JP2006178359A - Optical compensation film, polarizing plate and liquid crystal display - Google Patents

Optical compensation film, polarizing plate and liquid crystal display Download PDF

Info

Publication number
JP2006178359A
JP2006178359A JP2004374155A JP2004374155A JP2006178359A JP 2006178359 A JP2006178359 A JP 2006178359A JP 2004374155 A JP2004374155 A JP 2004374155A JP 2004374155 A JP2004374155 A JP 2004374155A JP 2006178359 A JP2006178359 A JP 2006178359A
Authority
JP
Japan
Prior art keywords
film
rth
liquid crystal
carbon atoms
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004374155A
Other languages
Japanese (ja)
Inventor
Hirobumi Saida
博文 齊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004374155A priority Critical patent/JP2006178359A/en
Publication of JP2006178359A publication Critical patent/JP2006178359A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical compensation film which improves a display characteristic of a TN mode (twisted nematic alignment mode ) liquid crystal display, particularly a reversal phenomenon of gradation observed from a lower direction and can further expand its usage region, and also to provide a polarizing plate and the liquid crystal display using the same. <P>SOLUTION: The optical compensation film is constituted of a liquid crystal compound layer and a transparent supporting body and is arranged between a TN mode liquid crystal cell and the polarizing plates of its both sides. The optical compensation film is constituted of a cellulose acylate film in which summation of Rth(590) is within a range between Δn×d×0.7 and Δn×d×1.2 and the transparent supporting body satisfies conditions of following formulas:(I) 0 ≤Re(630)≤10 and ¾Rth(630)¾≤25, (II) ¾Re(400)-Re(700)¾≤10 and ¾Rth(400)-Rth(700)¾≤35, wherein Re(λ) denotes a front retardation value at a wavelength λnm, Rth(λ) denotes a retardation value in a film thickness direction at the wavelength λnm (unit:nm), Δn denotes double refractivity of liquid crystal molecules in the liquid crystal cell measured at 590nm wavelength, and d denotes thickness of a liquid crystal layer (unit:nm). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セルロースアシレートフィルムを用いた光学補償フィルム、偏光板および液晶表示装置に関するものである。   The present invention relates to an optical compensation film, a polarizing plate and a liquid crystal display device using a cellulose acylate film.

従来、セルロースアシレートフィルムはその強靭性と難燃性から写真用支持体や各種光学材料に用いられてきた。特に、近年は液晶表示装置用の光学透明フィルムとして多く用いられている。セルロースアシレートフィルムは、光学的に透明性が高いことと、光学的に等方性が高いことから、液晶表示装置のように偏光を取り扱う装置用の光学材料として優れており、これまで偏光膜の保護フィルムや、斜め方向からの見た表示を良化(視野角補償)できる光学補償フィルムの支持体として用いられてきた。   Conventionally, cellulose acylate films have been used for photographic supports and various optical materials because of their toughness and flame retardancy. In particular, in recent years, it has been widely used as an optical transparent film for liquid crystal display devices. Cellulose acylate films are excellent as optical materials for devices that handle polarized light such as liquid crystal display devices because of their high optical transparency and high optical isotropy. It has been used as a support for optical protective films that can improve (viewing angle compensation) a protective film and a display viewed from an oblique direction.

液晶表示装置用の部材のひとつである偏光板には偏光膜の少なくとも片側に偏光膜の保護フィルムが貼合によって形成されている。一般的な偏光膜は延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素または二色性色素で染色することにより得られる。
多くの場合、偏光膜の保護フィルムとしてはPVAに対して直接貼り合わせることができる、セルロースアシレートフィルム、なかでもトリアセチルセルロースフィルムが用いられている。この偏光膜の保護フィルムは、光学的等方性に優れることが重要であり、偏光膜の保護フィルムの光学特性が偏光板の特性を大きく左右する。
A polarizing film, which is one of the members for a liquid crystal display device, has a polarizing film protective film bonded to at least one side of the polarizing film. A general polarizing film is obtained by dyeing a stretched polyvinyl alcohol (PVA) film with iodine or a dichroic dye.
In many cases, as a protective film for a polarizing film, a cellulose acylate film, particularly a triacetyl cellulose film, which can be directly bonded to PVA is used. It is important that the polarizing film protective film is excellent in optical isotropy, and the optical characteristics of the polarizing film protective film greatly influence the characteristics of the polarizing plate.

最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光膜の保護フィルムや光学補償フィルムの支持体などの光学透明フィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、光学透明フィルムの複屈折と厚みの積で表されるレターデーション値が小さいことを意味する。とりわけ、ツイステッドネマチック配向モードの液晶セルを利用したTNモード液晶表示装置においては、その表示原理に基いて、表示斜め下方向からの表示特性を改善するためには、正面方向のレターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。   In recent liquid crystal display devices, there is a strong demand for improvement in viewing angle characteristics, and optical transparent films such as a protective film for a polarizing film and a support for an optical compensation film are more optically isotropic. It is required to be sex. Optically isotropic means that the retardation value represented by the product of birefringence and thickness of the optical transparent film is small. In particular, in a TN mode liquid crystal display device using a twisted nematic alignment mode liquid crystal cell, in order to improve display characteristics from a diagonally downward direction based on the display principle, retardation in the front direction (Re) In addition to this, it is necessary to reduce the retardation (Rth) in the film thickness direction. Specifically, when the optical properties of the optical transparent film are evaluated, the Re measured from the front of the film is small, and it is required that the Re does not change even if the angle is changed.

これまでに、正面のReを小さくしたセルロースアシレートフィルムはあったが、角度によるRe変化が小さい、すなわちRthが小さいセルロースアシレートフィルムは作製が難しかった。そこでセルロースアシレートフィルムの代わりにポリカーボネート系フィルムや熱可塑性シクロオレフィンフィルムを用いて、Reの角度変化の小さい光学透明フィルムの提案がされている(例えば、特許文献1,2,製品としてはZEONOR(日本ゼオン社製)や、ARTON(JSR社製)など)。しかし、これらの光学透明フィルムは、偏光膜の保護フィルムとして使用する場合、フィルムが疎水的なためにPVAとの貼合性に問題がある。またフィルム面内全体の光学特性が不均一である問題も残っている。   So far, there has been a cellulose acylate film with a small Re on the front, but it was difficult to produce a cellulose acylate film with a small Re change with angle, that is, a small Rth. Therefore, an optical transparent film having a small angle change of Re using a polycarbonate film or a thermoplastic cycloolefin film instead of a cellulose acylate film has been proposed (for example, Patent Documents 1 and 2, ZEONOR ( Zeon Corporation), ARTON (JSR Corporation), etc.). However, when these optically transparent films are used as a protective film for a polarizing film, there is a problem in bonding properties with PVA because the film is hydrophobic. There also remains a problem that the optical characteristics of the entire film surface are non-uniform.

この解決法として、PVAへの貼合適性に優れるセルロースアシレートフィルムを、より光学的異方性を低下させて改良することが強く望まれている。具体的には、セルロースアシレートフィルムの正面のReをほぼゼロとし、またレターデーションの角度変化も小さい、すなわちRthもほぼゼロとした、光学的に等方性である光学透明フィルムである。   As a solution to this, it is strongly desired to improve a cellulose acylate film excellent in suitability for bonding to PVA by further reducing optical anisotropy. Specifically, it is an optically isotropic optically transparent film in which Re on the front surface of the cellulose acylate film is substantially zero and the change in retardation angle is small, that is, Rth is also substantially zero.

セルロースアシレートフィルムの製造において、一般的に製膜性能を良化するため可塑剤と呼ばれる化合物が添加される。可塑剤の種類としては、リン酸トリフェニル、リン酸ビフェニルジフェニル、リン酸トリエステル、フタル酸エステル類などが開示されている(例えば、非特許文献1参照)。これら可塑剤の中には、セルロースアシレートフィルムの光学的異方性を低下させる効果を有するものが知られており、例えば、特定の脂肪酸エステル類が開示されている(例えば、特許文献3参照)。しかしながら、従来知られているこれらの化合物を用いたセルロースアシレートフィルムの光学的異方性を低下させる効果は十分とはいえない。   In the production of a cellulose acylate film, a compound called a plasticizer is generally added to improve the film forming performance. As types of plasticizers, triphenyl phosphate, biphenyl diphenyl phosphate, phosphate triester, phthalates and the like are disclosed (for example, see Non-Patent Document 1). Among these plasticizers, those having the effect of reducing the optical anisotropy of the cellulose acylate film are known. For example, specific fatty acid esters are disclosed (for example, see Patent Document 3). ). However, the effect of reducing the optical anisotropy of cellulose acylate films using these conventionally known compounds is not sufficient.

また、最近の液晶表示装置においては、表示色味の改善も要求されるようになっている。そのため偏光膜の保護フィルムや光学補償フィルムの支持体などの光学透明フィルムは、波長400〜800nmの可視領域でReやRthを小さくするだけでなく、波長によるReやRthの変化、すなわち波長分散を小さくする必要がある。   Also, recent liquid crystal display devices are required to improve display color. Therefore, an optical transparent film such as a protective film for a polarizing film or a support for an optical compensation film not only reduces Re and Rth in the visible region of a wavelength of 400 to 800 nm, but also changes Re and Rth depending on the wavelength, that is, wavelength dispersion. It needs to be small.

TNモード液晶表示装置が、ノート型パソコン、モニター及びTV、携帯電話等により広く使用されるようになるにつれて、表示画面斜め下方向から観察される表示階調の反転現象を解決する必要に迫られている。この階調反転現象の様子を図2に示す。特許文献4に開示されるディスコティック液晶からなる光学補償フィルムを偏光膜と液晶セルの間に上下2枚配設した例である。グラフ横軸は、+側が表示画面の法線から上方向極角角度を示す。正面の輝度レベルを7分割し、その上下方向の輝度変化をプロットすると下方向視野33°付近でL1とL2が交差する。つまり、正面でL1、L2の輝度差があったものの、下方向視野33°付近ではその輝度差が消滅している、等階調になってしまうことを意味している。   As TN mode liquid crystal display devices are widely used in notebook personal computers, monitors and TVs, mobile phones, etc., it is necessary to solve the phenomenon of inversion of display gradation observed from the diagonally lower side of the display screen. ing. The state of this gradation inversion phenomenon is shown in FIG. This is an example in which two optical compensation films made of discotic liquid crystal disclosed in Patent Document 4 are arranged between a polarizing film and a liquid crystal cell. The horizontal axis of the graph indicates the upward polar angle from the normal of the display screen on the + side. When the luminance level at the front is divided into seven and the luminance change in the vertical direction is plotted, L1 and L2 intersect at around 33 ° in the downward visual field. That is, although there is a luminance difference between L1 and L2 in the front, the luminance difference disappears in the vicinity of the downward visual field of 33 °, which means equal gradation.

特開2001−318233号公報JP 2001-318233 A 特開2002−328233号公報JP 2002-328233 A 特開2001−247717号公報JP 2001-247717 A プラスチック材料講座、第17巻、日刊工業新聞社、「繊維素系樹脂」、121頁(昭和45年)Plastic Materials Course, Volume 17, Nikkan Kogyo Shimbun, “Fiber-Based Resin”, p. 121 (Showa 45) 特許第2587398号Japanese Patent No. 2587398

このような状況に鑑み、本発明の目的は、TNモード液晶表示装置の表示特性、特に下方向から観察される階調の反転現象を改良し、その使用領域を更に拡大することのできる、光学補償フィルム、偏光板および液晶表示装置を提供することにある。   In view of such a situation, an object of the present invention is to improve the display characteristics of the TN mode liquid crystal display device, in particular, the inversion phenomenon of gradation observed from below, and to further expand the use area. It is providing a compensation film, a polarizing plate, and a liquid crystal display device.

本発明者らは、鋭意検討した結果、光学異方性(Re、Rth)が小さく実質的に光学等方性であり、さらには光学異方性(Re、Rth)の波長分散が小さいセルロースアシレートフィルムからなる透明支持体とその支持体上に形成された液晶性化合物層からなる光学補償フィルムを用いることによって、下方向の階調反転現象が改善されることを見出した。
光学異方性の小さな透明支持体を実現するには、透明支持体中のセルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。この透明支持体上に液晶性化合物層を形成することによって、光学補償フィルムに占める液晶性化合物層によるRthの割合を増加させた。光学補償フィルム全体のRthは、液晶表示装置における2枚の偏光板に挟持される全光学補償フィルムのRthの合計が液晶表示装置の液晶層のΔndに近い場合に、広いコントラスト視野角が実現されることが知られている。具体的には、光学補償フィルムのRth(590)の総和が、Δn×d×0.7〜Δn×d×1.2の範囲であるときに、広いコントラスト視野角が実現される。
なお前記式中、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)、Δnは波長590nmで測定した該液晶セル中の液晶分子の複屈折率、dは該液晶セルの液晶層の厚さ(単位:nm)である。したがって、光学異方性の小さいセルロースアシレートと液晶性化合物層を組合せると、Rth成分の大きな液晶性化合物層を有する光学補償フィルムが実現可能となる。このようなRth成分の大きな液晶性化合物層を有する光学補償フィルムを用いたTNモード液晶表示装置は、表示画面の斜め下方向から観察される階調反転現象が著しく改善されることが、各種の実験評価によって検証され、本発明を完成した。
As a result of intensive studies, the present inventors have found that cellulose anions having small optical anisotropy (Re, Rth) and substantially optical isotropy, and further having small wavelength dispersion of optical anisotropy (Re, Rth). It has been found that the gradation reversal phenomenon in the downward direction is improved by using an optical compensation film comprising a transparent support comprising a rate film and a liquid crystal compound layer formed on the support.
In order to realize a transparent support with small optical anisotropy, the optical anisotropy is sufficiently reduced by using a compound that suppresses the in-plane and film thickness orientation of cellulose acylate in the transparent support. Re was zero and Rth was close to zero. By forming a liquid crystalline compound layer on this transparent support, the ratio of Rth due to the liquid crystalline compound layer in the optical compensation film was increased. A wide contrast viewing angle is realized when the total Rth of all the optical compensation films sandwiched between two polarizing plates in the liquid crystal display device is close to Δnd of the liquid crystal layer of the liquid crystal display device. It is known that Specifically, a wide contrast viewing angle is realized when the sum of Rth (590) of the optical compensation film is in the range of Δn × d × 0.7 to Δn × d × 1.2.
In the above formula, Rth (λ) is a retardation value (unit: nm) in the film thickness direction at a wavelength λnm, Δn is a birefringence of liquid crystal molecules in the liquid crystal cell measured at a wavelength of 590 nm, and d is the liquid crystal cell. The thickness of the liquid crystal layer (unit: nm). Therefore, when a cellulose acylate having a small optical anisotropy and a liquid crystal compound layer are combined, an optical compensation film having a liquid crystal compound layer having a large Rth component can be realized. In the TN mode liquid crystal display device using such an optical compensation film having a liquid crystal compound layer having a large Rth component, the gradation inversion phenomenon observed from an oblique lower direction of the display screen is remarkably improved. It was verified by experimental evaluation and completed the present invention.

本発明は、以下のとおりである。
1)液晶性化合物層および透明支持体から構成され、ツイステッドネマチック配向モードの液晶セルと該液晶セルの両側に配置される偏光板との間の少なくとも一方に配置される光学補償フィルムであって、該光学補償フィルムのRth(590)の総和が、Δn×d×0.7〜Δn×d×1.2の範囲であるとともに、
該透明支持体が、下記式(I)および(II)のRe(λ)およびRth(λ)の条件を満たすセルロースアシレートフィルムからなることを特徴とする光学補償フィルム。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
[前記式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)、Δnは波長590nmで測定した該液晶セル中の液晶分子の複屈折率、dは該液晶セルの液晶層の厚さ(単位:nm)である。]
The present invention is as follows.
1) An optical compensation film composed of a liquid crystal compound layer and a transparent support and disposed on at least one of a liquid crystal cell of twisted nematic alignment mode and a polarizing plate disposed on both sides of the liquid crystal cell, The total Rth (590) of the optical compensation film is in the range of Δn × d × 0.7 to Δn × d × 1.2,
An optical compensation film, wherein the transparent support comprises a cellulose acylate film that satisfies the conditions of Re (λ) and Rth (λ) in the following formulas (I) and (II).
(I) 0 ≦ Re (630) ≦ 10 and | Rth (630) | ≦ 25
(II) | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35
[In the above formula, Re (λ) is the front retardation value at wavelength λnm (unit: nm), Rth (λ) is the retardation value in film thickness direction at wavelength λnm (unit: nm), and Δn is measured at wavelength 590 nm. The birefringence of the liquid crystal molecules in the liquid crystal cell, d is the thickness (unit: nm) of the liquid crystal layer of the liquid crystal cell. ]

2)前記透明支持体が、膜厚方向のレターデーション値Rthを低下させる化合物を、下記式(III)および(IV)をみたす範囲で少なくとも一種含有することを特徴とする上記1)に記載の光学補償フイルム。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aは前記セルロースアシレートの質量を100としたときの化合物の質量(%)である。]
2) The transparent support contains at least one compound that reduces the retardation value Rth in the film thickness direction within the range satisfying the following formulas (III) and (IV). Optical compensation film.
(III) (Rth (A) −Rth (0)) / A ≦ −1.0
(IV) 0.01 ≦ A ≦ 30
[Wherein Rth (A) is Rth (nm) of a film containing A% of a compound that lowers Rth, Rth (0) is Rth (nm) of a film not containing a compound that lowers Rth, and A is the cellulose. This is the mass (%) of the compound when the mass of the acylate is 100. ]

3)前記透明支持体が、アシル置換度2.85〜3.00のセルロースアシレートに、Re(λ)およびRth(λ)を低下させる化合物の少なくとも1種を、前記セルロースアシレートに対して0.01〜30質量%の割合で添加して得られたものであることを特徴とする上記2)に記載の光学補償フィルム。   3) The transparent support is a cellulose acylate having an acyl substitution degree of 2.85 to 3.00, and at least one compound for reducing Re (λ) and Rth (λ) is added to the cellulose acylate. 2. The optical compensation film as described in 2) above, which is obtained by adding 0.01 to 30% by mass.

4)前記液晶性化合物層がディスコティック液晶性化合物を含有することを特徴とする上記1)〜3)のいずれかに記載の光学補償フィルム。   4) The optical compensation film as described in any one of 1) to 3) above, wherein the liquid crystalline compound layer contains a discotic liquid crystalline compound.

5)前記液晶性化合物層における液晶化合物の平均の遅相軸の向きが、前記液晶性化合物層の厚さ方向で捩れていることを特徴とする上記4)に記載の光学補償フィルム。   5) The optical compensation film as described in 4) above, wherein the direction of the average slow axis of the liquid crystal compound in the liquid crystal compound layer is twisted in the thickness direction of the liquid crystal compound layer.

6)前記液晶性化合物層における遅相軸の向きが、近傍の偏光膜の吸収軸又は透過軸の向きから1°〜45°回転していることを特徴とする上記4)に記載の光学補償フィルム。   6) The optical compensation as described in 4) above, wherein the direction of the slow axis in the liquid crystalline compound layer is rotated by 1 ° to 45 ° from the direction of the absorption axis or transmission axis of a nearby polarizing film. the film.

7)上記1)〜6)のいずれかに記載の光学補償フィルムの1枚または2枚以上と、偏光膜とを有することを特徴とする楕円偏光板。   7) An elliptically polarizing plate having one or more of the optical compensation films according to any one of 1) to 6) and a polarizing film.

8)上記1)〜6)のいずれかに記載の光学補償フィルムを有することを特徴とする液晶表示装置。   8) A liquid crystal display device comprising the optical compensation film according to any one of 1) to 6) above.

9)ツイステッドネマチック配向モードの液晶セルの両側に配置される偏光板であって、該偏光板は、偏光膜と、該偏光膜より液晶セル側に配置された液晶性化合物層および透明支持体とを有し、該透明支持体が、下記式(I)および(II)のRe(λ)およびRth(λ)の条件を満たすセルロースアシレートフィルムからなることを特徴とする偏光板。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
[前記式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]
9) A polarizing plate disposed on both sides of a twisted nematic alignment mode liquid crystal cell, the polarizing plate comprising: a polarizing film; a liquid crystalline compound layer disposed on the liquid crystal cell side of the polarizing film; and a transparent support; And the transparent support is made of a cellulose acylate film satisfying the conditions of Re (λ) and Rth (λ) in the following formulas (I) and (II).
(I) 0 ≦ Re (630) ≦ 10 and | Rth (630) | ≦ 25
(II) | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35
[In the above formula, Re (λ) is the front retardation value (unit: nm) at the wavelength λnm, and Rth (λ) is the retardation value (unit: nm) in the film thickness direction at the wavelength λnm. ]

10)前記透明支持体が、膜厚方向のレターデーション値Rthを低下させる化合物を、下記式(III)および(IV)をみたす範囲で少なくとも一種含有することを特徴とする上記9)に記載の偏光板。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aは前記セルロースアシレートの質量を100としたときの化合物の質量(%)である。]
10) The transparent support comprises at least one compound that decreases the retardation value Rth in the film thickness direction within the range satisfying the following formulas (III) and (IV). Polarizer.
(III) (Rth (A) −Rth (0)) / A ≦ −1.0
(IV) 0.01 ≦ A ≦ 30
[Wherein Rth (A) is Rth (nm) of a film containing A% of a compound that lowers Rth, Rth (0) is Rth (nm) of a film not containing a compound that lowers Rth, and A is the cellulose. This is the mass (%) of the compound when the mass of the acylate is 100. ]

本発明によれば、TNモード液晶表示装置の表示特性、特に下方向から観察される階調の反転現象を改良し、その使用領域を更に拡大することのできる、光学補償フィルム、偏光板および液晶表示装置が提供される。   According to the present invention, an optical compensation film, a polarizing plate, and a liquid crystal capable of improving the display characteristics of a TN mode liquid crystal display device, in particular, the inversion phenomenon of gradation observed from below, and further expanding the use area thereof. A display device is provided.

本発明において用いられる、透明支持体の光学的異方性(Re、Rth)が小さいセルロースアシレートフィルムとしては、波長630nmにおける正面レターデーション値Re(630)が10nm以下(0≦Re(630)≦10)でありかつ、膜厚方向のレターデーション値Rth(630)の絶対値が25nm以下(|Rth(630)|≦25nm)である。さらにのぞましくは、0≦Re(630)≦5かつ|Rth(630)|≦20nmであり、0≦Re(630)≦2かつ|Rth(630)|≦15nmである。   The cellulose acylate film having a small optical anisotropy (Re, Rth) of the transparent support used in the present invention has a front retardation value Re (630) at a wavelength of 630 nm of 10 nm or less (0 ≦ Re (630). ≦ 10) and the retardation value Rth (630) in the film thickness direction is 25 nm or less (| Rth (630) | ≦ 25 nm). More preferably, 0 ≦ Re (630) ≦ 5 and | Rth (630) | ≦ 20 nm, and 0 ≦ Re (630) ≦ 2 and | Rth (630) | ≦ 15 nm.

また本発明におけるセルロースアシレートフィルムは、例えば下記で説明するような添加剤を用いることによって、波長400nmと700nmでのRe、Rthの差、|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を小さくする必要がある。
具体的には、セルロースアシレートフィルムは、|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35である。さらにのぞましくは、|Re(400)−Re(700)|≦5かつ|Rth(400)−Rth(700)|≦25であり、|Re(400)−Re(700)|≦3かつ|Rth(400)−Rth(700)|≦15であることが特にのぞましい。
In the cellulose acylate film of the present invention, for example, by using an additive as described below, the difference between Re and Rth at wavelengths of 400 nm and 700 nm, | Re (400) −Re (700) | and | Rth It is necessary to reduce (400) −Rth (700) |.
Specifically, the cellulose acylate film satisfies | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35. More preferably, | Re (400) −Re (700) | ≦ 5 and | Rth (400) −Rth (700) | ≦ 25, and | Re (400) −Re (700) | ≦ 3 It is particularly desirable that | Rth (400) −Rth (700) | ≦ 15.

また、本発明の光学補償フィルムにおいて、液晶性化合物層として、例えば前記特許文献4等に開示されるディスコティック液晶性化合物を含有させることにより、表示画面下方向視野に観察される階調の反転現象(以下、下方向階調反転)の改善された液晶表示装置を実現する光学補償フィルムが実現される。
さらに、液晶性化合物層における遅相軸の向きが、前記液晶性化合物層の厚さ方向で捩れている構造を有することによって下階調反転現象の改善に加え、広いコントラスト視野角を実現することが可能となる。
さらにまた、液晶性化合物層における遅相軸の向きが、近傍の偏光膜の吸収軸又は透過軸の向きから1°〜45°回転していることによって下階調反転現象の改善に加え、広いコントラスト視野角を実現することが可能となる。
In addition, in the optical compensation film of the present invention, as a liquid crystal compound layer, for example, by incorporating a discotic liquid crystal compound disclosed in Patent Document 4 or the like, gradation inversion observed in the visual field on the lower side of the display screen An optical compensation film for realizing a liquid crystal display device with an improved phenomenon (hereinafter referred to as “downward gradation inversion”) is realized.
Furthermore, by having a structure in which the direction of the slow axis in the liquid crystalline compound layer is twisted in the thickness direction of the liquid crystalline compound layer, in addition to improving the lower gradation inversion phenomenon, a wide contrast viewing angle is realized. Is possible.
Furthermore, since the direction of the slow axis in the liquid crystal compound layer is rotated from 1 ° to 45 ° from the direction of the absorption axis or transmission axis of the nearby polarizing film, the wide gradation inversion phenomenon is widened. A contrast viewing angle can be realized.

また、本発明の光学補償フィルムは、ツイステッドネマチック配向モードの液晶セルの両側に配置される偏光板、例えば楕円偏光板として好適に使用することができる。
本発明の光学補償フィルム、あるいはこれを用いた偏光板を備えた液晶表示装置は、特に下方向から観察される階調の反転現象が改良され、その使用領域を更に拡大することができる。
The optical compensation film of the present invention can be suitably used as a polarizing plate disposed on both sides of a twisted nematic alignment mode liquid crystal cell, for example, an elliptical polarizing plate.
The liquid crystal display device provided with the optical compensation film of the present invention or the polarizing plate using the same can improve the gradation reversal phenomenon observed from the lower side in particular, and can further expand the use area.

次に、本発明に用いるセルロースアシレートフィルムを詳しく説明する。
[セルロースアシレート原料綿]
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載されているが、本発明は、該記載に制限されるものではない。
Next, the cellulose acylate film used in the present invention will be described in detail.
[Cellulose acylate raw cotton]
Cellulose acylate raw material cellulose used in the present invention includes cotton linter and wood pulp (hardwood pulp, softwood pulp) and the like, and any cellulose acylate obtained from any raw material cellulose can be used, optionally mixed. May be. Details of these raw material celluloses are, for example, the plastic material course (17) Fibrous resin (manufactured by Marusawa and Uda, Nikkan Kogyo Shimbun, published in 1970) and the Japan Institute of Technology Open Technical Report 2001-1745 (7-8). However, the present invention is not limited to the description.

[セルロースアシレート置換度]
次に上述のセルロースを原料に製造される本発明のセルロースアシレートについて記載する。本発明のセルロースアシレートはセルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
[Substitution degree of cellulose acylate]
Next, the cellulose acylate of the present invention produced from the above-mentioned cellulose will be described. The cellulose acylate of the present invention is obtained by acylating a hydroxyl group of cellulose, and the substituent can be any acetyl group having 2 carbon atoms in the acyl group to those having 22 carbon atoms. In the cellulose acylate of the present invention, the degree of substitution of cellulose with a hydroxyl group is not particularly limited. You can get a degree. As a measuring method, it can carry out according to ASTM D-817-91.

上述のように本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることがのぞましい。さらには置換度が2.75〜3.00であることがのぞましく、2.85〜3.00であることがよりのぞましい。   As described above, in the cellulose acylate of the present invention, the degree of substitution of the cellulose with a hydroxyl group is not particularly limited, but the degree of acyl substitution with the hydroxyl group of cellulose is preferably 2.50 to 3.00. Furthermore, the substitution degree is preferably 2.75 to 3.00, and more preferably 2.85 to 3.00.

セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でも芳香族基でもよく特に限定されず、単一でも2種類以上の混合物でもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。 これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることが出来る。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどが好ましく、アセチル、プロピオニル、ブタノイルがより好ましい。   Among the acetic acid and / or the fatty acid having 3 to 22 carbon atoms substituted for the hydroxyl group of cellulose, the acyl group having 2 to 22 carbon atoms may be an aliphatic group or an aromatic group, and is not particularly limited. It may be a mixture of more than one type. These are, for example, cellulose alkylcarbonyl esters, alkenylcarbonyl esters, aromatic carbonyl esters, aromatic alkylcarbonyl esters, and the like, each of which may further have a substituted group. These preferred acyl groups include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, iso-butanoyl, t-butanoyl, cyclohexanecarbonyl, Examples include oleoyl, benzoyl, naphthylcarbonyl, and cinnamoyl groups. Among these, acetyl, propionyl, butanoyl, dodecanoyl, octadecanoyl, t-butanoyl, oleoyl, benzoyl, naphthylcarbonyl, cinnamoyl and the like are preferable, and acetyl, propionyl and butanoyl are more preferable.

本発明者が鋭意検討した結果、上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.50〜3.00の場合にセルロースアシレートフィルムの光学的異方性が低下できることがわかった。より好ましいアシル置換度は2.60〜3.00であり、さらにのぞましくは2.65〜3.00である。   As a result of intensive studies by the present inventors, among the acyl substituents substituted on the above-mentioned cellulose hydroxyl groups, when the acetyl group / propionyl group / butanoyl group are substantially composed of at least two kinds, the total substitution degree is It was found that the optical anisotropy of the cellulose acylate film can be reduced in the case of 2.50 to 3.00. The degree of acyl substitution is more preferably 2.60 to 3.00, and even more preferably 2.65 to 3.00.

[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538号公報に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
[Degree of polymerization of cellulose acylate]
The degree of polymerization of cellulose acylate preferably used in the present invention is 180 to 700 in terms of viscosity average polymerization degree, and in cellulose acetate, 180 to 550 is more preferable, 180 to 400 is more preferable, and 180 to 350 is particularly preferable. . If the degree of polymerization is too high, the viscosity of the cellulose acylate dope solution becomes high, and film production becomes difficult due to casting. If the degree of polymerization is too low, the strength of the produced film will decrease. The average degree of polymerization can be measured by Uda et al.'S intrinsic viscosity method (Kazuo Uda, Hideo Saito, Journal of Textile Society, Vol. This is described in detail in JP-A-9-95538.
The molecular weight distribution of cellulose acylate preferably used in the present invention is evaluated by gel permeation chromatography, and its polydispersity index Mw / Mn (Mw is a mass average molecular weight, Mn is a number average molecular weight) is small, and the molecular weight distribution. Is preferably narrow. The specific value of Mw / Mn is preferably 1.0 to 3.0, more preferably 1.0 to 2.0, and most preferably 1.0 to 1.6. preferable.

低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。 本発明のセルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下である。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%の含水率が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートの合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。   When the low molecular component is removed, the average molecular weight (degree of polymerization) increases, but the viscosity becomes lower than that of normal cellulose acylate, which is useful. Cellulose acylate having a small amount of low molecular components can be obtained by removing low molecular components from cellulose acylate synthesized by a usual method. The removal of the low molecular component can be carried out by washing the cellulose acylate with an appropriate organic solvent. In addition, when manufacturing a cellulose acylate with few low molecular components, it is preferable to adjust the sulfuric acid catalyst amount in an acetylation reaction to 0.5-25 mass parts with respect to 100 mass parts of cellulose. When the amount of the sulfuric acid catalyst is in the above range, cellulose acylate that is preferable in terms of molecular weight distribution (uniform molecular weight distribution) can be synthesized. When used in the production of the cellulose acylate of the present invention, the water content is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly 0.7% by mass or less. . In general, cellulose acylate contains water and is known to have a moisture content of 2.5 to 5% by mass. In order to obtain the moisture content of the cellulose acylate in the present invention, it is necessary to dry, and the method is not particularly limited as long as the desired moisture content is obtained. The method for synthesizing these cellulose acylates of the present invention is described in detail on pages 7 to 12 in the Japan Society for Invention and Innovation (Public Technical Number 2001-1745, published on March 15, 2001, Japan Society for Invention). .

本発明のセルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。   The cellulose acylate of the present invention can be used as a single group or a mixture of two or more different types of cellulose acylates as long as the substituent, substitution degree, polymerization degree, molecular weight distribution and the like are within the above-mentioned ranges.

[セルロースアシレートへの添加剤]
本発明のセルロースアシレートには、種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程(セルロースアシレート溶液の作製工程)における何れでも良いが、ドープ作製工程の最後に添加剤を添加し調製する工程を行ってもよい。
これらの添加剤の添加量を調整することにより、本発明の要件である、
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
を満たすことができる。
[Additive to cellulose acylate]
The cellulose acylate of the present invention has various additives (for example, compounds that reduce optical anisotropy, wavelength dispersion adjusting agents, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, optical property adjustments). Agents), etc., which are described below. Moreover, the addition time may be any in the dope preparation process (the preparation process of the cellulose acylate solution), but a step of adding and preparing an additive may be performed at the end of the dope preparation process.
By adjusting the amount of these additives added, which is a requirement of the present invention,
(I) 0 ≦ Re (630) ≦ 10 and | Rth (630) | ≦ 25
(II) | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35
Can be met.

本発明のセルロースアシレートフィルムの光学的異方性、とくにフィルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(iii)、(iv)をみたす範囲で少なくとも一種含有することがのぞましい。
(iii)(Rth(A)−Rth(0))/A≦−1.0
(iv)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aはセルロースアシレートの質量を100としたときの化合物の質量(%)である。]
上記式(iii)、(iv)は
(iii)(Rth(A)−Rth(0))/A≦−2.0
(iv)0.05≦A≦25
であることがよりのぞましく、
(iii)(Rth(A)−Rth(0))/A≦−3.0
(iv)0.1≦A≦20
であることがさらにのぞましい。
It is preferable to contain at least one compound that reduces the optical anisotropy of the cellulose acylate film of the invention, particularly the retardation Rth in the film thickness direction, within the range satisfying the following formulas (iii) and (iv).
(Iii) (Rth (A) −Rth (0)) / A ≦ −1.0
(Iv) 0.01 ≦ A ≦ 30
[Wherein Rth (A) is Rth (nm) of a film containing A% of a compound that lowers Rth, Rth (0) is Rth (nm) of a film not containing a compound that lowers Rth, and A is cellulose acylate. This is the mass (%) of the compound when the mass of the rate is 100. ]
The above formulas (iii) and (iv) are as follows: (iii) (Rth (A) −Rth (0)) / A ≦ −2.0
(Iv) 0.05 ≦ A ≦ 25
It is more desirable to be
(Iii) (Rth (A) −Rth (0)) / A ≦ −3.0
(Iv) 0.1 ≦ A ≦ 20
It is even more desirable.

[セルロースアシレートフィルムの光学的異方性を低下させる化合物の構造的特徴]
セルロースアシレートフィルムの光学的異方性を低下させる化合物について説明する。 本発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReおよびRthがゼロに近くなるようにした。このためには光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
[Structural characteristics of compounds that reduce the optical anisotropy of cellulose acylate films]
The compound that reduces the optical anisotropy of the cellulose acylate film will be described. As a result of intensive studies, the present inventors have sufficiently reduced the optical anisotropy by using a compound that suppresses in-plane and film thickness orientation of cellulose acylate in the film, and Re and Rth are It was close to zero. For this purpose, it is advantageous that the compound that lowers the optical anisotropy is sufficiently compatible with cellulose acylate, and the compound itself does not have a rod-like structure or a planar structure. Specifically, when a plurality of planar functional groups such as aromatic groups are provided, a structure having these functional groups in a non-planar rather than the same plane is advantageous.

(logP値)
本発明のセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制して光学的異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0ないし7である化合物が好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1ないし6であり、特に好ましい範囲は1.5ないし5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.- Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。なお本明細書に記載のlogPの値は、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)により求めたものである。
(LogP value)
In producing the cellulose acylate film of the present invention, as described above, among the compounds that suppress the orientation of the cellulose acylate in the film in the plane and in the film thickness direction and reduce the optical anisotropy, Compounds having an octanol-water partition coefficient (log P value) of 0 to 7 are preferred. A compound having a log P value of more than 7 is poor in compatibility with cellulose acylate, and tends to cause film turbidity or powder blowing. In addition, since a compound having a log P value smaller than 0 has high hydrophilicity, the water resistance of the cellulose acetate film may be deteriorated. A more preferable range of the logP value is 1 to 6, and a particularly preferable range is 1.5 to 5.
The octanol-water partition coefficient (log P value) can be measured by a flask immersion method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (log P value) can be estimated by a computational chemical method or an empirical method instead of the actual measurement. As a calculation method, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987).), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163 (1989).) Broto's fragmentation method (Eur. J. Med. Chem.- Chim. Theor., 19, 71 (1984).) And the like are preferably used, but Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27 , 21 (1987). When the log P value of a certain compound varies depending on the measurement method or calculation method, it is preferable to determine whether or not the compound is within the scope of the present invention by the Crippen's fragmentation method. In addition, the value of logP described in this specification is determined by the Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)).

[光学的異方性を低下させる化合物の物性]
光学的異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学的異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学的異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学的異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学的異方性を低下させる化合物の添加量は、セルロースアシレートの固形分に対し0.01ないし30質量%であることが好ましく、1ないし25質量%であることがより好ましく、5ないし20質量%であることが特に好ましい。
光学的異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学的異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ作製工程の最後に行ってもよい。
[Physical properties of compounds that reduce optical anisotropy]
The compound that decreases the optical anisotropy may or may not contain an aromatic group. The compound that reduces the optical anisotropy preferably has a molecular weight of 150 or more and 3000 or less, more preferably 170 or more and 2000 or less, and particularly preferably 200 or more and 1000 or less. A specific monomer structure may be used as long as these molecular weights are within the range, and an oligomer structure or a polymer structure in which a plurality of the monomer units are bonded may be used.
The compound that reduces optical anisotropy is preferably a liquid at 25 ° C. or a solid having a melting point of 25 to 250 ° C., more preferably a liquid at 25 ° C. or a melting point of 25 to 200. C solid. Moreover, it is preferable that the compound which reduces optical anisotropy does not volatilize in the process of dope casting and drying of cellulose acylate film production.
The amount of the compound that decreases the optical anisotropy is preferably 0.01 to 30% by mass, more preferably 1 to 25% by mass, more preferably 5 to 20%, based on the solid content of cellulose acylate. It is particularly preferable that the content is% by mass.
The compound that decreases the optical anisotropy may be used alone, or two or more compounds may be mixed and used in an arbitrary ratio.
The timing for adding the compound for reducing the optical anisotropy may be any time during the dope preparation process, or may be performed at the end of the dope preparation process.

光学的異方性を低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。当該化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。   The compound that reduces the optical anisotropy is such that the average content of the compound in the portion from the surface on at least one side to 10% of the total film thickness is the average content of the compound in the center of the cellulose acylate film. 80-99% of the rate. The amount of the compound present can be determined, for example, by measuring the amount of the compound at the surface and in the center by a method using an infrared absorption spectrum described in JP-A-8-57879.

以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学的異方性を低下させる化合物の具体例としては、下記一般式(13)、(18)、(19)のいずれかで表される化合物が挙げられるが、本発明はこれら化合物に限定されない。   Specific examples of the compound for reducing the optical anisotropy of the cellulose acylate film preferably used in the present invention are represented by any of the following general formulas (13), (18), and (19). Although a compound is mentioned, this invention is not limited to these compounds.

Figure 2006178359
Figure 2006178359

[一般式(13)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。ただしR1、R2およびR3の炭素原子数の総和は10以上である。]

Figure 2006178359
[In General Formula (13), R 1 represents an alkyl group or an aryl group, and R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, or an aryl group. However, the total number of carbon atoms of R 1 , R 2 and R 3 is 10 or more. ]
Figure 2006178359

[一般式(18)において、R1はアルキル基またはアリール基を表し、R2およびR3はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。] [In General Formula (18), R 1 represents an alkyl group or an aryl group, and R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, or an aryl group. ]

Figure 2006178359
Figure 2006178359

[一般式(19)において、R4、R5およびR6はそれぞれ独立にアルキル基またはアリール基を表す。] [In the general formula (19), R 4 , R 5 and R 6 each independently represents an alkyl group or an aryl group. ]

一般式(13)の化合物について説明する。
上記一般式(13)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。また、R1、R2およびR3の炭素原子数の総和が10以上であることが特に好ましい。R1、R2およびR3は置換されていてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1ないし25のものが好ましく、6ないし25のものがより好ましく、6ないし20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t-オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシル)が特に好ましい。アリール基としては炭素原子数が6ないし30のものが好ましく、6ないし24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニル)が特に好ましい。一般式(13)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
The compound of the general formula (13) will be described.
In the general formula (13), R 1 represents an alkyl group or an aryl group, and R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, or an aryl group. Further, the total number of carbon atoms of R 1 , R 2 and R 3 is particularly preferably 10 or more. R 1 , R 2 and R 3 may be substituted, and the substituent is preferably a fluorine atom, an alkyl group, an aryl group, an alkoxy group, a sulfone group and a sulfonamide group, and an alkyl group, an aryl group, an alkoxy group, A sulfone group and a sulfonamide group are particularly preferred. Further, the alkyl group may be linear, branched or cyclic, and preferably has 1 to 25 carbon atoms, more preferably 6 to 25, and more preferably 6 to 20 (E.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, amyl, isoamyl, t-amyl, hexyl, cyclohexyl, heptyl, octyl, bicyclooctyl, nonyl, adamantyl, decyl, t-octyl, undecyl, Dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, didecyl) are particularly preferred. As the aryl group, those having 6 to 30 carbon atoms are preferable, and those having 6 to 24 carbon atoms (for example, phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, triphenylphenyl) are particularly preferable. Preferred examples of the compound represented by the general formula (13) are shown below, but the present invention is not limited to these specific examples.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

以下に、一般式(18)または一般式(19)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。   Although the preferable example of a compound represented by General formula (18) or General formula (19) below is shown below, this invention is not limited to these specific examples.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

式中、Priはイソプロピル基を表す。 In the formula, Pr i represents an isopropyl group.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

[波長分散調整剤]
セルロースアシレートフィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。本発明のセルロースアシレートフィルムのRthの波長分散を良化させるためには、下記式(iv)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(iv)、(v)をみたす範囲で少なくとも一種含有することがのぞましい。
(iii)ΔRth=|Rth(400)−Rth(700)|
(iv)(ΔRth(B)−ΔRth(0))/B≦−2.0
(vi)0.01≦B≦30
[式中、ΔRth(B)はRthの波長分散を低下させる化合物をB%含有したフィルムのΔRth(nm)、ΔRth(0)はRthの波長分散を低下させる化合物を含有しないフィルムのΔRth(nm)、Bはセルロースアシレートの質量を100としたときの化合物の質量(%)である。]
上記式(v)、(vi)は
(v)(ΔRth(B)−ΔRth(0))/B≦−3.0
(vi)0.05≦B≦25
であることがよりのぞましく、
(v)(ΔRth(B)−ΔRth(0))/B≦−4.0
(vi)0.1≦B≦20
であることがさらにのぞましい。
上記の波長分散調整剤は、中でも、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|の双方を低下させる化合物が好ましく、セルロースアシレート固形分に対して0.01〜30質量%使用するのがよい。
[Wavelength dispersion modifier]
A compound for reducing the wavelength dispersion of the cellulose acylate film (hereinafter also referred to as a wavelength dispersion adjusting agent) will be described. In order to improve the Rth wavelength dispersion of the cellulose acylate film of the present invention, a compound that reduces the Rth wavelength dispersion ΔRth = | Rth (400) −Rth (700) | represented by the following formula (iv): Is preferably contained within a range satisfying the following formulas (iv) and (v).
(Iii) ΔRth = | Rth (400) −Rth (700) |
(Iv) (ΔRth (B) −ΔRth (0)) / B ≦ −2.0
(Vi) 0.01 ≦ B ≦ 30
[Wherein, ΔRth (B) is ΔRth (nm) of a film containing B% of a compound that lowers Rth wavelength dispersion, and ΔRth (0) is ΔRth (nm of a film not containing a compound that reduces Rth wavelength dispersion) ), B is the mass (%) of the compound when the mass of the cellulose acylate is 100. ]
The above formulas (v) and (vi) are: (v) (ΔRth (B) −ΔRth (0)) / B ≦ −3.0
(Vi) 0.05 ≦ B ≦ 25
It is more desirable to be
(V) (ΔRth (B) −ΔRth (0)) / B ≦ −4.0
(Vi) 0.1 ≦ B ≦ 20
It is even more desirable.
The above-mentioned wavelength dispersion adjusting agent has an absorption in the ultraviolet region of 200 to 400 nm, and lowers both | Re (400) −Re (700) | and | Rth (400) −Rth (700) | The compound to be made is preferable, and it is good to use 0.01-30 mass% with respect to cellulose acylate solid content.

セルロースアシレートフィルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。   In general, the Re and Rth values of the cellulose acylate film have a wavelength dispersion characteristic that the longer wavelength side is larger than the shorter wavelength side. Therefore, it is required to smooth the chromatic dispersion by increasing Re and Rth on the relatively short wavelength side. On the other hand, a compound having absorption in the ultraviolet region of 200 to 400 nm has a wavelength dispersion characteristic in which the absorbance on the long wavelength side is larger than that on the short wavelength side. If the compound itself is isotropically present inside the cellulose acylate film, it is assumed that the birefringence of the compound itself, and thus the wavelength dispersion of Re and Rth, is large on the short wavelength side as well as the wavelength dispersion of absorbance. .

したがって上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが要求される。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。   Therefore, as described above, by using the compound having absorption in the ultraviolet region of 200 to 400 nm and assuming that the wavelength dispersion of Re and Rth of the compound itself is large on the short wavelength side, the Re and Rth of the cellulose acylate film are used. Chromatic dispersion can be prepared. For this purpose, the compound for adjusting the wavelength dispersion is required to be sufficiently homogeneously compatible with the cellulose acylate. The absorption band range in the ultraviolet region of such a compound is preferably 200 to 400 nm, more preferably 220 to 395 nm, and even more preferably 240 to 390 nm.

また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置ではより少ない電力で輝度を高めるために、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物をセルロースアシレートフィルムに添加する場合、分光透過率が優れていることが要求される。本発明のセルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%以上95%以下であり、かつ波長350nmにおける分光透過率が10%以下であることがのぞましい。 In recent years, liquid crystal display devices such as televisions, notebook personal computers, and mobile portable terminals have been required to have excellent transmittance of optical members used in liquid crystal display devices in order to increase luminance with less power. In this respect, a cellulose acylate film is a compound having absorption in the ultraviolet region of 200 to 400 nm and reducing | Re (400) -Re (700) | and | Rth (400) -Rth (700) | When it is added, it is required that the spectral transmittance is excellent. In the cellulose acylate film of the present invention, the spectral transmittance at a wavelength of 380 nm is preferably 45% or more and 95% or less, and the spectral transmittance at a wavelength of 350 nm is preferably 10% or less.

上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、更に好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。   As described above, the wavelength dispersion adjusting agent preferably used in the present invention preferably has a molecular weight of 250 to 1000 from the viewpoint of volatility. More preferably, it is 260-800, More preferably, it is 270-800, Most preferably, it is 300-800. A specific monomer structure may be used as long as these molecular weights are within the range, and an oligomer structure or a polymer structure in which a plurality of the monomer units are bonded may be used.

波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。   It is preferable that the wavelength dispersion adjusting agent does not volatilize during the dope casting and drying process for producing the cellulose acylate film.

(化合物添加量)
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレートに対し0.05ないし25質量%であることが好ましく、0.05ないし25質量%であることがより好ましく、0.1ないし20質量%であることが特に好ましい。
(Compound addition amount)
The amount of the chromatic dispersion adjusting agent preferably used in the present invention described above is preferably 0.05 to 25% by mass, more preferably 0.05 to 25% by mass, based on cellulose acylate. It is particularly preferably 1 to 20% by mass.

(化合物添加の方法)
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ作製工程の最後に行ってもよい。
(Method of compound addition)
These wavelength dispersion adjusting agents may be used alone or in combination of two or more compounds at an arbitrary ratio.
The timing of adding these wavelength dispersion adjusting agents may be any time during the dope preparation process, or may be performed at the end of the dope preparation process.

本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。以下、好ましい化合物を例示する。   Specific examples of the wavelength dispersion adjusting agent preferably used in the present invention include, for example, benzotriazole compounds, benzophenone compounds, cyano group-containing compounds, oxybenzophenone compounds, salicylic acid ester compounds, nickel complex compounds, and the like. However, the present invention is not limited to these compounds. Hereinafter, preferred compounds are exemplified.

ベンゾトリアゾール系化合物としては一般式(101)で示されるものが本発明の波長分散調整剤として好ましく用いられる。   As the benzotriazole-based compound, those represented by the general formula (101) are preferably used as the wavelength dispersion adjusting agent of the present invention.

一般式(101) Q1−Q2−OH Formula (101) Q 1 -Q 2 -OH

(式中、Q1は含窒素芳香族ヘテロ環、Q2は芳香族環を表す。) (In the formula, Q 1 represents a nitrogen-containing aromatic heterocycle, and Q 2 represents an aromatic ring.)

1は含窒素芳香族へテロ環をあらわし、好ましくは5ないし7員の含窒素芳香族ヘテロ環であり、より好ましくは5ないし6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等があげられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
1で表される含窒素芳香族ヘテロ環は更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
Q 1 represents a nitrogen-containing aromatic heterocycle, preferably a 5- to 7-membered nitrogen-containing aromatic heterocycle, more preferably a 5- to 6-membered nitrogen-containing aromatic heterocycle, such as imidazole, Pyrazole, triazole, tetrazole, thiazole, oxazole, selenazole, benzotriazole, benzothiazole, benzoxazole, benzoselenazole, thiadiazole, oxadiazole, naphthothiazole, naphthoxazole, azabenzimidazole, purine, pyridine, pyrazine, pyrimidine, pyridazine , Triazine, triazaindene, tetrazaindene and the like, more preferably a 5-membered nitrogen-containing aromatic heterocycle, specifically, imidazole, pyrazole, triazole, tetrazole, thiazole, oxa Lumpur, benzotriazole, benzothiazole, benzoxazole, thiadiazole, oxadiazole preferably, particularly preferably benzotriazole.
The nitrogen-containing aromatic heterocycle represented by Q 1 may further have a substituent, and the substituent T described below can be applied as the substituent. In addition, when there are a plurality of substituents, each may be condensed to form a ring.

2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)、更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
The aromatic ring represented by Q 2 may be an aromatic hydrocarbon ring or an aromatic heterocycle. These may be monocyclic or may form a condensed ring with another ring.
The aromatic hydrocarbon ring is preferably (preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms (for example, benzene ring, naphthalene ring etc.), more preferably 6 carbon atoms. An aromatic hydrocarbon ring having 20 to 20 carbon atoms, more preferably an aromatic hydrocarbon ring having 6 to 12 carbon atoms.), More preferably a benzene ring.
The aromatic heterocycle is preferably an aromatic heterocycle containing a nitrogen atom or a sulfur atom. Specific examples of the heterocyclic ring include, for example, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, Examples include phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene. Preferred examples of the aromatic heterocycle include pyridine, triazine, and quinoline.
The aromatic ring represented by Q 2 is preferably an aromatic hydrocarbon ring, more preferably a naphthalene ring or a benzene ring, and particularly preferably a benzene ring. Q 2 may further have a substituent, and the substituent T described later is preferable.
Examples of the substituent T include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, and n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2 to 8, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), an alkynyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2-8, for example, propargyl, 3-pentynyl, etc.), aryl groups (preferably having 6-30 carbon atoms) More preferably, it has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl and the like, and a substituted or unsubstituted amino group (preferably having 0 to 0 carbon atoms). 20, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, etc.), an alkoxy group (preferably having a carbon number) 1 to 20, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, butoxy, etc.), an aryloxy group (preferably 6 to 20 carbon atoms, more Preferably it has 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 2-naphthyloxy and the like. An acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl). An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 20 carbon atoms, More preferably, it has 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms. Nzoyloxy and the like. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms. And sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl and methylsulfamoyl). , Dimethylsulfamoyl, phenylsulfamoyl, etc.), a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl). , Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.), arylthio group (preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably Has 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms). For example, ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms) More preferably, it is C1-C16, Most preferably, it is C1-C12, for example, diethyl phosphoric acid amide, phenylphosphoric acid amide etc. are mentioned. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, piperidyl , Morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyl, triphenylsilyl, etc.) . These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.

一般式(101)として好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
As the general formula (101), a compound represented by the following general formula (101-A) is preferable.
General formula (101-A)

Figure 2006178359
Figure 2006178359

(式中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。) (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 each independently represents a hydrogen atom or a substituent)

1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 each independently represent a hydrogen atom or a substituent. Applicable. These substituents may be further substituted with another substituent, and the substituents may be condensed to form a ring structure.
R 1 and R 3 are preferably hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, substituted or unsubstituted amino groups, alkoxy groups, aryloxy groups, hydroxy groups, and halogen atoms, more preferably hydrogen atoms. An atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group and a halogen atom, more preferably a hydrogen atom and an alkyl group having 1 to 12 carbon atoms, particularly preferably an alkyl group having 1 to 12 carbon atoms (preferably 4 to 12 carbon atoms).

2、およびR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。 R 2 and R 4 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an aryloxy group, a hydroxy group, and a halogen atom, more preferably A hydrogen atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group, and a halogen atom, more preferably a hydrogen atom and an alkyl group having 1 to 12 carbon atoms, particularly preferably a hydrogen atom and a methyl group, most preferably Is a hydrogen atom.

5およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。 R 5 and R 8 are preferably hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, substituted or unsubstituted amino groups, alkoxy groups, aryloxy groups, hydroxy groups, and halogen atoms, more preferably hydrogen atoms. An atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group, and a halogen atom, more preferably a hydrogen atom and an alkyl group having 1 to 12 carbon atoms, particularly preferably a hydrogen atom and a methyl group, most preferably It is a hydrogen atom.

6およびR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。 R 6 and R 7 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an aryloxy group, a hydroxy group, and a halogen atom, more preferably a hydrogen atom. An atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group, and a halogen atom, more preferably a hydrogen atom and a halogen atom, and particularly preferably a hydrogen atom and a chlorine atom.

一般式(101)としてより好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
More preferable as the general formula (101) is a compound represented by the following general formula (101-B).
General formula (101-B)

Figure 2006178359
Figure 2006178359

(式中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。) (In formula, R < 1 >, R < 3 >, R < 6 > and R < 7 > are synonymous with those in general formula (101-A), and their preferred ranges are also the same.)

以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。   Specific examples of the compound represented by formula (101) are listed below, but the present invention is not limited to the following specific examples.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずに本発明のセルロースアシレートフィルムを作製した場合、保留性の点で有利であることが確認された。   Among the benzotriazole compounds exemplified in the above examples, when the cellulose acylate film of the present invention was produced without including those having a molecular weight of 320 or less, it was confirmed that it was advantageous in terms of retention.

また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては一般式(102)で示されるものが好ましく用いられる。
一般式(102)
In addition, as the benzophenone compound which is one of the wavelength dispersion adjusting agents used in the present invention, those represented by the general formula (102) are preferably used.
Formula (102)

Figure 2006178359
Figure 2006178359

(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。) (In the formula, Q 1 and Q 2 each independently represent an aromatic ring. X represents NR (R represents a hydrogen atom or a substituent), an oxygen atom or a sulfur atom.)

1およびQ2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換または無置換のベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
The aromatic ring represented by Q 1 and Q 2 may be an aromatic hydrocarbon ring or an aromatic heterocycle. These may be monocyclic or may form a condensed ring with another ring.
The aromatic hydrocarbon ring represented by Q 1 and Q 2 is preferably (preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms (for example, a benzene ring, a naphthalene ring, etc.). More preferably an aromatic hydrocarbon ring having 6 to 20 carbon atoms, still more preferably an aromatic hydrocarbon ring having 6 to 12 carbon atoms.) More preferably, it is a benzene ring.
The aromatic heterocycle represented by Q 1 and Q 2 is preferably an aromatic heterocycle containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom. Specific examples of the heterocyclic ring include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, Examples include quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzothiazole, benzotriazole, and tetrazaindene. Preferred examples of the aromatic heterocycle include pyridine, triazine, and quinoline.
The aromatic ring represented by Q 1 and Q 2 is preferably an aromatic hydrocarbon ring, more preferably an aromatic hydrocarbon ring having 6 to 10 carbon atoms, still more preferably a substituted or unsubstituted benzene ring. is there.
Q 1 and Q 2 may further have a substituent, and the substituent T described later is preferable, but the substituent does not contain a carboxylic acid, a sulfonic acid, or a quaternary ammonium salt. Further, if possible, substituents may be linked to form a ring structure.

XはNR(Rは水素原子または置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい。)、または酸素原子であり、特に好ましくは酸素原子である。   X represents NR (R represents a hydrogen atom or a substituent. Substituent T described later can be applied as the substituent), an oxygen atom or a sulfur atom, and X is preferably NR (R is preferably an acyl group) A sulfonyl group, and these substituents may be further substituted.) Or an oxygen atom, particularly preferably an oxygen atom.

置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。   Examples of the substituent T include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, and n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2 to 8, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), an alkynyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2-8, for example, propargyl, 3-pentynyl, etc.), aryl groups (preferably having 6-30 carbon atoms) More preferably, it has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl and the like, and a substituted or unsubstituted amino group (preferably having 0 to 0 carbon atoms). 20, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, etc.), an alkoxy group (preferably having a carbon number) 1 to 20, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, butoxy, etc.), an aryloxy group (preferably 6 to 20 carbon atoms, more Preferably it has 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 2-naphthyloxy and the like. An acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl). An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, and examples include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 20 carbon atoms, More preferably, it has 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms. Nzoyloxy and the like. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms. And sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms, such as sulfamoyl and methylsulfamoyl). , Dimethylsulfamoyl, phenylsulfamoyl, etc.), a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl). , Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.), arylthio group (preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably Has 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms). For example, ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms) More preferably, it is C1-C16, Most preferably, it is C1-C12, for example, diethyl phosphoric acid amide, phenylphosphoric acid amide etc. are mentioned. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, piperidyl , Morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyl, triphenylsilyl, etc.) . These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.

一般式(102)として好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
As the general formula (102), a compound represented by the following general formula (102-A) is preferable.
Formula (102-A)

Figure 2006178359
Figure 2006178359

(式中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表す。) (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 each independently represents a hydrogen atom or a substituent.)

1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 each independently represent a hydrogen atom or a substituent, and the above-mentioned substituent T is applied as the substituent. it can. These substituents may be further substituted with another substituent, and the substituents may be condensed to form a ring structure.

1、R3、R4、R5、R6、R8およびR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。 R 1 , R 3 , R 4 , R 5 , R 6 , R 8 and R 9 are preferably a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, substituted or unsubstituted amino group, alkoxy group, aryl An oxy group, a hydroxy group and a halogen atom, more preferably a hydrogen atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group and a halogen atom, still more preferably a hydrogen atom and a carbon 1-12 alkyl group. Particularly preferred are a hydrogen atom and a methyl group, and most preferred is a hydrogen atom.

2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。 R 2 is preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an aryloxy group, a hydroxy group, a halogen atom, more preferably a hydrogen atom or one carbon atom. An alkyl group having -20 carbon atoms, an amino group having 0-20 carbon atoms, an alkoxy group having 1-12 carbon atoms, an aryloxy group having 6-12 carbon atoms, and a hydroxy group, and more preferably an alkoxy group having 1-20 carbon atoms. And particularly preferably an alkoxy group having 1 to 12 carbon atoms.

7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。 R 7 is preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, an alkoxy group, an aryloxy group, a hydroxy group, a halogen atom, more preferably a hydrogen atom or one carbon atom. An alkyl group having -20 carbon atoms, an amino group having 0-20 carbon atoms, an alkoxy group having 1-12 carbon atoms, an aryloxy group having 6-12 carbon atoms, and a hydroxy group, more preferably a hydrogen atom, having 1-20 carbon atoms. An alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably a methyl group), particularly preferably a methyl group or a hydrogen atom.

一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
More preferable as the general formula (102) is a compound represented by the following general formula (102-B).
General formula (102-B)

Figure 2006178359
Figure 2006178359

(式中、R10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表す。) (Wherein R 10 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, or a substituted or unsubstituted aryl group.)

10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換または無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
R 10 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, or a substituted or unsubstituted aryl group. Applicable.
R 10 is preferably a substituted or unsubstituted alkyl group, more preferably a substituted or unsubstituted alkyl group having 5 to 20 carbon atoms, and still more preferably a substituted or unsubstituted alkyl group having 5 to 12 carbon atoms. (Including n-hexyl group, 2-ethylhexyl group, n-octyl group, n-decyl group, n-dodecyl group, benzyl group, etc.), particularly preferably a substitution of 6 to 12 carbon atoms or An unsubstituted alkyl group (2-ethylhexyl group, n-octyl group, n-decyl group, n-dodecyl group, benzyl group).

一般式(102)であらわされる化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
The compound represented by the general formula (102) can be synthesized by a known method described in JP-A-11-12219.
Specific examples of the compound represented by the general formula (102) are given below, but the present invention is not limited to the following specific examples.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

また本発明に用いられる波長分散調整剤のひとつであるシアノ基を含む化合物としては一般式(103)で示されるものが好ましく用いられる。
一般式(103)
As the compound containing a cyano group, which is one of the wavelength dispersion adjusting agents used in the present invention, those represented by the general formula (103) are preferably used.
General formula (103)

Figure 2006178359
Figure 2006178359

(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。X1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基を表す。)
1およびQ2であらわされる芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
(In the formula, Q 1 and Q 2 each independently represents an aromatic ring. X 1 and X 2 represent a hydrogen atom or a substituent, and at least one of them represents a cyano group.)
The aromatic ring represented by Q 1 and Q 2 may be an aromatic hydrocarbon ring or an aromatic heterocycle. These may be monocyclic or may form a condensed ring with another ring.

芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)、更に好ましくはベンゼン環である。   The aromatic hydrocarbon ring is preferably (preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms (for example, benzene ring, naphthalene ring etc.), more preferably 6 carbon atoms. An aromatic hydrocarbon ring having 20 to 20 carbon atoms, more preferably an aromatic hydrocarbon ring having 6 to 12 carbon atoms.), More preferably a benzene ring.

芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。   The aromatic heterocycle is preferably an aromatic heterocycle containing a nitrogen atom or a sulfur atom. Specific examples of the heterocyclic ring include, for example, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, Examples include phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene. Preferred examples of the aromatic heterocycle include pyridine, triazine, and quinoline.

1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
The aromatic ring represented by Q 1 and Q 2 is preferably an aromatic hydrocarbon ring, and more preferably a benzene ring.
Q 1 and Q 2 may further have a substituent, and a substituent T described later is preferable. Examples of the substituent T include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, and n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2 to 8, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), an alkynyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2-8, for example, propargyl, 3-pentynyl, etc.), aryl groups (preferably having 6-30 carbon atoms) More preferably, it has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl and the like, and a substituted or unsubstituted amino group (preferably having 0 to 0 carbon atoms). 20, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, etc.), an alkoxy group (preferably having a carbon number) 1 to 20, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, butoxy, etc.), an aryloxy group (preferably 6 to 20 carbon atoms, more Preferably it has 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 2-naphthyloxy and the like. An acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl). An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 20 carbon atoms, More preferably, it has 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms. Nzoyloxy and the like. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms. And sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl and methylsulfamoyl). , Dimethylsulfamoyl, phenylsulfamoyl, etc.), a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl). , Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.), arylthio group (preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably Has 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms). For example, ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms) More preferably, it is C1-C16, Most preferably, it is C1-C12, for example, diethyl phosphoric acid amide, phenylphosphoric acid amide etc. are mentioned. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, piperidyl , Morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyl, triphenylsilyl, etc.) . These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.

1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2で表される置換基は更に他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。 X 1 and X 2 each represent a hydrogen atom or a substituent, and at least one of them represents a cyano group. The substituent T described above can be applied to the substituents represented by X 1 and X 2 . The substituents represented by X 1 and X 2 may be further substituted with other substituents, and X 1 and X 2 may be condensed to form a ring structure.

1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。 X 1 and X 2 are preferably a hydrogen atom, an alkyl group, an aryl group, a cyano group, a nitro group, a carbonyl group, a sulfonyl group, or an aromatic heterocycle, and more preferably a cyano group, a carbonyl group, a sulfonyl group, An aromatic heterocycle, more preferably a cyano group or a carbonyl group, and particularly preferably a cyano group or an alkoxycarbonyl group (—C (═O) OR (R is an alkyl group having 1 to 20 carbon atoms, 6 carbon atoms). ˜12 aryl groups and combinations thereof.

一般式(103)として好ましくは下記一般式(103-A)で表される化合物である。
一般式(103-A)
Preferred as the general formula (103) is a compound represented by the following general formula (103-A).
General formula (103-A)

Figure 2006178359
Figure 2006178359

(式中、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表す。X1およびX2は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。) (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom or a substituent. X 1 and X 2 Are the same as those in formula (103), and the preferred range is also the same.)

1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom or a substituent, and examples of the substituent include the substituents described above. T is applicable. These substituents may be further substituted with another substituent, and the substituents may be condensed to form a ring structure.

1、R2、R4、R5、R6、R7、R9、およびR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。 R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , and R 10 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a substituted or unsubstituted amino group, An alkoxy group, an aryloxy group, a hydroxy group, and a halogen atom, more preferably a hydrogen atom, an alkyl group, an aryl group, an alkyloxy group, an aryloxy group, and a halogen atom, still more preferably a hydrogen atom and carbon 1-12. An alkyl group, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.

3、およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。 R 3 and R 8 are preferably hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, substituted or unsubstituted amino groups, alkoxy groups, aryloxy groups, hydroxy groups, halogen atoms, more preferably hydrogen atoms. , An alkyl group having 1 to 20 carbon atoms, an amino group having 0 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, and a hydroxy group, more preferably a hydrogen atom and a carbon number. An alkyl group having 1 to 12 carbon atoms and an alkoxy group having 1 to 12 carbon atoms, particularly preferably a hydrogen atom.

一般式(103)としてより好ましくは下記一般式(103-B)で表される化合物である。
一般式(103-B)
More preferable as the general formula (103) is a compound represented by the following general formula (103-B).
General formula (103-B)

Figure 2006178359
Figure 2006178359

(式中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。X3は水素原子、または置換基を表す。) (Wherein R 3 and R 8 have the same meanings as those in formula (103-A), and preferred ranges are also the same. X 3 represents a hydrogen atom or a substituent.)

3は水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。 X 3 represents a hydrogen atom or a substituent. As the substituent, the above-described substituent T can be applied, and if possible, the substituent may be further substituted with another substituent. X 3 is preferably a hydrogen atom, an alkyl group, an aryl group, a cyano group, a nitro group, a carbonyl group, a sulfonyl group or an aromatic heterocyclic ring, more preferably a cyano group, a carbonyl group, a sulfonyl group or an aromatic heterocyclic ring. More preferably a cyano group or a carbonyl group, and particularly preferably a cyano group or an alkoxycarbonyl group (—C (═O) OR (R is an alkyl group having 1 to 20 carbon atoms, aryl having 6 to 12 carbon atoms). Group and a combination thereof).

一般式(103)として更に好ましくは一般式(103-C)で表される化合物である。
一般式(103-C)
As the general formula (103), a compound represented by the general formula (103-C) is more preferable.
General formula (103-C)

Figure 2006178359
Figure 2006178359

(式中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。) (Wherein R 3 and R 8 have the same meanings as those in formula (103-A), and the preferred range is also the same. R 21 represents an alkyl group having 1 to 20 carbon atoms.)

21として好ましくはR3およびR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert-オクチル基、2−エチルへキシル基、n−デシル基、、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。 R 21 is preferably an alkyl group having 2 to 12 carbon atoms, more preferably an alkyl group having 4 to 12 carbon atoms, and still more preferably 6 carbon atoms when both R 3 and R 8 are hydrogen. To 12 alkyl groups, particularly preferably n-octyl group, tert-octyl group, 2-ethylhexyl group, n-decyl group, n-dodecyl group, most preferably 2-ethylhexyl. It is a group.

21として好ましくはR3およびR8が水素以外の場合には、一般式(103-C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。 When R 3 and R 8 are preferably other than hydrogen as R 21 , the compound represented by the general formula (103-C) has a molecular weight of 300 or more and an alkyl group having 20 or less carbon atoms. preferable.

一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。   The compound represented by the general formula (103) can be synthesized by the method described in Journal of American Chemical Society 63, 3452 (1941).

以下に一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。   Specific examples of the compound represented by the general formula (103) are given below, but the present invention is not limited to the following specific examples.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

[マット剤微粒子]
本発明のセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
[Matting agent fine particles]
It is preferable to add fine particles as a matting agent to the cellulose acylate film of the present invention. The fine particles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silica Mention may be made of magnesium and calcium phosphates. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable. The fine particles of silicon dioxide preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more. Those having an average primary particle size as small as 5 to 16 nm are more preferred because they can reduce the haze of the film. The apparent specific gravity is preferably 90 to 200 g / liter or more, and more preferably 100 to 200 g / liter or more. A larger apparent specific gravity is preferable because a high-concentration dispersion can be produced, and haze and aggregates are improved.

これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。   These fine particles usually form secondary particles having an average particle diameter of 0.1 to 3.0 μm, and these fine particles are present as aggregates of primary particles in the film, and 0.1 to 0.1 μm on the film surface. An unevenness of 3.0 μm is formed. The secondary average particle size is preferably from 0.2 μm to 1.5 μm, more preferably from 0.4 μm to 1.2 μm, and most preferably from 0.6 μm to 1.1 μm. The primary and secondary particle sizes were determined by observing the particles in the film with a scanning electron microscope and determining the diameter of a circle circumscribing the particles as the particle size. In addition, 200 particles were observed at different locations, and the average value was taken as the average particle size.

二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。   As fine particles of silicon dioxide, for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) can be used. Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.

これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。   Among these, Aerosil 200V and Aerosil R972V are fine particles of silicon dioxide having a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more, and the coefficient of friction is maintained while keeping the turbidity of the optical film low. It is particularly preferable because it has a great effect of reducing the effect.

本発明において2次平均粒子径の小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレート溶液(ドープ液)と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤微粒子の添加量は1m3あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。 In order to obtain a cellulose acylate film having particles having a small secondary average particle size in the present invention, several methods are conceivable when preparing a fine particle dispersion. For example, a fine particle dispersion prepared by stirring and mixing a solvent and fine particles is prepared in advance, and the fine particle dispersion is added to a separately prepared small amount of cellulose acylate solution and dissolved by stirring. Further, a main cellulose acylate solution (dope solution) and There is a way to mix. This method is a preferable preparation method in that the dispersibility of the silicon dioxide fine particles is good and the silicon dioxide fine particles are more difficult to reaggregate. In addition, after adding a small amount of cellulose ester to the solvent and dissolving with stirring, add the fine particles to this and disperse with a disperser to make this fine particle additive solution, and mix this fine particle additive solution with the dope solution using an inline mixer There is also a way to do it. The present invention is not limited to these methods, but the concentration of silicon dioxide when the silicon dioxide fine particles are mixed and dispersed with a solvent or the like is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and 15 to 20%. Mass% is most preferred. A higher dispersion concentration is preferable because the liquid turbidity with respect to the added amount is lowered, and haze and aggregates are improved. The addition amount of the matting agent fine particles in the final cellulose acylate dope solution is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.3 g, more preferably 0.08 to 0.16 g per m 3. Is most preferred.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

[可塑剤、劣化防止剤、剥離剤]
光学的に異方性を低下する化合物、波長分散調整剤の他に、本発明のセルロースアシレートフィルムには、前述のように、用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号公報などに記載されている。さらにまた、赤外吸収剤としては例えば特開2001−194522号公報に記載されている。またその添加する時期はドープ作製工程において何れの時期でも良いが、ドープ作製工程の最後に添加剤を添加しするのがよい。更にまた、各添加剤の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
[Plasticizer, degradation inhibitor, release agent]
In addition to the compound that optically reduces anisotropy and the wavelength dispersion adjusting agent, the cellulose acylate film of the present invention includes various additives (for example, plasticizers, UV protection) as described above. Agents, deterioration inhibitors, release agents, infrared absorbers, etc.), which may be solid or oily. That is, the melting point and boiling point are not particularly limited. For example, mixing of ultraviolet absorbing material at 20 ° C. or lower and 20 ° C. or higher, and similarly, mixing of a plasticizer is described in, for example, JP-A-2001-151901. Furthermore, as an infrared absorber, it describes in Unexamined-Japanese-Patent No. 2001-194522, for example. In addition, the timing of addition may be any time in the dope manufacturing process, but it is preferable to add an additive at the end of the dope manufacturing process. Furthermore, the amount of each additive added is not particularly limited as long as the function is exhibited. Moreover, when a cellulose acylate film is formed from a multilayer, the kind and addition amount of the additive of each layer may differ. For example, it is described in Japanese Patent Application Laid-Open No. 2001-151902, but these are conventionally known techniques. For these details, materials described in detail on pages 16 to 22 in the Japan Institute of Invention Disclosure Technical Report (Public Technical Number 2001-1745, published on March 15, 2001, Japan Institute of Invention) are preferably used.

[化合物添加の比率]
本発明のセルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート質量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学的異方性を低下させる化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5質量%未満であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45質量%を越えると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する( フィルムからの泣き出し)などの問題が生じやすくなる。
[Rate of compound addition]
In the cellulose acylate film of the present invention, the total amount of compounds having a molecular weight of 3000 or less is preferably 5 to 45% based on the mass of the cellulose acylate. More preferably, it is 10 to 40%, and even more preferably 15 to 30%. As mentioned above, these compounds include compounds that reduce optical anisotropy, wavelength dispersion modifiers, ultraviolet inhibitors, plasticizers, deterioration inhibitors, fine particles, release agents, infrared absorbers, etc., and molecular weight For example, 3000 or less is preferable, 2000 or less is more preferable, and 1000 or less is more preferable. When the total amount of these compounds is less than 5% by mass, the properties of cellulose acylate alone are likely to be produced, and there are problems such as that the optical performance and physical strength are likely to vary with changes in temperature and humidity. . If the total amount of these compounds exceeds 45% by mass, the compound will exceed the limit of compatibility in the cellulose acylate film, causing problems such as precipitation on the film surface and clouding of the film (crying out of the film). It becomes easy.

[セルロースアシレート溶液の有機溶媒]
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
[Organic solvent for cellulose acylate solution]
In the present invention, it is preferable to produce a cellulose acylate film by a solvent cast method, and the film is produced using a solution (dope) in which cellulose acylate is dissolved in an organic solvent. The organic solvent preferably used as the main solvent of the present invention is preferably a solvent selected from esters, ketones, ethers having 3 to 12 carbon atoms, and halogenated hydrocarbons having 1 to 7 carbon atoms. Esters, ketones and ethers may have a cyclic structure. A compound having two or more functional groups of esters, ketones and ethers (that is, —O—, —CO— and —COO—) can also be used as a main solvent. It may have a functional group of In the case of the main solvent having two or more kinds of functional groups, the number of carbon atoms may be within the specified range of the compound having any functional group.

以上本発明のセルロースアシレートフィルムに対しては塩素系のハロゲン化炭化水素を主溶媒としても良いし、発明協会公開技報2001−1745(12頁〜16頁)に記載されているように、非塩素系溶媒を主溶媒としても良く、本発明のセルロースアシレートフィルムに対しては特に限定されるものではない。   As described above, chlorine-based halogenated hydrocarbons may be used as the main solvent for the cellulose acylate film of the present invention, and as described in JIII Journal of Technical Disclosure 2001-1745 (pages 12-16), A non-chlorinated solvent may be used as the main solvent, and is not particularly limited to the cellulose acylate film of the present invention.

その他、本発明のセルロースアシレート溶液及びフィルムについての溶媒は、その溶解方法も含め以下の公開特許公報に開示されており、好ましい態様である。それらは、例えば、特開2000−95876、特開平12−95877、特開平10−324774、特開平8−152514、特開平10−330538、特開平9−95538、特開平9−95557、特開平10−235664、特開平12−63534、特開平11−21379、特開平10−182853、特開平10−278056、特開平10−279702、特開平10−323853、特開平10−237186、特開平11−60807、特開平11−152342、特開平11−292988、特開平11−60752、特開平11−60752号の各公報などに記載されている。これらの公報によると本発明のセルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても好ましい態様である。   In addition, the solvent for the cellulose acylate solution and film of the present invention is disclosed in the following published patent gazette including its dissolution method, and is a preferred embodiment. They are, for example, JP 2000-95876, JP 12-95877, JP 10-324774, JP 8-152514, JP 10-330538, JP 9-95538, JP 9-95557, JP 10-10. -235664, JP-A-12-63534, JP-A-11-21379, JP-A-10-182853, JP-A-10-278056, JP-A-10-279702, JP-A-10-323853, JP-A-10-237186, JP-A-11-60807. JP-A-11-152342, JP-A-11-292988, JP-A-11-60752, JP-A-11-60752, and the like. According to these publications, not only the preferred solvent for the cellulose acylate of the present invention but also the physical properties of the solution and the coexisting substances to be coexisted are described, which is also a preferred embodiment in the present invention.

[セルロースアシレートフィルムの製造工程]
[溶解工程]
本発明のセルロースアシレート溶液(ドープ)の調製は、その溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
[Manufacturing process of cellulose acylate film]
[Dissolution process]
The method for dissolving the cellulose acylate solution (dope) of the present invention is not particularly limited, and it may be performed at room temperature or further by a cooling dissolution method or a high temperature dissolution method, or a combination thereof. Regarding the preparation of the cellulose acylate solution in the present invention, and further the steps of solution concentration and filtration associated with the dissolution step, the Technical Report of the Japan Society of Invention (Publication No. 2001-1745, published on March 15, 2001, Japan Society of Invention) The manufacturing process described in detail on pages 22 to 25 is preferably used.

(ドープ溶液の透明度)
本発明のセルロースアシレート溶液のドープ透明度としては85%以上であることがのぞましい。より好ましくは88%以上であり、さらに好ましくは90%以上であることがのぞましい。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
(Transparency of dope solution)
The dope transparency of the cellulose acylate solution of the present invention is preferably 85% or more. More preferably, it is 88% or more, and more preferably 90% or more. In the present invention, it was confirmed that various additives were sufficiently dissolved in the cellulose acylate dope solution. As a specific method for calculating the dope transparency, the dope solution was poured into a 1 cm square glass cell, and the absorbance at 550 nm was measured with a spectrophotometer (UV-3150, Shimadzu Corporation). Only the solvent was measured in advance as a blank, and the transparency of the cellulose acylate solution was calculated from the ratio with the absorbance of the blank.

[流延、乾燥、巻き取り工程]
次に、本発明のセルロースアシレート溶液を用いたフィルムの製造方法について述べる。本発明のセルロースアシレートフィルムを製造する方法及び設備は、従来のセルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて得られたフィルムを乾燥装置のロール群で機械的に搬送し乾燥を終了して巻き取り機でロール状に所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。本発明のセルロースアシレートフィルムの主な用途である、電子ディスプレイ用の光学部材である機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む),金属支持体,乾燥,剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
[Casting, drying, winding process]
Next, a method for producing a film using the cellulose acylate solution of the present invention will be described. As a method and equipment for producing the cellulose acylate film of the present invention, a solution casting film forming method and a solution casting film forming apparatus used for the conventional cellulose triacetate film production are used. The dope (cellulose acylate solution) prepared from the dissolving machine (kettle) is temporarily stored in a storage kettle, and the foam contained in the dope is defoamed for final preparation. The dope is sent from the dope discharge port to the pressure die through a pressure metering gear pump capable of delivering a constant amount of liquid with high accuracy, for example, by the number of rotations. The dry-dried dope film (also referred to as web) is peeled off from the metal support at a peeling point that is uniformly cast on the metal support and substantially rounds the metal support. The both ends of the obtained web are sandwiched between clips, transported by a tenter while holding the width and dried, and then the obtained film is mechanically transported by a roll group of a drying device, dried, and then rolled by a winder Wind up to a predetermined length. The combination of the tenter and the roll group dryer varies depending on the purpose. In the solution casting film forming method used for the functional protective film as an optical member for an electronic display, which is the main use of the cellulose acylate film of the present invention, in addition to the solution casting film forming apparatus, the undercoat layer In many cases, a coating apparatus is added for surface processing of a film such as an antistatic layer, an antihalation layer, or a protective layer. These are described in detail on pages 25-30 in the Japan Society for Invention and Innovation Technical Report (Public Technical Number 2001-1745, issued on March 15, 2001, Japan Society for Invention). Including), metal support, drying, peeling and the like, and can be preferably used in the present invention.
Moreover, 10-120 micrometers is preferable, as for the thickness of a cellulose acylate film, 20-100 micrometers is more preferable, and 30-90 micrometers is more preferable.

[高湿度処理後のフィルムの光学性能変化]
[セルロースアシレートフィルム物性評価]
本発明のセルロースアシレートフィルムの環境変化による光学性能の変化については、60℃90%RHに240時間処理したフィルムのRe(590)およびRth(590)の変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[Change in optical performance of film after high humidity treatment]
[Property evaluation of cellulose acylate film]
Regarding the change in optical performance due to the environmental change of the cellulose acylate film of the present invention, it is desirable that the amount of change in Re (590) and Rth (590) of a film treated at 60 ° C. and 90% RH for 240 hours is 15 nm or less. . More preferably, it is 12 nm or less, and more preferably 10 nm or less.

[高温度処理後のフィルムの光学性能変化]
また、80℃240時間処理したフィルムのRe(590)およびRth(590)の変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[Change in optical performance of film after high temperature treatment]
Further, it is preferable that the amount of change in Re (590) and Rth (590) of the film treated at 80 ° C. for 240 hours is 15 nm or less. More preferably, it is 12 nm or less, and more preferably 10 nm or less.

[フィルム加熱処理後の化合物揮散量]
本発明のセルロースアシレートフィルムにのぞましく用いることができる、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したフィルムからの化合物の揮散量が30%以下であることがのぞましい。よりのぞましくは25%以下以下であり、20%以下であることがさらにのぞましい。
なお、フィルムからの揮散量は、80℃240時間処理したフィルムおよび未処理のフィルムをそれぞれ溶媒に溶かし出し、高速液体クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフィルム中に残存した化合物量として、下記式により算出した。
揮散量(%)= {(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
[Compound volatilization after film heat treatment]
A compound that lowers Rth and a compound that lowers ΔRth, which can be preferably used in the cellulose acylate film of the present invention, has a volatilization amount of a compound from a film treated at 80 ° C. for 240 hours of 30% or less. I want to see that. More preferably, it is 25% or less, and more preferably 20% or less.
The amount of volatilization from the film was determined by dissolving the film treated at 80 ° C. for 240 hours and the untreated film in a solvent, detecting the compound by high performance liquid chromatography, and determining the peak area of the compound in the film The amount was calculated by the following formula.
Volatilization amount (%) = {(remaining compound amount in untreated product) − (remaining compound amount in treated product)} / (remaining compound amount in untreated product) × 100

[フィルムのガラス転移温度Tg]
本発明のセルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、本発明のセルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出した。
[Glass Transition Temperature Tg of Film]
The glass transition temperature Tg of the cellulose acylate film of the present invention is 80 to 165 ° C. From the viewpoint of heat resistance, Tg is more preferably 100 to 160 ° C, and particularly preferably 110 to 150 ° C. The glass transition temperature Tg is measured with a differential scanning calorimeter (DSC2910, T.A. Instrument) using a 10 mg cellulose acylate film sample of the present invention at a temperature rising / lowering rate of 5 ° C./min. And the glass transition temperature Tg was calculated.

[フィルムのヘイズ]
本発明のセルロースアシレートフィルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フィルムとしてフィルムの透明性は重要である。ヘイズの測定は、本発明のセルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
[Haze of film]
The haze of the cellulose acylate film of the present invention is preferably 0.01 to 2.0%. More preferably, it is 0.05 to 1.5%, and more preferably 0.1 to 1.0%. As an optical film, the transparency of the film is important. The haze was measured by measuring a cellulose acylate film sample 40 mm × 80 mm of the present invention at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Instruments) according to JIS K-6714.

[フィルムのRthの湿度依存性]
本発明のセルロースアシレートフィルムの面内のレターデーションReおよび膜厚方向のレターデーションRthはともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
[Humidity dependency of Rth of film]
It is preferable that both the in-plane retardation Re and the thickness direction retardation Rth of the cellulose acylate film of the present invention are small in change due to humidity. Specifically, the difference ΔRth (= Rth10% RH−Rth80% RH) between the Rth value at 25 ° C. and 10% RH and the Rth value at 25 ° C. and 80% RH is preferably 0 to 50 nm. More preferably, it is 0-40 nm, More preferably, it is 0-35 nm.

[フィルムの平衡含水率]
本発明のセルロースアシレートフィルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、レターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、本発明のセルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料質量(g)で除して算出した。
[Equilibrium moisture content of film]
The equilibrium moisture content of the cellulose acylate film of the present invention is 25 ° C. at 80 ° C. regardless of the film thickness so as not to impair the adhesion with a water-soluble polymer such as polyvinyl alcohol when used as a protective film of a polarizing plate. The equilibrium moisture content at% RH is preferably 0 to 4%. It is more preferably 0.1 to 3.5%, and particularly preferably 1 to 3%. An equilibrium moisture content of 4% or more is not preferable because the dependency of retardation due to humidity change becomes too large.
The moisture content was measured by measuring the cellulose acylate film sample 7 mm × 35 mm of the present invention by the Karl Fischer method using a moisture measuring device and a sample drying apparatus (CA-03, VA-05, both Mitsubishi Chemical Corporation). . The moisture content (g) was calculated by dividing by the sample mass (g).

[フィルムの透湿度]
本発明のセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フィルムのRe、Rthの湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、本発明のセルロースアシレートフィルムに液晶性化合物層を積層して光学補償フィルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。この光学補償シートや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こす。また、セルロースアシレートフィルムの透湿度が400g/m2・24h未満では、偏光膜の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフィルムにより接着剤の乾燥が妨げられ、接着不良を生じる。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、本発明のセルロースアシレートフィルム試料70mmφを25℃、90%RH及び60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後質量−調湿前質量で求めた。
[Water permeability of film]
The moisture permeability of the cellulose acylate film of the present invention is measured under the conditions of a temperature of 60 ° C. and a humidity of 95% RH based on JIS standard JISZ0208, and converted to a film thickness of 80 μm at 400 to 2000 g / m 2 · 24 h. I want to be there. More preferably 500~1800g / m 2 · 24h, and particularly preferably 600~1600g / m 2 · 24h. If it exceeds 2000 g / m 2 · 24 h, the tendency that the absolute value of the humidity dependency of Re and Rth of the film exceeds 0.5 nm /% RH becomes strong. Also, when an optical compensation film is formed by laminating a liquid crystalline compound layer on the cellulose acylate film of the present invention, the absolute value of the humidity dependence of the Re value and Rth value tends to exceed 0.5 nm /% RH. It becomes unpreferable. When this optical compensation sheet or polarizing plate is incorporated in a liquid crystal display device, it causes a change in color and a decrease in viewing angle. In addition, when the moisture permeability of the cellulose acylate film is less than 400 g / m 2 · 24 h, when the polarizing plate is prepared by being attached to both surfaces of the polarizing film, the cellulose acylate film prevents the drying of the adhesive, and adhesion Cause a defect.
If the film thickness of the cellulose acylate film is thick, the moisture permeability becomes small, and if the film thickness is thin, the moisture permeability becomes large. Therefore, it is necessary to convert the sample of any film thickness to a standard of 80 μm. The conversion of the film thickness was obtained as (water permeability in terms of 80 μm = measured moisture permeability × measured film thickness μm / 80 μm).
The measurement method of moisture permeability is “Polymer Physical Properties II” (Polymer Experiment Course 4, Kyoritsu Shuppan), pages 285-294: Measurement of vapor permeation amount (mass method, thermometer method, vapor pressure method, adsorption amount method) The cellulose acylate film sample 70 mmφ of the present invention was conditioned at 25 ° C., 90% RH, 60 ° C., and 95% RH for 24 hours, respectively, and a moisture permeation test apparatus (KK-709007) was applied. , Toyo Seiki Co., Ltd.) calculated the amount of water per unit area (g / m 2 ) according to JIS Z-0208, and determined moisture permeability = mass after humidity adjustment−mass before humidity adjustment.

[フィルムの寸度変化]
本発明のセルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率および90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることがのぞましい。よりのぞましくは0.3%以下であり、さらにのぞましくは0.15%以下である。
具体的な測定方法としては、セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
[Dimensional change of film]
The dimensional stability of the cellulose acylate film of the present invention is as follows: dimensional change rate after standing for 24 hours under the conditions of 60 ° C. and 90% RH (high humidity) and the condition of 90 ° C. and 5% RH. It is preferable that the dimensional change rate after standing for 24 hours (high temperature) is 0.5% or less. More preferably, it is 0.3% or less, and even more preferably, it is 0.15% or less.
As a specific measurement method, two cellulose acylate film samples 30 mm × 120 mm were prepared, conditioned at 25 ° C. and 60% RH for 24 hours, and automatically pin gauge (Shinto Kagaku Co., Ltd.) at both ends. Holes of 6 mmφ were opened at intervals of 100 mm to obtain the original punch interval (L0). Punch interval size (L1) after one sample was treated at 60 ° C. and 90% RH for 24 hours, punch after one sample was treated at 90 ° C. and 5% RH for 24 hours The spacing dimension (L2) was measured. Measurement was made to a minimum scale of 1/1000 mm at all intervals. Dimensional change rate of 60 ° C. and 90% RH (high humidity) = {| L0−L1 | / L0} × 100, Dimensional change rate of 90 ° C. and 5% RH (high temperature) = {| L0−L2 | / The dimensional change rate was determined as L0} × 100.

[フィルムの弾性率]
(弾性率)
本発明のセルロースアシレートフィルムの弾性率は、200〜500kgf/mm2(1.96〜4.90GPa)であることが好ましい。より好ましくは240〜470kgf/mm2(2.35〜4.61GPa)であり、さらに好ましくは270〜440kgf/mm2(2.65〜4.31GPa)である。具体的な測定方法としては、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めた。
[Elastic modulus of film]
(Elastic modulus)
The elastic modulus of the cellulose acylate film of the present invention is preferably 200 to 500 kgf / mm 2 (1.96 to 4.90 GPa). More preferably, it is 240-470 kgf / mm < 2 > (2.35-4.61 GPa), More preferably, it is 270-440 kgf / mm < 2 > (2.65-4.31 GPa). As a specific measurement method, Toyo Baldwin Universal Tensile Tester STM T50BP was used to measure the stress at 0.5% elongation in a 23 ° C, 70% atmosphere at a pulling rate of 10% / min to obtain the elastic modulus. It was.

[フィルムの光弾性係数]
(光弾性係数)
本発明のセルロースアシレートフィルムの光弾性係数は、50×10-13cm2/dyne(5×10-13N/m2)以下であることが好ましい。30×10-13cm2/dyne(3×10-13N/m2)以下であることがより好ましく、20×10-13cm2/dyne(2×10-13N/m2)以下であることがさらに好ましい。具体的な測定方法としては、セルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
[Photoelastic coefficient of film]
(Photoelastic coefficient)
The photoelastic coefficient of the cellulose acylate film of the present invention is preferably 50 × 10 −13 cm 2 / dyne (5 × 10 −13 N / m 2 ) or less. More preferably, it is 30 × 10 −13 cm 2 / dyne (3 × 10 −13 N / m 2 ) or less, and 20 × 10 −13 cm 2 / dyne (2 × 10 −13 N / m 2 ) or less. More preferably it is. As a specific measuring method, a tensile stress is applied to the major axis direction of a 12 mm × 120 mm cellulose acylate film sample, and the retardation at that time is measured with an ellipsometer (M150, JASCO Corporation). The photoelastic coefficient was calculated from the amount of change in retardation with respect to.

[延伸前後における正面レターデーション変化、遅相軸の検出]
帯状のフィルムから試料、長手方向100mm×幅方向100mmを切り出し、固定一軸延伸機を用いて温度140℃の条件下で長手方向(MD方向)と平行または巾方向(TD方向)と平行に延伸を行った。延伸前後における各試料の正面レターデーションReは自動複屈折計KOBRA21ADHを用いて測定した。遅相軸の検出は上記のレターデーション測定の際に得られる配向角から決定した。偏光膜直近に配置されるセルロースアシレートフィルムは、延伸によってReの変化が小さいことが好ましく、具体的にはRe(n)をn(%)延伸したフィルムの正面レターデーション(nm)、Re(0)を延伸していないフィルムの正面レターデーション(nm)としたときに、|Re(n)−Re(0)|/n≦1.0を有することが好ましく、|Re(n)−Re(0)|/n≦0.3以下がさらに好ましい。
[Front retardation change before and after stretching, detection of slow axis]
A sample, 100 mm in the longitudinal direction × 100 mm in the width direction, is cut out from the strip-shaped film, and stretched in parallel with the longitudinal direction (MD direction) or parallel with the width direction (TD direction) using a fixed uniaxial stretching machine at a temperature of 140 ° C. went. The front retardation Re of each sample before and after stretching was measured using an automatic birefringence meter KOBRA21ADH. The detection of the slow axis was determined from the orientation angle obtained during the retardation measurement. The cellulose acylate film disposed in the immediate vicinity of the polarizing film preferably has a small change in Re by stretching. Specifically, the front retardation (nm) of the film obtained by stretching Re (n) by n (%), Re ( 0) is the front retardation (nm) of the unstretched film, it is preferable that | Re (n) −Re (0) | /n≦1.0, and | Re (n) −Re (0) | /n≦0.3 or less is more preferable.

[遅相軸を有する方向]
本発明のセルロースアシレートフィルムを偏光膜の保護フィルムに用いる場合、偏光膜が機械搬送方向(MD方向)に吸収軸を持つため、セルロースアシレートフィルムは遅相軸がMD方向近傍またはTD方向近傍にあることがのぞましい。遅相軸が偏光膜と平行または直交させることにより光漏れや色味変化を低減できる。近傍とは、遅相軸とMDまたはTD方向が0〜10°、好ましくは0〜5°の範囲にあることを表す。
[Direction with slow axis]
When the cellulose acylate film of the present invention is used as a protective film for a polarizing film, since the polarizing film has an absorption axis in the machine transport direction (MD direction), the slow axis of the cellulose acylate film is near the MD direction or the TD direction. It is desirable to be in. Light leakage and color change can be reduced by making the slow axis parallel or orthogonal to the polarizing film. “Near” means that the slow axis and the MD or TD direction are in the range of 0 to 10 °, preferably 0 to 5 °.

[固有複屈折が正であるセルロースアシレートフィルム]
本発明のセルロースアシレートフィルムは、フィルム面内において、遅相軸を有する方向に延伸すると正面レターデーションReが大きくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションReが小さくなる。このことは固有複屈折が正であることを示しており、フィルム中で発現したReを打ち消すには遅相軸と垂直方向に延伸することが有効である。この方法としては例えば、フィルムがMD方向に遅相軸を有している場合にMDとは垂直な方向(TD方向)にテンター延伸を用いて正面Reを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはMD方向と平行な搬送ロールの張力を強めて延伸することによって正面Reを小さくすることが考えられる。
[Cellulose acylate film with positive intrinsic birefringence]
When the cellulose acylate film of the present invention is stretched in the direction having a slow axis in the film plane, the front retardation Re increases, and when stretched in the direction perpendicular to the direction having the slow axis, the front retardation Re decreases. Become. This indicates that the intrinsic birefringence is positive, and it is effective to stretch the film in the direction perpendicular to the slow axis in order to cancel the Re developed in the film. As this method, for example, when the film has a slow axis in the MD direction, it is conceivable to reduce the front Re by using tenter stretching in a direction perpendicular to the MD (TD direction). As an opposite example, if the TD direction has a slow axis, the front Re can be reduced by increasing the tension of the transport roll parallel to the MD direction and stretching.

[固有複屈折が負であるセルロースアシレートフィルム]
本発明のセルロースアシレートフィルムは、遅相軸を有する方向に延伸すると正面レターデーションReが小さくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションReが大きくなる場合もある。このことは固有複屈折が負であることを示しており、フィルム中で発現したReを打ち消すには遅相軸と同一の方向に延伸することが有効である。この方法としては例えば、フィルムがMD方向に遅相軸を有している場合にMD方向の搬送ロールの張力を強めて延伸することによって正面Reを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはTD方向にテンター延伸を用いて正面レターデーションReを小さくすることが考えられる。
[Cellulose acylate film with negative intrinsic birefringence]
When the cellulose acylate film of the present invention is stretched in a direction having a slow axis, the front retardation Re may be reduced, and when stretched in a direction perpendicular to the direction having a slow axis, the front retardation Re may be increased. This indicates that the intrinsic birefringence is negative, and it is effective to stretch the film in the same direction as the slow axis in order to cancel the Re developed in the film. As this method, for example, when the film has a slow axis in the MD direction, it is conceivable to reduce the front surface Re by increasing the tension of the conveying roll in the MD direction and stretching. As an opposite example, when the slow axis is in the TD direction, it is conceivable to reduce the front retardation Re by using tenter stretching in the TD direction.

[本発明のセルロースアシレートフィルムの評価方法]
本発明のセルロースアシレートフィルムの評価に当たって、以下の方法で測定して実施した。
[Method for Evaluating Cellulose Acylate Film of the Present Invention]
In evaluating the cellulose acylate film of the present invention, measurement was carried out by the following method.

Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。   Re (λ) is measured in KOBRA 21ADH (manufactured by Oji Scientific Instruments) by making light having a wavelength of λ nm incident in the normal direction of the film. Rth (λ) is the light of wavelength λnm from the direction inclined by + 40 ° with respect to the normal direction of the film, with Re (λ) and the in-plane slow axis (determined by KOBRA 21ADH) as the tilt axis (rotation axis) And a retardation value measured by making light of wavelength λ nm incident from a direction inclined by −40 ° with respect to the film normal direction with the in-plane slow axis as the tilt axis (rotation axis). KOBRA 21ADH calculates based on the retardation value measured in three directions, the assumed value of the average refractive index, and the input film thickness value. Here, as the assumed value of the average refractive index, values in the polymer handbook (JOHN WILEY & SONS, INC) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). KOBRA 21ADH calculates nx, ny, and nz by inputting these assumed values of average refractive index and film thickness.

(透過率)
試料20mm×70mmを、25℃,60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
(Transmittance)
The transmittance of visible light (615 nm) was measured on a 20 mm × 70 mm sample at 25 ° C. and 60% RH with a transparency measuring instrument (AKA phototube colorimeter, KOTAKI Corporation).

[フィルム表面の性状]
本発明セルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、及び最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、及び最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力顕微鏡(AFM)により評価することが出来る。
[Film surface properties]
The surface of the cellulose acylate film of the present invention has an arithmetic average roughness (Ra) of surface irregularities of the film based on JIS B0601-1994 of 0.1 μm or less and a maximum height (Ry) of 0.5 μm or less. preferable. Preferably, the arithmetic average roughness (Ra) is 0.05 μm or less, and the maximum height (Ry) is 0.2 μm or less. The concave and convex shapes on the film surface can be evaluated by an atomic force microscope (AFM).

[セルロースアシレートフィルムのレターデーションの面内ばらつき]
本発明のセルロースアシレートフィルムは次の式を満たすことがのぞましい。
|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5
[式中、Re(MAX)、Rth(MAX)は任意に切り出した1m四方のフィルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
[In-plane variation of retardation of cellulose acylate film]
The cellulose acylate film of the present invention preferably satisfies the following formula.
| Re (MAX) −Re (MIN) | ≦ 3 and | Rth (MAX) −Rth (MIN) | ≦ 5
[In the formula, Re (MAX) and Rth (MAX) are the maximum retardation values of 1 m square film cut out arbitrarily, and Re (MIN) and Rth (MIN) are the minimum values. ]

[フィルムの保留性]
本発明のセルロースアシレートフィルムにおいては、フィルムに添加した各種化合物の保留性が要求される。具体的には、本発明のセルロースアシレートフィルムを80℃/90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
〈保留性の評価方法〉
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
[Retention of film]
In the cellulose acylate film of the present invention, retention of various compounds added to the film is required. Specifically, the mass change of the film when the cellulose acylate film of the present invention is allowed to stand for 48 hours under the condition of 80 ° C./90% RH is preferably 0 to 5%. More preferably, it is 0 to 3%, and still more preferably 0 to 2%.
<Reservation evaluation method>
The sample was cut to a size of 10 cm × 10 cm, and the mass after being allowed to stand for 24 hours in an atmosphere of 23 ° C. and 55% RH was measured, and left for 48 hours under the conditions of 80 ± 5 ° C. and 90 ± 10% RH. . The surface of the sample after the treatment was lightly wiped, the mass after standing for 1 day at 23 ° C. and 55% RH was measured, and the retention was calculated by the following method.
Retention property (mass%) = {(mass before standing−mass after standing) / mass before standing} × 100

[フィルムの力学特性]
(カール)
本発明のセルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。本発明のセルロースアシレートフィルムには後述する表面処理などを長尺で行う際に、本発明のセルロースアシレートフィルムの幅方向のカール値が前述の範囲外では、フィルムのハンドリングに支障をきたし、フィルムの切断が起きることがある。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで偏光膜貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
[Mechanical properties of film]
(curl)
The curl value in the width direction of the cellulose acylate film of the present invention is preferably −10 / m to + 10 / m. When the cellulose acylate film of the present invention is subjected to a long surface treatment or the like, which will be described later, the curl value in the width direction of the cellulose acylate film of the present invention is outside the above range, which hinders the handling of the film, Cutting of the film may occur. In addition, the film is strongly in contact with the transport roll at the edge and center of the film, so it is easy to generate dust, and foreign matter adheres to the film, and the frequency of point defects and coating streaks exceeds the allowable value. There is. In addition, by setting the curl to the above range, it is possible to prevent bubbles from entering when the polarizing film is bonded, which is preferable.
The curl value can be measured according to a measurement method (ANSI / ASCPH1.29-1985) defined by the American National Standards Institute.

(引裂き強度)
JISK7128−2:1998の引裂き試験方法に基ずく引裂き強度(エルメンドルフ引裂き法)において、本発明のセルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、更には6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
(Tear strength)
In the tear strength (Elmendorf tear method) based on the tear test method of JISK7128-2: 1998, 2 g or more is preferable when the film thickness of the cellulose acylate film of the present invention is in the range of 20 to 80 μm. More preferably, it is 5-25g, Furthermore, it is 6-25g. Moreover, 8 g or more is preferable at 60 micrometer conversion, More preferably, it is 8-15g. Specifically, it can be measured using a light load tear strength tester after conditioning a sample piece of 50 mm × 64 mm under the conditions of 25 ° C. and 65% RH for 2 hours.

[フィルムの残留溶剤量]
本発明のセルロースアシレートフィルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。残留溶剤量を1.5質量%以下とすることでカールを抑制できる。1.0質量%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量を少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
[Residual solvent amount of film]
It is preferable to dry on the conditions that the amount of residual solvents with respect to the cellulose acylate film of the present invention is in the range of 0.01 to 1.5% by mass. More preferably, it is 0.01-1.0 mass%. Curling can be suppressed by setting the residual solvent amount to 1.5% by mass or less. More preferably, it is 1.0 mass% or less. This is presumably because free deposition is reduced by reducing the amount of residual solvent during film formation by the above-described solvent casting method.

[フィルムの吸湿膨張係数]
本発明のセルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
[Hygroscopic expansion coefficient of film]
The hygroscopic expansion coefficient of the cellulose acylate film of the present invention is preferably 30 × 10 −5 /% RH or less. The hygroscopic expansion coefficient is preferably 15 × 10 −5 /% RH or less, and more preferably 10 × 10 −5 /% RH or less. The hygroscopic expansion coefficient is preferably small, but usually it is 1.0 × 10 −5 /% RH or more. The hygroscopic expansion coefficient indicates the amount of change in the length of the sample when the relative humidity is changed at a constant temperature. By adjusting this hygroscopic expansion coefficient, it is possible to prevent frame-like transmittance increase, that is, light leakage due to distortion.

[表面処理]
セルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torr(0.133〜2660Pa)の低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。上記のような条件においてプラズマ励起されるプラズマ励起性気体としては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
[surface treatment]
The cellulose acylate film can achieve improved adhesion between the cellulose acylate film and each functional layer (for example, the undercoat layer and the back layer) by optionally performing a surface treatment. For example, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment can be used. The glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 −3 to 20 Torr (0.133 to 2660 Pa), and plasma treatment under atmospheric pressure is also preferable. Examples of the plasma-excitable gas that is plasma-excited under the above conditions include chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, and tetrafluoromethane, and mixtures thereof. Details of these are described in detail in pages 30 to 32 in the Japan Institute of Invention Disclosure Technical Bulletin (Public Technical No. 2001-1745, published on March 15, 2001, Japan Institute of Invention), and are preferably used in the present invention. be able to.

[アルカリ鹸化処理によるフィルム表面の接触角]
本発明のセルロースアシレートフィルムの表面処理の有効な手段の1つとしてアルカリ鹸化処理が上げられる。この場合、アルカリ鹸化処理後のフィルム表面の接触角が55°以下であることがのぞましい。よりのぞましくは50°以下であり、45°以下であることがさらにのぞましい。接触角の評価法はアルカリ鹸化処理後のフィルム表面に直径3mmの水滴を落とし、フィルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
[Contact angle of film surface by alkali saponification]
One effective means for surface treatment of the cellulose acylate film of the present invention is alkali saponification. In this case, the contact angle on the film surface after the alkali saponification treatment is preferably 55 ° or less. More preferably, it is 50 ° or less, and more preferably 45 ° or less. The contact angle evaluation method can be used as an evaluation of hydrophilicity / hydrophobicity by an ordinary method in which a water droplet having a diameter of 3 mm is dropped on the surface of the film after the alkali saponification treatment and the angle formed by the film surface and the water droplet is determined.

(耐光性)
本発明のセルロースアシレートフィルムの光耐久性の指標として、スーパーキセノン光を240時間照射したフィルムの色差ΔE*abが20以下であることがのぞましい。よりのぞましくは18以下であり、15以下であることがさらにのぞましい。色差の測定は、UV3100(島津製作所製)を用いた。測定の仕方は、フィルムを25℃60%RHに2時間以上調湿した後にキセノン光照射前のフィルムのカラー測定を行ない初期値(L0*、a0*、b0*)を求めた。その後、フィルム単体で、スーパーキセノンウェザーメーターSX-75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射した。所定時間の経過後、フィルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求めた。これらから、色差ΔE*ab=((L0*-L1*)2+(a0*-a1*)2+(b0*-b1*)20.5を求めた。
(Light resistance)
As an index of light durability of the cellulose acylate film of the present invention, it is preferable that the color difference ΔE * ab of the film irradiated with super xenon light for 240 hours is 20 or less. More preferably, it is 18 or less, and more preferably 15 or less. The color difference was measured using UV3100 (manufactured by Shimadzu Corporation). The measurement was carried out by adjusting the film to 25 ° C. and 60% RH for 2 hours or more, and then measuring the color of the film before irradiation with xenon light to determine initial values (L0 * , a0 * , b0 * ). Thereafter, the film alone was irradiated with xenon light for 240 hours under conditions of 150 W / m 2 , 60 ° C. and 50% RH with a Super Xenon Weather Meter SX-75 (manufactured by Suga Test Instruments Co., Ltd.). After the elapse of a predetermined time, the film was taken out from the thermostat, adjusted to 25 ° C. and 60% RH for 2 hours, and then subjected to color measurement again to obtain values after irradiation (L1 * , a1 * , b1 * ). . From these, the color difference ΔE * ab = ((L0 * −L1 * ) 2 + (a0 * −a1 * ) 2 + (b0 * −b1 * ) 2 ) 0.5 was obtained.

[機能層]
本発明のセルロースアシレートフィルムを用いるに際し、各種の機能層を付与することが実施される。それらは、例えば、帯電防止層、硬化樹脂層(透明ハードコート層)、反射防止層、易接着層、防眩層、光学補償層、配向層、液晶層などである。本発明のセルロースアシレートフィルムを用いることができるこれらの機能層及びその材料としては、界面活性剤、滑り剤、マット剤、帯電防止層、ハードコート層などが挙げられ、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されており、本発明において好ましく用いることができる。
[Functional layer]
When the cellulose acylate film of the present invention is used, various functional layers are provided. They are, for example, an antistatic layer, a cured resin layer (transparent hard coat layer), an antireflection layer, an easy adhesion layer, an antiglare layer, an optical compensation layer, an alignment layer, a liquid crystal layer, and the like. These functional layers and materials for which the cellulose acylate film of the present invention can be used include surfactants, slipping agents, matting agents, antistatic layers, hard coat layers, etc. No. 2001-1745, published on March 15, 2001, Japan Institute of Invention) and described in detail on pages 32 to 45, and can be preferably used in the present invention.

[液晶性化合物層]
本発明における液晶性化合物層は、液晶性化合物として、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。中でもディスコティック液晶性化合物がよい。
[Liquid crystal compound layer]
The liquid crystalline compound layer in the present invention is preferably a discotic liquid crystalline compound or a rod-shaped liquid crystalline compound as the liquid crystalline compound. Of these, discotic liquid crystalline compounds are preferable.

(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
(Discotic liquid crystalline compounds)
Examples of discotic liquid crystalline compounds that can be used in the present invention include various documents (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by the Chemical Society of Japan). , Quarterly Chemistry Review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985). J. Zhang et al., J. Am.Chem.Soc., Vol.116, page 2655 (1994)).

液晶性化合物層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。ディスコティック液晶性分子の重合については、特開平8−27284公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子について、特開2001−4387号公報に開示されている。   In the liquid crystal compound layer, the discotic liquid crystal molecules are preferably fixed in an aligned state, and most preferably fixed by a polymerization reaction. The polymerization of discotic liquid crystalline molecules is described in JP-A-8-27284. In order to fix the discotic liquid crystalline molecules by polymerization, it is necessary to bond a polymerizable group as a substituent to the discotic core of the discotic liquid crystalline molecules. However, when the polymerizable group is directly connected to the disc-shaped core, it becomes difficult to maintain the orientation state in the polymerization reaction. Therefore, a linking group is introduced between the discotic core and the polymerizable group. JP-A-2001-4387 discloses a discotic liquid crystalline molecule having a polymerizable group.

(棒状液晶性化合物)
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
(Bar-shaped liquid crystalline compound)
Examples of rod-like liquid crystalline compounds that can be used in the present invention include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, and cyano-substituted compounds. Phenyl pyrimidines, alkoxy substituted phenyl pyrimidines, phenyl dioxanes, tolanes and alkenyl cyclohexyl benzonitriles are included. Not only the above low-molecular liquid crystalline compounds but also high-molecular liquid crystalline compounds can be used.

液晶性化合物層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例には、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、世界特許(WO)95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1−272551号、同6−16616号、同7−110469号、同11−80081号、および特開2001−328973号などに記載の化合物が含まれる。   In the liquid crystal compound layer, the rod-like liquid crystal molecules are preferably fixed in an aligned state, and most preferably fixed by a polymerization reaction. Examples of polymerizable rod-like liquid crystalline compounds that can be used in the present invention include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, World Patents (WO) 95/22586, 95/24455. No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and JP-A-2001-2001. And the compounds described in US Pat.

[偏光板]
本発明において、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。例えば、透明支持体として前記の光学補償フィルムの1枚または2枚以上と、偏光膜とを接着し、楕円偏光板を作製することができる。具体的には、得られたセルロースアシレートフィルムをアルカリ処理し、偏光膜の少なくとも片面に接着剤を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号、特開平6−118232号の各公報に記載されているような接着加工を施してもよい。
セルロースアシレートフィルム処理面と偏光膜を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
偏光板は偏光板の両面を保護する保護フィルムを有し、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶セルへ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶セルへ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
[Polarizer]
In the present invention, a method for manufacturing the polarizing plate is not particularly limited, and the polarizing plate can be manufactured by a general method. For example, an elliptically polarizing plate can be produced by bonding one or more of the above optical compensation films as a transparent support and a polarizing film. Specifically, there is a method in which the obtained cellulose acylate film is alkali-treated and bonded to at least one surface of the polarizing film using an adhesive. Instead of the alkali treatment, an adhesion process as described in JP-A-6-94915 and JP-A-6-118232 may be performed.
Examples of the adhesive used for bonding the cellulose acylate film treated surface and the polarizing film include polyvinyl alcohol adhesives such as polyvinyl alcohol and polyvinyl butyral, vinyl latexes such as butyl acrylate, and the like.
The polarizing plate has a protective film for protecting both sides of the polarizing plate, and further comprises a protective film on one surface of the polarizing plate and a separate film on the other surface. The protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection. In this case, the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the liquid crystal cell. Moreover, a separate film is used in order to cover the contact bonding layer bonded to a liquid crystal cell, and is used for the surface side which bonds a polarizing plate to a liquid crystal cell.

偏光膜は、Optiva社製のものに代表される塗布型偏光膜、もしくはバインダーと、ヨウ素または二色性色素からなる偏光膜が好ましい。
偏光膜におけるヨウ素および二色性色素は、バインダー中で配向することで偏向性能を発現する。ヨウ素および二色性色素は、バインダー分子に沿って配向するか、もしくは二色性色素が液晶のような自己組織化により一方向に配向することが好ましい。
現在、汎用の偏光膜は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素をバインダー中に浸透させることで作製されるのが一般的である。汎用の偏光膜は、ポリマー表面から4μm程度(両側合わせて8μm程度)にヨウ素もしくは二色性色素が分布しており、十分な偏光性能を得るためには、少なくとも10μmの厚みが必要である。浸透度は、ヨウ素もしくは二色性色素の溶液濃度、同浴槽の温度、同浸漬時間により制御することができる。
The polarizing film is preferably a coating type polarizing film typified by Optiva, or a polarizing film made of a binder and iodine or a dichroic dye.
Iodine and dichroic dye in the polarizing film exhibit deflection performance by being oriented in the binder. It is preferable that the iodine and the dichroic dye are aligned along the binder molecule, or the dichroic dye is aligned in one direction by self-assembly such as liquid crystal.
Currently, a general-purpose polarizing film is produced by immersing a stretched polymer in a solution of iodine or dichroic dye in a bath and allowing the iodine or dichroic dye to penetrate into the binder. Is common. In general-purpose polarizing films, iodine or dichroic dye is distributed about 4 μm (about 8 μm on both sides) from the polymer surface, and a thickness of at least 10 μm is necessary to obtain sufficient polarization performance. The penetrability can be controlled by the solution concentration of iodine or dichroic dye, the temperature of the bath, and the immersion time.

偏光膜のバインダーは架橋していてもよい。架橋しているバインダーは、それ自体架橋可能なポリマーを用いることができる。官能基を有するポリマーあるいはポリマーに官能基を導入して得られるバインダーを、光、熱あるいはpH変化により、バインダー間で反応させて偏光膜を形成することができる。
また、架橋剤によりポリマーに架橋構造を導入してもよい。反応活性の高い化合物である架橋剤を用いてバインダー間に架橋剤に由来する結合基を導入して、バインダー間を架橋することにより形成することができる。
架橋は一般に、ポリマーまたはポリマーと架橋剤の混合物を含む塗布液を、透明支持体上に塗布したのち、加熱を行なうことにより実施される。最終商品の段階で耐久性が確保できれば良いため、架橋させる処理は、最終の偏光板を得るまでのいずれの段階で行なっても良い。
The binder of the polarizing film may be cross-linked. As the crosslinked binder, a polymer that can be crosslinked per se can be used. A polarizing film can be formed by reacting a polymer having a functional group or a binder obtained by introducing a functional group into a polymer between the binders by light, heat, or pH change.
Moreover, you may introduce | transduce a crosslinked structure into a polymer with a crosslinking agent. It can be formed by cross-linking between binders by introducing a bonding group derived from the cross-linking agent between binders using a cross-linking agent which is a compound having high reaction activity.
Crosslinking is generally carried out by applying a coating solution containing a polymer or a mixture of a polymer and a crosslinking agent on a transparent support and then heating. Since it is only necessary to ensure durability at the stage of the final product, the crosslinking treatment may be performed at any stage until the final polarizing plate is obtained.

偏光膜のバインダーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができる。ポリマーの例には、ポリメチルメタクリレート、ポリアクリル酸、ポリメタクリル酸、ポリスチレン、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリビニルトルエン、クロロスルホン化ポリエチレン、ニトロセルロース、塩素化ポリオレフィン(例、ポリ塩化ビニル)、ポリエステル、ポリイミド、ポリ酢酸ビニル、ポリエチレン、カルボキシメチルセルロース、ポリプロピレン、ポリカーボネートおよびそれらのコポリマー(例、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、スチレン/ビニルトルエン共重合体、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体)が含まれる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。   As the binder of the polarizing film, either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used. Examples of polymers include polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, polystyrene, gelatin, polyvinyl alcohol, modified polyvinyl alcohol, poly (N-methylolacrylamide), polyvinyltoluene, chlorosulfonated polyethylene, nitrocellulose, chlorinated Polyolefin (eg, polyvinyl chloride), polyester, polyimide, polyvinyl acetate, polyethylene, carboxymethylcellulose, polypropylene, polycarbonate and copolymers thereof (eg, acrylic acid / methacrylic acid copolymer, styrene / maleimide copolymer, styrene) / Vinyl toluene copolymer, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer). Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol and modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .

ポリビニルアルコールおよび変性ポリビニルアルコールのケン化度は、70乃至100%が好ましく、80乃至100%がさらに好ましく、95乃至100%が最も好ましい。ポリビニルアルコールの重合度は、100乃至5000が好ましい。
変性ポリビニルアルコールは、ポリビニルアルコールに対して、共重合変性、連鎖移動変性あるいはブロック重合変性により変性基を導入して得られる。共重合変性では、変性基として、COONa、Si(OH)3、N(CH33・Cl、C919COO、SO3Na、C1225を導入することができる。連鎖移動変性では、変性基として、COONa、SH、SC1225を導入することができる。変性ポリビニルアルコールの重合度は、100乃至3000が好ましい。変性ポリビニルアルコールについては、特開平8−338913号、同9−152509号および同9−316127号の各公報に記載がある。
ケン化度が85乃至95%の未変性ポリビニルアルコールおよびアルキルチオ変性ポリビニルアルコールが特に好ましい。
ポリビニルアルコールおよび変性ポリビニルアルコールは、二種以上を併用してもよい。
The saponification degree of polyvinyl alcohol and modified polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%, and most preferably 95 to 100%. The polymerization degree of polyvinyl alcohol is preferably 100 to 5000.
Modified polyvinyl alcohol is obtained by introducing a modifying group into polyvinyl alcohol by copolymerization modification, chain transfer modification or block polymerization modification. In the copolymerization modification, COONa, Si (OH) 3 , N (CH 3 ) 3 .Cl, C 9 H 19 COO, SO 3 Na, C 12 H 25 can be introduced as modifying groups. In chain transfer modification, COONa, SH, or SC 12 H 25 can be introduced as a modifying group. The degree of polymerization of the modified polyvinyl alcohol is preferably 100 to 3000. The modified polyvinyl alcohol is described in JP-A-8-338913, JP-A-9-152509 and JP-A-9-316127.
Unmodified polyvinyl alcohol and alkylthio-modified polyvinyl alcohol having a saponification degree of 85 to 95% are particularly preferred.
Two or more kinds of polyvinyl alcohol and modified polyvinyl alcohol may be used in combination.

バインダーの架橋剤は、多く添加すると、偏光膜の耐湿熱性を向上させることができる。ただし、バインダーに対して架橋剤を50質量%以上添加すると、ヨウ素、もしくは二色性色素の配向性が低下する。架橋剤の添加量は、バインダーに対して、0.1乃至20質量%が好ましく、0.5乃至15質量%がさらに好ましい。
バインダーは、架橋反応が終了した後でも、反応しなかった架橋剤をある程度含んでいる。ただし、残存する架橋剤の量は、バインダー中に1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。バインダー層中に1.0質量%を超える量で架橋剤が含まれていると、耐久性に問題が生じる場合がある。すなわち、架橋剤の残留量が多い偏光膜を液晶表示装置に組み込み、長期使用、あるいは高温高湿の雰囲気下に長期間放置した場合に、偏光度の低下が生じることがある。架橋剤については、米国再発行特許23297号明細書に記載がある。また、ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。
When a large amount of the crosslinking agent for the binder is added, the heat and humidity resistance of the polarizing film can be improved. However, when 50 mass% or more of a crosslinking agent is added to the binder, the orientation of iodine or the dichroic dye is lowered. The addition amount of the crosslinking agent is preferably 0.1 to 20% by mass, and more preferably 0.5 to 15% by mass with respect to the binder.
The binder contains some crosslinking agent that has not reacted even after the crosslinking reaction has been completed. However, the amount of the remaining crosslinking agent is preferably 1.0% by mass or less in the binder, and more preferably 0.5% by mass or less. When the crosslinking agent is contained in the binder layer in an amount exceeding 1.0% by mass, there may be a problem in durability. That is, when a polarizing film having a large amount of residual crosslinking agent is incorporated in a liquid crystal display device and used for a long time or left in a high-temperature and high-humidity atmosphere for a long time, the degree of polarization may decrease. The crosslinking agent is described in US Reissue Patent 23297. Boron compounds (eg, boric acid, borax) can also be used as a crosslinking agent.

二色性色素としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素が用いられる。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。二色性色素の例には、C.I.ダイレクト・イエロー12、C.I.ダイレクト・オレンジ39、C.I.ダイレクト・オレンジ72、C.I.ダイレクト・レッド39、C.I.ダイレクト・レッド79、C.I.ダイレクト・レッド81、C.I.ダイレクト・レッド83、C.I.ダイレクト・レッド89、C.I.ダイレクト・バイオレット48、C.I.ダイレクト・ブルー67、C.I.ダイレクト・ブルー90、C.I.ダイレクト・グリーン59、C.I.アシッド・レッド37が含まれる。二色性色素については、特開平1−161202号、同1−172906号、同1−172907号、同1−183602号、同1−248105号、同1−265205号、同7−261024号の各公報に記載がある。二色性色素は、遊離酸、あるいはアルカリ金属塩、アンモニウム塩またはアミン塩として用いられる。二種類以上の二色性色素を配合することにより、各種の色相を有する偏光膜を製造することができる。偏光軸を直交させた時に黒色を呈する化合物(色素)を用いた偏光膜、あるいは黒色を呈するように各種の二色性分子を配合した偏光膜または偏光板が、単板透過率および偏光率とも優れており好ましい。   As the dichroic dye, an azo dye, stilbene dye, pyrazolone dye, triphenylmethane dye, quinoline dye, oxazine dye, thiazine dye or anthraquinone dye is used. The dichroic dye is preferably water-soluble. The dichroic dye preferably has a hydrophilic substituent (eg, sulfo, amino, hydroxyl). Examples of dichroic dyes include C.I. I. Direct Yellow 12, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Direct Violet 48, C.I. I. Direct Blue 67, C.I. I. Direct Blue 90, C.I. I. Direct Green 59, C.I. I. Acid Red 37 is included. As for the dichroic dyes, those described in JP-A-1-161202, 1-172906, 1-172907, 1-183602, 1-248105, 1-265205, 7-261024 are used. There are descriptions in each publication. The dichroic dye is used as a free acid or an alkali metal salt, ammonium salt or amine salt. By blending two or more types of dichroic dyes, polarizing films having various hues can be produced. A polarizing film using a compound (pigment) that exhibits a black color when the polarization axes are orthogonal to each other, or a polarizing film or a polarizing plate in which various dichroic molecules are blended so as to exhibit a black color, have both a single-plate transmittance and a polarizability. It is excellent and preferable.

[TNモード液晶表示装置]
本発明におけるセルロースアシレートフィルムを透明支持体として、液晶性化合物層を形成した光学補償フィルムは、液晶がねじれ配向している液晶セル、例えばTNモード液晶表示装置の光学補償に好ましく用いられる。TNモード液晶表示装置については、古くから良く知られている。なおTNモード液晶表示装置に用いる従来の光学補償フィルムについては、特開平3−9325号、特開平6−148429号、特開平8−50206号、特開平9−26572号の各公報に記載がある。また、森(Mori)他の論文(Jpn. J. Appl. Phys. Vol.36(1997)p.143や、Jpn. J. Appl. Phys. Vol.36(1997)p.1068)に記載がある。
TNモード液晶表示装置は、二枚の電極基板の間に液晶を挟持してなる液晶セル、その両側に配置された二枚の偏光板、および該液晶セルと該偏光板との間に少なくとも一枚の光学補償フィルムを配置した構成からなる。液晶セルの両側に配置される偏光膜の吸収軸または透過軸と、セルロースアシレートフィルムの遅相軸とはどのような角度で配置しても構わないが、液晶性化合物層における遅相軸の向きが、近傍の偏光膜の吸収軸又は透過軸の向きから1°〜45°回転していることが好ましい。
液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。
[TN mode liquid crystal display]
The optical compensation film in which the liquid crystalline compound layer is formed using the cellulose acylate film in the present invention as a transparent support is preferably used for optical compensation of a liquid crystal cell in which liquid crystals are twisted and aligned, for example, a TN mode liquid crystal display device. The TN mode liquid crystal display device has been well known for a long time. The conventional optical compensation film used in the TN mode liquid crystal display device is described in JP-A-3-9325, JP-A-6-148429, JP-A-8-50206, and JP-A-9-26572. . Moreover, it is described in Mori et al. (Jpn. J. Appl. Phys. Vol. 36 (1997) p. 143 and Jpn. J. Appl. Phys. Vol. 36 (1997) p. 1068). is there.
The TN mode liquid crystal display device includes a liquid crystal cell having a liquid crystal sandwiched between two electrode substrates, two polarizing plates disposed on both sides thereof, and at least one between the liquid crystal cell and the polarizing plate. It has a configuration in which a single optical compensation film is arranged. The absorption axis or transmission axis of the polarizing film arranged on both sides of the liquid crystal cell and the slow axis of the cellulose acylate film may be arranged at any angle, but the slow axis of the liquid crystalline compound layer The direction is preferably rotated from 1 ° to 45 ° from the direction of the absorption axis or transmission axis of the nearby polarizing film.
The liquid crystal layer of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates. The transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance. The liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer, or an undercoat layer (undercoat layer) (used for adhesion of the transparent electrode layer). These layers are usually provided on the substrate. The substrate of the liquid crystal cell generally has a thickness of 50 μm to 2 mm.

本発明の液晶表示装置は、例えば図1に示すような構成を有する。基板5a、5bに狭持された液晶セル6と、偏光膜2a,2bおよび透明保護膜1a,1bからなる偏光板とを有する。液相セルと偏光板との間には、液晶性化合物層4a,4bおよび透明支持体3a,3bからなる光学補償フィルムがサンドイッチされている。なお、BLはバックライトである。   The liquid crystal display device of the present invention has a configuration as shown in FIG. It has a liquid crystal cell 6 sandwiched between substrates 5a and 5b, and a polarizing plate comprising polarizing films 2a and 2b and transparent protective films 1a and 1b. An optical compensation film composed of the liquid crystal compound layers 4a and 4b and the transparent supports 3a and 3b is sandwiched between the liquid phase cell and the polarizing plate. Note that BL is a backlight.

以下に本発明の実施例を挙げるが、これらに限定されるものではない。
[実施例1]
(透明支持体の作成)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液を調製した。
Examples of the present invention will be given below, but the present invention is not limited thereto.
[Example 1]
(Creation of transparent support)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution.

(セルロースアセテート溶液組成)
酢化度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
(Cellulose acetate solution composition)
Cellulose acetate having an acetylation degree of 2.86 100.0 parts by mass Methylene chloride (first solvent) 402.0 parts by mass Methanol (second solvent) 60.0 parts by mass

(マット剤微粒子溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤微粒子溶液を調製した。
(Preparation of matting agent fine particle solution)
20 parts by mass of silica particles having an average particle diameter of 16 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) and 80 parts by mass of methanol were thoroughly mixed for 30 minutes to obtain a silica particle dispersion. This dispersion was put into a disperser together with the following composition, and further stirred for 30 minutes or more to dissolve each component to prepare a matting agent fine particle solution.

(マット剤微粒子溶液組成)
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液 10.3質量部
(Matting agent fine particle solution composition)
Silica particle dispersion with an average particle size of 16 nm 10.0 parts by weight Methylene chloride (first solvent) 76.3 parts by weight Methanol (second solvent) 3.4 parts by weight Cellulose acetate solution 10.3 parts by weight

(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。光学的異方性を低下させる化合物および波長分散調整剤については下記表1に示すものを用いた。
(Preparation of additive solution)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution. The compounds shown in Table 1 below were used for the compounds and wavelength dispersion adjusting agents that reduce the optical anisotropy.

(添加剤溶液組成)
光学的異方性を低下させる化合物 49.3質量部
波長分散調整剤 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液 12.8質量部
(Additive solution composition)
Compound for reducing optical anisotropy 49.3 parts by weight Wavelength dispersion adjusting agent 7.6 parts by weight Methylene chloride (first solvent) 58.4 parts by weight Methanol (second solvent) 8.7 parts by weight Cellulose acetate solution 12 .8 parts by mass

(セルロースアセテートフィルム試料115の作製)
上記セルロースアセテート溶液を94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下させる化合物および波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.8%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させセルロースアセテートフィルム試料115を製造した。出来あがったセルロースアセテートフィルム試料115の残留溶剤量は0.2%であった。
(Preparation of cellulose acetate film sample 115)
94.6 parts by mass of the cellulose acetate solution, 1.3 parts by mass of the matting agent solution, and 4.1 parts by mass of the additive solution were mixed after filtration, and cast using a band casting machine. The mass ratio of the compound for reducing optical anisotropy and the wavelength dispersion adjusting agent to cellulose acetate in the above composition was 12% and 1.8%, respectively. The film was peeled from the band with a residual solvent amount of 30% and dried at 140 ° C. for 40 minutes to produce a cellulose acetate film sample 115. The resulting cellulose acetate film sample 115 had a residual solvent amount of 0.2%.

(他のセルロースアセテートフィルムの作製)
添加剤溶液中の光学的異方性を低下させる化合物(光学的異方性低下剤)および波長分散調整剤の種類及び量を表1の内容にしてセルロースアセテートフィルム試料008〜011、116〜128を作製した。表1にはセルロースアセテートフィルム試料115作製の溶液組成も記入した。これら試料の相対湿度10%と相対湿度80%での膜厚方向のレターデーションの差ΔRth(=Rth10%RH−Rth80%RH)を測定したところ、光学的異方性低下剤を添加していない比較試料008、009および光学的異方性低下剤の代わりに可塑剤ビフェニルジフェニルホスフェート(BDP)を添加した比較試料010においてはΔRthが30nm以下にならず光学的異方性の湿度依存性が大きかった。
一方、本発明の光学的異方性低下剤を含む試料115〜128においてはΔRthが0〜30nmの範囲にあり、湿度依存性が低下していることを確認した。またこれら試料の25℃80%RHにおける平衡含水率を測定したところ、比較試料008以外においてはいずれも4%以下であり本発明の光学的異方性低下剤や波長分散調整剤の添加によりセルロースアシレートフィルムが疎水化されていることが確認できた。さらにこれら試料の60℃、95%RH、24hrの透湿度(80μm換算)を測定したところ、比較試料008以外においてはいずれも400g/m2・24hr以上2000g/m2・24hr以下であり、また比較試料009、010と比較して本発明の光学的異方性低下剤や波長分散調整剤を添加した試料115〜128はいずれも透湿度が良化していることが確認できた。また、比較試料011以外の試料ではいずれもフィルムの白濁はなく、十分に透明なフィルムが作成できたが、比較試料011は添加化合物の総量がセルロースアシレートに対して49%と高く、5〜45%の範囲を超えており、この場合はフィルムが白濁して化合物が析出し(泣き出し)、透明性を持ったセルロースアシレートフィルムとしては評価できなかった。
また、試料126と127においては、80℃、90%RHの条件に48時間放置した際の質量変化を測定したところ、試料126は−0.12%、試料127は−0.02%であった。波長分散調整剤としてベンゾトリアゾール系化合物であるUV−21、UV−22、UV−23を用いたが、分子量が320以下であるUV−23(分子量315.5)を含まない試料127の方が試料126よりも保留性の点で有利であることが確認できた。
(Production of other cellulose acetate films)
Cellulose acetate film samples 008 to 011 and 116 to 128 with the types and amounts of the compound (optical anisotropy reducing agent) and the wavelength dispersion adjusting agent for reducing the optical anisotropy in the additive solution as shown in Table 1. Was made. In Table 1, the solution composition for preparing the cellulose acetate film sample 115 was also entered. When the difference ΔRth (= Rth10% RH−Rth80% RH) in the film thickness direction between the relative humidity of 10% and the relative humidity of 80% was measured, no optical anisotropy reducing agent was added. In the comparative samples 008 and 009 and the comparative sample 010 to which the plasticizer biphenyldiphenyl phosphate (BDP) is added instead of the optical anisotropy reducing agent, ΔRth does not become 30 nm or less and the optical anisotropy is highly dependent on humidity. It was.
On the other hand, in samples 115 to 128 containing the optical anisotropy reducing agent of the present invention, ΔRth was in the range of 0 to 30 nm, and it was confirmed that the humidity dependency was reduced. Further, when the equilibrium moisture content of these samples at 25 ° C. and 80% RH was measured, all of them were 4% or less except for the comparative sample 008. It was confirmed that the acylate film was hydrophobized. Furthermore, when 60 ° C., 95% RH, and 24 hr moisture permeability (in terms of 80 μm) of these samples were measured, all of them were 400 g / m 2 · 24 hr to 2000 g / m 2 · 24 hr, except for the comparative sample 008. It was confirmed that all of the samples 115 to 128 to which the optical anisotropy reducing agent and the wavelength dispersion adjusting agent of the present invention were added compared with the comparative samples 009 and 010 had improved moisture permeability. In addition, the samples other than the comparative sample 011 had no film turbidity, and a sufficiently transparent film could be prepared. In this case, the film was clouded and the compound was precipitated (crying out), and could not be evaluated as a transparent cellulose acylate film.
Further, in Samples 126 and 127, when the mass change was measured after being left for 48 hours at 80 ° C. and 90% RH, Sample 126 was −0.12% and Sample 127 was −0.02%. It was. As a wavelength dispersion adjusting agent, UV-21, UV-22, and UV-23, which are benzotriazole compounds, were used, but the sample 127 containing no UV-23 (molecular weight 315.5) having a molecular weight of 320 or less was used. It was confirmed that the sample 126 is more advantageous than the sample 126 in terms of retention.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

以上の様にして作成したセルロースアセテートフィルム試料の内、試料115を実施例1にて用いる透明支持体(PK−1)とした。   Among the cellulose acetate film samples prepared as described above, Sample 115 was used as the transparent support (PK-1) used in Example 1.

得られた透明支持体(PK−1)の幅は1340mmであり、厚さは、92μmであった。Re(630)は0.3nm、|Rth(630)|は3.2nm、|Re(400)−Re(700)|は1.2nm、|Rth(400)−Rth(700)|は7.5nmであった。
また、エリプソメーター(M−150、日本分光(株)製)を用いて、波長590nmにおけるレターデーション値(Re)を測定したところ、1nmであった。波長590nmにおけるレターデーション値(Rth)を測定したところ、−2nmであった。
また、透明支持体(PK−1)の吸湿膨張係数を測定した結果、12.0×10-5/%RHであった。
The width of the obtained transparent support (PK-1) was 1340 mm, and the thickness was 92 μm. Re (630) is 0.3 nm, | Rth (630) | is 3.2 nm, | Re (400) -Re (700) | is 1.2 nm, | Rth (400) -Rth (700) | It was 5 nm.
Moreover, it was 1 nm when the retardation value (Re) in wavelength 590nm was measured using the ellipsometer (M-150, JASCO Corporation make). When the retardation value (Rth) at a wavelength of 590 nm was measured, it was -2 nm.
Further, the hygroscopic expansion coefficient of the transparent support (PK-1) was measured and found to be 12.0 × 10 −5 /% RH.

(下塗り層の作製)
上記透明支持体(PK−1)に下記組成の塗布液を28cc/m2 塗布乾燥し、0.1μのゼラチン層(下塗り層)を塗設した。
(Preparation of undercoat layer)
On the transparent support (PK-1), a coating solution having the following composition was applied and dried at 28 cc / m 2, and a 0.1 μ gelatin layer (undercoat layer) was applied.

下塗り層塗布液組成
ゼラチン 0.542質量部
ホルムアルデヒド 0.136質量部
サリチル酸 0.160質量部
アセトン 39.1質量部
メタノール 15.8質量部
メチレンクロライド 40.6質量部
水 1.2質量部
Composition of undercoat layer coating solution Gelatin 0.542 parts by weight Formaldehyde 0.136 parts by weight Salicylic acid 0.160 parts by weight Acetone 39.1 parts by weight Methanol 15.8 parts by weight Methylene chloride 40.6 parts by weight Water 1.2 parts by weight

下塗り層上に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで28ml/m2の塗布量で塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。 On the undercoat layer, an alignment film coating solution having the following composition was applied at a coating amount of 28 ml / m 2 with a # 16 wire bar coater. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 90 ° C. for 150 seconds.

(配向膜塗布液組成)
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
(Orientation film coating solution composition)
The following modified polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde (crosslinking agent) 0.5 parts by weight

透明支持体(PK−1)の遅相軸(波長632.8nmで測定)と平行に配向膜にラビング処理を実施した。   The alignment film was rubbed parallel to the slow axis (measured at a wavelength of 632.8 nm) of the transparent support (PK-1).

(液晶性化合物層の形成)
下記のディスコティック液晶性化合物(A)41.01kg、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45kg、及び下記の含フッ素界面活性剤0.1kgを、102kgのメチルエチルケトンに溶解して塗布液とし、この塗布液を配向膜上に、#5.6のワイヤーバーで連続的に塗布し、130℃の状態で2分間加熱し、ディスコティック液晶性化合物を配向させた。次に、100℃で120W/cm高圧水銀灯を用いて、1分間UV照射し、ディスコティック液晶性化合物を重合させた。その後、室温まで放冷した。このようにして、厚さ92μmの液晶性化合物層付き光学補償フィルム(KH−1)を作製した。
波長590nmで測定した液晶性化合物層のみの厚さ方向のレターデーション値Rthは175nmであった。また、円盤面と透明支持体面との間の角度(傾斜角)は平均で38゜であった。
偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面、および法線から60°まで傾けた方向から見ても、ムラは検出出来なかった。
ディスコティック液晶性化合物(A)
(Formation of liquid crystalline compound layer)
The following discotic liquid crystal compound (A) 41.01 kg, ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 kg, cellulose acetate butyrate (CAB531-1, Eastman) Chemical Co., Ltd.) 0.35 kg, Photopolymerization initiator (Irgacure 907, Ciba Geigy Co., Ltd.) 1.35 kg, Sensitizer (Kayacure DETX, Nippon Kayaku Co., Ltd.) 0.45 kg, and the following fluorine-containing interface 0.1 kg of the activator is dissolved in 102 kg of methyl ethyl ketone to form a coating solution. This coating solution is continuously applied onto the alignment film with a # 5.6 wire bar and heated at 130 ° C. for 2 minutes. A discotic liquid crystal compound was aligned. Next, UV irradiation was performed for 1 minute using a 120 W / cm high-pressure mercury lamp at 100 ° C. to polymerize the discotic liquid crystalline compound. Then, it stood to cool to room temperature. Thus, an optical compensation film (KH-1) with a liquid crystal compound layer having a thickness of 92 μm was produced.
The retardation value Rth in the thickness direction of only the liquid crystalline compound layer measured at a wavelength of 590 nm was 175 nm. The angle (tilt angle) between the disk surface and the transparent support surface was 38 ° on average.
When the polarizing plate was arranged in a crossed Nicol arrangement and the unevenness of the obtained optical compensation sheet was observed, the unevenness could not be detected even when viewed from the front and the direction inclined to 60 ° from the normal line.
Discotic liquid crystalline compound (A)

Figure 2006178359
Figure 2006178359

(偏光膜の作製)
平均重合度4000、鹸化度99.8mol%のPVAを水に溶解し、4.0%の水溶液を得た。この溶液をテーパーのついたダイを用いてバンド流延して乾燥し、延伸前の幅が110mmで厚みは左端が120μm、右端が135μmになるように製膜した。
このフィルムをバンドから剥ぎ取り、ドライ状態で45度方向に斜め延伸してそのままよう素0.5g/L、よう化カリウム50g/Lの水溶液中に30℃で1分間浸漬し、次いでホウ酸100g/L、よう化カリウム60g/Lの水溶液中に70℃で5分間浸漬し、さらに水洗槽で20度で10秒間水洗したのち80℃で5分間乾燥してよう素系偏光膜(HF−1)を得た。偏光膜は、幅660mm、厚みは左右とも20μmであった。
(Preparation of polarizing film)
PVA having an average polymerization degree of 4000 and a saponification degree of 99.8 mol% was dissolved in water to obtain a 4.0% aqueous solution. This solution was band-cast using a die having a taper and dried to form a film so that the width before stretching was 110 mm, the thickness was 120 μm at the left end, and 135 μm at the right end.
The film was peeled off from the band, and obliquely stretched in the 45 ° direction in a dry state, and immersed in an aqueous solution of 0.5 g / L iodine and 50 g / L potassium iodide for 1 minute at 30 ° C., and then 100 g boric acid. / L, potassium iodide 60 g / L in an aqueous solution at 70 ° C. for 5 minutes, further washed with water at 20 ° C. for 10 seconds and then dried at 80 ° C. for 5 minutes to obtain an iodine-based polarizing film (HF-1 ) The polarizing film had a width of 660 mm and a thickness of 20 μm on both sides.

(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−1(光学補償フィルム)を透明支持体(PK−1)面で偏光膜(HF−1)の片側に貼り付けた。また、トリアセチルセルロースフィルム:フジタックTD−80Uに、国際公開第WO02/46809号パンフレットの実施例1記載のケン化処理と同様にして表面鹸化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光膜の透過軸と透明支持体(PK−1)の遅相軸とは直交になるように配置した。偏光膜の透過軸と上記TD−80Uの遅相軸とは、直交するように配置した。
このようにして偏光板(HB−1)を作製した。
(Preparation of polarizing plate)
Using a polyvinyl alcohol-based adhesive, KH-1 (optical compensation film) was attached to one side of the polarizing film (HF-1) on the transparent support (PK-1) surface. Further, a triacetyl cellulose film: Fujitac TD-80U was subjected to a surface saponification treatment in the same manner as in the saponification treatment described in Example 1 of International Publication No. WO 02/46809, and a polyvinyl alcohol adhesive was used for polarizing Affixed to the other side of the membrane.
The transmission axis of the polarizing film and the slow axis of the transparent support (PK-1) were arranged so as to be orthogonal. The transmission axis of the polarizing film and the slow axis of the TD-80U were arranged so as to be orthogonal to each other.
In this way, a polarizing plate (HB-1) was produced.

[比較例1]
(透明支持体の作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
[Comparative Example 1]
(Preparation of transparent support)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution.

(セルロースアセテート溶液組成)
酢化度60.9%のセルロースアセテート(リンター) 80質量部
酢化度60.8%のセルロースアセテート(リンター) 20質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
(Cellulose acetate solution composition)
Cellulose acetate (linter) with an acetylation degree of 60.9% 80 parts by mass Cellulose acetate (linter) with an acetylation degree of 60.8% 20 parts by mass Triphenyl phosphate (plasticizer) 7.8 parts by mass Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by mass Methylene chloride (first solvent) 300 parts by mass Methanol (second solvent) 54 parts by mass 1-butanol (third solvent) 11 parts by mass

別のミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド80質量部およびメタノール20質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。
セルロースアセテート溶液474質量部にレターデーション上昇剤溶液25質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、3.5質量部であった。
In another mixing tank, 16 parts by mass of the following retardation increasing agent, 80 parts by mass of methylene chloride and 20 parts by mass of methanol were added and stirred while heating to prepare a retardation increasing agent solution.
A dope was prepared by mixing 474 parts by mass of the cellulose acetate solution with 25 parts by mass of the retardation increasing agent solution and stirring sufficiently. The addition amount of the retardation increasing agent was 3.5 parts by mass with respect to 100 parts by mass of cellulose acetate.

Figure 2006178359
Figure 2006178359

得られたドープを、バンド流延機を用いて流延した。バンド上での膜面温度が40℃となってから、1分乾燥し、剥ぎ取った後、140℃の乾燥風で、残留溶剤量が0.3質量%の透明支持体(PK−2)を製造した。
得られた透明支持体(PK−2)の幅は1500mmであり、厚さは、65μmであった。Re(630)は5nm、|Rth(630)|は80nm、|Re(400)−Re(700)|は2nm、|Rth(400)−Rth(700)|は7nmであった。
また、エリプソメーター(M−150、日本分光(株)製)を用いて、波長590nmにおけるレターデーション値(Re)を測定したところ、4nmであった。また、波長590nmにおけるレターデーション値(Rth)を測定したところ、78nmであった。
The obtained dope was cast using a band casting machine. After the film surface temperature on the band reached 40 ° C., the film was dried for 1 minute, peeled off, and then a transparent support (PK-2) having a residual solvent amount of 0.3 mass% with a drying air of 140 ° C. Manufactured.
The width of the obtained transparent support (PK-2) was 1500 mm, and the thickness was 65 μm. Re (630) was 5 nm, | Rth (630) | was 80 nm, | Re (400) -Re (700) | was 2 nm, and | Rth (400) -Rth (700) |
Moreover, it was 4 nm when the retardation value (Re) in wavelength 590nm was measured using the ellipsometer (M-150, JASCO Corporation make). Moreover, it was 78 nm when the retardation value (Rth) in wavelength 590nm was measured.

(液晶性化合物層付き光学補償フィルムの作製)
透明支持体(PK−2)を、2.0Nの水酸化カリウム溶液(25℃)に2分間浸漬した後、硫酸で中和し、純水で水洗、乾燥した。PK−2表面の水との接触角は35度、及び表面エネルギーは63mN/mであった(接触角法により求めた)。
(Preparation of optical compensation film with liquid crystalline compound layer)
The transparent support (PK-2) was immersed in a 2.0N potassium hydroxide solution (25 ° C.) for 2 minutes, then neutralized with sulfuric acid, washed with pure water and dried. The contact angle with water on the surface of PK-2 was 35 degrees, and the surface energy was 63 mN / m (determined by the contact angle method).

<配向膜の形成>
作製したPK−2上に、下記の組成の塗布液を#16のワイヤーバーコーターで28ml/m2の塗布量で塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
<Formation of alignment film>
On the produced PK-2, a coating solution having the following composition was coated with a # 16 wire bar coater at a coating amount of 28 ml / m 2 . Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 90 ° C. for 150 seconds.

<配向膜塗布液組成>
下記の変性ポリビニルアルコール 13.5質量部
ポリビニルアルコール(PVA117、クラレ製) 1.5質量部
水 361質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
変性ポリビニルアルコール:
<Alignment film coating solution composition>
The following modified polyvinyl alcohol 13.5 parts by weight Polyvinyl alcohol (PVA117, manufactured by Kuraray) 1.5 parts by weight Water 361 parts by weight Methanol 119 parts by weight Glutaraldehyde (crosslinking agent) 0.5 parts by weight Modified polyvinyl alcohol:

Figure 2006178359
Figure 2006178359

次に、PK−2の長手方向と平行な方向に配向するように変性ポリビニルアルコール膜にラビング処理を実施した。   Next, the modified polyvinyl alcohol film was rubbed so as to be oriented in a direction parallel to the longitudinal direction of PK-2.

<液晶性化合物層の形成>
配向膜上に、上記のディスコティック液晶性化合物(A)46.65kg、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06kg、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45kgを、102kgのメチルエチルケトンに溶解した溶液を塗布液とし、これを、#3.6のワイヤーバーで塗布した。これを130℃の恒温ゾーンで2分間加熱し、ディスコティック液晶性化合物を配向させた。次に、60℃の雰囲気下で120W/cmの高圧水銀灯を用いて、1分間UV照射し、ディスコティック液晶性化合物を重合させた。その後、室温まで放冷した。このようにして、厚さ1.4μmの液晶性化合物層を形成し、光学補償フィルム(KH−2)を作製した。
<Formation of liquid crystalline compound layer>
On the alignment film, the above discotic liquid crystalline compound (A) 46.65 kg, ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 kg, cellulose acetate butyrate (CAB551) -0.2, manufactured by Eastman Chemical Co.) 0.90 kg, cellulose acetate butyrate (CAB531-1, manufactured by Eastman Chemical Co.) 0.23 kg, photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy Co.) 1.35 kg A solution obtained by dissolving 0.45 kg of a sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) in 102 kg of methyl ethyl ketone was used as a coating solution, and this was coated with a # 3.6 wire bar. This was heated in a constant temperature zone of 130 ° C. for 2 minutes to align the discotic liquid crystalline compound. Next, UV irradiation was performed for 1 minute using a 120 W / cm high-pressure mercury lamp in an atmosphere of 60 ° C. to polymerize the discotic liquid crystalline compound. Then, it stood to cool to room temperature. In this way, a liquid crystal compound layer having a thickness of 1.4 μm was formed, and an optical compensation film (KH-2) was produced.

波長590nmで測定した液晶性化合物層の厚さ方向レターデーション値Rthは103nmであった。また、円盤面と透明支持体面との間の角度(傾斜角)は平均で39゜であった。
偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面、および法線から60°まで傾けた方向から見ても、ムラは検出出来なかった。
The retardation value Rth in the thickness direction of the liquid crystal compound layer measured at a wavelength of 590 nm was 103 nm. The angle (tilt angle) between the disk surface and the transparent support surface was 39 ° on average.
When the polarizing plate was arranged in a crossed Nicol arrangement and the unevenness of the obtained optical compensation sheet was observed, the unevenness could not be detected even when viewed from the front and the direction inclined to 60 ° from the normal line.

(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−2(光学補償フィルム)を偏光膜(HF−1)の片側に貼り付けた。また、トリアセチルセルロースフィルム:フジタックTD−80Uに実施例1と同様にしてケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光膜の透過軸とPK−2の遅相軸とは直交になるように配置した。偏光膜の透過軸と上記TD−80Uの遅相軸とは、直交するように配置した。このようにして偏光板(HB−2)を作製した。
(Preparation of polarizing plate)
Using a polyvinyl alcohol-based adhesive, KH-2 (optical compensation film) was attached to one side of the polarizing film (HF-1). Moreover, the saponification process was performed to triacetylcellulose film: Fujitac TD-80U like Example 1, and it affixed on the other side of the polarizing film using the polyvinyl alcohol-type adhesive agent.
The transmission axis of the polarizing film and the slow axis of PK-2 were arranged to be orthogonal. The transmission axis of the polarizing film and the slow axis of the TD-80U were arranged so as to be orthogonal to each other. In this way, a polarizing plate (HB-2) was produced.

[実施例2]
実施例1にて作成した透明支持体(PK−1)に実施例1と同様の下塗り層及び配向膜を作成した。
(液晶性化合物層の形成)
実施例1と同様のディスコティック液晶性化合物(A)41.01kg、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45kg、及び上記の含フッ素界面活性剤0.1kgに液晶性化合物にねじれ構造を発現させるカイラル剤0.29kgを加え、102kgのメチルエチルケトンに溶解して塗布液とし、この塗布液を配向膜上に、#5.6のワイヤーバーで連続的に塗布し、130℃の状態で2分間加熱し、ディスコティック液晶性化合物を配向させた。次に、100℃で120W/cm高圧水銀灯を用いて、1分間UV照射し、ディスコティック液晶性化合物を重合させた。その後、室温まで放冷した。このようにして、厚さ94μmの液晶性化合物層付き光学補償フィルム(KH−3)を作製した。
波長590nmで測定した液晶性化合物層の厚さ方向のレターデーション値Rthは168nmであった。また、円盤面と透明支持体面との間の角度(傾斜角)は平均で36゜であった。
[Example 2]
The same undercoat layer and alignment film as in Example 1 were prepared on the transparent support (PK-1) prepared in Example 1.
(Formation of liquid crystalline compound layer)
Discotic liquid crystalline compound (A) 41.01 kg similar to Example 1, ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 kg, cellulose acetate butyrate (CAB531- 1, 0.35 kg manufactured by Eastman Chemical Co., Ltd., 1.35 kg photoinitiator (Irgacure 907, manufactured by Ciba Geigy Co.), 0.45 kg sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.), and the above 0.29 kg of a chiral agent that develops a twisted structure in a liquid crystal compound is added to 0.1 kg of the fluorine-containing surfactant, and dissolved in 102 kg of methyl ethyl ketone to form a coating solution. Apply continuously with 6 wire bars, heat at 130 ° C for 2 minutes, discotic solution Sex compound was oriented. Next, UV irradiation was performed for 1 minute using a 120 W / cm high-pressure mercury lamp at 100 ° C. to polymerize the discotic liquid crystalline compound. Then, it stood to cool to room temperature. In this way, an optical compensation film (KH-3) with a liquid crystal compound layer having a thickness of 94 μm was produced.
The retardation value Rth in the thickness direction of the liquid crystalline compound layer measured at a wavelength of 590 nm was 168 nm. The angle (tilt angle) between the disk surface and the transparent support surface was 36 ° on average.

(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−3(光学補償フィルム)を偏光膜(HF−1)の片側に貼り付けた。また、トリアセチルセルロースフィルム:フジタックTD−80Uに実施例1と同様にしてケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光膜の透過軸とPK−1の遅相軸とは直交になるように配置した。偏光膜の透過軸と上記TD−80Uの遅相軸とは、直交するように配置した。このようにして偏光板(HB−3)を作製した。
(Preparation of polarizing plate)
Using a polyvinyl alcohol-based adhesive, KH-3 (optical compensation film) was attached to one side of the polarizing film (HF-1). Moreover, the saponification process was performed to triacetylcellulose film: Fujitac TD-80U like Example 1, and it affixed on the other side of the polarizing film using the polyvinyl alcohol-type adhesive agent.
The transmission axis of the polarizing film and the slow axis of PK-1 were arranged to be orthogonal. The transmission axis of the polarizing film and the slow axis of the TD-80U were arranged so as to be orthogonal to each other. In this way, a polarizing plate (HB-3) was produced.

[実施例3]
実施例1にて作成した透明支持体(PK−1)に実施例1と同様の下塗り層を作成した。実施例1と同様の配向膜塗布液を用意し、PK−1の遅相軸から4°右回りに回転させて配向膜にラビング処理を施した。
(液晶性化合物層の形成)
実施例1と同様のディスコティック液晶性化合物(A)41.01kg、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45kgを、102kgのメチルエチルケトンに溶解して塗布液とし、この塗布液を配向膜上に、#5.6のワイヤーバーで連続的に塗布し、130℃の状態で2分間加熱し、ディスコティック液晶性化合物を配向させた。次に、100℃で120W/cm高圧水銀灯を用いて、1分間UV照射し、ディスコティック液晶性化合物を重合させた。その後、室温まで放冷した。このようにして、厚さ93μmの液晶性化合物層付き光学補償シート(KH−4)を作製した。
波長590nmで測定した液晶性化合物層の厚さ方向のレターデーション値Rthは172nmであった。また、円盤面と透明支持体面との間の角度(傾斜角)は平均で36゜であった。
[Example 3]
An undercoat layer similar to that in Example 1 was formed on the transparent support (PK-1) prepared in Example 1. An alignment film coating solution similar to that in Example 1 was prepared, and the alignment film was rubbed by rotating clockwise by 4 ° from the slow axis of PK-1.
(Formation of liquid crystalline compound layer)
Discotic liquid crystalline compound (A) 41.01 kg similar to Example 1, ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 kg, cellulose acetate butyrate (CAB531- 1, 0.35 kg of Eastman Chemical Co., Ltd., 1.35 kg of photopolymerization initiator (Irgacure 907, Ciba Geigy Co., Ltd.), 0.45 kg of sensitizer (Kayacure DETX, Nippon Kayaku Co., Ltd.), 102 kg The solution is dissolved in methyl ethyl ketone to form a coating solution, and this coating solution is continuously coated on the alignment film with a # 5.6 wire bar and heated at 130 ° C. for 2 minutes to align the discotic liquid crystalline compound. I let you. Next, UV irradiation was performed for 1 minute using a 120 W / cm high-pressure mercury lamp at 100 ° C. to polymerize the discotic liquid crystalline compound. Then, it stood to cool to room temperature. In this way, an optical compensation sheet (KH-4) with a liquid crystal compound layer having a thickness of 93 μm was produced.
The retardation value Rth in the thickness direction of the liquid crystalline compound layer measured at a wavelength of 590 nm was 172 nm. The angle (tilt angle) between the disk surface and the transparent support surface was 36 ° on average.

(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−4(光学補償フィルム)を偏光膜(HF−1)の片側に貼り付けた。また、トリアセチルセルロースフィルム:フジタックTD−80Uに実施例1と同様にしてケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光膜の透過軸とPK−1の遅相軸とは直交になるように配置した。偏光膜の透過軸と上記TD−80Uの遅相軸とは、直交するように配置した。このようにして偏光板(HB−4)を作製した。
(Preparation of polarizing plate)
Using a polyvinyl alcohol-based adhesive, KH-4 (optical compensation film) was attached to one side of the polarizing film (HF-1). Moreover, the saponification process was performed to triacetylcellulose film: Fujitac TD-80U like Example 1, and it affixed on the other side of the polarizing film using the polyvinyl alcohol-type adhesive agent.
The transmission axis of the polarizing film and the slow axis of PK-1 were arranged to be orthogonal. The transmission axis of the polarizing film and the slow axis of the TD-80U were arranged so as to be orthogonal to each other. In this way, a polarizing plate (HB-4) was produced.

実施例1において、偏光膜の保護をTD−80Uで行う代わりに、市販のポリカーボネートフィルム「パンライトC1400」(帝人化成製)を用いて同様の操作で偏光板を作製した。しかし延伸したポリビニルアルコールとの貼合性が不十分であり、ポリカーボネートフィルムは偏光膜の保護フィルムとして機能できず、偏光板加工適性に問題があった。   In Example 1, instead of protecting the polarizing film with TD-80U, a polarizing plate was produced in the same manner using a commercially available polycarbonate film “Panlite C1400” (manufactured by Teijin Chemicals). However, the bonding property with the stretched polyvinyl alcohol was insufficient, and the polycarbonate film could not function as a protective film for the polarizing film, and there was a problem in the suitability for polarizing plate processing.

実施例1において、偏光膜の保護をTD−80Uで行う代わりに、厚さ80μmのアートンフィルム(JSR製)を用いて同様の操作で偏光板を作製した。しかし延伸したポリビニルアルコールとの貼合性が不十分であり、アートンフィルムは偏光膜の保護フィルムとして機能できず、偏光板加工適性に問題があった。   In Example 1, instead of protecting the polarizing film with TD-80U, a polarizing plate was produced in the same manner using an 80 μm thick Arton film (manufactured by JSR). However, the bonding property with the stretched polyvinyl alcohol is insufficient, and the Arton film cannot function as a protective film for the polarizing film, and there is a problem in the suitability for polarizing plate processing.

以上の作成した偏光板を表2及び表3に整理する。   The above-prepared polarizing plates are arranged in Tables 2 and 3.

Figure 2006178359
Figure 2006178359

Figure 2006178359
Figure 2006178359

(TNモード液晶表示装置での評価)
ツイステッドネマチック配向モードの液晶セルを使用した液晶表示装置(SyncMaster 172x、日本サムスン(株))に設けられている一対の偏光板を剥がし、その液晶層のレターデーション、液晶のねじれの向きをシンテック(株)製汎用偏向解析装置H33を用いて測定した。レターデーションは0.4μm程度、液晶セルは光源側から表示観察側に向けて、観察側側から見て時計回りに約90°ねじれていることを確認した。
剥がした偏向板の代わりに作製した偏光板、HB−1、HB−2、HB−3、HB−4を、光学補償フィルム側が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸は、夫々の基板上の液晶ラビング方向と直交するように配置した。
作製した液晶表示装置について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L0)から白表示(L7)まで、8段階に等分割した階調レベルを測定した。その結果得られた、下方向のL1とL2の交差する角度を表4に示す。
(Evaluation with TN mode liquid crystal display)
Remove the pair of polarizing plates provided in the liquid crystal display device (SyncMaster 172x, Nippon Samsung Co., Ltd.) using a twisted nematic alignment mode liquid crystal cell, and the retardation of the liquid crystal layer and the twist direction of the liquid crystal The measurement was performed using a general-purpose deflection analyzer H33 manufactured by KK. It was confirmed that the retardation was about 0.4 μm, and the liquid crystal cell was twisted about 90 ° clockwise from the light source side toward the display observation side as viewed from the observation side.
The polarizing plate, HB-1, HB-2, HB-3, and HB-4 prepared in place of the peeled deflecting plate are placed on the viewer side through an adhesive so that the optical compensation film side becomes the liquid crystal cell side. A sheet was attached to the backlight side. The transmission axis of the polarizing plate on the observer side and the transmission axis of the polarizing plate on the backlight side were arranged so as to be orthogonal to the liquid crystal rubbing direction on each substrate.
About the produced liquid crystal display device, the gradation level equally divided into eight steps from black display (L0) to white display (L7) was measured using the measuring machine (EZ-Contrast160D, ELDIM company make). Table 4 shows the angles at which L1 and L2 in the downward direction intersect as a result.

Figure 2006178359
Figure 2006178359

なお、液晶セル中の液晶分子の複屈折率は0.08、液晶層の厚さは5μm程度であり、Δnd=400nm程である。
実施例1〜3、比較例1において、上下2枚配設された光学補償フィルムのRth(590)の総和は、液晶セルの液晶Δndに対して、何れもΔnd×0.7〜Δnd×1.2の範囲にある。具体的には、実施例1は、Δnd=400nmに対する光学補償フィルムのRthの比率は、0.87、実施例2は0.83、実施例3は0.85、比較例1は0.91である。
この内、比較例1のみ透明支持体のRthが40%以上を占め、その場合は、階調反転(L1とL2の交差する角度)が小さくなることが検証された。
The birefringence of the liquid crystal molecules in the liquid crystal cell is 0.08, the thickness of the liquid crystal layer is about 5 μm, and Δnd = 400 nm.
In Examples 1 to 3 and Comparative Example 1, the total of Rth (590) of the two optical compensation films disposed on the upper and lower sides is Δnd × 0.7 to Δnd × 1 with respect to the liquid crystal Δnd of the liquid crystal cell. In the range of .2. Specifically, in Example 1, the ratio of Rth of the optical compensation film to Δnd = 400 nm is 0.87, Example 2 is 0.83, Example 3 is 0.85, and Comparative Example 1 is 0.91. It is.
Among these, only Rth of the transparent support accounted for 40% or more in Comparative Example 1, and in that case, it was verified that gradation inversion (angle at which L1 and L2 intersect) was reduced.

本発明における液晶表示装置の基本的な構成例を示す模式図である。It is a schematic diagram which shows the basic structural example of the liquid crystal display device in this invention. TNモード液晶表示装置の階調反転現象の様子を表わす図である。It is a figure showing the mode of the gradation inversion phenomenon of a TN mode liquid crystal display device.

符号の説明Explanation of symbols

1a,1b 透明保護膜
2a,2b 偏光膜
3a,3b 透明支持体
4a,4b 液晶性化合物層
5a,5b 液晶セルの上下基板
6 液晶セル
BL バックライト
DESCRIPTION OF SYMBOLS 1a, 1b Transparent protective film 2a, 2b Polarizing film 3a, 3b Transparent support 4a, 4b Liquid crystalline compound layer 5a, 5b Upper and lower substrates of liquid crystal cell 6 Liquid crystal cell BL Backlight

Claims (10)

液晶性化合物層および透明支持体から構成され、ツイステッドネマチック配向モードの液晶セルと該液晶セルの両側に配置される偏光板との間の少なくとも一方に配置される光学補償フィルムであって、該光学補償フィルムのRth(590)の総和が、Δn×d×0.7〜Δn×d×1.2の範囲であるとともに、該透明支持体が、下記式(I)および(II)のRe(λ)およびRth(λ)の条件を満たすセルロースアシレートフィルムからなることを特徴とする光学補償フィルム。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
[前記式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)、Δnは波長590nmで測定した該液晶セル中の液晶分子の複屈折率、dは該液晶セルの液晶層の厚さ(単位:nm)である。]
An optical compensation film comprising a liquid crystal compound layer and a transparent support, and disposed on at least one of a liquid crystal cell of twisted nematic alignment mode and a polarizing plate disposed on both sides of the liquid crystal cell, The total Rth (590) of the compensation film is in the range of Δn × d × 0.7 to Δn × d × 1.2, and the transparent support is represented by Re ( An optical compensation film comprising a cellulose acylate film satisfying the conditions of λ) and Rth (λ).
(I) 0 ≦ Re (630) ≦ 10 and | Rth (630) | ≦ 25
(II) | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35
[In the above formula, Re (λ) is the front retardation value at wavelength λnm (unit: nm), Rth (λ) is the retardation value in film thickness direction at wavelength λnm (unit: nm), and Δn is measured at wavelength 590 nm. The birefringence of the liquid crystal molecules in the liquid crystal cell, d is the thickness (unit: nm) of the liquid crystal layer of the liquid crystal cell. ]
前記透明支持体が、膜厚方向のレターデーション値Rthを低下させる化合物を、下記式(III)および(IV)をみたす範囲で少なくとも一種含有することを特徴とする請求項1に記載の光学補償フイルム。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aは前記セルロースアシレートの質量を100としたときの化合物の質量(%)である。]
2. The optical compensation according to claim 1, wherein the transparent support contains at least one compound that decreases the retardation value Rth in the film thickness direction within a range satisfying the following formulas (III) and (IV). Film.
(III) (Rth (A) −Rth (0)) / A ≦ −1.0
(IV) 0.01 ≦ A ≦ 30
[Wherein Rth (A) is Rth (nm) of a film containing A% of a compound that lowers Rth, Rth (0) is Rth (nm) of a film not containing a compound that lowers Rth, and A is the cellulose. This is the mass (%) of the compound when the mass of the acylate is 100. ]
前記透明支持体が、アシル置換度2.85〜3.00のセルロースアシレートに、Re(λ)およびRth(λ)を低下させる化合物の少なくとも1種を、前記セルロースアシレートに対して0.01〜30質量%の割合で添加して得られたものであることを特徴とする請求項2に記載の光学補償フィルム。   When the transparent support is cellulose acylate having an acyl substitution degree of 2.85 to 3.00, at least one compound for reducing Re (λ) and Rth (λ) is added to cellulose acylate in an amount of 0.8. 3. The optical compensation film according to claim 2, wherein the optical compensation film is obtained by adding at a ratio of 01 to 30% by mass. 前記液晶性化合物層がディスコティック液晶性化合物を含有することを特徴とする請求項1〜3のいずれかに記載の光学補償フィルム。   The optical compensation film according to claim 1, wherein the liquid crystal compound layer contains a discotic liquid crystal compound. 前記液晶性化合物層における液晶化合物の平均の遅相軸の向きが、前記液晶性化合物層の厚さ方向で捩れていることを特徴とする請求項4に記載の光学補償フィルム。   The optical compensation film according to claim 4, wherein the direction of the average slow axis of the liquid crystal compound in the liquid crystal compound layer is twisted in the thickness direction of the liquid crystal compound layer. 前記液晶性化合物層における遅相軸の向きが、近傍の偏光膜の吸収軸又は透過軸の向きから1°〜45°回転していることを特徴とする請求項4に記載の光学補償フィルム。   5. The optical compensation film according to claim 4, wherein the direction of the slow axis in the liquid crystal compound layer is rotated by 1 ° to 45 ° from the direction of the absorption axis or transmission axis of a nearby polarizing film. 請求項1〜6のいずれかに記載の光学補償フィルムの1枚または2枚以上と、偏光膜とを有することを特徴とする楕円偏光板。   An elliptically polarizing plate comprising one or more of the optical compensation films according to claim 1 and a polarizing film. 請求項1〜6のいずれかに記載の光学補償フィルムを有することを特徴とする液晶表示装置。   A liquid crystal display device comprising the optical compensation film according to claim 1. ツイステッドネマチック配向モードの液晶セルの両側に配置される偏光板であって、該偏光板は、偏光膜と、該偏光膜より液晶セル側に配置された液晶性化合物層および透明支持体とを有し、該透明支持体が、下記式(I)および(II)のRe(λ)およびRth(λ)の条件を満たすセルロースアシレートフィルムからなることを特徴とする偏光板。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
[前記式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]
A polarizing plate disposed on both sides of a twisted nematic alignment mode liquid crystal cell, the polarizing plate having a polarizing film, a liquid crystal compound layer disposed on the liquid crystal cell side of the polarizing film, and a transparent support. A polarizing plate, wherein the transparent support comprises a cellulose acylate film that satisfies the conditions of Re (λ) and Rth (λ) in the following formulas (I) and (II).
(I) 0 ≦ Re (630) ≦ 10 and | Rth (630) | ≦ 25
(II) | Re (400) −Re (700) | ≦ 10 and | Rth (400) −Rth (700) | ≦ 35
[In the above formula, Re (λ) is the front retardation value (unit: nm) at the wavelength λnm, and Rth (λ) is the retardation value (unit: nm) in the film thickness direction at the wavelength λnm. ]
前記透明支持体が、膜厚方向のレターデーション値Rthを低下させる化合物を、下記式(III)および(IV)をみたす範囲で少なくとも一種含有することを特徴とする請求項9に記載の偏光板。
(III)(Rth(A)−Rth(0))/A≦−1.0
(IV)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aは前記セルロースアシレートの質量を100としたときの化合物の質量(%)である。]
The polarizing plate according to claim 9, wherein the transparent support contains at least one compound that decreases the retardation value Rth in the film thickness direction within a range satisfying the following formulas (III) and (IV). .
(III) (Rth (A) −Rth (0)) / A ≦ −1.0
(IV) 0.01 ≦ A ≦ 30
[Wherein Rth (A) is Rth (nm) of a film containing A% of a compound that lowers Rth, Rth (0) is Rth (nm) of a film not containing a compound that lowers Rth, and A is the cellulose. This is the mass (%) of the compound when the mass of the acylate is 100. ]
JP2004374155A 2004-12-24 2004-12-24 Optical compensation film, polarizing plate and liquid crystal display Pending JP2006178359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374155A JP2006178359A (en) 2004-12-24 2004-12-24 Optical compensation film, polarizing plate and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374155A JP2006178359A (en) 2004-12-24 2004-12-24 Optical compensation film, polarizing plate and liquid crystal display

Publications (1)

Publication Number Publication Date
JP2006178359A true JP2006178359A (en) 2006-07-06

Family

ID=36732510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374155A Pending JP2006178359A (en) 2004-12-24 2004-12-24 Optical compensation film, polarizing plate and liquid crystal display

Country Status (1)

Country Link
JP (1) JP2006178359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639553A (en) * 2018-09-12 2021-04-09 富士胶片株式会社 Liquid crystal film, polarizing plate, circularly polarizing plate, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639553A (en) * 2018-09-12 2021-04-09 富士胶片株式会社 Liquid crystal film, polarizing plate, circularly polarizing plate, and image display device
CN112639553B (en) * 2018-09-12 2022-09-13 富士胶片株式会社 Liquid crystal film, polarizing plate, circularly polarizing plate, and image display device

Similar Documents

Publication Publication Date Title
JP4740604B2 (en) Optical compensation film, method for producing the same, polarizing plate, and liquid crystal display device
JP4404735B2 (en) Cellulose acylate film, optical compensation film using the same, polarizing plate
JP2006301570A (en) Transparent film, method for manufacturing transparent film, optical compensating film, polarizing plate, and liquid crystal display device
US7505101B2 (en) Liquid crystal display
JP2006291186A (en) Cellulose acylate film, method for producing the same, optical compensating film, polarizing plate and liquid crystal display device
JP4142691B2 (en) Liquid crystal display
KR101268747B1 (en) Cellulose acylate film, optical compensation film, polarizing film and liquid crystal display
JP4860333B2 (en) Liquid crystal display
JP2008001893A (en) Cellulose acylate film, production method of cellulose acylate film, optical compensation film, polarizing plate and liquid crystal display device
JP2006206826A (en) Cellulose acylate film, manufacturing method of cellulose acylate film, optical compensation film, polarizing plate, and liquid crystal display unit
JP4694848B2 (en) Liquid crystal display
JP2006220971A (en) Optical compensation sheet, and polarizing plate, and liquid crystal display device using the same
JP2007106794A (en) Cellulose ester film, manufacturing method of the same, optical compensation film, polarizing plate and image display device
JP2006265288A (en) Transparent film, method for producing transparent film, optical compensatory film, polarizing plate and liquid crystal display device
JP2006195140A (en) Optical compensation sheet, polarizing plate, and liquid crystal display device
JP2006194923A (en) Bend alignment mode liquid crystal display device
JP2007332188A (en) Method for producing cellulose ester film and cellulose ester film obtained by the method, optically compensating film, polarized plate and liquid crystal display device
JP5587391B2 (en) Liquid crystal display
JP2006184479A (en) Optical compensation film and liquid crystal display
JP2006195205A (en) Liquid crystal display device and polarizing plate
JP2006178359A (en) Optical compensation film, polarizing plate and liquid crystal display
JP2006195293A (en) Liquid crystal display device, optical compensation film, and polarizing plate
JP2006195247A (en) Liquid crystal display device, optical compensation sheet used therefor, and polarizing plate
JP2007328246A (en) Liquid crystal display device
JP2006243703A (en) Liquid crystal display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124