JP2006178154A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2006178154A
JP2006178154A JP2004370894A JP2004370894A JP2006178154A JP 2006178154 A JP2006178154 A JP 2006178154A JP 2004370894 A JP2004370894 A JP 2004370894A JP 2004370894 A JP2004370894 A JP 2004370894A JP 2006178154 A JP2006178154 A JP 2006178154A
Authority
JP
Japan
Prior art keywords
rotation
optical axis
axis
lever
shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004370894A
Other languages
Japanese (ja)
Inventor
Hiroshi Nomura
博 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2004370894A priority Critical patent/JP2006178154A/en
Priority to US11/289,481 priority patent/US7450832B2/en
Priority to TW094142164A priority patent/TW200632502A/en
Priority to KR1020050116382A priority patent/KR20060061272A/en
Priority to DE102005057514A priority patent/DE102005057514A1/en
Priority to GB0524532A priority patent/GB2420874B/en
Publication of JP2006178154A publication Critical patent/JP2006178154A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structure And Mechanism Of Cameras (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device capable of correcting image shake with a compact and low cost configuration. <P>SOLUTION: The imaging device includes: an image-shake detector for detecting the direction and magnitude of vibration applied to a photographing optical system; first and second movable frames for supporting an image-stabilizing optical element constituting a part of the photographing optical system, so as to be movable in two directions different from each other in a plane orthogonal to the optical axis; first and second energizing members for energizing the first and second movable frames in the respective moving directions thereof; first and second stopper sections for determining movement ends of the first and second movable frames, respectively, in respective energizing directions of the first and second energizing members; and a driving device for correcting image shake by driving the first and second stopper sections in accordance with an output of the image-shake detector to thereby move the first and second movable frames, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は撮像装置に関し、特に像振れ補正が可能な撮像装置に関する。   The present invention relates to an imaging apparatus, and more particularly to an imaging apparatus capable of image blur correction.

カメラなどの撮像装置において、筺体に手振れなどが加わったときに撮像面上では像振れが起こらないようにする、いわゆる像振れ(手振れ)補正機能を備えたものが実用化されている。しかし、像振れ補正機能を備えた撮像装置は大型で重くなりがちであった。   2. Description of the Related Art An image pickup apparatus such as a camera has been put into practical use having a so-called image shake (hand shake) correction function that prevents image shake from occurring on an image pickup surface when hand shake or the like is applied to a housing. However, an image pickup apparatus having an image blur correction function tends to be large and heavy.

本発明は、コンパクトで安価な構成によって像振れ補正を行うことが可能な撮像装置を提供することを目的とする。   An object of the present invention is to provide an imaging apparatus capable of performing image blur correction with a compact and inexpensive configuration.

本発明は、撮影光学系に加わる振れの方向と大きさを検知する振れ検知センサ;撮影光学系の一部をなす振れ補正光学要素を光軸と直交する平面内で互いに異なる2つの方向に移動可能に支持する第1の可動枠と第2の可動枠;この第1の可動枠と第2の可動枠をそれぞれの移動方向に沿って付勢する第1の付勢部材と第2の付勢部材;この各付勢部材の付勢方向への第1の可動枠と第2の可動枠の移動端をそれぞれ決める第1のストッパ部と第2のストッパ部;及び、振れ検知センサの出力に基づき、この第1のストッパ部と第2のストッパ部をそれぞれ駆動して第1の可動枠と第2の可動枠を移動させて像振れをキャンセルする振れ補正駆動手段;を備えたことを特徴としている。   The present invention relates to a shake detection sensor that detects the direction and magnitude of shake applied to a photographic optical system; a shake correction optical element that forms a part of the photographic optical system is moved in two different directions within a plane perpendicular to the optical axis. A first movable frame and a second movable frame which are supported in a possible manner; a first biasing member and a second biasing member which bias the first movable frame and the second movable frame along their respective moving directions; An urging member; a first stopper portion and a second stopper portion that respectively determine the moving ends of the first movable frame and the second movable frame in the urging direction of each urging member; and the output of the shake detection sensor And a shake correction driving means for driving the first stopper portion and the second stopper portion to move the first movable frame and the second movable frame to cancel image blur. It is a feature.

第1の可動枠と第2の可動枠は、例えば光軸直交平面内で互いに直交する方向へ直進移動可能に案内するとよい。   The first movable frame and the second movable frame may be guided, for example, so as to be able to move straight in directions orthogonal to each other in an optical axis orthogonal plane.

撮影光学系の光軸と平行な軸を中心として回動可能で、該回動中心軸から偏心する位置に第1のストッパ部を有する第1の回動レバーと、撮影光学系の光軸と平行な軸を中心として回動可能で、該回動中心軸から偏心する位置に第2のストッパ部を有する第2の回動レバーと、振れ検知センサの出力に基づき、第1の回動レバーと第2の回動レバーをそれぞれ所定の角度回動させる回動駆動機構とによって振れ補正駆動手段を構成することが好ましい。   A first rotation lever that is rotatable about an axis parallel to the optical axis of the photographing optical system and has a first stopper at a position deviated from the rotation central axis; and an optical axis of the photographing optical system A second rotation lever that is rotatable about a parallel axis and has a second stopper portion at a position eccentric from the rotation center axis, and a first rotation lever based on the output of the shake detection sensor It is preferable that the shake correction drive means is constituted by a rotation drive mechanism that rotates the second rotation lever by a predetermined angle.

この第1の回動レバーと第2の回動レバーは共通の軸に枢支されることが好ましい。また、第1の回動レバーと第2の回動レバーはそれぞれ、光軸と直交する方向へ略平行に延設されていることが好ましい。   It is preferable that the first rotation lever and the second rotation lever are pivotally supported on a common shaft. Further, it is preferable that each of the first rotation lever and the second rotation lever is extended substantially in parallel in a direction orthogonal to the optical axis.

第1ストッパ部と第2のストッパ部の少なくとも一方には、当接する第1または第2の可動枠に対して、当該ストッパ部が設けられた回動レバーの回動軌跡の接線と略直交する方向への移動分力を与える分力発生面を設けるとよい。   At least one of the first stopper portion and the second stopper portion is substantially orthogonal to the tangent line of the turning locus of the turning lever provided with the stopper portion with respect to the first or second movable frame that abuts. It is preferable to provide a component force generating surface that gives a moving component force in the direction.

また第1の回動レバーと第2の回動レバーを回動させる回動駆動機構は、それぞれが回転可能なドライブシャフトを有する第1のアクチュエータと第2のアクチュエータと、該第1と第2のアクチュエータのドライブシャフトの正逆の回転により、対応する各ドライブシャフトの回転軸と平行な方向に進退移動される第1と第2の直進移動部材とを備え、第1の直進移動部材が第1の回動レバーを押圧して回動させ、第2の直進移動部材が第2の回動レバーを押圧して回動させるように構成するとよい。さらに、第1と第2の回動レバーをそれぞれ、第1と第2の直進移動部材による押圧方向と反対方向に回動付勢する第1と第2のレバー付勢部材を備えることが好ましい。   Further, the rotation drive mechanism for rotating the first rotation lever and the second rotation lever includes a first actuator and a second actuator each having a rotatable drive shaft, and the first and second actuators. The first and second linearly moving members are moved forward and backward in directions parallel to the rotational axes of the corresponding drive shafts by forward and reverse rotation of the drive shafts of the actuators. It is preferable that the first rotation lever is pressed and rotated, and the second rectilinearly moving member presses and rotates the second rotation lever. Furthermore, it is preferable to include first and second lever urging members that urge the first and second rotation levers in directions opposite to the pressing directions of the first and second linearly moving members, respectively. .

第1と第2のアクチュエータは、互いのドライブシャフトが光軸と直交する平面内で互いに平行に延出され、かつこの光軸直交平面内でドライブシャフトの回転軸の軸線と直交する方向にアクチュエータ本体が隣接して配設されているとスペース効率が良い。   The first and second actuators extend in parallel with each other in a plane perpendicular to the optical axis of the drive shaft, and in a direction perpendicular to the axis of the rotation axis of the drive shaft in the plane orthogonal to the optical axis. Space efficiency is good when the main bodies are arranged adjacent to each other.

振れ補正光学要素は、例えば撮像光学系による被写体像が結像するイメージセンサを含んでいるとよい。   The shake correction optical element may include, for example, an image sensor that forms a subject image formed by an imaging optical system.

本発明の撮像装置ではさらに、光軸と平行な回動軸により枢支された第3の回動レバーを備え、該第3の回動レバーの正逆の回動により、振れ補正光学要素が撮影光学系の光軸上の撮影位置と該光軸から退避した退避位置との間で移動されるようにしてもよい。   The imaging apparatus of the present invention further includes a third rotation lever pivotally supported by a rotation axis parallel to the optical axis, and the shake correction optical element is provided by forward and reverse rotation of the third rotation lever. You may make it move between the imaging position on the optical axis of an imaging optical system, and the retracted position retracted | retracted from this optical axis.

本発明はまた、撮影光学系に加わる振れを検知し、この振れの方向と大きさに応じて、撮影光学系の一部をなす振れ補正光学要素を該撮影光学系の光軸と直交する平面内で移動させて像振れをキャンセルする振れ補正機構を備えた撮像装置において、振れ補正機構は、撮影光学系の光軸と平行な回動軸により枢支された2つの回動レバーを備え、該2つの回動レバーのそれぞれの正逆の回動に応じて、振れ補正光学要素を光軸直交平面内で互いに異なる方向へ正逆に移動させることを特徴としている。   The present invention also detects a shake applied to the photographing optical system, and a shake correction optical element forming a part of the photographing optical system according to the direction and magnitude of the shake is a plane orthogonal to the optical axis of the photographing optical system. In the imaging apparatus provided with a shake correction mechanism that moves the image within and cancels the image shake, the shake correction mechanism includes two rotation levers pivotally supported by a rotation axis parallel to the optical axis of the photographing optical system, The shake correction optical element is moved forward and backward in different directions within the plane orthogonal to the optical axis in accordance with forward and reverse rotation of the two rotation levers.

以上の本発明によれば、コンパクトで安価な構成によって像振れ補正を行うことが可能な撮像装置が得られる。   According to the present invention described above, an imaging apparatus capable of performing image blur correction with a compact and inexpensive configuration can be obtained.

[レンズ鏡筒全体の説明]
図1と図2に断面を示すズームレンズカメラのズームレンズ鏡筒10は、箱形のハウジング11と、該ハウジング11内に伸縮可能に支持される伸縮筒部12を有している。ハウジング11の外側はカメラの外装部材で覆われているが、外装部の図示は省略している。ズームレンズ鏡筒10の撮影光学系は、物体側から順に、第1レンズ群13a、シャッタ13b、絞13c、第2レンズ群13d、第3レンズ群(振れ補正光学要素)13e、ローパスフィルタ(振れ補正光学要素)13f及びCCDイメージセンサ(振れ補正光学要素、以下CCD)13gからなっている。図5に示すように、CCD13gは画像処理回路を備えた制御回路14aと電気的に接続しており、カメラ外面に設けた液晶モニタ14bに電子画像を表示し、当該電子画像データをメモリ14cに記録することが可能である。そして、図2に示す撮影状態では、撮影光学系を構成する全ての光学要素が同一の撮影光軸Z1上に位置するが、図1の鏡筒収納(沈胴)状態で、第3レンズ群13e、ローパスフィルタ13f及びCCD13gが撮影光軸Z1から離れてハウジング11内を上方に退避移動し、この退避移動の結果生じるスペースに第2レンズ群13dが進入する。これにより鏡筒の収納長を短縮することが可能となっている。以下、光学要素の退避機構を含めたズームレンズ鏡筒10の全体構造を説明する。なお、以後の説明中では、ズームレンズ鏡筒10を搭載するズームレンズカメラのボディを正面から見たときの上下方向をy軸、同じくカメラ正面から見て左右方向をx軸と定義する。
[Description of the entire lens barrel]
A zoom lens barrel 10 of the zoom lens camera whose cross section is shown in FIGS. 1 and 2 has a box-shaped housing 11 and a telescopic cylinder portion 12 supported in the housing 11 so as to be extendable and contractible. The outside of the housing 11 is covered with a camera exterior member, but the exterior portion is not shown. The imaging optical system of the zoom lens barrel 10 includes, in order from the object side, a first lens group 13a, a shutter 13b, a diaphragm 13c, a second lens group 13d, a third lens group (shake correction optical element) 13e, and a low-pass filter (shake). It comprises a correction optical element 13f and a CCD image sensor (shake correction optical element, hereinafter CCD) 13g. As shown in FIG. 5, the CCD 13g is electrically connected to a control circuit 14a having an image processing circuit, displays an electronic image on a liquid crystal monitor 14b provided on the outer surface of the camera, and stores the electronic image data in a memory 14c. It is possible to record. In the photographing state shown in FIG. 2, all the optical elements constituting the photographing optical system are located on the same photographing optical axis Z1, but in the lens barrel housing (collapsed) state of FIG. 1, the third lens group 13e. The low-pass filter 13f and the CCD 13g move away from the photographing optical axis Z1 and retreat upward in the housing 11, and the second lens group 13d enters the space resulting from this retraction movement. Thereby, the storage length of the lens barrel can be shortened. The overall structure of the zoom lens barrel 10 including the optical element retracting mechanism will be described below. In the following description, the vertical direction when the body of the zoom lens camera equipped with the zoom lens barrel 10 is viewed from the front is defined as the y axis, and the horizontal direction as viewed from the front of the camera is defined as the x axis.

ハウジング11は、中空の箱状部15と、撮影光軸Z1を囲むようにして該箱状部15の前壁15aに形成した中空の固定環部16とを有する。固定環部16の中心である回転中心軸Z0は、撮影光軸Z1と平行で該撮影光軸Z1よりも下方に偏心している。箱状部15内には、固定環部16の上方に退避スペースSP(図1、図2)が形成されている。   The housing 11 includes a hollow box-shaped portion 15 and a hollow stationary ring portion 16 formed on the front wall 15a of the box-shaped portion 15 so as to surround the photographing optical axis Z1. The rotation center axis Z0, which is the center of the fixed ring portion 16, is parallel to the photographic optical axis Z1 and decentered downward from the photographic optical axis Z1. A retreat space SP (FIGS. 1 and 2) is formed in the box-shaped portion 15 above the fixed ring portion 16.

固定環部16の内周面側には、回転中心軸Z0と平行な軸で回動可能なズームギヤ17(図8)が支持されている。ズームギヤ17は、ハウジング11に支持されたズームモータMZ(図5、図10及び図11)によって正逆に回転される。また、固定環部16の内周面には、雌ヘリコイド16aと、回転中心軸Z0を中心とした環状をなす周方向溝16bと、回転中心軸Z0(撮影光軸Z1)と平行な直進案内溝16cとが形成されている(図3、図4参照)。   A zoom gear 17 (FIG. 8) that can be rotated about an axis parallel to the rotation center axis Z0 is supported on the inner peripheral surface side of the fixed ring portion 16. The zoom gear 17 is rotated forward and backward by a zoom motor MZ (FIGS. 5, 10, and 11) supported by the housing 11. Further, on the inner peripheral surface of the fixed ring portion 16, a female helicoid 16a, a circumferential groove 16b having an annular shape around the rotation center axis Z0, and a straight traveling guide parallel to the rotation center axis Z0 (imaging optical axis Z1). A groove 16c is formed (see FIGS. 3 and 4).

固定環部16の内側には、回転中心軸Z0を中心として回動可能にヘリコイド環18が支持されている。ヘリコイド環18は、雌ヘリコイド16aに螺合する雄ヘリコイド18aを有し、雌ヘリコイド16aと雄ヘリコイド18aの関係によって回転しながら光軸方向に進退することができる。ヘリコイド環18はまた、雄ヘリコイド18aの前方の外周面上に回転案内突起18bを有しており、固定環部16に対して最も前方に移動した状態(図2ないし図4)では、雌ヘリコイド16aと雄ヘリコイド18aの螺合が解除されるとともに回転案内突起18bが周方向溝16bに摺動可能に嵌まり、ヘリコイド環18は光軸方向移動が規制されて定位置回転のみが可能になる。ヘリコイド環18の外周面にはさらに、雄ヘリコイド18aと同一周面位置に、撮影光軸Z1と平行なギヤ歯を有する環状のスパーギヤ18cが形成されており、該スパーギヤ18cに対してズームギヤ17が噛合している。ズームギヤ17は軸線方向に長く形成され、図1及び図10に示すヘリコイド環18の収納状態から図2及び図11に示す繰出状態まで、常にスパーギヤ18cとの噛合を維持する。なお、ヘリコイド環18は、光軸方向に分割可能な2つの環状部材を組み合わせて構成されており、図10及び図11では、ヘリコイド環18のうち後方の環状部材のみを図示している。   A helicoid ring 18 is supported inside the fixed ring portion 16 so as to be rotatable about the rotation center axis Z0. The helicoid ring 18 has a male helicoid 18a screwed into the female helicoid 16a, and can advance and retreat in the optical axis direction while rotating according to the relationship between the female helicoid 16a and the male helicoid 18a. The helicoid ring 18 also has a rotation guide projection 18b on the outer peripheral surface in front of the male helicoid 18a. When the helicoid ring 18 is moved most forward with respect to the stationary ring portion 16 (FIGS. 2 to 4), the female helicoid 18 16a and male helicoid 18a are unscrewed and rotation guide projection 18b is slidably fitted in circumferential groove 16b, and helicoid ring 18 is restricted from moving in the optical axis direction and can only rotate in place. . An annular spur gear 18c having gear teeth parallel to the photographic optical axis Z1 is formed on the outer peripheral surface of the helicoid ring 18 at the same peripheral surface position as the male helicoid 18a, and the zoom gear 17 is connected to the spur gear 18c. Meshed. The zoom gear 17 is formed long in the axial direction, and always maintains meshing with the spur gear 18c from the housed state of the helicoid ring 18 shown in FIGS. 1 and 10 to the extended state shown in FIGS. The helicoid ring 18 is configured by combining two annular members that can be divided in the optical axis direction. FIGS. 10 and 11 show only the rear annular member of the helicoid ring 18.

ヘリコイド環18の内側には直進案内環20が支持されている。図4に示すように、直進案内環20は、その後端部付近に設けた直進案内突起20aを固定環部16の直進案内溝16cに摺動可能に係合させることで、回転中心軸Z0(撮影光軸Z1)に沿う方向へ直進案内されている。ヘリコイド環18は、該ヘリコイド環18の内周面と直進案内環20の外周面との間に設けた回転案内部21を介して、直進案内環20に対して相対回転自在かつ光軸方向には一緒に移動するように支持されている。回転案内部21は、軸線方向に位置を異ならせて設けた複数の周方向溝と、各周方向溝に摺動可能に嵌まる径方向突起とからなっている。   A linear guide ring 20 is supported inside the helicoid ring 18. As shown in FIG. 4, the rectilinear guide ring 20 is configured such that the rectilinear guide protrusion 20 a provided in the vicinity of the rear end thereof is slidably engaged with the rectilinear guide groove 16 c of the fixed ring portion 16, so that the rotation center axis Z 0 ( It is guided straight in a direction along the photographing optical axis Z1). The helicoid ring 18 is rotatable relative to the rectilinear guide ring 20 and in the optical axis direction via a rotation guide portion 21 provided between the inner peripheral surface of the helicoid ring 18 and the outer peripheral surface of the rectilinear guide ring 20. Are supported to move together. The rotation guide unit 21 includes a plurality of circumferential grooves provided at different positions in the axial direction, and radial protrusions that are slidably fitted in the circumferential grooves.

直進案内環20は内周面に回転中心軸Z0(撮影光軸Z1)と平行な直進案内溝20bを有し、該直進案内溝20bに対して1群直進案内環22の直進案内突起22aと、2群直進案内環23の直進案内突起23aとがそれぞれ摺動可能に係合している。1群直進案内環22は、内周面の直進案内溝22b(図3)を介して1群支持枠24を回転中心軸Z0(撮影光軸Z1)と平行な方向に直進案内し、2群直進案内環23は、直進案内キー23bを介して2群支持枠25を回転中心軸Z0(撮影光軸Z1)と平行な方向に直進案内している。1群支持枠24はフォーカシング枠29を介して第1レンズ群13aを支持し、2群支持枠25は第2レンズ群13dを支持している。   The rectilinear guide ring 20 has a rectilinear guide groove 20b parallel to the rotation center axis Z0 (imaging optical axis Z1) on the inner peripheral surface, and a rectilinear guide protrusion 22a of the first group rectilinear guide ring 22 with respect to the rectilinear guide groove 20b. The straight guide protrusions 23a of the second group straight guide ring 23 are slidably engaged with each other. The first group rectilinear guide ring 22 linearly guides the first group support frame 24 in a direction parallel to the rotation center axis Z0 (imaging optical axis Z1) via the rectilinear guide groove 22b (FIG. 3) on the inner peripheral surface. The rectilinear guide ring 23 guides the second group support frame 25 rectilinearly in a direction parallel to the rotation center axis Z0 (imaging optical axis Z1) via the rectilinear guide key 23b. The first group support frame 24 supports the first lens group 13a via the focusing frame 29, and the second group support frame 25 supports the second lens group 13d.

直進案内環20の内側には回転中心軸Z0を中心として回動可能なカム環26が設けられ、該カム環26は、回転案内部27、28(図4)を介して、1群直進案内環22と2群直進案内環23に対してそれぞれ相対回転自在かつ光軸方向には一緒に移動するように支持されている。回転案内部27は、カム環26の外周面側に設けられた周方向溝と、1群直進案内環22に設けられ該周方向溝に摺動可能に嵌まる径方向突起により構成されている。回転案内部28は、カム環26の内周面側に設けられた周方向溝と、2群直進案内環23に設けられ該周方向溝に摺動可能に嵌まる径方向突起により構成されている。   Inside the rectilinear guide ring 20, there is provided a cam ring 26 that can be rotated about the rotation center axis Z0. The cam ring 26 is guided through the rotation guide portions 27 and 28 (FIG. 4) in the first group. The ring 22 and the second group linear guide ring 23 are supported so as to be rotatable relative to each other and to move together in the optical axis direction. The rotation guide portion 27 includes a circumferential groove provided on the outer peripheral surface side of the cam ring 26 and a radial protrusion provided on the first group linear guide ring 22 and slidably fitted in the circumferential groove. . The rotation guide portion 28 includes a circumferential groove provided on the inner peripheral surface side of the cam ring 26 and a radial protrusion provided in the second group linear guide ring 23 and slidably fitted in the circumferential groove. Yes.

図4に示すように、カム環26は径方向外側に突出するフォロア突起26aを有し、該フォロア突起26aが、直進案内環20のフォロアガイド溝20cを貫通し、ヘリコイド環18の内周面に形成した回転伝達溝18dに係合している。回転伝達溝18dは回転中心軸Z0(撮影光軸Z1)と平行な溝であり、該回転伝達溝18dに対してフォロア突起26aは周方向への相対移動を規制された状態で摺動可能に嵌まっている。つまり、回転伝達溝18dとフォロア突起26aの関係によって、ヘリコイド環18の回転がカム環26に伝達される。一方、フォロアガイド溝20cは、図にその展開形状が表れていないが、回転中心軸Z0を中心とする周方向溝部と、雌ヘリコイド16aと同方向に傾斜するリード溝部とを有するガイド溝である。よって、ヘリコイド環18によってカム環26が回転されるとき、フォロア突起26aがフォロアガイド溝20cのリード溝部内に位置する状態では、カム環26が回転しながら回転中心軸Z0(撮影光軸Z1)に沿う方向へ進退し、フォロア突起26aがフォロアガイド溝20cの周方向溝部内に位置する状態では、カム環26は前後への進退は行わずに定位置回転する。   As shown in FIG. 4, the cam ring 26 has a follower protrusion 26 a that protrudes radially outward. The follower protrusion 26 a passes through the follower guide groove 20 c of the linear guide ring 20, and the inner peripheral surface of the helicoid ring 18. Is engaged with the rotation transmission groove 18d. The rotation transmission groove 18d is a groove parallel to the rotation center axis Z0 (imaging optical axis Z1), and the follower protrusion 26a is slidable relative to the rotation transmission groove 18d in a state in which relative movement in the circumferential direction is restricted. It is fitted. That is, the rotation of the helicoid ring 18 is transmitted to the cam ring 26 by the relationship between the rotation transmission groove 18d and the follower protrusion 26a. On the other hand, the follower guide groove 20c is a guide groove having a circumferential groove centered on the rotation center axis Z0 and a lead groove inclined in the same direction as the female helicoid 16a, although the developed shape is not shown in the drawing. . Therefore, when the cam ring 26 is rotated by the helicoid ring 18, in the state where the follower protrusion 26a is positioned in the lead groove portion of the follower guide groove 20c, the rotation center axis Z0 (shooting optical axis Z1) while the cam ring 26 rotates. When the follower protrusion 26a is positioned in the circumferential groove portion of the follower guide groove 20c, the cam ring 26 rotates at a fixed position without moving back and forth.

カム環26は外周面と内周面にそれぞれカム溝26b、26cを有する両面カム環であり、外周面側のカム溝26bには、1群支持枠24から径方向内方に突出されたカムフォロア24aが摺動可能に係合し、内周面側のカム溝26cには、2群支持枠25から径方向外方に突出されたカムフォロア25aが摺動可能に係合している。つまり、カム環26が回転されると、1群直進案内環22を介して直進案内された1群支持枠24は、カム溝26bの形状に従って回転中心軸Z0(撮影光軸Z1)に沿う方向へ所定の軌跡で進退される。同様に、カム環26が回転されると、2群直進案内環23を介して直進案内された2群支持枠25は、カム溝26cの形状に従って回転中心軸Z0(撮影光軸Z1)に沿う方向へ所定の軌跡で進退移動される。   The cam ring 26 is a double-sided cam ring having cam grooves 26 b and 26 c on the outer peripheral surface and the inner peripheral surface, respectively. The cam groove 26 b on the outer peripheral surface side is a cam follower that protrudes radially inward from the first group support frame 24. A cam follower 25a projecting radially outward from the second group support frame 25 is slidably engaged with the cam groove 26c on the inner peripheral surface side. That is, when the cam ring 26 is rotated, the first group support frame 24 that has been guided straight through the first group straight guide ring 22 follows the rotation center axis Z0 (shooting optical axis Z1) according to the shape of the cam groove 26b. Advancing and retreating with a predetermined trajectory. Similarly, when the cam ring 26 is rotated, the second group support frame 25 guided in a straight line through the second group linear guide ring 23 follows the rotation center axis Z0 (shooting optical axis Z1) according to the shape of the cam groove 26c. It moves forward and backward in a direction with a predetermined trajectory.

2群支持枠25は、第2レンズ群13dを保持する筒状部25b(図1、図2参照)の前部に、シャッタ13bと絞13cを開閉可能に支持している。シャッタ13bと絞13cはそれぞれ、2群支持枠25に支持されたシャッタ駆動アクチュエータMSと絞駆動アクチュエータMA(図5、図15)によって開閉させることができる。   The second group support frame 25 supports the shutter 13b and the aperture 13c in an openable and closable manner at the front portion of a cylindrical portion 25b (see FIGS. 1 and 2) that holds the second lens group 13d. The shutter 13b and the diaphragm 13c can be opened and closed by a shutter drive actuator MS and a diaphragm drive actuator MA (FIGS. 5 and 15) supported by the second group support frame 25, respectively.

第1レンズ群13aを保持するフォーカシング枠29は、1群支持枠24に対して回転中心軸Z0(撮影光軸Z1)に沿う方向へ移動可能に支持されており、フォーカシングモータMF(図5)によってフォーカシング枠29を前後に移動させることができる。   The focusing frame 29 that holds the first lens group 13a is supported so as to be movable in the direction along the rotation center axis Z0 (shooting optical axis Z1) with respect to the first group support frame 24, and a focusing motor MF (FIG. 5). Thus, the focusing frame 29 can be moved back and forth.

ズームモータMZ、シャッタ駆動アクチュエータMS、絞駆動アクチュエータMA、フォーカシングモータMFはそれぞれ制御回路14aによって駆動制御される。ズームレンズ鏡筒10は、カメラのメインスイッチ14d(図5)のオンによりズームモータMZが駆動されて図2の撮影状態となり、メインスイッチ14dのオフにより該撮影状態から図1の収納状態になる。   The zoom motor MZ, the shutter drive actuator MS, the aperture drive actuator MA, and the focusing motor MF are driven and controlled by the control circuit 14a. In the zoom lens barrel 10, the zoom motor MZ is driven when the main switch 14d (FIG. 5) of the camera is turned on, so that the photographing state shown in FIG. 2 is established, and when the main switch 14d is turned off, the photographing state is changed to the retracted state shown in FIG. .

以上のズームレンズ鏡筒10の動作をまとめると、図1の鏡筒収納状態においてメインスイッチ14dをオンにしてズームギヤ17を繰出方向へ回転駆動すると、ヘリコイド環18が回転しながら光軸方向前方に移動し、該ヘリコイド環18と共に直進案内環20も光軸方向前方へ直進移動する。また、ヘリコイド環18から回転力が伝達されたカム環26が、直進案内環20に対して回転しながら光軸方向前方に相対移動する。1群直進案内環22と2群直進案内環23は、カム環26と共に光軸方向前方に直進移動する。1群支持枠24と2群支持枠25はそれぞれ、カム環26に対して光軸方向に所定の軌跡で相対移動する。つまり、収納状態から鏡筒を繰り出すときの第1レンズ群13aと第2レンズ群13dの光軸方向移動量は、固定環部16に対するカム環26の相対移動量と、カム環26に対する1群支持枠24と2群支持枠25の相対移動量(各カム溝26b、26cによる進退移動量)の合算値として決定される。   To summarize the operation of the zoom lens barrel 10 described above, when the main switch 14d is turned on and the zoom gear 17 is rotationally driven in the extending direction in the lens barrel retracted state of FIG. 1, the helicoid ring 18 rotates and moves forward in the optical axis direction. The linear guide ring 20 moves along with the helicoid ring 18 and moves forward in the optical axis direction. Further, the cam ring 26 to which the rotational force is transmitted from the helicoid ring 18 relatively moves forward in the optical axis direction while rotating with respect to the linear guide ring 20. The first group rectilinear guide ring 22 and the second group rectilinear guide ring 23 move straight forward together with the cam ring 26 in the optical axis direction. Each of the first group support frame 24 and the second group support frame 25 moves relative to the cam ring 26 along a predetermined locus in the optical axis direction. That is, the movement amount of the first lens group 13a and the second lens group 13d in the optical axis direction when the lens barrel is extended from the housed state is the relative movement amount of the cam ring 26 with respect to the fixed ring portion 16 and the first group with respect to the cam ring 26. It is determined as the sum of the relative movement amounts of the support frame 24 and the second group support frame 25 (advancing and retreating amounts by the cam grooves 26b and 26c).

図6は、ヘリコイド環18、カム環26、そして該カム環26に対する第1レンズ群13aと第2レンズ群13dのそれぞれの移動軌跡(カム溝26b、26cの軌跡)を示したものであり、縦軸が鏡筒収納状態からテレ端までの鏡筒回転量(角度位置)を示し、横軸が光軸方向への移動量を示している。同図に示すように、ズームレンズ鏡筒10が収納位置(図1)からワイド端(図2上半、図3)まで繰り出されるほぼ中間の回転角θ1までは、ヘリコイド環18は回転しながら光軸方向前方に繰り出され、この回転角θ1以降は、テレ端(図2の下半、図4)に至るまで前述の定位置回転を行う。一方、カム環26は、鏡筒収納位置からワイド端に至る直前の回転角θ2まで、回転しながら光軸方向前方に繰り出され、この回転角θ2からテレ端に至るまでは、ヘリコイド環18と同様に前述の定位置回転を行う。そして、ワイド端からテレ端までのズーム領域での第1レンズ群13aと第2レンズ群13dの光軸方向移動量は、定位置回転するカム環26に対する1群支持枠24と2群支持枠25の相対移動量(各カム溝26b、26cによる進退移動量)によって決定され、この第1レンズ群13aと第2レンズ群13dの相対移動によって変倍がなされる。図7は、ヘリコイド環18及びカム環26の移動量とカム溝26b、26cによる移動量とを合成した、第1レンズ群13aと第2レンズ群13dの実際の移動軌跡を示している。   FIG. 6 shows the helicoid ring 18, the cam ring 26, and the movement trajectories (the trajectories of the cam grooves 26 b and 26 c) of the first lens group 13 a and the second lens group 13 d with respect to the cam ring 26. The vertical axis indicates the amount of rotation (angular position) of the lens barrel from the lens barrel storage state to the telephoto end, and the horizontal axis indicates the amount of movement in the optical axis direction. As shown in the figure, the helicoid ring 18 rotates while the zoom lens barrel 10 is rotated from the retracted position (FIG. 1) to the substantially intermediate rotation angle θ1 that is extended from the wide end (FIG. 2 upper half, FIG. 3). It is drawn forward in the optical axis direction, and after the rotation angle θ1, the above-mentioned fixed-position rotation is performed until reaching the tele end (lower half of FIG. 2, FIG. 4). On the other hand, the cam ring 26 is fed forward in the optical axis direction while rotating to the rotation angle θ2 immediately before reaching the wide end from the lens barrel storage position, and from the rotation angle θ2 to the tele end, Similarly, the above-mentioned fixed position rotation is performed. The amount of movement in the optical axis direction of the first lens group 13a and the second lens group 13d in the zoom region from the wide end to the tele end is determined by the first group support frame 24 and the second group support frame with respect to the cam ring 26 rotating at a fixed position. 25 is determined by a relative movement amount (advancing / retreating movement amount by each cam groove 26b, 26c), and the magnification is changed by the relative movement of the first lens group 13a and the second lens group 13d. FIG. 7 shows actual movement trajectories of the first lens group 13a and the second lens group 13d, in which the movement amounts of the helicoid ring 18 and the cam ring 26 are combined with the movement amounts of the cam grooves 26b and 26c.

ワイド端とテレ端の間のズーム領域では、フォーカシングモータMFによって第1レンズ群13aを単独で光軸方向に移動させることでフォーカシングが行われる。   In the zoom region between the wide end and the tele end, focusing is performed by moving the first lens group 13a independently in the optical axis direction by the focusing motor MF.

以上は第1レンズ群13aと第2レンズ群13dの動作であるが、前述の通り、本実施形態のズームレンズ鏡筒10では、第3レンズ群13eからCCD13gまでの光学要素が、撮影光軸Z1上の撮影位置から、該撮影位置より上方の光軸外退避位置Z2へと退避移動可能である。また、この第3レンズ群13eからCCD13gまでの光学要素を、撮影光軸Z1と直交する平面に沿って移動させて像振れ補正を行うことが可能である。続いてこの退避機構と像振れ補正機構を説明する。   The above is the operation of the first lens group 13a and the second lens group 13d. As described above, in the zoom lens barrel 10 of the present embodiment, the optical elements from the third lens group 13e to the CCD 13g are the optical axis of the photographic lens. The retraction movement is possible from the photographing position on Z1 to the retraction position Z2 outside the optical axis above the photographing position. Further, it is possible to perform image blur correction by moving the optical elements from the third lens group 13e to the CCD 13g along a plane orthogonal to the photographing optical axis Z1. Next, the retracting mechanism and the image blur correcting mechanism will be described.

図8及び図19に示すように、第3レンズ群13eとローパスフィルタ13fとCCD13gは、CCDホルダ30に保持されてユニット化されている。CCDホルダ30は、ホルダ本体30a、パッキン30b、押さえ板30cを備え、ホルダ本体30aの前端開口部に第3レンズ群13eが保持され、該ホルダ本体30aの内側に設けたフランジとパッキン30bの間にローパスフィルタ13fが挟持され、パッキン30bと押さえ板30cの間にCCD13gが挟持されている。ホルダ本体30aと押さえ板30cは、CCDホルダ30の中心軸(撮影状態での撮影光軸Z1)を中心として離間させて配置した3本の固定ビス30d(図15及び図18)によって互いに固定されている。3本の固定ビス30dはまた、画像伝送FPC31の一端部を押さえ板30cの後面に共締めしており、CCD13gの支持基板と画像伝送FPC31とが電気的に接続されている。   As shown in FIGS. 8 and 19, the third lens group 13e, the low-pass filter 13f, and the CCD 13g are held in a CCD holder 30 and unitized. The CCD holder 30 includes a holder main body 30a, a packing 30b, and a holding plate 30c. The third lens group 13e is held in the front end opening of the holder main body 30a, and a flange provided between the holder main body 30a and the packing 30b. A low pass filter 13f is sandwiched between the CCD 30g and the CCD 13g between the packing 30b and the holding plate 30c. The holder body 30a and the holding plate 30c are fixed to each other by three fixing screws 30d (FIGS. 15 and 18) that are spaced apart from each other with the center axis of the CCD holder 30 (shooting optical axis Z1 in the shooting state) as the center. ing. The three fixing screws 30d also fasten one end of the image transmission FPC 31 to the rear surface of the pressing plate 30c, and the support substrate of the CCD 13g and the image transmission FPC 31 are electrically connected.

画像伝送FPC31は、CCD13gへの接続端部からハウジング11内の退避スペースSPへ向けて延出されており、撮影光軸Z1と略直交し上方へ向かう第1直線状部31aと、該第1直線状部31aから下方に向けて湾曲されたU字状部31bと、該U字状部31bに続いて下方に向かう第2直線状部31cと、該第2直線状部31cから再び上方へ向けて折り返された第3直線状部31dとを有している(図1、図2参照)。第3直線状部31dはハウジング11の前壁15aの内面に沿って固定されており、この第3直線状部31d以外の第1直線状部31a、U字状部31b及び第2直線状部31cが、CCDホルダ30の移動に応じて変形可能な変形部となっている。   The image transmission FPC 31 extends from the connection end to the CCD 13g toward the retreat space SP in the housing 11, and includes a first linear portion 31a that is substantially orthogonal to the photographing optical axis Z1 and that extends upward. A U-shaped part 31b curved downward from the linear part 31a, a second linear part 31c going downward following the U-shaped part 31b, and upward again from the second linear part 31c It has the 3rd linear part 31d turned back (refer FIG. 1, FIG. 2). The third linear portion 31d is fixed along the inner surface of the front wall 15a of the housing 11, and the first linear portion 31a, the U-shaped portion 31b, and the second linear portion other than the third linear portion 31d. 31 c is a deformable portion that can be deformed in accordance with the movement of the CCD holder 30.

CCDホルダ30は、該CCDホルダ30の中心軸(撮影状態での撮影光軸Z1)を中心として離間させて配置した3本の調整ビス33(図15及び図18)を介して左右移動枠(第1の可動枠)32に支持される。CCDホルダ30と左右移動枠32の間には、3つの圧縮コイルばね34が3つ配されている。3つの調整ビス33の軸部はそれぞれ、圧縮コイルばね34に挿通されており、各調整ビス33の締め付け量を変化させると、対応する圧縮コイルばね34の圧縮量が変化する。調整ビス33と圧縮コイルばね34は、第3レンズ群13eの光軸を囲む配置で3個所設けられているため、3つの調整ビス33の締め付け量を変化させることにより、左右移動枠32に対するCCDホルダ30の傾き調整、つまり撮影光軸Z1に対する第3レンズ群13eの光軸の傾き調整を行うことができる。   The CCD holder 30 is provided with a left and right moving frame (FIG. 15 and FIG. 18) via three adjustment screws 33 (FIGS. 15 and 18) that are spaced apart from each other with the center axis of the CCD holder 30 (shooting optical axis Z1 in the shooting state) as the center. The first movable frame 32 is supported. Three compression coil springs 34 are arranged between the CCD holder 30 and the left and right moving frame 32. The shaft portions of the three adjustment screws 33 are respectively inserted into the compression coil springs 34. When the tightening amount of each adjustment screw 33 is changed, the compression amount of the corresponding compression coil spring 34 is changed. Since the adjustment screw 33 and the compression coil spring 34 are provided at three positions so as to surround the optical axis of the third lens group 13e, the CCD for the left and right moving frame 32 can be changed by changing the tightening amount of the three adjustment screws 33. The tilt adjustment of the holder 30, that is, the tilt adjustment of the optical axis of the third lens group 13e with respect to the photographing optical axis Z1 can be performed.

図16に示すように、左右移動枠32は、x軸方向に向く左右ガイド軸35を介して、上下移動枠(第2の可動枠)36に対して移動可能に支持されている。詳細には、左右移動枠32は、CCDホルダ30を囲む四角の枠状部32aと、該枠状部32aから側方に延出された腕部32bとを有し、枠状部32aの上面にばね支持突起32cが形成され、腕部32bの先端部には傾斜面32dと位置規制面32eが形成されている。位置規制面32eはy軸と平行な平面である。一方、上下移動枠36は、x軸方向に離間して設けた一対の移動規制枠36a、36bと、該一対の移動規制枠36a、36bの間に位置するばね支持部36cと、該ばね支持部36cに対してx軸方向の延長上に位置する上方軸受部36dと、該上方軸受部36dの下方に位置する下方軸受部36eとを有している。図17に示すように、一対の移動規制枠36a、36bの間のスペースに枠状部32aを位置させ、移動規制枠36bと上方軸受部36dの間に腕部32bの傾斜面32dと位置規制面32eを位置させた状態で、左右移動枠32が上下移動枠36に支持される。   As shown in FIG. 16, the left / right moving frame 32 is supported so as to be movable with respect to the up / down moving frame (second movable frame) 36 via a left / right guide shaft 35 oriented in the x-axis direction. Specifically, the left-right moving frame 32 includes a square frame-shaped portion 32a that surrounds the CCD holder 30, and an arm portion 32b that extends laterally from the frame-shaped portion 32a, and an upper surface of the frame-shaped portion 32a. A spring support protrusion 32c is formed on the tip, and an inclined surface 32d and a position restricting surface 32e are formed at the tip of the arm portion 32b. The position restricting surface 32e is a plane parallel to the y axis. On the other hand, the vertical movement frame 36 includes a pair of movement restriction frames 36a and 36b that are spaced apart in the x-axis direction, a spring support portion 36c positioned between the pair of movement restriction frames 36a and 36b, and the spring support. The upper bearing portion 36d is located on the extension in the x-axis direction with respect to the portion 36c, and the lower bearing portion 36e is located below the upper bearing portion 36d. As shown in FIG. 17, the frame-shaped portion 32a is positioned in the space between the pair of movement restriction frames 36a, 36b, and the inclined surface 32d of the arm portion 32b and the position restriction between the movement restriction frame 36b and the upper bearing portion 36d. The left / right moving frame 32 is supported by the up / down moving frame 36 with the surface 32e positioned.

上下移動枠36における移動規制枠36aと上方軸受部36dには、左右ガイド軸35の一端部と他端部が固定されており、移動規制枠36bとばね支持部36cには、左右ガイド軸35を挿通させる貫通孔が形成されている。左右移動枠32の腕部32bとばね支持突起32cには、左右ガイド軸35に対して摺動可能に嵌まる左右貫通孔32x1、32x2(図17)が形成されており、この左右貫通孔32x1、32x2と左右ガイド軸35の摺動関係により、左右移動枠32が上下移動枠36に対してx軸方向へ移動可能に支持される。ばね支持突起32cとばね支持部36cの間には、左右ガイド軸35を囲む態様で左右移動枠付勢ばね(第1の付勢部材)37が配設されている。左右移動枠付勢ばね37は圧縮コイルばねであり、ばね支持突起32cを移動規制枠36aに接近させる方向(図17の左方)へ向けて左右移動枠32を付勢している。   One end and the other end of the left and right guide shaft 35 are fixed to the movement restricting frame 36a and the upper bearing portion 36d of the vertical movement frame 36, and the left and right guide shafts 35 are fixed to the movement restricting frame 36b and the spring support portion 36c. A through hole is formed through which is inserted. Left and right through holes 32x1 and 32x2 (FIG. 17) are formed in the arm portion 32b and the spring support projection 32c of the left and right moving frame 32 so as to be slidable with respect to the left and right guide shafts 35. The left and right through holes 32x1. , 32x2 and the left / right guide shaft 35 are supported so that the left / right moving frame 32 is movable with respect to the up / down moving frame 36 in the x-axis direction. A left and right moving frame biasing spring (first biasing member) 37 is disposed between the spring support protrusion 32c and the spring support portion 36c so as to surround the left and right guide shaft 35. The left / right moving frame urging spring 37 is a compression coil spring, and urges the left / right moving frame 32 in a direction (leftward in FIG. 17) in which the spring support protrusion 32c approaches the movement restricting frame 36a.

上下移動枠36の上方軸受部36dと下方軸受部36eにはさらに、撮影光軸Z1と直交しかつy軸方向に向く、上下貫通孔36y1、36y2(図16)が形成されている。上下貫通孔36y1と上下貫通孔36y2は一直線上に位置しており、上下ガイド軸38(図8、9)に対して摺動可能に挿通されている。上下ガイド軸38の両端部はハウジング11に固定されており、したがって上下移動枠36は、上下ガイド軸38に沿ってカメラ内をy軸方向に移動することができる。より詳細には、CCDホルダ30内の第3レンズ群13e、ローパスフィルタ13f及びCCD13gの中心を撮影光軸Z1上に位置させた図1の撮影位置と、これら第3レンズ群13e、ローパスフィルタ13f及びCCD13gの中心が固定環部16よりも上方の光軸外退避位置Z2に位置する図2の退避位置との間を、上下移動枠36が移動可能である。   Upper and lower through holes 36y1 and 36y2 (FIG. 16) are further formed in the upper bearing portion 36d and the lower bearing portion 36e of the vertical movement frame 36, which are orthogonal to the photographing optical axis Z1 and face the y-axis direction. The vertical through hole 36y1 and the vertical through hole 36y2 are positioned on a straight line, and are slidably inserted into the vertical guide shaft 38 (FIGS. 8 and 9). Both end portions of the vertical guide shaft 38 are fixed to the housing 11, and therefore the vertical movement frame 36 can move in the camera along the vertical guide shaft 38 in the y-axis direction. More specifically, the imaging position of FIG. 1 in which the centers of the third lens group 13e, the low-pass filter 13f, and the CCD 13g in the CCD holder 30 are positioned on the imaging optical axis Z1, and the third lens group 13e and the low-pass filter 13f. The vertical movement frame 36 can be moved between the retraction position of FIG. 2 where the center of the CCD 13g is located at the retraction position Z2 outside the optical axis above the fixed ring portion 16.

上下移動枠36の一側部にはばね掛け部36fが突設され、該ばね掛け部36fとハウジング11内のばね掛け部11a(図8、図15)との間に上下移動枠付勢ばね(第2の付勢部材)39が張設されている。上下移動枠付勢ばね39は引張ばねであり、上下移動枠36を下方、すなわち図1に示す撮影位置側へ付勢している。   A spring hooking portion 36f projects from one side of the vertical movement frame 36, and the vertical movement frame biasing spring is provided between the spring hooking portion 36f and the spring hooking portion 11a (FIGS. 8 and 15) in the housing 11. (Second urging member) 39 is stretched. The vertical movement frame biasing spring 39 is a tension spring, and biases the vertical movement frame 36 downward, that is, toward the photographing position shown in FIG.

以上のように、CCDホルダ30を保持する左右移動枠32は上下移動枠36に対してx軸方向へ移動可能に支持され、上下移動枠36はy軸方向へ移動可能に支持されている。このCCDホルダ30のx軸方向及びy軸方向の移動によって像振れ(手振れ)補正を行うことが可能であり、その駆動機構として左右駆動レバー(振れ補正駆動手段、第1の回動レバー)40と上下駆動レバー(振れ補正駆動手段、第2の回動レバー)41が設けられている。左右駆動レバー40と上下駆動レバー41は、ハウジング11内に固定され撮影光軸Z1と平行をなす共通のレバー回動軸42により、それぞれ独立して回動(揺動)可能に軸支されている。   As described above, the left / right moving frame 32 holding the CCD holder 30 is supported so as to be movable in the x-axis direction with respect to the up / down moving frame 36, and the up / down moving frame 36 is supported so as to be movable in the y-axis direction. Image blurring (camera shake) correction can be performed by moving the CCD holder 30 in the x-axis direction and the y-axis direction, and a left / right drive lever (shake correction drive means, first rotation lever) 40 is used as the drive mechanism. And a vertical drive lever (shake correction drive means, second rotation lever) 41 is provided. The left and right drive levers 40 and 41 are pivotally supported by a common lever rotation shaft 42 fixed in the housing 11 and parallel to the photographic optical axis Z1 so as to be independently rotatable (swingable). Yes.

図9及び図20に示すように、左右駆動レバー40は、下端部がレバー回動軸42に軸支され、上端部に先端着力部40aを有する。この先端着力部40aの近傍には、光軸方向後方に向けて突出された操作ピン(第1のストッパ部)40bと、ばね掛け部40cが設けられている。図12に示すように、左右駆動レバー40の先端着力部40aは第1移動部材(回動駆動機構、第1の直進移動部材)43に当接している。第1移動部材43は、一対のガイドバー44(44a、44b)によってx軸方向へ摺動可能に支持されており、第1移動部材43に対してナット45が当接している。ナット45は、ガイドバー44bに摺動可能に嵌まる回転規制溝45aと、ねじ孔45bとを有し、ねじ孔45bに対して第1ステッピングモータ(振れ補正駆動手段、回動駆動機構、第1のアクチュエータ)46のドライブシャフト(送りねじ)46aが螺合している。図13及び図14に示すように、カメラ正面から見て、ナット45は第1移動部材43の左側から当接している。また、左右駆動レバー40のばね掛け部40cには引張ばね(第1のレバー付勢部材)47の一端部が係合し、引張ばね47の他端部はハウジング11内のばね掛け部11b(図12参照)に係合している。引張ばね47は、第1移動部材43をナット45に当接させる方向、すなわち図13、図14及び図20における反時計方向へ向けて左右駆動レバー40を回動付勢している。この構造から、第1ステッピングモータ46を駆動するとナット45がガイドバー44に沿って移動し、該ナット45と共に第1移動部材43が移動して左右駆動レバー40が揺動される。具体的には、図13及び図14の右方に向けてナット45を移動させると、引張ばね47の付勢力に抗しながら第1移動部材43が押圧され、左右駆動レバー40が同図の時計方向に回動する。逆に同図の左方に向けてナット45を移動させると、引張ばね47の付勢力によって第1移動部材43が追随して左方に移動し、左右駆動レバー40が反時計方向に回動する。   As shown in FIGS. 9 and 20, the left and right drive lever 40 has a lower end portion pivotally supported by a lever rotation shaft 42 and has a distal end force applying portion 40 a at the upper end portion. An operation pin (first stopper portion) 40b that protrudes rearward in the optical axis direction and a spring hooking portion 40c are provided in the vicinity of the tip applying force portion 40a. As shown in FIG. 12, the distal end force applying portion 40 a of the left and right drive lever 40 is in contact with a first moving member 43 (rotation drive mechanism, first rectilinear moving member) 43. The first moving member 43 is supported by a pair of guide bars 44 (44a, 44b) so as to be slidable in the x-axis direction, and a nut 45 is in contact with the first moving member 43. The nut 45 has a rotation restricting groove 45a that is slidably fitted into the guide bar 44b, and a screw hole 45b. The nut 45 has a first stepping motor (shake correction drive means, a rotation drive mechanism, a first drive mechanism) Drive shaft (feed screw) 46a of the first actuator) 46 is screwed. As shown in FIGS. 13 and 14, the nut 45 abuts from the left side of the first moving member 43 when viewed from the front of the camera. One end of a tension spring (first lever urging member) 47 is engaged with the spring hook 40c of the left and right drive lever 40, and the other end of the tension spring 47 is a spring hook 11b (in the housing 11). (See FIG. 12). The tension spring 47 urges the left and right drive lever 40 to rotate in the direction in which the first moving member 43 is brought into contact with the nut 45, that is, in the counterclockwise direction in FIGS. 13, 14, and 20. From this structure, when the first stepping motor 46 is driven, the nut 45 moves along the guide bar 44, the first moving member 43 moves together with the nut 45, and the left and right drive lever 40 is swung. Specifically, when the nut 45 is moved toward the right in FIGS. 13 and 14, the first moving member 43 is pressed against the urging force of the tension spring 47, and the left and right drive lever 40 is moved as shown in FIG. Rotate clockwise. Conversely, when the nut 45 is moved toward the left in the figure, the first moving member 43 follows and moves to the left by the urging force of the tension spring 47, and the left and right drive lever 40 rotates counterclockwise. To do.

左右駆動レバー40に設けた操作ピン40bは、図20に示すように、左右移動枠32の腕部32bの先端部に設けた位置規制面32eに当接している。左右移動枠32は左右移動枠付勢ばね37によって同図の左方へ移動付勢されているため、位置規制面32eと操作ピン40bが当接した状態が維持される。そして、左右駆動レバー40が揺動すると操作ピン40bの位置がx軸方向に変位するので、左右ガイド軸35に沿って左右移動枠32が移動する。具体的には、図20の時計方向に左右駆動レバー40を回動させると、操作ピン40bが位置規制面32eを押圧し、左右移動枠付勢ばね37の付勢力に抗して左右移動枠32が同図の右方向へ移動する。逆に図20の反時計方向に左右駆動レバー40を回動させると、操作ピン40bが位置規制面32eから離れる方向に移動するため、左右移動枠付勢ばね37の付勢力によって左右移動枠32が追随して左方向へ移動する。   As shown in FIG. 20, the operation pin 40 b provided on the left and right drive lever 40 is in contact with a position regulating surface 32 e provided at the tip of the arm portion 32 b of the left and right moving frame 32. Since the left / right moving frame 32 is urged to move to the left in the drawing by the left / right moving frame urging spring 37, the state where the position restricting surface 32e and the operation pin 40b are in contact with each other is maintained. When the left / right drive lever 40 swings, the position of the operation pin 40b is displaced in the x-axis direction, so that the left / right moving frame 32 moves along the left / right guide shaft 35. Specifically, when the left and right drive lever 40 is rotated in the clockwise direction in FIG. 20, the operation pin 40 b presses the position restricting surface 32 e and resists the urging force of the left and right moving frame urging spring 37. 32 moves to the right in the figure. Conversely, when the left / right drive lever 40 is rotated counterclockwise in FIG. 20, the operation pin 40 b moves away from the position restricting surface 32 e, so that the left / right moving frame 32 is moved by the urging force of the left / right moving frame urging spring 37. Follows and moves to the left.

図9及び図21に示すように、上下駆動レバー41は、下端部が左右駆動レバー40と同様にレバー回動軸42に軸支され、上端部に先端着力部41aを有する。上下駆動レバー41は左右駆動レバー40よりも長く、先端着力部41aは先端着力部40aよりも上方に突出している。レバー回動軸42と先端着力部41aの間には、押圧斜面(第2のストッパ部)41bが側方へ突出形成され、該押圧斜面41bの上方にはばね掛け部41cが設けられている。図12に示すように、先端着力部41aは第2移動部材(回動駆動機構、第2の直進移動部材)50に当接している。第2移動部材50は、一対のガイドバー51(51a、51b)によってx軸方向へ摺動可能に支持されており、第2移動部材50に対してナット52が当接している。ナット52は、ガイドバー51bに摺動可能に嵌まる回転規制溝52aと、ねじ孔52bとを有し、ねじ孔52bに対して第2ステッピングモータ(振れ補正駆動手段、回動駆動機構、第2のアクチュエータ)53のドライブシャフト(送りねじ)53aが螺合している。図13及び図14に示すように、カメラ正面から見て、ナット52は第2移動部材50の左側から当接している。また、上下駆動レバー41のばね掛け部41cには引張ばね(第2のレバー付勢部材)54の一端部が係合し、引張ばね54の他端部はハウジング11内のばね掛け部(不図示)に係合している。引張ばね54は、第2移動部材50をナット52に当接させる方向、すなわち図13、図14及び図20における反時計方向へ向けて上下駆動レバー41を回動付勢している。この構造から、第2ステッピングモータ53を駆動するとナット52がガイドバー51に沿って移動し、該ナット52と共に第2移動部材50が移動して上下駆動レバー41が揺動する。具体的には、図13及び図14の右方に向けてナット52を移動させると、引張ばね54の付勢力に抗しながら第2移動部材50が押圧され、上下駆動レバー41が同図の時計方向に回動する。逆に同図の左方に向けてナット52を移動させると、引張ばね54の付勢力によって第2移動部材50が追随して左方に移動し、上下駆動レバー41が反時計方向に回動する。   As shown in FIGS. 9 and 21, the vertical drive lever 41 has a lower end portion pivotally supported by a lever rotation shaft 42 in the same manner as the left and right drive lever 40, and has a tip applying portion 41 a at the upper end portion. The vertical drive lever 41 is longer than the left and right drive lever 40, and the tip applying force portion 41a projects upward from the tip applying force portion 40a. A pressing inclined surface (second stopper portion) 41b is formed to protrude laterally between the lever rotation shaft 42 and the tip applying force portion 41a, and a spring hooking portion 41c is provided above the pressing inclined surface 41b. . As shown in FIG. 12, the tip applying force portion 41 a is in contact with a second moving member (rotation drive mechanism, second rectilinear moving member) 50. The second moving member 50 is supported by a pair of guide bars 51 (51 a, 51 b) so as to be slidable in the x-axis direction, and a nut 52 is in contact with the second moving member 50. The nut 52 has a rotation restricting groove 52a that is slidably fitted into the guide bar 51b, and a screw hole 52b. The second stepping motor (shake correction drive means, rotation drive mechanism, The drive shaft (feed screw) 53a of the second actuator) 53 is screwed. As shown in FIGS. 13 and 14, the nut 52 abuts from the left side of the second moving member 50 when viewed from the front of the camera. Further, one end of a tension spring (second lever urging member) 54 is engaged with the spring hook 41c of the vertical drive lever 41, and the other end of the tension spring 54 is a spring hook (not fixed) in the housing 11. Engaged). The tension spring 54 urges the vertical drive lever 41 to rotate in the direction in which the second moving member 50 is brought into contact with the nut 52, that is, in the counterclockwise direction in FIGS. 13, 14, and 20. From this structure, when the second stepping motor 53 is driven, the nut 52 moves along the guide bar 51, the second moving member 50 moves together with the nut 52, and the vertical drive lever 41 swings. Specifically, when the nut 52 is moved toward the right in FIGS. 13 and 14, the second moving member 50 is pressed against the urging force of the tension spring 54, and the vertical drive lever 41 is moved as shown in FIG. Rotate clockwise. Conversely, when the nut 52 is moved toward the left in the figure, the second moving member 50 follows and moves to the left by the urging force of the tension spring 54, and the vertical drive lever 41 rotates counterclockwise. To do.

上下駆動レバー41の押圧斜面41bは、図21に示すように、上下移動枠36の上方軸受部36dから前方に向けて突設した被押圧ピン36gに当接可能である。上下移動枠36は上下移動枠付勢ばね39によって同図の下方へ移動付勢されているため、被押圧ピン36gと押圧斜面41bが当接した状態が維持される。そして、上下駆動レバー41が揺動すると、被押圧ピン36gに対する押圧斜面41bの当接角度が変位し、その結果、上下ガイド軸38に沿って上下移動枠36が移動する。具体的には、図21の時計方向に上下駆動レバー41を回動させると、押圧斜面41bが被押圧ピン36gを上方に向けて押圧し、上下移動枠付勢ばね39の付勢力に抗して上下移動枠36が同図の上方向へ移動する。逆に図21の反時計方向に上下駆動レバー41を回動させると、被押圧ピン36gに対する押圧斜面41bの当接個所が下方に変位するため、上下移動枠付勢ばね39の付勢力によって上下移動枠36が下方向へ移動する。   As shown in FIG. 21, the pressing slope 41 b of the vertical drive lever 41 can contact a pressed pin 36 g that protrudes forward from the upper bearing portion 36 d of the vertical movement frame 36. Since the vertical movement frame 36 is moved and urged downward in the figure by the vertical movement frame urging spring 39, the pressed pin 36g and the pressing inclined surface 41b are kept in contact with each other. When the vertical drive lever 41 swings, the contact angle of the pressing slope 41b with the pressed pin 36g is displaced, and as a result, the vertical movement frame 36 moves along the vertical guide shaft 38. Specifically, when the vertical drive lever 41 is rotated in the clockwise direction of FIG. 21, the pressing slope 41b presses the pressed pin 36g upward, and resists the biasing force of the vertical movement frame biasing spring 39. Thus, the vertical movement frame 36 moves upward in the figure. On the other hand, when the vertical drive lever 41 is rotated counterclockwise in FIG. 21, the contact portion of the pressing slope 41b with the pressed pin 36g is displaced downward, so that the vertical movement frame biasing spring 39 biases the vertical movement lever biasing spring 39 upward and downward. The moving frame 36 moves downward.

以上の構造により、第1ステッピングモータ46を正逆に駆動させることにより、左右移動枠32をx軸方向へ正逆に移動させることができ、第2ステッピングモータ53を正逆に駆動させることにより、上下移動枠36をy軸方向へ正逆に移動させることができる。   With the above structure, by driving the first stepping motor 46 forward and backward, the left and right moving frame 32 can be moved forward and backward in the x-axis direction, and by driving the second stepping motor 53 forward and backward. The vertical movement frame 36 can be moved forward and backward in the y-axis direction.

第1移動部材43と第2移動部材50はそれぞれ板状部43a、50aを備えており、この板状部43a、50aの通過をフォトインタラプタ55、56によって検知することによって、左右移動枠32と上下移動枠36の初期位置を検出することができる。フォトインタラプタ55、56は、ハウジング11の前壁15aに形成した孔15a1、15a2(図8)に支持されている。   The first moving member 43 and the second moving member 50 are respectively provided with plate-like portions 43a and 50a. By detecting the passage of the plate-like portions 43a and 50a by the photo interrupters 55 and 56, the left and right moving frames 32 and The initial position of the vertical movement frame 36 can be detected. The photo interrupters 55 and 56 are supported by holes 15a1 and 15a2 (FIG. 8) formed in the front wall 15a of the housing 11.

本実施形態のズームレンズカメラは、撮影光軸Z1と直交する平面内において互いに直交する2軸(カメラの上下軸と左右軸)周りにおける移動角速度を検出する像振れ検知センサ57(図5)を備えており、カメラに加わった振れの大きさと方向は、この像振れ検知センサ57によって検知される。制御回路14aは、像振れ検知センサ57の検出した2軸方向の振れの角速度を時間積分して移動角度を求め、該移動角度から焦点面(CCD13gの受光面)上でのx軸方向及びy軸方向の像の移動量を演算すると共に、この像振れをキャンセルするための各軸方向に関する左右移動枠32と上下移動枠36の駆動量及び駆動方向(第1ステッピングモータ46、第2ステッピングモータ53の駆動パルス)を演算する。そして、この演算値に基づいて、第1ステッピングモータ46と第2ステッピングモータ53を駆動制御する。これにより、左右移動枠32と上下移動枠36はそれぞれ、撮影光軸Z1の振れをキャンセルするべく所定方向に所定量駆動され、焦点面上での画像位置が一定に保たれる。撮影モード切替スイッチ14e(図5)のオンによってこの像振れ補正モードに入ることができ、撮影モード切替スイッチ14eをオフにした状態では、像振れ補正機能が停止されて通常撮影を行うことができる。   The zoom lens camera according to the present embodiment includes an image shake detection sensor 57 (FIG. 5) that detects a moving angular velocity around two axes (vertical axis and horizontal axis of the camera) that are orthogonal to each other in a plane orthogonal to the photographing optical axis Z1. The image blur detection sensor 57 detects the magnitude and direction of the shake applied to the camera. The control circuit 14a obtains a moving angle by time-integrating the angular velocities in the biaxial directions detected by the image blur detecting sensor 57, and calculates the moving angle from the moving angle on the focal plane (the light receiving surface of the CCD 13g) and y The amount of movement of the image in the axial direction is calculated, and the driving amount and driving direction of the left and right moving frame 32 and the vertical moving frame 36 for each axial direction for canceling this image blur (first stepping motor 46, second stepping motor) 53 drive pulses). Based on this calculated value, the first stepping motor 46 and the second stepping motor 53 are driven and controlled. As a result, the left and right moving frame 32 and the vertical moving frame 36 are each driven by a predetermined amount in a predetermined direction to cancel the shake of the photographing optical axis Z1, and the image position on the focal plane is kept constant. The image blur correction mode can be entered by turning on the shooting mode changeover switch 14e (FIG. 5). When the shooting mode changeover switch 14e is turned off, the image blur correction function is stopped and normal shooting can be performed. .

本実施形態のズームレンズカメラは、以上の像振れ補正機構の一部を利用して、鏡筒収納時における第3レンズ群13e、ローパスフィルタ13f及びCCD13gの光軸外退避位置Z2への退避動作を行わせる。図22及び図23に示すように、上下移動枠36の下方には、回動軸60aを中心として回動(揺動)可能に退避駆動レバー(第3の回動レバー)60が支持されている。退避駆動レバー60に隣接して、この回動軸60aと同軸で回動可能な同軸ギヤ61が設けられ、該同軸ギヤ61に対して、2つの中継ギヤ62、63を介して連動ギヤ64から回転力が伝達される。退避駆動レバー60及び同軸ギヤ61の回動軸60aと、中継ギヤ62、63及び連動ギヤ64の回動軸はそれぞれ、回転中心軸Z0(撮影光軸Z1)と平行である。   The zoom lens camera according to the present embodiment uses a part of the image blur correction mechanism described above to retract the third lens group 13e, the low-pass filter 13f, and the CCD 13g to the retracted position Z2 off the optical axis when the lens barrel is housed. To do. As shown in FIGS. 22 and 23, a retraction drive lever (third rotation lever) 60 is supported below the vertical movement frame 36 so as to be rotatable (swingable) about a rotation shaft 60a. Yes. A coaxial gear 61 that is rotatable coaxially with the rotation shaft 60 a is provided adjacent to the retracting drive lever 60, and is connected to the coaxial gear 61 from the interlocking gear 64 via two relay gears 62 and 63. Rotational force is transmitted. The revolving drive lever 60 and the rotation shaft 60a of the coaxial gear 61 and the rotation shafts of the relay gears 62 and 63 and the interlocking gear 64 are parallel to the rotation center axis Z0 (imaging optical axis Z1), respectively.

図22及び図23に示すように、退避駆動レバー60は回動軸60aの近傍に扇形断面の回転伝達突起60bを有し、同軸ギヤ61は、この回転伝達突起60bの周方向延長上に回転伝達突起61aを有している。同軸ギヤ61は、回転伝達突起61aを回転伝達突起60bに当接させることにより退避駆動レバー60に回転力を伝達し、回転伝達突起60bから回転伝達突起61aが離れる方向に移動するときには、同軸ギヤ61の回転力が退避駆動レバー60に伝達されない。退避駆動レバー60は、トーションばね60cによって図22及び図23の反時計方向に回動付勢されており、ハウジング11には、この付勢方向への退避駆動レバー60の回動端を定めるストッパ65が突設されている。   As shown in FIGS. 22 and 23, the retracting drive lever 60 has a rotation transmission protrusion 60b having a fan-shaped cross section in the vicinity of the rotation shaft 60a, and the coaxial gear 61 rotates on the circumferential extension of the rotation transmission protrusion 60b. A transmission protrusion 61a is provided. The coaxial gear 61 transmits the rotational force to the retracting drive lever 60 by bringing the rotation transmission projection 61a into contact with the rotation transmission projection 60b, and when the rotation transmission projection 61b moves away from the rotation transmission projection 60b, the coaxial gear 61 The rotational force 61 is not transmitted to the retracting drive lever 60. The retraction drive lever 60 is urged to rotate counterclockwise in FIGS. 22 and 23 by a torsion spring 60c, and the housing 11 has a stopper that determines the rotation end of the retraction drive lever 60 in this urging direction. 65 is protrudingly provided.

上下移動枠36の下面には、弧状面(退避位置保持手段)66aとリード面(移動ガイド面)66bからなる被押圧面66が形成されている。弧状面66aは退避駆動レバー60の回動軸60aを中心とする円弧の一部をなす形状であり、リード面66bは、該弧状面66aとの接続部分が最も下方に位置し、弧状面66aから離れるにつれて(図22及び図23における上下移動枠36の左側面に接近するにつれて)徐々に上方に向かう直線状の傾斜面として形成されている。   On the lower surface of the vertical movement frame 36, a pressed surface 66 formed by an arcuate surface (retracting position holding means) 66a and a lead surface (moving guide surface) 66b is formed. The arcuate surface 66a has a shape that forms a part of an arc centered on the rotation shaft 60a of the retracting drive lever 60, and the lead surface 66b has a connection portion with the arcuate surface 66a at the lowest position, and the arcuate surface 66a. It is formed as a linear inclined surface that gradually goes upward as it moves away from (as it approaches the left side surface of the vertical movement frame 36 in FIGS. 22 and 23).

連動ギヤ64は、軸線方向に位置を異ならせてギヤ部64aと回転規制部64bとを有している。回転規制部64bは、ギヤ部64aよりも大径の不完全な円筒状をなす大径円筒部64b1と、該大径円筒部64b1の一部を略直線(平面)状に切り欠いた平面部64b2とからなる非円形(D字状)の断面形状を有しており、平面部64b2の形成領域では、回転規制部64bよりも径方向の外方にギヤ部64aの歯先が突出している。平面部64b2は、連動ギヤ64の回転軸線と平行な直線を含む平面として形成されている。   The interlocking gear 64 has a gear part 64a and a rotation restricting part 64b with different positions in the axial direction. The rotation restricting portion 64b includes a large-diameter cylindrical portion 64b1 having an incomplete cylindrical shape with a larger diameter than the gear portion 64a, and a plane portion obtained by cutting out a part of the large-diameter cylindrical portion 64b1 into a substantially straight (planar) shape. 64b2 has a non-circular (D-shaped) cross-sectional shape, and in the formation region of the flat surface portion 64b2, the tooth tip of the gear portion 64a protrudes outward in the radial direction from the rotation restricting portion 64b. . The plane portion 64b2 is formed as a plane including a straight line parallel to the rotation axis of the interlocking gear 64.

連動ギヤ64はヘリコイド環18の外周面に対向する位置に設けられており、ヘリコイド環18の光軸方向移動に応じて、スパーギヤ18cが、連動ギヤ64のギヤ部64aに対向する状態(図11、図14)と、回転規制部64bに対向する状態(図10、図13)とになる。ヘリコイド環18が前述の定位置回転を行うときには、スパーギヤ18cはギヤ部64aに噛合している。そして、この定位置回転状態からヘリコイド環18が収納方向に移動していくと、スパーギヤ18cは回転規制部64bに対向し、連動ギヤ64への回転伝達が解除される。   The interlocking gear 64 is provided at a position facing the outer peripheral surface of the helicoid ring 18, and the spur gear 18 c faces the gear portion 64 a of the interlocking gear 64 according to the movement of the helicoid ring 18 in the optical axis direction (FIG. 11). 14) and a state (FIGS. 10 and 13) facing the rotation restricting portion 64b. When the helicoid ring 18 performs the above-mentioned fixed position rotation, the spur gear 18c meshes with the gear portion 64a. When the helicoid ring 18 moves in the retracted direction from the fixed position rotation state, the spar gear 18c faces the rotation restricting portion 64b, and the rotation transmission to the interlocking gear 64 is released.

退避駆動レバー60の動作を具体的に説明する。図23はワイド端での状態を示している。ワイド端では、第3レンズ群13e、ローパスフィルタ13f及びCCD13gは撮影光軸Z1上に位置している(図2の上半)。またヘリコイド環18は定位置回転状態にあり(図6参照)、連動ギヤ64のギヤ部64aがヘリコイド環18のスパーギヤ18cと噛合している。ヘリコイド環18がワイド端から収納方向へ回転すると、連動ギヤ64と中継ギヤ62及び63を介して、同軸ギヤ61が図23の時計方向へ回転する。同図に示すように、ワイド端では回転伝達突起61aと回転伝達突起60bが若干離間しているため、同軸ギヤ61が回転してから少しの間は退避駆動レバー60へ回転力が伝達されない。つまり、退避駆動レバー60は、トーションばね60cの付勢力によってストッパ65に当て付いた位置に保持される。そして、回転伝達突起61aが回転伝達突起60bに当接して押圧すると、トーションばね60cに抗して退避駆動レバー60が時計方向に回動を始める。本実施形態では、この退避駆動レバー60の回動開始のタイミングは、カム環26が前述の定位置回転から光軸方向後方への収納移動を開始する角度位置θ2と略同じである(図6参照)。   The operation of the retract drive lever 60 will be specifically described. FIG. 23 shows a state at the wide end. At the wide end, the third lens group 13e, the low-pass filter 13f, and the CCD 13g are located on the photographing optical axis Z1 (upper half of FIG. 2). Further, the helicoid ring 18 is in a fixed position rotation state (see FIG. 6), and the gear portion 64a of the interlocking gear 64 is engaged with the spur gear 18c of the helicoid ring 18. When the helicoid ring 18 rotates from the wide end in the storage direction, the coaxial gear 61 rotates in the clockwise direction in FIG. 23 via the interlocking gear 64 and the relay gears 62 and 63. As shown in the figure, since the rotation transmission protrusion 61a and the rotation transmission protrusion 60b are slightly separated at the wide end, the rotational force is not transmitted to the retracting drive lever 60 for a while after the coaxial gear 61 rotates. That is, the retracting drive lever 60 is held at a position where it comes into contact with the stopper 65 by the urging force of the torsion spring 60c. When the rotation transmission protrusion 61a comes into contact with and presses against the rotation transmission protrusion 60b, the retracting drive lever 60 starts to rotate clockwise against the torsion spring 60c. In the present embodiment, the timing for starting the rotation of the retracting drive lever 60 is substantially the same as the angular position θ2 at which the cam ring 26 starts the storing movement from the fixed position rotation to the rear in the optical axis direction (FIG. 6). reference).

退避駆動レバー60が図23の角度位置から時計方向へ回動すると、その先端着力部60dが上下移動枠36の被押圧面66のリード面66bに当接する。退避駆動レバー60がさらに時計方向に回転を続けると、リード面66bの傾斜形状に応じて退避駆動レバー60が上下移動枠36を上方へ押し上げ、その結果、上下ガイド軸38にガイドされて上下移動枠36がハウジング11内を上方に移動する。   When the retracting drive lever 60 is rotated clockwise from the angular position of FIG. 23, the tip applying force portion 60d comes into contact with the lead surface 66b of the pressed surface 66 of the vertical movement frame 36. When the retracting drive lever 60 continues to rotate further in the clockwise direction, the retracting drive lever 60 pushes the up and down moving frame 36 upward according to the inclined shape of the lead surface 66b, and as a result, it is guided by the up and down guide shaft 38 to move up and down. The frame 36 moves upward in the housing 11.

収納方向へ回動するヘリコイド環18は、その角度位置が図6のθ1を超えると定位置回転が終わり、回転しながら光軸方向後方へ移動される。すると、スパーギヤ18cが連動ギヤ64のギヤ部64aとの噛合を解除して、代わりにスパーギヤ18cは回転規制部64bの平面部64b2に対向する。スパーギヤ18cとギヤ部64aはそれぞれ光軸方向へ所定の長さがあるため、ヘリコイド環18が上記θ1位置で定位置回転状態から回転進退状態に切り換わると直ちに噛合を解除するのではなく、若干鏡筒収納方向に進んだθ3の角度位置で噛合解除する。この噛合解除によりヘリコイド環18の回転力が連動ギヤ64に伝達されなくなるため、退避駆動レバー60の上昇回動が停止される。上昇回動が停止した状態の退避駆動レバー60を図22に示す。同図から分かるように、退避駆動レバー60の先端着力部60dは、弧状面66aとリード面66bの境界部を乗り越えて弧状面66aに当接している。このとき、退避駆動レバー60によって上方へ押し上げられた上下移動枠36は、図1に示すようにハウジング11内の退避スペースSP内へ移動されている。   When the angular position of the helicoid ring 18 rotating in the storage direction exceeds θ1 in FIG. 6, the fixed position rotation ends, and the helicoid ring 18 is moved rearward in the optical axis direction while rotating. Then, the spur gear 18c releases the meshing with the gear portion 64a of the interlocking gear 64, and instead, the spur gear 18c faces the flat surface portion 64b2 of the rotation restricting portion 64b. Since the spur gear 18c and the gear portion 64a each have a predetermined length in the optical axis direction, when the helicoid ring 18 is switched from the fixed position rotation state to the rotation advance / retreat state at the θ1 position, the meshing is not released immediately, The engagement is released at the angle position θ3 that has advanced in the lens barrel storage direction. As the meshing is released, the rotational force of the helicoid ring 18 is not transmitted to the interlocking gear 64, and the upward rotation of the retracting drive lever 60 is stopped. FIG. 22 shows the retracting drive lever 60 in a state where the upward rotation is stopped. As can be seen from the figure, the tip applying force portion 60d of the retracting drive lever 60 is in contact with the arcuate surface 66a over the boundary between the arcuate surface 66a and the lead surface 66b. At this time, the vertical movement frame 36 pushed upward by the retraction driving lever 60 is moved into the retraction space SP in the housing 11 as shown in FIG.

ズームレンズ鏡筒10の収納は、上下移動枠36が上方への退避移動を完了したθ3の角度位置では完了せず、ヘリコイド環18やカム環26がさらに回転しながら光軸方向後方へ移動する。そして、図1の収納状態まで達すると、第2レンズ群13dを保持する2群支持枠25の筒状部25bが、撮影時において上下移動枠36が占めていた空間まで入り込む。これにより、収納状態での撮影光学系の光軸方向の厚みを小さくすることができ、ズームレンズ鏡筒10及びそれを搭載するカメラの薄型化が可能になっている。   The storage of the zoom lens barrel 10 is not completed at the angle position θ3 where the vertical movement frame 36 has completed the upward retraction movement, and the helicoid ring 18 and the cam ring 26 move further in the optical axis direction while further rotating. . When the storage state shown in FIG. 1 is reached, the cylindrical portion 25b of the second group support frame 25 that holds the second lens group 13d enters the space occupied by the up and down movement frame 36 at the time of photographing. Thereby, the thickness in the optical axis direction of the photographing optical system in the housed state can be reduced, and the zoom lens barrel 10 and the camera on which the zoom lens barrel 10 is mounted can be made thinner.

以上の鏡筒収納動作において、連動ギヤ64のギヤ部64aとヘリコイド環18のスパーギヤ18cの噛合が解除されるθ3の角度位置以降は、スパーギヤ18cに対して回転規制部64bの平面部64b2が対向する。この対向状態において平面部64b2はスパーギヤ18cの歯先(外縁部、歯先円)に近接しており、連動ギヤ64が回転しようとしても、平面部64b2がスパーギヤ18cの外縁部に当て付いて回転することができない(図10、図13参照)。これにより、鏡筒収納状態では連動ギヤ64が不用意に回転するおそれがなくなり、退避駆動レバー60を確実に上昇回動位置に係止させておくことができる。つまり、図22の退避状態において、退避駆動レバー60はトーションばね60cによって同図の反時計方向へ回動付勢されているが、退避駆動レバー60の当該方向への回動は、同軸ギヤ61、中継ギヤ62、63及び連動ギヤ64からなるギヤ列によって規制される。そして、連動ギヤ64の平面部64b2とスパーギヤ18cとの当接関係が、この退避駆動レバー60に対する回動規制手段として機能するため、複雑な係止機構を設けることなく確実に退避駆動レバー60を停止状態に保持することができる。   In the lens barrel storage operation described above, after the angle position θ3 where the meshing between the gear portion 64a of the interlocking gear 64 and the spur gear 18c of the helicoid ring 18 is released, the flat portion 64b2 of the rotation restricting portion 64b faces the spur gear 18c. To do. In this opposed state, the flat surface portion 64b2 is close to the tooth tip (outer edge portion, tooth tip circle) of the spur gear 18c, and even if the interlocking gear 64 tries to rotate, the flat surface portion 64b2 contacts the outer edge portion of the spur gear 18c and rotates. Cannot be performed (see FIGS. 10 and 13). Accordingly, there is no possibility that the interlocking gear 64 rotates inadvertently in the lens barrel storage state, and the retracting drive lever 60 can be reliably locked at the ascending rotation position. That is, in the retracted state of FIG. 22, the retracting drive lever 60 is urged to rotate counterclockwise in FIG. 22 by the torsion spring 60c. The gear train is composed of the relay gears 62 and 63 and the interlocking gear 64. Since the contact relationship between the flat portion 64b2 of the interlocking gear 64 and the spur gear 18c functions as a rotation restricting means for the retracting drive lever 60, the retracting drive lever 60 can be securely attached without providing a complicated locking mechanism. It can be held in a stopped state.

また、上下移動枠36を上方に退避させた状態で退避駆動レバー60の先端着力部60dが当接している弧状面66aは、退避駆動レバー60の回動軸60aを中心とする円弧状面であるから、退避駆動レバー60の角度が変化しても、その先端着力部60dが弧状面66aに当接している限りは、上下移動枠36の高さ位置は変化せず一定の位置に維持される。   In addition, the arcuate surface 66a with which the tip applying portion 60d of the retracting drive lever 60 is in contact with the vertically moving frame 36 retracted upward is an arcuate surface centered on the rotation shaft 60a of the retracting drive lever 60. Therefore, even if the angle of the retracting drive lever 60 changes, the height position of the up and down moving frame 36 does not change and is maintained at a constant position as long as the tip applying force portion 60d is in contact with the arcuate surface 66a. The

ワイド端から収納までの退避機構の動作は以上の通りである。一方、ワイド端からテレ端までのズーム領域では、定位置回転するヘリコイド環18のスパーギヤ18cと連動ギヤ64のギヤ部64aが噛合を維持しており、ヘリコイド環18の回転に従って連動ギヤ64も回転される。しかし、図23に示すワイド端の状態からテレ端方向にヘリコイド環18が回転するとき、同軸ギヤ61は同図の反時計方向、すなわち回転伝達突起61aを回転伝達突起60bから離間させる方向へと回転される。したがって、ワイド端からテレ端までのズーム領域では、退避駆動レバー60への回転力伝達がなされず、退避駆動レバー60は図23の角度位置に保たれる。これにより、退避駆動レバー60の回動範囲は最小限で済み、鏡筒の大型化を避けることができる。   The operation of the retracting mechanism from the wide end to the storage is as described above. On the other hand, in the zoom range from the wide end to the tele end, the spur gear 18c of the helicoid ring 18 rotating at a fixed position and the gear portion 64a of the interlocking gear 64 maintain meshing, and the interlocking gear 64 rotates as the helicoid ring 18 rotates. Is done. However, when the helicoid ring 18 rotates in the tele end direction from the wide end state shown in FIG. 23, the coaxial gear 61 moves counterclockwise in FIG. 23, that is, in the direction in which the rotation transmission projection 61a is separated from the rotation transmission projection 60b. It is rotated. Therefore, in the zoom region from the wide end to the tele end, the rotational force is not transmitted to the retract drive lever 60, and the retract drive lever 60 is maintained at the angular position in FIG. Thereby, the range of rotation of the retracting drive lever 60 is minimized, and an increase in the size of the lens barrel can be avoided.

なお、図24に示すように、上下移動枠36が光軸外退避位置Z2側へ退避されると、左右移動枠32の腕部32bに設けた位置規制面32eと左右駆動レバー40に設けた操作ピン40bの係合が解除され、左右移動枠32は左右移動枠付勢ばね37の付勢力によって同図の左方に移動されて、その枠状部32aが上下移動枠36の移動規制枠36aに当て付く。この状態から上下移動枠36が再び撮影光軸Z1側に移動されると、図24に二点鎖線で示すように左右移動枠32の傾斜面32dが操作ピン40bに当接する。傾斜面32dは、上下移動枠36の下降動作に従って操作ピン40bを位置規制面32e側に案内するように傾斜しているため、上下移動枠36が撮影位置まで下降されると、図20に示すように再び操作ピン40bが位置規制面32eに係合し、左右移動枠32の枠状部32aが移動規制枠36aと移動規制枠36bの間の中立位置に戻る。   As shown in FIG. 24, when the vertical movement frame 36 is retracted to the off-optical axis retraction position Z2 side, the position restriction surface 32e provided on the arm portion 32b of the left / right movement frame 32 and the left / right drive lever 40 are provided. The engagement of the operation pin 40b is released, the left / right moving frame 32 is moved to the left in the figure by the urging force of the left / right moving frame urging spring 37, and the frame-like portion 32a is a movement restricting frame of the up / down moving frame 36. It hits 36a. When the vertical movement frame 36 is moved again to the photographing optical axis Z1 side from this state, the inclined surface 32d of the horizontal movement frame 32 comes into contact with the operation pin 40b as shown by a two-dot chain line in FIG. Since the inclined surface 32d is inclined so as to guide the operation pin 40b toward the position regulating surface 32e according to the downward movement of the vertical movement frame 36, when the vertical movement frame 36 is lowered to the photographing position, it is shown in FIG. Thus, the operation pin 40b is again engaged with the position restricting surface 32e, and the frame-like portion 32a of the left and right moving frame 32 returns to the neutral position between the movement restricting frame 36a and the movement restricting frame 36b.

[本発明の特徴部分の説明]
以上のように、CCDホルダ30にユニット化して保持された第3レンズ群13e、ローパスフィルタ13f及びCCD13gは、x軸方向への可動枠である左右移動枠32とy軸方向への可動枠である上下移動枠36を介して支持されており、像振れ補正時に撮影光軸Z1と直交する平面内で移動される。左右移動枠32は、左右移動枠付勢ばね37によってx軸に沿って移動付勢されており、この付勢力によって、位置規制面32eが左右駆動レバー40の操作ピン40bに当接している。上下移動枠36は、上下移動枠付勢ばね39によってy軸に沿って移動付勢されており、この付勢力によって、被押圧ピン36gが上下駆動レバー41の押圧斜面41bに当接している。そして、左右駆動レバー40を回動させると、操作ピン40bの位置変化に応じて左右移動枠32がx軸方向に移動され、上下駆動レバー41を回動させると、押圧斜面41bの位置変化に応じて上下移動枠36がy軸方向に移動される。つまり、x軸方向において左右移動枠付勢ばね37の付勢力を受けるストッパ部(当付部)として操作ピン40bを設け、y軸方向において上下移動枠付勢ばね39の付勢力を受けるストッパ部(当付部)として押圧斜面41bを設け、この各ストッパ部を移動させることによって、第3レンズ群13e、ローパスフィルタ13f及びCCD13gからなる振れ補正光学要素に対して像振れ補正動作を行わせている。このように構成することにより、第3レンズ群13e、ローパスフィルタ13f及びCCD13gをx軸及びy軸方向でずれることなく確実に位置させることができ、しかも簡単な構造でx軸及びy軸方向に移動させて像振れ補正を行うことができる。
[Description of features of the present invention]
As described above, the third lens group 13e, the low-pass filter 13f, and the CCD 13g held as a unit on the CCD holder 30 are a left-right moving frame 32 that is a movable frame in the x-axis direction and a movable frame in the y-axis direction. It is supported via a certain vertical movement frame 36, and is moved in a plane orthogonal to the photographing optical axis Z1 at the time of image blur correction. The left / right moving frame 32 is moved and urged along the x-axis by a left / right moving frame urging spring 37, and the position restricting surface 32 e is in contact with the operation pin 40 b of the left and right drive lever 40 by this urging force. The vertical movement frame 36 is moved and urged along the y-axis by the vertical movement frame urging spring 39, and the pressed pin 36 g is in contact with the pressing inclined surface 41 b of the vertical driving lever 41 by this urging force. When the left / right drive lever 40 is rotated, the left / right moving frame 32 is moved in the x-axis direction according to the change in the position of the operation pin 40b, and when the vertical drive lever 41 is rotated, the position of the pressing slope 41b is changed. Accordingly, the vertical movement frame 36 is moved in the y-axis direction. That is, the operation pin 40b is provided as a stopper portion (abutting portion) that receives the urging force of the left and right moving frame urging spring 37 in the x-axis direction, and the stopper portion that receives the urging force of the up and down moving frame urging spring 39 in the y-axis direction. A pressing slope 41b is provided as an abutting portion, and by moving each stopper portion, an image blur correction operation is performed on the blur correction optical element including the third lens group 13e, the low-pass filter 13f, and the CCD 13g. Yes. With this configuration, the third lens group 13e, the low-pass filter 13f, and the CCD 13g can be reliably positioned without shifting in the x-axis and y-axis directions, and with a simple structure, they can be positioned in the x-axis and y-axis directions. It can be moved to perform image blur correction.

ストッパ部である操作ピン40bと押圧斜面41bを移動させるのは、左右駆動レバー40と上下駆動レバー41の回動である。左右駆動レバー40と上下駆動レバー41は共通のレバー回動軸42により回動可能に支持されており、さらに図9ないし図14に示すように、該レバー回動軸42から互いに略平行に上方へ向けて延出されている。そのため、左右駆動レバー40と上下駆動レバー41はスペース効率よく配置されており、像振れ補正機構の小型化に寄与している。   It is the rotation of the left and right drive lever 40 and the vertical drive lever 41 that moves the operation pin 40b and the pressing slope 41b, which are stopper portions. The left and right drive levers 40 and the upper and lower drive levers 41 are rotatably supported by a common lever rotation shaft 42. Further, as shown in FIGS. Has been extended towards. For this reason, the left and right drive levers 40 and the vertical drive lever 41 are arranged in a space-efficient manner, contributing to downsizing of the image blur correction mechanism.

なお、上下駆動レバー41は概ねy軸方向に長手方向を向けており、該上下駆動レバー41が正逆に回動するときには押圧斜面41bの位置は概ねx軸方向に変位する。そこで、x軸方向への変位によって上下移動枠36に対してy軸方向への移動力を付与するべく、押圧斜面41bはx軸及びy軸に対する傾斜面として形成される。これにより、上下駆動レバー41が回動すると、該上下駆動レバー41の回動軌跡の接線と略直交する方向(y軸方向)への移動分力が押圧斜面41bを介して付与され、上下移動枠36がy軸方向へ移動される。   Note that the vertical drive lever 41 is generally oriented in the longitudinal direction in the y-axis direction, and when the vertical drive lever 41 rotates forward and backward, the position of the pressing slope 41b is displaced in the x-axis direction. Therefore, the pressing inclined surface 41b is formed as an inclined surface with respect to the x-axis and the y-axis so as to apply a moving force in the y-axis direction to the vertical movement frame 36 by displacement in the x-axis direction. As a result, when the vertical drive lever 41 rotates, a component of movement in a direction (y-axis direction) substantially perpendicular to the tangent line of the rotation trajectory of the vertical drive lever 41 is applied via the pressing slope 41b. The frame 36 is moved in the y-axis direction.

また、図9ないし図14に示すように、第1ステッピングモータ46と第2ステッピングモータ53は、互いのドライブシャフト46a、53aがx軸方向を向き平行となるように、y軸方向に隣接して配置されている。そして、各ドライブシャフト46a、53aの正逆の回動に基づいて第1移動部材43と第2移動部材50がx軸方向に進退して、対応する左右駆動レバー40または上下駆動レバー41が回動される。すなわち、左右駆動レバー40と上下駆動レバー41をそれぞれ回動させるための回動駆動機構もスペース効率よく配置されている。   As shown in FIGS. 9 to 14, the first stepping motor 46 and the second stepping motor 53 are adjacent to each other in the y-axis direction so that the drive shafts 46a and 53a are parallel to each other in the x-axis direction. Are arranged. Then, the first moving member 43 and the second moving member 50 advance and retreat in the x-axis direction based on the forward and reverse rotations of the drive shafts 46a and 53a, and the corresponding left and right drive levers 40 or up and down drive levers 41 rotate. Moved. That is, the rotation drive mechanism for rotating the left and right drive lever 40 and the vertical drive lever 41 is also arranged in a space efficient manner.

本実施形態ではさらに、左右駆動レバー40及び上下駆動レバー41とは別に第3の回動レバーとして退避駆動レバー60を設け、この退避駆動レバー60の回動によって、非撮影状態で第3レンズ群13e、ローパスフィルタ13f及びCCD13gをy軸に沿って光軸外退避位置Z2へ退避させている。これにより、非撮影状態でのズームレンズ鏡筒10の薄型化が可能となっている。しかも。この光軸外への退避機構は、y軸方向への像振れ補正機構と上下ガイド軸38を共用しているので、部品点数が少なく低コストかつコンパクトに構成することができる。   In the present embodiment, a retraction drive lever 60 is provided as a third rotation lever separately from the left and right drive levers 40 and the vertical drive lever 41, and the third lens group in a non-photographing state by the rotation of the retraction drive lever 60. 13e, the low-pass filter 13f, and the CCD 13g are retracted along the y-axis to the retracted position Z2 outside the optical axis. As a result, the zoom lens barrel 10 in a non-photographing state can be reduced in thickness. Moreover. This retracting mechanism to the outside of the optical axis shares the image blur correction mechanism in the y-axis direction and the upper and lower guide shafts 38, so that the number of parts can be reduced and the structure can be made low-cost and compact.

以上、図示実施形態に基づき本発明を説明したが、本発明はこの実施形態に限定されるものではない。例えば、実施形態はズームレンズ鏡筒への適用例であるが、本発明はズームレンズ以外の撮像装置にも適用が可能である。   As mentioned above, although this invention was demonstrated based on illustration embodiment, this invention is not limited to this embodiment. For example, the embodiment is an example applied to a zoom lens barrel, but the present invention can also be applied to an imaging apparatus other than a zoom lens.

また、図示実施形態では、第3レンズ群13e、ローパスフィルタ13f及びCCD13gが撮影光軸Z1と直交する平面内において互いに直交するx軸とy軸方向にそれぞれ直進移動するが、像振れ補正のための光学要素の移動方向は直進移動に限定されるものではなく、また直交関係でなくてもよい。例えば、光軸と平行な枢軸によって光学要素を揺動させる態様でも像振れ補正を行うことができる。   In the illustrated embodiment, the third lens group 13e, the low-pass filter 13f, and the CCD 13g move straight in the x-axis and y-axis directions orthogonal to each other in a plane orthogonal to the photographing optical axis Z1, but for image blur correction. The moving direction of the optical element is not limited to linear movement, and may not be orthogonal. For example, image blur correction can also be performed in an aspect in which the optical element is swung by a pivot parallel to the optical axis.

本発明を適用した沈胴式のズームレンズ鏡筒の収納状態における断面図である。It is sectional drawing in the accommodation state of the retractable zoom lens barrel to which this invention is applied. 同ズームレンズ鏡筒の撮影状態の断面図である。It is sectional drawing of the imaging state of the zoom lens barrel. 同ズームレンズ鏡筒のワイド端において一部を拡大した断面図である。It is sectional drawing to which some were enlarged in the wide end of the zoom lens barrel. 同ズームレンズ鏡筒のテレ端において一部を拡大した断面図である。It is sectional drawing which expanded a part in the tele end of the zoom lens barrel. 同ズームレンズ鏡筒を備えるカメラの主要な電気回路構成を示すブロック図である。It is a block diagram which shows the main electric circuit structures of a camera provided with the zoom lens barrel. ヘリコイド環とカム環のそれぞれの移動軌跡と、カム環による第1レンズ群及び第2レンズ群の移動軌跡とを示す概念図である。It is a conceptual diagram which shows each movement locus | trajectory of a helicoid ring and a cam ring, and the movement locus | trajectory of the 1st lens group and 2nd lens group by a cam ring. ヘリコイド環とカム環の移動軌跡を含めた、第1レンズ群及び第2レンズ群のそれぞれの合成移動軌跡を示す概念図である。It is a conceptual diagram which shows each synthetic | combination movement locus | trajectory of a 1st lens group and a 2nd lens group including the movement locus | trajectory of a helicoid ring and a cam ring. ズームレンズ鏡筒の分解斜視図である。It is a disassembled perspective view of a zoom lens barrel. 像振れ補正機構及び退避機構の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of an image shake correction mechanism and a retracting mechanism. 鏡筒収納時におけるCCDホルダの退避状態を示す、像振れ補正機構及び退避機構の前方斜視図である。FIG. 6 is a front perspective view of an image shake correcting mechanism and a retracting mechanism, showing a retracted state of the CCD holder when the lens barrel is stored. 撮影時におけるCCDホルダの光軸上進出状態を示す、像振れ補正機構及び退避機構の前方斜視図である。It is a front perspective view of an image shake correction mechanism and a retracting mechanism, showing a state where the CCD holder is advanced on the optical axis during photographing. 像振れ補正機構の要部を図10及び図11の裏側から見た後方斜視図である。FIG. 12 is a rear perspective view of the main part of the image blur correction mechanism as viewed from the back side of FIGS. 10 and 11. 図10の状態を光軸方向前方から見た正面図である。It is the front view which looked at the state of Drawing 10 from the optical axis direction front. 図11の状態を光軸方向前方から見た正面図である。It is the front view which looked at the state of Drawing 11 from the optical axis direction front. 図10及び図13の退避状態を裏側から見た後方斜視図である。It is the back perspective view which looked at the retreat state of Drawing 10 and Drawing 13 from the back side. CCDホルダを支持する左右移動枠及び上下移動枠を示す前方斜視図である。It is a front perspective view which shows the left-right movement frame and vertical movement frame which support a CCD holder. 左右移動枠及び上下移動枠の正面図である。It is a front view of a left-right moving frame and a vertical moving frame. 左右移動枠及び上下移動枠の背面図である。It is a rear view of a left-right moving frame and a vertical moving frame. 図17のD1-D1断面線に沿う、CCDホルダ、左右移動枠及び上下移動枠の断面図である。FIG. 18 is a cross-sectional view of the CCD holder, the left / right moving frame, and the up / down moving frame along the D1-D1 section line of FIG. 17. 左右駆動レバーによる左右方向の像振れ補正の作用を説明するための正面図である。It is a front view for demonstrating the effect | action of the image blur correction of the left-right direction by a left-right drive lever. 上下駆動レバーによる上下方向の像振れ補正の作用を説明するための正面図である。It is a front view for demonstrating the effect | action of the image blur correction of the up-down direction by an up-down drive lever. 退避駆動レバーによるCCDホルダ、左右移動枠及び上下移動枠の退避状態を示す正面図である。It is a front view which shows the retraction | saving state of the CCD holder by the retracting drive lever, the left-right moving frame, and the up-down moving frame. 退避駆動レバーによる押し上げが解除されて、CCDホルダ、左右移動枠及び上下移動枠が撮影用の光軸上位置に戻った状態を示す正面図である。FIG. 6 is a front view showing a state where the push-up by the retreat drive lever is released and the CCD holder, the left / right moving frame, and the up / down moving frame are returned to the positions on the optical axis for photographing. CCDホルダ、左右移動枠及び上下移動枠の上下方向動作と左右駆動レバーとの関係を説明するための正面図である。It is a front view for demonstrating the relationship between the up-down direction operation | movement of a CCD holder, a left-right movement frame, and a vertical movement frame, and a left-right drive lever.

符号の説明Explanation of symbols

MZ ズームモータ
SP 退避スペース
Z0 回転中心軸
Z1 撮影光軸
Z2 光軸外退避位置
10 ズームレンズ鏡筒
11 ハウジング
12 伸縮筒部
13a 第1レンズ群
13b シャッタ
13c 絞
13d 第2レンズ群
13e 第3レンズ群(振れ補正光学要素)
13f ローパスフィルタ(振れ補正光学要素)
13g CCDイメージセンサ(振れ補正光学要素)
14a 制御回路
16 固定環部
17 ズームギヤ
18 ヘリコイド環
18c スパーギヤ
20 直進案内環
22 1群直進案内環
23 2群直進案内環
24 1群支持枠
25 2群支持枠
26 カム環
30 CCDホルダ
31 画像伝送FPC
32 左右移動枠(第1の可動枠)
32d 傾斜面
32e 位置規制面
35 左右ガイド軸
36 上下移動枠(第2の可動枠)
36g 被押圧ピン
36h 位置規制突起
37 左右移動枠付勢ばね(第1の付勢部材)
38 上下ガイド軸
39 上下移動枠付勢ばね(第2の付勢部材)
40 左右駆動レバー(振れ補正駆動手段、第1の回動レバー)
40b 操作ピン(第1のストッパ部)
41 上下駆動レバー(振れ補正駆動手段、第2の回動レバー)
41b 押圧斜面(第2のストッパ部)
43 第1移動部材(回動駆動機構、第1の直進移動部材)
46 第1ステッピングモータ(振れ補正駆動手段、回動駆動機構、第1のアクチュエータ)
47 引張ばね(第1のレバー付勢部材)
50 第2移動部材(回動駆動機構、第2の直進移動部材)
53 第2ステッピングモータ(振れ補正駆動手段、回動駆動機構、第2のアクチュエータ)
54 引張ばね(第2のレバー付勢部材)
60 退避駆動レバー(第3の回動レバー)
60a 回動軸
60b 回転伝達突起
60c トーションばね
61 同軸ギヤ
61a 回転伝達突起
62 63 中継ギヤ
64 連動ギヤ
64a ギヤ部
64b 回転規制部
64b1 大径円筒部
64b2 平面部
65 ストッパ
66 被押圧面
66a 弧状面
66b リード面
MZ Zoom motor SP Retraction space Z0 Rotation center axis Z1 Imaging optical axis Z2 Off-axis retraction position 10 Zoom lens barrel 11 Housing 12 Telescopic cylinder portion 13a First lens group 13b Shutter 13c Aperture 13d Second lens group 13e Third lens group (Vibration correction optical element)
13f Low-pass filter (shake correction optical element)
13g CCD image sensor (shake correction optical element)
14a Control circuit 16 Fixed ring portion 17 Zoom gear 18 Helicoid ring 18c Spur gear 20 Straight guide ring 22 First group straight guide ring 23 Second group straight guide ring 24 First group support frame 25 Second group support frame 26 Cam ring 30 CCD holder 31 Image transmission FPC
32 Left and right moving frame (first movable frame)
32d Inclined surface 32e Position regulating surface 35 Left / right guide shaft 36 Vertical movement frame (second movable frame)
36g Pressed Pin 36h Position Restriction Projection 37 Left / Right Moving Frame Biasing Spring (First Biasing Member)
38 Vertical guide shaft 39 Vertical movement frame biasing spring (second biasing member)
40 Left / right drive lever (shake correction drive means, first rotation lever)
40b Operation pin (first stopper)
41 Vertical drive lever (shake correction drive means, second rotation lever)
41b Pressing slope (second stopper)
43 1st moving member (rotation drive mechanism, 1st linear movement member)
46 First stepping motor (shake correction drive means, rotation drive mechanism, first actuator)
47 Tension spring (first lever biasing member)
50 Second moving member (rotation drive mechanism, second rectilinear moving member)
53 Second stepping motor (shake correction drive means, rotation drive mechanism, second actuator)
54 Tension spring (second lever biasing member)
60 Retraction drive lever (third rotation lever)
60a Rotating shaft 60b Rotation transmission projection 60c Torsion spring 61 Coaxial gear 61a Rotation transmission projection 62 63 Relay gear 64 Interlocking gear 64a Gear portion 64b Rotation restricting portion 64b1 Large diameter cylindrical portion 64b2 Flat portion 65 Stopper 66 Pressed surface 66a Arc-shaped surface 66b Lead surface

Claims (12)

撮影光学系に加わる振れの方向と大きさを検知する振れ検知センサ;
撮影光学系の一部をなす振れ補正光学要素を光軸と直交する平面内で互いに異なる2つの方向に移動可能に支持する第1の可動枠と第2の可動枠;
この第1の可動枠と第2の可動枠をそれぞれの移動方向に沿って付勢する第1の付勢部材と第2の付勢部材;
この各付勢部材の付勢方向への第1の可動枠と第2の可動枠の移動端をそれぞれ決める第1のストッパ部と第2のストッパ部;及び
上記振れ検知センサの出力に基づき、この第1のストッパ部と第2のストッパ部をそれぞれ駆動して第1の可動枠と第2の可動枠を移動させて像振れをキャンセルする振れ補正駆動手段;
を備えたことを特徴とする撮像装置。
A shake detection sensor that detects the direction and magnitude of shake applied to the imaging optical system;
A first movable frame and a second movable frame that support a shake correcting optical element forming a part of the photographing optical system so as to be movable in two different directions within a plane orthogonal to the optical axis;
A first urging member and a second urging member for urging the first movable frame and the second movable frame along respective moving directions;
A first stopper portion and a second stopper portion for determining the moving ends of the first movable frame and the second movable frame in the biasing direction of each biasing member; and based on the output of the shake detection sensor, A shake correction driving means for driving the first stopper portion and the second stopper portion to move the first movable frame and the second movable frame to cancel image blur;
An imaging apparatus comprising:
請求項1記載の撮像装置において、第1の可動枠と第2の可動枠は、上記光軸直交平面内で互いに直交する方向へ直進移動可能である撮像装置。 The imaging apparatus according to claim 1, wherein the first movable frame and the second movable frame are capable of linearly moving in directions orthogonal to each other within the optical axis orthogonal plane. 請求項1または2記載の撮像装置において、上記振れ補正駆動手段は、
撮影光学系の光軸と平行な軸を中心として回動可能で、該回動中心軸から偏心する位置に上記第1のストッパ部を有する第1の回動レバー;
撮影光学系の光軸と平行な軸を中心として回動可能で、該回動中心軸から偏心する位置に上記第2のストッパ部を有する第2の回動レバー;及び
上記振れ検知センサの出力に基づき、第1の回動レバーと第2の回動レバーをそれぞれ所定の角度回動させる回動駆動機構;
を備えている撮像装置。
The imaging apparatus according to claim 1, wherein the shake correction driving unit includes:
A first rotating lever which is rotatable about an axis parallel to the optical axis of the photographing optical system and has the first stopper portion at a position eccentric from the rotating central axis;
A second rotation lever that is rotatable about an axis parallel to the optical axis of the photographing optical system and that is eccentric from the rotation center axis; and an output of the shake detection sensor; And a rotation drive mechanism for rotating the first rotation lever and the second rotation lever by a predetermined angle respectively.
An imaging apparatus comprising:
請求項3記載の撮像装置において、上記第1の回動レバーと第2の回動レバーは共通の軸に枢支される撮像装置。 The imaging apparatus according to claim 3, wherein the first rotation lever and the second rotation lever are pivotally supported on a common axis. 請求項3または4記載の撮像装置において、上記第1の回動レバーと第2の回動レバーはそれぞれ、光軸と直交する方向へ略平行に延設されている撮像装置。 5. The imaging device according to claim 3, wherein each of the first rotation lever and the second rotation lever extends substantially parallel to a direction orthogonal to the optical axis. 請求項3ないし5のいずれか1項に記載の撮像装置において、上記第1ストッパ部と第2のストッパ部の少なくとも一方は、当接する上記第1または第2の可動枠に対して、当該ストッパ部が設けられた回動レバーの回動軌跡の接線と略直交する方向への移動分力を与える分力発生面を有している撮像装置。 6. The imaging device according to claim 3, wherein at least one of the first stopper portion and the second stopper portion is in contact with the first or second movable frame in contact with the stopper. An imaging apparatus having a component force generation surface that applies a component of movement in a direction substantially orthogonal to a tangent to a rotation locus of a rotation lever provided with a portion. 請求項3ないし6のいずれか1項に記載の撮像装置において、上記第1の回動レバーと第2の回動レバーを回動させる回動駆動機構は、
それぞれが回転可能なドライブシャフトを有する第1のアクチュエータと第2のアクチュエータ;及び
該第1と第2のアクチュエータのドライブシャフトの正逆の回転により、対応する各ドライブシャフトの回転軸と平行な方向に進退移動される第1と第2の直進移動部材と;
を備え、第1の直進移動部材が第1の回動レバーを押圧して回動させ、第2の直進移動部材が第2の回動レバーを押圧して回動させる撮像装置。
The imaging device according to any one of claims 3 to 6, wherein the rotation drive mechanism that rotates the first rotation lever and the second rotation lever includes:
A first actuator and a second actuator each having a rotatable drive shaft; and a forward and reverse rotation of the drive shaft of the first and second actuators in a direction parallel to the rotational axis of each corresponding drive shaft First and second linearly moving members moved forward and backward;
An imaging apparatus in which the first rectilinear moving member presses and rotates the first rotating lever, and the second rectilinear moving member presses and rotates the second rotating lever.
請求項7記載の撮像装置において、第1と第2の回動レバーをそれぞれ、上記第1と第2の直進移動部材による押圧方向と反対方向に回動付勢する第1と第2のレバー付勢部材を備えている撮像装置。 8. The image pickup apparatus according to claim 7, wherein the first and second levers for urging the first and second rotating levers in directions opposite to the pressing directions by the first and second linearly moving members, respectively. An imaging apparatus provided with an urging member. 請求項7または8記載の撮像装置において、上記第1と第2のアクチュエータのドライブシャフトは、光軸と直交する平面内で互いに平行に延出されており、該第1と第2のアクチュエータは、該光軸直交平面内でドライブシャフトの回転軸の軸線と直交する方向に隣接して配設されている撮像装置。 9. The imaging apparatus according to claim 7, wherein the drive shafts of the first and second actuators extend in parallel to each other in a plane orthogonal to the optical axis, and the first and second actuators are An imaging device disposed adjacent to a direction orthogonal to the axis of the rotation axis of the drive shaft in the plane orthogonal to the optical axis. 請求項1ないし9のいずれか1項に記載の撮像装置において、振れ補正光学要素は、撮像光学系による被写体像が結像するイメージセンサを含む撮像装置。 10. The imaging apparatus according to claim 1, wherein the shake correction optical element includes an image sensor on which a subject image formed by the imaging optical system is formed. 請求項3ないし10のいずれか1項に記載の撮像装置において、光軸と平行な回動軸により枢支された、上記第1の回動レバー及び第2の回動レバーと異なる第3の回動レバーを備え、該第3の回動レバーの正逆の回動により、振れ補正光学要素が撮影光学系の光軸上の撮影位置と該光軸から退避した退避位置との間で移動される撮像装置。 11. The imaging device according to claim 3, wherein a third different from the first rotation lever and the second rotation lever pivotally supported by a rotation shaft parallel to the optical axis. A rotation lever is provided, and the shake correction optical element moves between a photographing position on the optical axis of the photographing optical system and a retracted position retracted from the optical axis by forward and reverse rotation of the third rotating lever. Imaging device. 撮影光学系に加わる振れを検知し、この振れの方向と大きさに応じて、撮影光学系の一部をなす振れ補正光学要素を該撮影光学系の光軸と直交する平面内で移動させて像振れをキャンセルする振れ補正機構を備えた撮像装置において、
上記振れ補正機構は、撮影光学系の光軸と平行な回動軸により枢支された2つの回動レバーを備え、該2つの回動レバーのそれぞれの正逆の回動に応じて、振れ補正光学要素を上記光軸直交平面内で互いに異なる方向へ正逆に移動させることを特徴とする撮像装置。
A shake applied to the photographing optical system is detected, and a shake correction optical element forming a part of the photographing optical system is moved in a plane perpendicular to the optical axis of the photographing optical system in accordance with the direction and magnitude of the shake. In an imaging apparatus provided with a shake correction mechanism that cancels image shake,
The shake correction mechanism includes two rotation levers pivotally supported by a rotation axis parallel to the optical axis of the photographing optical system, and the shake correction mechanism operates according to the forward and reverse rotations of the two rotation levers. An imaging apparatus, wherein the correction optical element is moved forward and backward in different directions within the optical axis orthogonal plane.
JP2004370894A 2004-12-01 2004-12-22 Imaging device Withdrawn JP2006178154A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004370894A JP2006178154A (en) 2004-12-22 2004-12-22 Imaging device
US11/289,481 US7450832B2 (en) 2004-12-01 2005-11-30 Imaging device having an optical image stabilizer
TW094142164A TW200632502A (en) 2004-12-01 2005-11-30 Imaging device
KR1020050116382A KR20060061272A (en) 2004-12-01 2005-12-01 Imaging device having an optical image stabilizer
DE102005057514A DE102005057514A1 (en) 2004-12-01 2005-12-01 Imaging device with an optical image stabilizer
GB0524532A GB2420874B (en) 2004-12-01 2005-12-01 Imaging device having an optical image stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370894A JP2006178154A (en) 2004-12-22 2004-12-22 Imaging device

Publications (1)

Publication Number Publication Date
JP2006178154A true JP2006178154A (en) 2006-07-06

Family

ID=36732328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370894A Withdrawn JP2006178154A (en) 2004-12-01 2004-12-22 Imaging device

Country Status (1)

Country Link
JP (1) JP2006178154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023815A1 (en) * 2006-08-23 2008-02-28 Ricoh Company, Ltd. Image blur correction device and imaging apparatus equipped therewith
JP2008051927A (en) * 2006-08-23 2008-03-06 Ricoh Co Ltd Image blur correction device and imaging apparatus
JP2009265550A (en) * 2008-04-30 2009-11-12 Aof Imaging Technology Ltd Image blur correction device
JPWO2013114898A1 (en) * 2012-02-02 2015-05-11 パナソニックIpマネジメント株式会社 Lens barrel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384507A (en) * 1989-08-29 1991-04-10 Minolta Camera Co Ltd Blurring correcting lens barrel
JPH07248522A (en) * 1994-03-10 1995-09-26 Canon Inc Optical device
JPH10339897A (en) * 1997-06-06 1998-12-22 Canon Inc Lens driving device, vibration-proof device and camera
JP2000019575A (en) * 1998-07-02 2000-01-21 Olympus Optical Co Ltd Camera with vibration-proof function
JP2003110919A (en) * 2001-10-01 2003-04-11 Minolta Co Ltd Image pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384507A (en) * 1989-08-29 1991-04-10 Minolta Camera Co Ltd Blurring correcting lens barrel
JPH07248522A (en) * 1994-03-10 1995-09-26 Canon Inc Optical device
JPH10339897A (en) * 1997-06-06 1998-12-22 Canon Inc Lens driving device, vibration-proof device and camera
JP2000019575A (en) * 1998-07-02 2000-01-21 Olympus Optical Co Ltd Camera with vibration-proof function
JP2003110919A (en) * 2001-10-01 2003-04-11 Minolta Co Ltd Image pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023815A1 (en) * 2006-08-23 2008-02-28 Ricoh Company, Ltd. Image blur correction device and imaging apparatus equipped therewith
JP2008051927A (en) * 2006-08-23 2008-03-06 Ricoh Co Ltd Image blur correction device and imaging apparatus
US7929849B2 (en) 2006-08-23 2011-04-19 Ricoh Company, Ltd. Image blur correction device and imaging apparatus equipped therewith
US8200077B2 (en) 2006-08-23 2012-06-12 Ricoh Company, Ltd. Image blur correction device and imaging apparatus equipped therewith
JP2009265550A (en) * 2008-04-30 2009-11-12 Aof Imaging Technology Ltd Image blur correction device
JPWO2013114898A1 (en) * 2012-02-02 2015-05-11 パナソニックIpマネジメント株式会社 Lens barrel

Similar Documents

Publication Publication Date Title
JP4647982B2 (en) Imaging device
JP4417234B2 (en) Imaging device
JP2006157834A (en) Imaging apparatus
US7515815B2 (en) Imaging device having an optical image stabilizer
US7450832B2 (en) Imaging device having an optical image stabilizer
KR100944430B1 (en) Lens barrel
KR20060061267A (en) Imaging device having an optical image stabilizer
JP4638718B2 (en) Lens barrel
US7574121B2 (en) Imaging device having an optical image stabilizer
JP4704071B2 (en) Imaging device
KR101189538B1 (en) Imaging device
JP4597650B2 (en) Lens barrel
JP2006178154A (en) Imaging device
JP4647983B2 (en) Lens barrel
JP4638723B2 (en) Imaging device
JP2006171242A (en) Image pickup device
JP4684636B2 (en) Imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110126