. On the other hand, if it exceeds 150 μm, the powder is bent or broken in kneading with a resin or the like when producing a sheet or the like, and the magnetic properties are lowered, which is not preferable. Therefore, the average particle diameter of the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention is set to 30 to 150 μm. A more preferable range of the average particle diameter is 35 to 140 μm.

アスペクト比:
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末においてアスペクト比が5より小さいと、粉末の反磁界が大きくなり、扁平面内の透磁率が低下するので好ましくなく、一方、アスペクト比が500よりも大きくなると、扁平化処理時の歪の導入が著しくなり、十分な磁気特性が得られなくなるので好ましくない。したがって、この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末のアスペクト比は5〜500に定めた。
比表面積:
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積SR、表面に凹凸のない平滑な表面を有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積をSIとすると、SR=k・SI(ただし、kは表面粗さを表現する比例係数であって、k=10〜200)の条件を満たす範囲内の比表面積を有する。すなわち、比例係数kはk=SR/SIで定義される係数であるが、比例係数kが大きくなるほど表面粗さが大きくなる。しかし、比例係数kが10未満の酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末では従来と比べて十分な高抵抗率を有する複合磁性シートを作製することができないので好ましくなく、一方、比例係数kが200を越える酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末を作製するには相当時間の煮沸を行わなければならず、現実的でないからである。
この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積を、SR=k・SIで表現したのは、粉末の比表面積は一般に同じ表面粗さを有する粉末であっても、粒径が小さくなるほど大きな比表面積値を示すためであり、粒径の大小にかかわらず正確な比表面積を得るためには、粉末の比表面積をSR=k・SIという式で定義することが必要であり、この定義を用いれば粉末の粒径の大小に関係なく正確な比表面積を得られるからである。
aspect ratio:
If the aspect ratio of the oxide-coated Fe-Ni-Mo flat metal soft magnetic powder having a high surface roughness according to the present invention is less than 5, the demagnetizing field of the powder increases and the magnetic permeability in the flat plane decreases. On the other hand, if the aspect ratio is greater than 500, the introduction of strain during the flattening process becomes significant, and sufficient magnetic properties cannot be obtained. Therefore, the aspect ratio of the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention is set to 5 to 500.
Specific surface area:
Specific surface area SR of oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness of the present invention, and oxide-coated Fe-Ni-Mo-based flat metal soft having a smooth surface with no irregularities on the surface Assuming that the specific surface area of the magnetic powder is SI, the magnetic powder has a specific surface area within a range that satisfies the condition of SR = k · SI (where k is a proportional coefficient expressing surface roughness, k = 10 to 200). That is, the proportional coefficient k is a coefficient defined by k = SR / SI, but the surface roughness increases as the proportional coefficient k increases. However, an oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a proportionality coefficient k of less than 10 is not preferable because a composite magnetic sheet having a sufficiently high resistivity cannot be produced compared to the conventional one, This is because, in order to produce an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a proportionality coefficient k exceeding 200, boiling must be performed for a considerable time, which is not practical.
The specific surface area of the oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention is expressed by SR = k · SI. The specific surface area of the powder generally has the same surface roughness. This is because the specific surface area of the powder is SR = k · SI in order to obtain an accurate specific surface area regardless of the particle size. This is because an accurate specific surface area can be obtained regardless of the particle size of the powder.

この発明の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末は、アンテナ、インダクタ用として高抵抗率を有する高周波磁性材料を提供することができ、さらに高抵抗率を有する電波吸収体を提供することができ、電気および電子産業において優れた効果をもたらすものである。   The oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness according to the present invention can provide a high-frequency magnetic material having a high resistivity for an antenna and an inductor, and further has a high resistivity. It is possible to provide a radio wave absorber having an excellent effect in the electrical and electronic industries.

実施例
合金原料を高周波溶解してNi:79質量%、Mo:1質量%を含有し、残部がFeおよび不可避不純物からなる成分組成の溶湯を作製し、これら溶湯を水アトマイズしてFe−Ni−Mo系金属軟磁性アトマイズ粉末を作製し、そのFe−Ni−Mo系金属軟磁性アトマイズ粉末を分級処理したのち、通常のアトライターにて扁平化処理し、得られた扁平粉末を風力分級機により分級することにより平均粒径d:82.9μm、平均厚さt:1.96μm、アスペクト比(d/t):42.3を有するFe−Ni−Mo系扁平金属軟磁性粉末の原料粉末を作製した。
このようにして得られたFe−Ni−Mo系扁平金属軟磁性粉末の原料粉末を蒸留水中で表1に示される時間煮沸することにより本発明酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末(以下、本発明酸化膜被覆扁平軟磁性粉末という)1〜9および比較酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末(以下、比較酸化膜被覆扁平軟磁性粉末という)1を作製した。
さらに比較のために前記Fe−Ni−Mo系扁平金属軟磁性粉末の原料粉末を大気中、温度:375℃で1時間あるいは6分間加熱することにより従来酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末(以下、従来酸化膜被覆扁平軟磁性粉末という)1〜2を作製した。
これら本発明酸化膜被覆扁平軟磁性粉末1〜9、比較酸化膜被覆扁平軟磁性粉末1および従来酸化膜被覆扁平軟磁性粉末1〜2についてその表面に形成されている酸化膜の成分組成およびその厚さを測定し、その結果を表1に示した。
Example An alloy raw material was melted at high frequency to prepare molten metal having a composition of Ni: 79% by mass and Mo: 1% by mass, the balance being Fe and inevitable impurities, and the molten metal was atomized with water to obtain Fe-Ni. -Mo-based metal soft magnetic atomized powder was prepared, and the Fe-Ni-Mo-based metal soft magnetic atomized powder was classified and then flattened with a normal attritor. The raw material powder of the Fe—Ni—Mo flat metal soft magnetic powder having an average particle diameter d: 82.9 μm, an average thickness t: 1.96 μm, and an aspect ratio (d / t): 42.3 Was made.
The raw material powder of the Fe—Ni—Mo-based flat metal soft magnetic powder thus obtained is boiled in distilled water for the time shown in Table 1 so that the oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder of the present invention is obtained. Preparation of powders (hereinafter referred to as oxide-coated flat soft magnetic powders according to the present invention) 1 to 9 and comparative oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powders (hereinafter referred to as comparative oxide-coated flat soft magnetic powders) 1 did.
Further, for comparison, the raw material powder of the Fe—Ni—Mo based flat metal soft magnetic powder is heated in the atmosphere at a temperature of 375 ° C. for 1 hour or 6 minutes, thereby forming a conventional oxide-coated Fe—Ni—Mo based flat metal. Soft magnetic powders (hereinafter referred to as conventional oxide film-coated flat soft magnetic powders) 1 and 2 were produced.
These oxide film-coated flat soft magnetic powders 1 to 9 of the present invention, comparative oxide film-coated flat soft magnetic powder 1 and conventional oxide film-coated flat soft magnetic powders 1 and 2, and component compositions of oxide films formed on the surfaces thereof and The thickness was measured and the results are shown in Table 1.

これら本発明酸化膜被覆扁平軟磁性粉末1〜9、比較酸化膜被覆扁平軟磁性粉末1および従来酸化膜被覆扁平軟磁性粉末1〜2について粉体抵抗率および保磁力を測定し、その結果を表1に示した。
その後、さらに本発明酸化膜被覆扁平軟磁性粉末1〜9、比較酸化膜被覆扁平軟磁性粉末1および従来酸化膜被覆扁平軟磁性粉末1〜2についてJIS Z 8830で規定される気体吸着法により比表面積SRを測定し、その結果を表1に示した。
さらに、平均粒径d:82.9μm、平均厚さt:1.96μm、アスペクト比(d/t):42.3を有する表面に凹凸のない平滑な表面を有する仮想のFe−Ni−Mo系扁平金属軟磁性粉末の比表面積SIを計算で求めると、SI=0.12398m2/gとなるから、SR/SI=kからkの値を計算により求め、その結果を表1に示した。
The powder resistivity and coercivity of these oxide film-coated flat soft magnetic powders 1 to 9, comparative oxide film-coated flat soft magnetic powder 1 and conventional oxide film-coated flat soft magnetic powders 1 and 2 were measured, and the results were obtained. It is shown in Table 1.
Thereafter, the oxide film-coated flat soft magnetic powders 1 to 9, the comparative oxide film-coated flat soft magnetic powder 1 and the conventional oxide film-coated flat soft magnetic powders 1 to 2 of the present invention were compared by the gas adsorption method defined in JIS Z 8830. The surface area SR was measured, and the results are shown in Table 1.
Furthermore, the virtual Fe-Ni-Mo which has a smooth surface without unevenness on the surface having an average particle diameter d: 82.9 μm, an average thickness t: 1.96 μm, and an aspect ratio (d / t): 42.3 When the specific surface area SI of the system flat metal soft magnetic powder was calculated, SI = 0.12398 m2 / g. Therefore, the value of k was calculated from SR / SI = k, and the results are shown in Table 1.

この本発明酸化膜被覆扁平軟磁性粉末1〜9、比較酸化膜被覆扁平軟磁性粉末1および従来酸化膜被覆扁平軟磁性粉末1〜2に塩素化ポリエチレン:15質量%を混合し混練したのち、ロール成形することにより酸化膜被覆扁平金属軟磁性粉末の扁平面がシート面に平行に配列した厚み:0.5mmを有する本発明磁性複合シート1〜9、比較磁性複合シート1および従来磁性複合シート1〜2を作製し、これら磁性複合シートの抵抗率および保磁力を測定し、その結果を表2に示した。   The present oxide film-coated flat soft magnetic powders 1 to 9, comparative oxide film-coated flat soft magnetic powder 1 and conventional oxide film-coated flat soft magnetic powders 1 to 2 were mixed and kneaded with 15% by mass of chlorinated polyethylene, The present invention magnetic composite sheets 1 to 9, the comparative magnetic composite sheet 1 and the conventional magnetic composite sheet having a thickness of 0.5 mm in which the flat surfaces of the oxide film-coated flat metal soft magnetic powder are arranged in parallel to the sheet surface by roll forming 1-2 were prepared, and the resistivity and coercive force of these magnetic composite sheets were measured. The results are shown in Table 2.

Figure 2006179576
Figure 2006179576

Figure 2006179576
Figure 2006179576

表1〜2に示される結果から、Fe−Ni−Mo系扁平金属軟磁性粉末を蒸留水中で煮沸して得られた比例係数kが10〜200の範囲内にある本発明酸化膜被覆扁平軟磁性粉末1〜9はいずれも従来酸化膜被覆扁平軟磁性粉末2よりも高抵抗率を有しかつ高比表面積および高比例係数kを有する。また、本発明酸化膜被覆扁平軟磁性粉末1〜9はいずれも従来酸化膜被覆扁平軟磁性粉末1と抵抗率が同程度であるが、保磁力が低いことが分かる。
本発明酸化膜被覆扁平軟磁性粉末1〜9で作製した本発明磁性複合シート1〜9は、従来酸化膜被覆扁平軟磁性粉末2で作製した従来磁性複合シート2に比べて高抵抗率を有する。また、本発明酸化膜被覆扁平軟磁性粉末1〜9で作製した本発明磁性複合シート1〜9は、いずれも従来酸化膜被覆扁平軟磁性粉末1で作製した従来磁性複合シート1に比べて抵抗率が同程度であるが、保磁力が低いことが分かる。
しかし、この発明の条件から外れた比例係数kを有する比較酸化物被覆扁平軟磁性粉末1で作製した比較磁性複合シート1は保磁力が低いが抵抗率も10Ωcm未満と低いことが分かる。
From the results shown in Tables 1 and 2, the present invention oxide-coated flat soft having a proportionality coefficient k within the range of 10 to 200 obtained by boiling Fe-Ni-Mo-based flat metal soft magnetic powder in distilled water. Each of the magnetic powders 1 to 9 has a higher resistivity than the conventional oxide film-coated flat soft magnetic powder 2 and has a high specific surface area and a high proportionality coefficient k. Further, it can be seen that the oxide film-coated flat soft magnetic powders 1 to 9 of the present invention all have the same resistivity as the conventional oxide film-coated flat soft magnetic powder 1 but have a low coercive force.
The magnetic composite sheets 1 to 9 of the present invention prepared with the oxide film-coated flat soft magnetic powders 1 to 9 of the present invention have higher resistivity than the conventional magnetic composite sheet 2 of the conventional oxide film-coated flat soft magnetic powder 2. . Also, the magnetic composite sheets 1 to 9 of the present invention prepared with the oxide film-coated flat soft magnetic powders 1 to 9 of the present invention are more resistant than the conventional magnetic composite sheet 1 of the conventional oxide film-coated flat soft magnetic powder 1. It can be seen that the rate is similar, but the coercivity is low.
However, it can be seen that the comparative magnetic composite sheet 1 made of the comparative oxide-coated flat soft magnetic powder 1 having a proportionality coefficient k outside the conditions of the present invention has a low coercive force but a low resistivity of less than 10 3 Ωcm.

Claims (7)

平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有し高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末であって、
前記高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の比表面積をSR、
表面に凹凸のない平滑な表面を有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の計算で求めた比表面積をSIとすると、
前記SRとSIとが、SR=k・SI(ただし、kは表面粗さを表現する比例係数であって、k=10〜200)の関係を満たす範囲内の比表面積を有することを特徴とする高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末。
An oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having an average particle size of 30 to 150 μm and an aspect ratio (average particle size / average thickness) of 5 to 500, and having a high surface roughness,
The specific surface area of the oxide film-coated Fe—Ni—Mo based flat metal soft magnetic powder having high surface roughness is SR,
When the specific surface area obtained by calculation of the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a smooth surface without unevenness on the surface is defined as SI,
The SR and SI have a specific surface area within a range satisfying a relationship of SR = k · SI (where k is a proportional coefficient expressing surface roughness, k = 10 to 200). Oxide-coated Fe-Ni-Mo-based flat metal soft magnetic powder having high surface roughness.
前記酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末は、質量%で(以下、%は質量%を示す。)、Ni:60〜90%、Mo:0.05〜1.95%を含有し、残部:Feおよび不可避不純物からなる成分組成を有するFe−Ni−Mo系扁平金属軟磁性粉末の表面に酸化膜が形成されている粉末であることを特徴とする請求項1記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末。 The oxide film-coated Fe—Ni—Mo based flat metal soft magnetic powder is in mass% (hereinafter, “%” represents mass%), Ni: 60 to 90%, Mo: 0.05 to 1.95%. 2. The powder according to claim 1, wherein the powder is an oxide film formed on the surface of a Fe—Ni—Mo-based flat metal soft magnetic powder having a component composition comprising Fe and inevitable impurities. An oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having surface roughness. 前記Fe−Ni−Mo系扁平金属軟磁性粉末の表面に形成されている酸化膜は、NiFe3−xO4(ただし、0<x<3)であることを特徴とする請求項1または2記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末。 The oxide film formed on the surface of the Fe-Ni-Mo-based flat metal soft magnetic powder is Ni x Fe 3-x O4 (where 0 <x <3). 2. An oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to 2. 平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有するFe−Ni−Mo系扁平金属軟磁性粉末を水中で煮沸することを特徴とする請求項1、2または3記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法。 The Fe-Ni-Mo-based flat metal soft magnetic powder having an average particle size of 30 to 150 [mu] m and an aspect ratio (average particle size / average thickness) of 5 to 500 is boiled in water, A method for producing an oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness according to 2 or 3. 平均粒径:30〜150μmおよびアスペクト比(平均粒径/平均厚さ):5〜500を有しかつ質量%で(以下、%は質量%を示す。)Ni:60〜90%、Mo:0.05〜1.95%を含有し、残部:Feおよび不可避不純物からなる成分組成を有するFe−Ni−Mo系扁平金属軟磁性粉末を水中で煮沸することを特徴とする請求項1、2または3記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法。 Average particle size: 30 to 150 μm and aspect ratio (average particle size / average thickness): 5 to 500 and in mass% (hereinafter,% indicates mass%) Ni: 60 to 90%, Mo: A Fe-Ni-Mo-based flat metal soft magnetic powder containing 0.05 to 1.95% and having a composition comprising the balance: Fe and inevitable impurities is boiled in water. Or a method for producing an oxide film-coated Fe—Ni—Mo-based flat metal soft magnetic powder having a high surface roughness according to 3. 前記煮沸するための水は蒸留水であることを特徴とする請求項4または5記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の製造方法。 The method for producing an oxide film-coated Fe-Ni-Mo flat metal soft magnetic powder having a high surface roughness according to claim 4 or 5, wherein the water for boiling is distilled water. 前記請求項1、2または3記載の高表面粗さを有する酸化膜被覆Fe−Ni−Mo系扁平金属軟磁性粉末の扁平面が磁性複合シートの厚さ方向に対して直角方向に配向して分散していることを特徴とする磁性複合シート。
The flat surface of the oxide film-coated Fe-Ni-Mo-based flat metal soft magnetic powder having a high surface roughness according to claim 1, 2, or 3 is oriented in a direction perpendicular to the thickness direction of the magnetic composite sheet. A magnetic composite sheet characterized by being dispersed.
JP2004369372A 2004-12-21 2004-12-21 OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH. Withdrawn JP2006179576A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004369372A JP2006179576A (en) 2004-12-21 2004-12-21 OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH.
PCT/JP2005/023359 WO2006068136A1 (en) 2004-12-21 2005-12-20 OXIDE FILM COATED Fe-Ni-Mo BASED FLAT METAL SOFT MAGNETIC POWDER HAVING HIGH SURFACE ROUGHNESS AND METHOD FOR PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369372A JP2006179576A (en) 2004-12-21 2004-12-21 OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH.

Publications (1)

Publication Number Publication Date
JP2006179576A true JP2006179576A (en) 2006-07-06

Family

ID=36601736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369372A Withdrawn JP2006179576A (en) 2004-12-21 2004-12-21 OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH.

Country Status (2)

Country Link
JP (1) JP2006179576A (en)
WO (1) WO2006068136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436498A (en) * 2015-11-18 2016-03-30 山东大学 Porous nickel-carbon nano-composite microsphere electromagnetic wave absorbing material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638402A (en) * 1979-09-05 1981-04-13 Tdk Corp High density sintered magnetic body and its manufacture
WO2002008129A1 (en) * 2000-07-26 2002-01-31 Heraeus Tenevo Ag Method for the vitrification of a porous soot body
KR20040015826A (en) * 2001-08-09 2004-02-19 자이단호진 리코가쿠신코카이 Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2003086415A (en) * 2001-09-12 2003-03-20 Aisin Seiki Co Ltd Soft magnetic particle for motor of electromagnetic actuator, manufacturing method therefor, soft magnetic molded body for motor or electromagnetic actuator, and manufacturing method therefor
JP3795432B2 (en) * 2002-06-28 2006-07-12 Tdk株式会社 Method for manufacturing electromagnetic wave absorbing sheet
JP2003332114A (en) * 2002-05-09 2003-11-21 Mitsubishi Materials Corp Bonded soft magnetic body with excellent mechanical strength and cavitation damage resistance at room temperature and high temperature and its fabricating method
JP4449077B2 (en) * 2003-08-05 2010-04-14 三菱マテリアル株式会社 Fe-Ni-Mo-based flat metal soft magnetic powder and magnetic composite material including the soft magnetic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436498A (en) * 2015-11-18 2016-03-30 山东大学 Porous nickel-carbon nano-composite microsphere electromagnetic wave absorbing material and preparation method and application thereof
CN105436498B (en) * 2015-11-18 2017-12-01 山东大学 A kind of porous nickel carbon composite nano-microsphere electromagnetic wave absorbent material and preparation method and application

Also Published As

Publication number Publication date
WO2006068136A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
TWI626666B (en) Soft magnetic alloy and magnetic parts
TWI697571B (en) Soft magnetic alloys and magnetic parts
CN108376598B (en) Soft magnetic alloy and magnetic component
CN108461245B (en) Soft magnetic alloy and magnetic component
WO2018179812A1 (en) Dust core
TW201817896A (en) Soft magnetic alloy and magnetic device
JP2008115404A (en) Flat metal powdery mixture having low coercive force and high permeability, and electromagnetic interference suppressor comprising the flat metal powdery mixture
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
TWI685004B (en) Soft magnetic alloy and magnetic parts
CN110911114B (en) Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
WO2006085593A1 (en) Flat metal soft magnetic powder and magnetic composite material comprising the soft magnetic powder
JP4449077B2 (en) Fe-Ni-Mo-based flat metal soft magnetic powder and magnetic composite material including the soft magnetic powder
JP2006219714A (en) Fe-Ni-(Nb, V, Ta) BASED FLAT METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL COMPRISING THE SOFT MAGNETIC POWDER
JP2008106335A (en) Flat metal powdery mixture having low coercive force and high permeability and electromagnetic interference suppressor containing the flat metal powdery mixture
JP2008106334A (en) Flat metal powdery mixture having low coercive force and high permeability, and electromagnetic interference suppressor containing the flat metal powdery mixture
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JPH1187123A (en) High-frequency soft magnetic powder
WO2019053948A1 (en) Soft magnetic alloy and magnetic component
WO2019053950A1 (en) Soft magnetic alloy and magnetic component
JP2006179576A (en) OXIDE FILM-COVERED Fe-Ni-Mo FLAT METAL SOFT MAGNETIC POWDER AND ITS MANUFACTURING METHOD HAVING HIGH SURFACE FINISH.
WO2019003680A1 (en) Soft magnetic alloy and magnetic component
JPH0927693A (en) Magnetic shielding soft magnetic powder and magnetic shielding material
JP3438396B2 (en) Powder for magnetic shielding
JP3482728B2 (en) Powder for magnetic shielding

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304