JP2006177775A - Sampling device - Google Patents

Sampling device Download PDF

Info

Publication number
JP2006177775A
JP2006177775A JP2004371321A JP2004371321A JP2006177775A JP 2006177775 A JP2006177775 A JP 2006177775A JP 2004371321 A JP2004371321 A JP 2004371321A JP 2004371321 A JP2004371321 A JP 2004371321A JP 2006177775 A JP2006177775 A JP 2006177775A
Authority
JP
Japan
Prior art keywords
sample
sampling
analyzer
switching
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371321A
Other languages
Japanese (ja)
Other versions
JP4521264B2 (en
Inventor
Shogo Kenmochi
省吾 賢持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2004371321A priority Critical patent/JP4521264B2/en
Publication of JP2006177775A publication Critical patent/JP2006177775A/en
Application granted granted Critical
Publication of JP4521264B2 publication Critical patent/JP4521264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sampling device, constituted so as to remove the effect caused by fluctuations in the concentration of the coexisting component in a sample, using a relatively simple constitution to enhance the measurement accuracy of the target component. <P>SOLUTION: The sampling device is equipped with first and second collection bags B1 and B2, which are housed in the liquid 21 charged in a hermetically closed container 22 and changed in the volume by the flow-in and out of the sample A, a solenoid valve V2a for alternately collecting the sample A in the collection bags B1 and B2 and a solenoid valve V2b, for alternately introducing the sample A collected in the collection bags B1 and B2 into the inflow side of the solenoid valve V1 of a difference quantity-method analyzer 10. The changeover cycles of the solenoid valves V2a and V2b are set the same and are set to 2n (n: natural number) times the changeover cycle of the solenoid valve V1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、差量法分析計の前段に設けられて試料のサンプリングを行うサンプリング装置に関するものである。   The present invention relates to a sampling device that is provided in a previous stage of a differential method analyzer and samples a sample.

周知のように差量法は、目的成分を定量する高選択性の分析方法がない場合に有効な測定方法であり、二つの測定方法に分類される。一つは、試料Aに目的成分と共存成分(妨害成分)とが含まれる場合、上記目的成分だけを除去した試料Bを生成し、試料Aの測定結果から試料Bの測定結果を差し引いた値を目的成分の濃度とする測定方法である。
もう一つは、試料Aの定量の目的成分を別の成分に変換して試料Bを生成し、試料Bの別の成分の測定結果から試料Aの測定結果を差し引いた値を目的成分の濃度とする測定方法である。
このような差量法を用いた分析計として、前者の測定方法としては、例えば紫外線吸収法によるオゾン計等が知られており、後者の測定方法としては、触媒酸化NDIR(非分散形赤外線)分析方式によるVOC計(揮発性有機化合物分析計)、化学発光法による二酸化窒素測定器等が知られている。
As is well known, the differential method is an effective measurement method when there is no highly selective analysis method for quantifying a target component, and is classified into two measurement methods. One is a value obtained by subtracting the measurement result of sample B from the measurement result of sample A when sample A contains a target component and a coexisting component (interfering component), and sample B is removed. Is a method of measuring the concentration of the target component.
The other is the conversion of the target component of sample A into another component to generate sample B. The value obtained by subtracting the measurement result of sample A from the measurement result of another component of sample B is the concentration of the target component. It is a measuring method.
As an analyzer using such a difference method, for example, an ozone meter by an ultraviolet absorption method is known as the former measuring method, and as a latter measuring method, catalytic oxidation NDIR (non-dispersed infrared) VOC meters (volatile organic compound analyzers) based on analytical methods, nitrogen dioxide measuring devices based on chemiluminescence, and the like are known.

図4は、単一の分析部を有する差量法分析計の概略的な構成図である。
図4に示す差量法分析計100は、試料Aが供給される分析計用切換弁としての電磁弁(三方弁)110と、試料Aから目的成分を除去、あるいは目的成分を別の成分に換えて試料Bを生成するための変換器120と、前記電磁弁110からサンプリングライン125Aを介して直接供給される試料A、及び変換器120からサンプリングライン125Bを経て供給される試料Bが導入されて各々の濃度を測定する単一の分析部130とを備えており、分析部130は、電磁弁110の切換により試料A及び試料Bの濃度を交互に測定している。
なお、図5は、差量法の事例として、差量法分析計100の種類に応じた変換器120の作用及び分析部130の測定物質を例示したものである。
FIG. 4 is a schematic configuration diagram of a differential method analyzer having a single analysis unit.
4 is an electromagnetic valve (three-way valve) 110 serving as an analyzer switching valve to which a sample A is supplied, and a target component is removed from the sample A or the target component is changed to another component. Instead, the converter 120 for generating the sample B, the sample A directly supplied from the electromagnetic valve 110 via the sampling line 125A, and the sample B supplied from the converter 120 via the sampling line 125B are introduced. A single analyzer 130 for measuring each concentration, and the analyzer 130 alternately measures the concentrations of the sample A and the sample B by switching the electromagnetic valve 110.
FIG. 5 exemplifies the action of the converter 120 according to the type of the difference method analyzer 100 and the measurement substance of the analysis unit 130 as an example of the difference method.

上述した差量法分析計100では、試料A,Bに含まれる定量の目的成分や共存成分の濃度が等しいことが前提となっているが、試料A,Bの濃度を単一の分析部100の分析セルにより交互に測定する結果、もとの試料Aに含まれる目的成分や共存成分の濃度が切換の前後で変動した場合には正確な測定値が得られないという問題がある。
更に、測定物質によっては試料Aの濃度よりも試料Bの濃度の方が高くなり、測定値がマイナス値として指示される場合もある。
In the difference method analyzer 100 described above, it is premised that the concentrations of the target components and the coexisting components contained in the samples A and B are equal, but the concentrations of the samples A and B are set to a single analyzer 100. As a result of alternately measuring with the analysis cell, there is a problem that an accurate measured value cannot be obtained when the concentration of the target component or coexisting component contained in the original sample A fluctuates before and after switching.
Further, depending on the substance to be measured, the concentration of sample B is higher than the concentration of sample A, and the measured value may be indicated as a negative value.

これらの問題は、図6に示す差量法分析計100’の如く、試料A,B用にそれぞれ分析部140,150を設けて個別の分析セルにより同時に測定すれば一応、解決可能である。しかし、両分析部140,150の分析セルの汚れが均等でなくなって感度が変化する等、セルバランスが崩れやすく、いわゆるゴースト指示が現れるために各分析部140,150の感度調整やセルの洗浄を頻繁に行う必要がある。これらの作業が面倒であるため、図6に示す構造の差量法分析計は余り普及していない。また、この場合、分析部が2個必要になるので、その分だけコストが高くなってしまう。   These problems can be solved once if analysis units 140 and 150 are provided for samples A and B, respectively, and are simultaneously measured by individual analysis cells, such as a differential method analyzer 100 'shown in FIG. However, since the analysis cells of both the analysis units 140 and 150 are not evenly soiled and the sensitivity is changed, the cell balance is easily lost, and so-called ghost instructions appear. Need to be done frequently. Since these operations are troublesome, the differential method analyzer having the structure shown in FIG. 6 is not so popular. In this case, since two analysis units are required, the cost increases accordingly.

なお、図4と同様に、単一の分析部を備えた差量法分析装置が、後述する特許文献1に記載されている。この分析装置は、分析部の差動増幅回路に入力される第1,第2信号処理回路の信号処理のタイミングがずれることによって差量信号が不正確になるのを防止するため、一方の信号処理回路の上流側に、サンプル導入用の開閉弁と同一周期でオン、オフするスイッチを設けたものである。   Similar to FIG. 4, a differential analysis apparatus including a single analysis unit is described in Patent Document 1 described later. In this analyzer, in order to prevent the difference signal from becoming inaccurate due to a shift in signal processing timing of the first and second signal processing circuits input to the differential amplifier circuit of the analysis unit, On the upstream side of the processing circuit, a switch that is turned on and off at the same cycle as the open / close valve for sample introduction is provided.

また、差量法分析計に関する従来技術ではないが、成分濃度の経時的変動を伴うガスの分析を省力化することを目的として、サンプリングラインに配置された複数の電磁弁と二つのサンプリング容器とを備え、一方のサンプリング容器に充填した水を他方のサンプリング容器に移動させる動作を電磁弁の切換と連動させることで、一方のサンプリング容器によるガスの採取動作と他方のサンプリング容器による分析計へのガスの供給動作とを同時に行う分析用ガス採取方法が、下記の特許文献2に記載されている。   In addition, although it is not a prior art related to a differential method analyzer, a plurality of solenoid valves and two sampling containers arranged in a sampling line are provided for the purpose of saving labor in analyzing gas accompanied by a change in component concentration over time. The operation of moving the water filled in one sampling container to the other sampling container is interlocked with the switching of the electromagnetic valve, so that the gas sampling operation by one sampling container and the analyzer by the other sampling container are transferred to the analyzer. A gas sampling method for analysis that simultaneously performs the gas supply operation is described in Patent Document 2 below.

特開平10−274639号公報(段落[0009]〜[0012]、図1、図2等)Japanese Patent Laid-Open No. 10-274639 (paragraphs [0009] to [0012], FIG. 1, FIG. 2, etc.) 特開昭57−88341号公報(第1頁右下欄第13行〜第2頁左下欄第10行等)JP-A-57-88341 (first page, lower right column, line 13 to page 2, lower left column, line 10)

図4に示した従来技術において、試料A中の共存成分濃度の変動による影響を極力少なくするためには、サンプリングラインにバッファを設けたり、演算処理によって濃度変動に起因する誤差を小さくする等の対策が考えられる。
しかし、濃度の変動が更に大きい測定系では、これらの方法だけで対応することは困難であり、測定誤差をなくすには不十分であった。
In the prior art shown in FIG. 4, in order to reduce the influence of fluctuations in the concentration of coexisting components in the sample A as much as possible, a buffer is provided in the sampling line, or errors due to fluctuations in density are reduced by arithmetic processing. Possible countermeasures.
However, it is difficult for a measurement system having a greater concentration fluctuation to cope with these methods alone, and it is insufficient to eliminate measurement errors.

また、特許文献1に記載された従来技術は、電気的な信号処理の遅れを解消しようとするものであり、目的成分や共存成分の濃度の変動を考慮したものではない。
更に、特許文献2に記載された従来技術では多数の電磁弁や水ポンプ等が必要であり、これらが構造の複雑化やコストの上昇を招くという問題がある。
The prior art described in Patent Document 1 is intended to eliminate delays in electrical signal processing, and does not take into account variations in the concentration of target components and coexisting components.
Furthermore, the conventional technique described in Patent Document 2 requires a large number of solenoid valves, water pumps, and the like, and there is a problem in that they cause a complicated structure and an increase in cost.

そこで本発明の解決課題は、比較的簡単な構成により試料中の目的成分や共存成分の濃度の変動による影響を除去し、目的成分の測定精度を向上させたサンプリング装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a sampling apparatus that improves the measurement accuracy of a target component by removing the influence of the concentration of the target component and coexisting component in the sample by a relatively simple configuration.

上記課題を解決するため、請求項1に記載した発明は、導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1,第2の捕集バッグに交互に捕集するための第1のサンプリング用切換弁と、
第1,第2の捕集バッグに捕集された試料Aを前記分析計用切換弁の流入側に交互に導入するための第2のサンプリング用切換弁と、を備え、
第1,第2のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたものである。
In order to solve the above-mentioned problem, the invention described in claim 1 includes an operation of supplying the introduced sample A directly to a single analysis unit for analysis, and a sample B generated from the sample A via a converter. Are alternately executed to analyze the target component contained in the sample A based on the analysis results, and the sample A is analyzed on the analyzer side and the converter side. In the sampling device provided in the front stage of the differential method analyzer equipped with the analyzer switching valve for switching to
First and second collection bags that are accommodated in a fluid filled in a sealed container and whose volume changes with the inflow and outflow of the sample A;
A first sampling switching valve for alternately collecting the sample A in the first and second collection bags;
A second sampling switching valve for alternately introducing the sample A collected in the first and second collection bags into the inflow side of the analyzer switching valve;
The switching cycles of the first and second sampling switching valves are made the same, and these switching cycles are 2n (n is a natural number) times the switching cycle of the analyzer switching valve.

請求項2に記載した発明は、導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1の捕集バッグに捕集するための動作と、捕集した試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第3のサンプリング用切換弁と、
第3のサンプリング用切換弁により第1の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入している間に試料Aを第2の捕集バッグに捕集するための動作と、第3のサンプリング用切換弁により試料Aを第1の捕集バッグに捕集している間に第2の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第4のサンプリング用切換弁と、を備え、
第3,第4のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたものである。
According to the second aspect of the present invention, the introduced sample A is directly supplied to the single analyzer and analyzed, and the sample B generated from the sample A via the converter is supplied to the analyzer. And an analyzer for alternately analyzing the target component contained in the sample A based on the analysis results and switching the sample A between the analysis unit side and the converter side. In the sampling device provided in the front stage of the differential method analyzer equipped with a switching valve for
First and second collection bags that are accommodated in a fluid filled in a sealed container and whose volume changes with the inflow and outflow of the sample A;
For the third sampling, the operation for collecting the sample A in the first collection bag and the operation for introducing the collected sample A into the inflow side of the analyzer switching valve are alternately performed. A switching valve;
For collecting the sample A in the second collection bag while the sample A in the first collection bag is being introduced into the inflow side of the analyzer switching valve by the third sampling switching valve. While the sample A is being collected in the first collection bag by the operation and the third sampling switching valve, the sample A in the second collection bag is introduced into the inflow side of the analyzer switching valve. And a fourth sampling switching valve that alternately performs the operation for
The switching cycles of the third and fourth sampling switching valves are the same, and these switching cycles are 2n (n is a natural number) times the switching cycle of the analyzer switching valve.

請求項3に記載した発明は、請求項1または2において、前記流体を水、油等の非圧縮性流体としたものである。   The invention described in claim 3 is the fluid according to claim 1 or 2, wherein the fluid is an incompressible fluid such as water or oil.

本発明によれば、弁の切換周期を所定の関係に保つことにより、一方の捕集バッグにより捕集した試料Aを用いて、試料Aの分析と、この試料から変換器により生成した試料Bの分析とを交互に行えるようにし、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度、ひいては目的成分の濃度を差量法により高精度に測定することを可能にする。
また、サンプリング装置の構成要素としては、密閉容器内に満たされた流体に収容される一対の捕集バッグ及び弁のみであるから、構造が複雑になる恐れもなく、低コストにて提供することが可能である。
According to the present invention, by maintaining the valve switching cycle in a predetermined relationship, the sample A collected by one collection bag is used to analyze the sample A, and the sample B generated from the sample by the converter. Analysis can be performed alternately, and the concentration of samples A and B, and consequently the concentration of the target component, can be measured with high accuracy by the differential method without being affected by the concentration fluctuations of the target component and coexisting components. To.
In addition, since the sampling device includes only a pair of collection bags and valves accommodated in the fluid filled in the hermetic container, the structure is not likely to be complicated and provided at a low cost. Is possible.

以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の第1実施形態を示す概略的な構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

図1において、10はVOC計、二酸化窒素測定器、オゾン計等の差量法分析計である。この分析計10は、図4と同様に試料Aが供給される分析用切換弁としての三方弁である電磁弁V1と、目的成分を除去または変換する変換部12と、サンプリングライン17A,17Bと、目的成分の濃度を差量法により測定する分析部13とを備えている。また、分析部13には、電磁弁V1を介して試料Aを導入するためのポンプ16が設けられている。
なお、18は分析部13の圧力(試料Aの吸引圧力)を測定するための圧力計である。
In FIG. 1, reference numeral 10 denotes a differential method analyzer such as a VOC meter, a nitrogen dioxide measuring device, an ozone meter or the like. This analyzer 10 includes a solenoid valve V1, which is a three-way valve as an analysis switching valve to which a sample A is supplied, as in FIG. 4, a conversion unit 12 that removes or converts a target component, and sampling lines 17A and 17B. And an analyzer 13 for measuring the concentration of the target component by a differential method. The analysis unit 13 is provided with a pump 16 for introducing the sample A through the electromagnetic valve V1.
Reference numeral 18 denotes a pressure gauge for measuring the pressure of the analyzer 13 (the suction pressure of the sample A).

一方、20は本実施形態にかかるサンプリング装置である。
このサンプリング装置20は、試料Aが供給されるサンプリングライン23と、このサンプリングライン23に流入側が連結された第1のサンプリング用切換弁としての三方弁である電磁弁V2aと、この電磁弁V2aの一対の吐出側にそれぞれ連結された互いに同一容積の第1,第2の捕集バッグB1,B2と、これらの捕集バッグB1,B2の出口に一対の流入側がそれぞれ連結された第2のサンプリング用切換弁としての三方弁である電磁弁V2bと、その吐出側に連結されたサンプリングライン24とを備え、このサンプリングライン24の出口には前記電磁弁V1の流入側が連結されている。なお、V2は電磁弁V2a,V2bからなる電磁弁対である。
また、サンプリング装置20の構成要素のうち少なくとも捕集バッグB1,B2は、密閉容器22の内部一杯に満たされた非圧縮性流体としての水、油等の液体21に浸漬されている。これらの捕集バッグB1,B2は、試料Aの流出入に伴って容積が変化するフッ素樹脂等の材質により形成されている。
なお、前記電磁弁V1,V2a,V2bにはそれぞれ弁開閉手段としてソレノイドが設けられており、三方弁の一方側は電気の導通がない状態(off状態)で弁が開いているノーマルオープンの状態、他方側は電気の導通がない状態で弁が閉じているノーマルクローズの状態となっている。
On the other hand, 20 is a sampling apparatus according to the present embodiment.
The sampling device 20 includes a sampling line 23 to which a sample A is supplied, an electromagnetic valve V2a that is a three-way valve as a first sampling switching valve connected to the sampling line 23 on the inflow side, and the electromagnetic valve V2a. The first and second collection bags B1 and B2 having the same volume connected to the pair of discharge sides, respectively, and the second sampling in which the pair of inflow sides are connected to the outlets of the collection bags B1 and B2, respectively. An electromagnetic valve V2b, which is a three-way valve as a switching valve, and a sampling line 24 connected to the discharge side thereof are provided, and an inflow side of the electromagnetic valve V1 is connected to an outlet of the sampling line 24. V2 is a solenoid valve pair composed of solenoid valves V2a and V2b.
In addition, at least the collection bags B <b> 1 and B <b> 2 among the components of the sampling device 20 are immersed in a liquid 21 such as water or oil as an incompressible fluid filled in the inside of the sealed container 22. These collection bags B1 and B2 are formed of a material such as a fluororesin whose volume changes as the sample A flows in and out.
The solenoid valves V1, V2a, and V2b are each provided with a solenoid as a valve opening / closing means, and one side of the three-way valve is in a normally open state in which the valve is open with no electrical continuity (off state). The other side is in a normally closed state where the valve is closed with no electrical conduction.

ここで、図1における電磁弁V1,V2a,V2bは、「開」状態を黒、「閉」状態を白にて示してあり、図1ではサンプリングライン23と捕集バッグB2、捕集バッグB1とサンプリングライン24、サンプリングライン24とサンプリングライン17A,17B(変換器12の出力側)とがそれぞれ連通した状態となっている。
なお、電磁弁V2a,V2bは、同一周期で交互に一方の捕集バッグB1またはB2と連通するように切り換わるものであり、便宜的に図1の状態を、電磁弁V2a,V2bからなる電磁弁対V2が「off」の状態(電気の導通がない状態)であるとする。従って、電磁弁対V2が「on」の状態(電気の導通がある状態)になると、サンプリングライン23と捕集バッグB1、捕集バッグB2とサンプリングライン24とがそれぞれ連通するように切り換わる。
また、電磁弁V1については、図1の状態を「on」の状態とする。
Here, the solenoid valves V1, V2a, and V2b in FIG. 1 are shown in black in the “open” state and white in the “closed” state. In FIG. 1, the sampling line 23, the collection bag B2, and the collection bag B1 are shown. The sampling line 24, the sampling line 24, and the sampling lines 17A and 17B (the output side of the converter 12) are in communication with each other.
The electromagnetic valves V2a and V2b are switched so as to communicate with one of the collection bags B1 or B2 alternately in the same cycle. For convenience, the state of FIG. 1 is changed to the electromagnetic valve V2a and V2b. It is assumed that the valve pair V2 is in the “off” state (the state where there is no electrical conduction). Therefore, when the solenoid valve pair V2 is in an “on” state (a state where there is electrical conduction), the sampling line 23 and the collection bag B1, and the collection bag B2 and the sampling line 24 are switched to communicate with each other.
For the solenoid valve V1, the state shown in FIG. 1 is set to the “on” state.

更に、電磁弁V1と電磁弁対V2の切換周期の関係は、電磁弁V1の切換周期tに対して電磁弁対V2の切換周期が2n・t(nは自然数)となっている。すなわち、電磁弁対V2は電磁弁V1の1/2nの周波数でon,offが切り換わるように同期して駆動される。
ここでは、n=1として、電磁弁対V2が電磁弁V1の1/2の周波数で切り換わるものとする。
Further, regarding the relationship between the switching cycle of the solenoid valve V1 and the solenoid valve pair V2, the switching cycle of the solenoid valve pair V2 is 2n · t S (n is a natural number) with respect to the switching cycle t S of the solenoid valve V1. That is, the solenoid valve pair V2 is driven in synchronism so that on and off are switched at a frequency of 1 / 2n of the solenoid valve V1.
Here, assuming that n = 1, the solenoid valve pair V2 is switched at a frequency half that of the solenoid valve V1.

次に、この実施形態の動作を説明する。図2は差量法分析計10及びサンプリング装置20の動作を示すタイムシーケンスである。
まず、ステップiでは、電磁弁V1がon、電磁弁対V2がoffであり、図1の状態となっている。このとき、ポンプ16の吸引動作により、一方の捕集バッグB1から、以前のステップで捕集された試料Aが電磁弁V2b、サンプリングライン24、電磁弁V1及びサンプリングライン17Aを介して分析部13に直接導入される。このため、分析部13は、目的成分及び共存成分を含む試料Aの濃度を測定することができる。
Next, the operation of this embodiment will be described. FIG. 2 is a time sequence showing the operation of the difference method analyzer 10 and the sampling device 20.
First, in step i, the solenoid valve V1 is on and the solenoid valve pair V2 is off, which is in the state of FIG. At this time, due to the suction operation of the pump 16, the sample A collected in the previous step from the one collection bag B1 is passed through the electromagnetic valve V2b, the sampling line 24, the electromagnetic valve V1, and the sampling line 17A. Introduced directly into. For this reason, the analysis part 13 can measure the density | concentration of the sample A containing the target component and a coexistence component.

また、捕集バッグB1から試料Aが排出されることに伴い、密閉容器22の内部が大気より負圧になるので、捕集バッグB1から分析計10側に導入された試料Aと同容量の試料Aがサンプリングライン23及び電磁弁V2aを介して他方の捕集バッグB2に捕集される。
ここで、本実施形態では、密閉容器22の内部に非圧縮性流体として水、油等の液体21を満たしているが、分析計10への導入流量が少なくて済む場合には、密閉容器22の内部に圧縮性流体として空気等の気体を気密状態で満たせばよい。
Further, as the sample A is discharged from the collection bag B1, the inside of the sealed container 22 becomes a negative pressure from the atmosphere, so that it has the same capacity as the sample A introduced from the collection bag B1 to the analyzer 10 side. The sample A is collected in the other collection bag B2 through the sampling line 23 and the electromagnetic valve V2a.
Here, in the present embodiment, the inside of the sealed container 22 is filled with a liquid 21 such as water or oil as an incompressible fluid, but when the flow rate of introduction into the analyzer 10 is small, the sealed container 22 is used. What is necessary is just to fill gas, such as air, as a compressive fluid in an airtight state.

次いで、ステップiiでは、電磁弁V1がoffとなるが、電磁弁対V2はoffのままである。ポンプ16の動作により、引き続き捕集バッグB1から試料Aが分析計10に導入されるが、電磁弁V1がoffであるため、試料Aは変換器12に導入される。従って、変換器12では、従来と同様に分析計10に応じた酸化、還元等が行われ、目的成分を除去したり、目的成分が別の成分に変換された試料Bが生成されることになり、分析部13は試料Bの濃度を測定可能となる。この間、他方の捕集バッグB2にはサンプリングライン23及び電磁弁V2aを介して試料Aが引き続き捕集される。   Next, in step ii, the solenoid valve V1 is turned off, but the solenoid valve pair V2 remains off. By the operation of the pump 16, the sample A is continuously introduced into the analyzer 10 from the collection bag B1, but the sample A is introduced into the converter 12 because the electromagnetic valve V1 is off. Accordingly, the converter 12 performs oxidation, reduction, etc. according to the analyzer 10 as in the conventional case, and removes the target component or generates the sample B in which the target component is converted to another component. Thus, the analysis unit 13 can measure the concentration of the sample B. During this time, the sample A is continuously collected in the other collection bag B2 via the sampling line 23 and the electromagnetic valve V2a.

このように、本実施形態では、電磁弁V1と電磁弁対V2との切換周期が異なるため、以前の捕集ステップにより捕集バッグB1に貯留しておいた同一の試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができ、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度を正確に測定することができる。このため、試料A,Bの濃度に基づいて目的成分の濃度を高精度に測定することが可能になる。   Thus, in this embodiment, since the switching cycle of the solenoid valve V1 and the solenoid valve pair V2 is different, the analysis is performed using the same sample A stored in the collection bag B1 by the previous collection step. The concentration measurement of the sample A by the unit 13, the generation of the sample B by the converter 12, and the concentration measurement of the sample B by the analysis unit 13 can be performed alternately, and are affected by fluctuations in the concentration of the target component and coexisting components. Therefore, it is possible to accurately measure the concentrations of the samples A and B. Therefore, the concentration of the target component can be measured with high accuracy based on the concentrations of the samples A and B.

また、ステップiii,ivでは、電磁弁V1がそれぞれon,offとなり、この間、電磁弁対V2はon状態を維持する。これにより、ステップiiiでは、捕集バッグB2からの試料Aの導入及び分析部13による試料Aの濃度測定と、捕集バッグB1による試料Aの捕集とが同時に行われ、ステップivでは、捕集バッグB2からの試料Aの導入、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定と、捕集バッグB1による試料Aの捕集とが同時に行われる。   In steps iii and iv, the electromagnetic valve V1 is turned on and off, respectively, and during this time, the electromagnetic valve pair V2 maintains the on state. Thereby, in step iii, the introduction of the sample A from the collection bag B2 and the concentration measurement of the sample A by the analysis unit 13 and the collection of the sample A by the collection bag B1 are performed simultaneously. In step iv, the collection is performed. The introduction of the sample A from the collection bag B2, the generation of the sample B by the converter 12, the concentration measurement of the sample B by the analysis unit 13, and the collection of the sample A by the collection bag B1 are performed simultaneously.

すなわち、ステップiii,ivでは、捕集バッグB1が試料Aの捕集側に、捕集バッグB2が試料Aの導入側にそれぞれ切り換わる。
これらのステップiii,ivでは、ステップi,iiで捕集バッグB2に貯留された試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができるため、目的成分の正確な濃度測定が可能になる。
That is, in steps iii and iv, the collection bag B1 is switched to the sample A collection side, and the collection bag B2 is switched to the sample A introduction side.
In these steps iii and iv, using the sample A stored in the collection bag B2 in steps i and ii, the concentration measurement of the sample A by the analysis unit 13 and the generation and analysis unit 13 of the sample B by the converter 12 are performed. Since the measurement of the concentration of the sample B can be performed alternately, the concentration of the target component can be measured accurately.

以下、ステップv,vi以降は前記ステップi,ii以降の動作を繰り返すことにより、試料Aの捕集用、導入用の捕集バッグを切り換えながら試料A,Bの濃度測定が交互かつ連続的に実行されるものである。   Thereafter, after steps v and vi, the operations after steps i and ii are repeated, so that the concentration measurement of samples A and B is alternately and continuously performed while switching the collection bag for collection and introduction of sample A. Is to be executed.

次に、図3は本発明の第2実施形態の主要部を示すものであり、サンプリング装置25のみを図示してある。
このサンプリング装置25において、サンプリングライン23は密閉容器22内で分岐ライン23a,23bに分かれ、それぞれが第3のサンプリング用切換弁としての三方弁である電磁弁V3aと、同じく第4のサンプリング用切換弁としての三方弁である電磁弁V3bとを介して分岐ライン24a,24bに連結されている。また、前記電磁弁V3a,V3bの残りのポートはそれぞれ捕集バッグB1,B2に連結され、前記分岐ライン24a,24bは合体されてサンプリングライン24に連結されている。ここで、電磁弁V3a,V3bは電磁弁対V3を構成している。
なお、密閉容器22内に非圧縮性流体としての水、油等の液体21が満たされている点は第1実施形態と同様である。
FIG. 3 shows the main part of the second embodiment of the present invention, and only the sampling device 25 is shown.
In this sampling device 25, the sampling line 23 is divided into branch lines 23a and 23b in the sealed container 22, each of which is a solenoid valve V3a, which is a three-way valve as a third sampling switching valve, and a fourth sampling switching. It is connected to the branch lines 24a and 24b via a solenoid valve V3b which is a three-way valve as a valve. The remaining ports of the electromagnetic valves V3a and V3b are connected to the collection bags B1 and B2, respectively, and the branch lines 24a and 24b are combined and connected to the sampling line 24. Here, the solenoid valves V3a and V3b constitute a solenoid valve pair V3.
The point that the airtight container 22 is filled with a liquid 21 such as water or oil as an incompressible fluid is the same as in the first embodiment.

この実施形態においても、電磁弁V3a,V3bを同一周期でon,offし、サンプリングライン23または24に連通する捕集バッグB1またはB2を交互に切り換えるように動作させる。いま、図3の状態を、電磁弁V3a,V3bからなる電磁弁対V3が「off」の状態であるとすると、このとき、捕集バッグB2はサンプリングライン23に連通していて試料Aを捕集している状態、捕集バッグB1はサンプリングライン24に連通していて試料Aを分析計10に導入している状態である。
従って、電磁弁対V3が「on」の状態になると、サンプリングライン23と捕集バッグB1、捕集バッグB2とサンプリングライン24とがそれぞれ連通するように電磁弁V3a,V3bが切り換わる。
また、電磁弁対V3が図3のような状態であるとき、分析計10内の電磁弁V1は図1と同様の状態である。
Also in this embodiment, the solenoid valves V3a and V3b are turned on and off at the same period, and the collection bags B1 and B2 communicating with the sampling line 23 or 24 are alternately switched. Now, assuming that the solenoid valve pair V3 including the solenoid valves V3a and V3b is in the “off” state, the collection bag B2 is in communication with the sampling line 23 and captures the sample A. The collecting bag B1 is in communication with the sampling line 24 and the sample A is introduced into the analyzer 10.
Accordingly, when the solenoid valve pair V3 is in the “on” state, the solenoid valves V3a and V3b are switched so that the sampling line 23 and the collection bag B1, and the collection bag B2 and the sampling line 24 communicate with each other.
Further, when the electromagnetic valve pair V3 is in the state as shown in FIG. 3, the electromagnetic valve V1 in the analyzer 10 is in the same state as in FIG.

更に、電磁弁V1と電磁弁対V3の切換周期の関係は、第1実施形態と同様に、電磁弁対V3は電磁弁V1の1/2nの周波数でon,offが切り換わるように同期して駆動される。例えばn=1の場合、電磁弁対V3は電磁弁V1の1/2の周波数で切り換わるものである。
このため、装置全体のタイムシーケンスは実質的に図2と同一であり、図2における「電磁弁対V2」を「電磁弁対V3」に置き換えればよい。
Further, the relationship between the switching periods of the solenoid valve V1 and the solenoid valve pair V3 is synchronized so that the solenoid valve pair V3 is switched on and off at a frequency 1 / 2n that of the solenoid valve V1, as in the first embodiment. Driven. For example, when n = 1, the solenoid valve pair V3 is switched at a frequency half that of the solenoid valve V1.
For this reason, the time sequence of the entire apparatus is substantially the same as that of FIG. 2, and “electromagnetic valve pair V2” in FIG. 2 may be replaced with “electromagnetic valve pair V3”.

本実施形態においても、電磁弁V1と電磁弁対V3との切換周期の相違により、以前の捕集ステップにより一方の捕集バッグに貯留しておいた同一の試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができ、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度を正確に測定することができる。従って、試料A,Bの濃度に基づいて目的成分の濃度を高精度に測定することが可能である。   Also in this embodiment, due to the difference in switching cycle between the electromagnetic valve V1 and the electromagnetic valve pair V3, the analysis unit 13 uses the same sample A stored in one collection bag by the previous collection step. The concentration measurement of the sample A by the converter 12, the generation of the sample B by the converter 12, and the concentration measurement of the sample B by the analysis unit 13 can be performed alternately, without being affected by fluctuations in the concentration of the target component and coexisting components. The concentration of samples A and B can be accurately measured. Therefore, the concentration of the target component can be measured with high accuracy based on the concentrations of the samples A and B.

上記各実施形態において、捕集バッグB1,B2の必要最小限の容積は、分析計10に導入される試料Aの流量と電磁弁V1の開時間との積によって決まるが、実用上はその積よりも大きい容積とし、過剰分については従来のバッファと同様に使用すればよい。
ここで、捕集バッグB1,B2の容積決定方法の一例を述べると、捕集バッグB1,B2の試料出入り口を大気開放にした状態で密閉容器22の内部に圧力をかけた流体を満たす。その後、一方の捕集バッグ、例えばB1の出入り口を塞いで密閉容器22内の流体を必要量外部に抜けば、その量に相当する分だけ、他方の大気開放された捕集バッグB2が膨らむため、この捕集バッグB2によって必要量の容積が確保される。以後は、この確保された容積が、前述した電磁弁V1,V2a,V2bまたはV1,V3a,V3bの切換動作によって捕集バッグB1,B2の間で交互に確保されることになる。
In each of the embodiments described above, the minimum necessary volume of the collection bags B1 and B2 is determined by the product of the flow rate of the sample A introduced into the analyzer 10 and the open time of the solenoid valve V1, but in practice it is the product. The excess volume may be used in the same manner as a conventional buffer.
Here, an example of a method for determining the volume of the collection bags B1 and B2 will be described. The sample container of the collection bags B1 and B2 is filled with a fluid in which pressure is applied to the inside of the hermetic container 22 with the atmosphere open. After that, if one collection bag, for example, the inlet / outlet of B1 is closed and the fluid in the sealed container 22 is removed to the required amount, the other collection bag B2 opened to the atmosphere is inflated by the amount corresponding to that amount. The required volume is secured by the collection bag B2. Thereafter, the secured volume is alternately secured between the collection bags B1, B2 by the switching operation of the electromagnetic valves V1, V2a, V2b or V1, V3a, V3b described above.

また、装置全体の電源投入時には、捕集バッグB1,B2に残存している試料Aの容量が不明であるため、電磁弁V1及び電磁弁対V2またはV3の同期がとりにくい。この場合には、電源投入時に分析部13の圧力を圧力計18により監視しながら一方の捕集バッグに対して吸引動作を行ない、圧力が急激に減少した時点を同期の開始時点とすれば、容易に同期をとることができる。   Further, when the entire apparatus is turned on, the volume of the sample A remaining in the collection bags B1 and B2 is unknown, so that the electromagnetic valve V1 and the electromagnetic valve pair V2 or V3 are difficult to synchronize. In this case, if the suction operation is performed with respect to one of the collection bags while monitoring the pressure of the analysis unit 13 with the pressure gauge 18 when the power is turned on, and the time when the pressure suddenly decreases is set as the synchronization start time, It can be easily synchronized.

なお、図1に示した圧力計18はこの種の分析計10に通常備えられているため新たに用意する必要はない。
また、圧力計18を有しない場合、試料の入口(サンプリングライン24)を短時間閉塞しても支障がない分析計では、電磁弁対V2またはV3の切換周期よりも十分長い時間(例えば捕集バッグB1,B2の一方から試料Aを吸引するために要する時間)だけ試料Aを吸引した時点を同期の開始時点とすることもできる。
Note that the pressure gauge 18 shown in FIG. 1 is normally provided in this type of analyzer 10 and therefore does not need to be newly prepared.
Further, in the case where the pressure gauge 18 is not provided, in an analyzer that does not interfere with the sample inlet (sampling line 24) being blocked for a short time, a time sufficiently longer than the switching cycle of the solenoid valve pair V2 or V3 (for example, collection) The time point when the sample A is sucked by the time required for sucking the sample A from one of the bags B1 and B2) can also be set as the synchronization start point.

上記各実施形態は、気体試料が供給される差量法分析計10を対象とした場合のものであるが、本発明は液体試料のサンプリングに対しても同様に適用可能である。   Each of the above embodiments is directed to the differential method analyzer 10 to which a gas sample is supplied, but the present invention can be similarly applied to sampling of a liquid sample.

本発明の第1実施形態を示す概略的な構成図である。1 is a schematic configuration diagram illustrating a first embodiment of the present invention. 図1における差量法分析計及びサンプリング装置の動作を示すタイムシーケンスである。It is a time sequence which shows operation | movement of the difference method analyzer and sampling device in FIG. 本発明の第2実施形態の主要部を示す構成図である。It is a block diagram which shows the principal part of 2nd Embodiment of this invention. 従来技術を示す概略的な構成図である。It is a schematic block diagram which shows a prior art. 差量法の事例の説明図である。It is explanatory drawing of the example of the difference method. 従来技術を示す概略的な構成図である。It is a schematic block diagram which shows a prior art.

符号の説明Explanation of symbols

10:差量法分析計
12:変換器
13:分析部
16:ポンプ
17A,17B:サンプリングライン
18:圧力計
20,25:サンプリング装置
21:液体(非圧縮性流体)
22:密閉容器
23,24:サンプリングライン
V1,V2a,V2b,V3a,V3b:電磁弁
V2,V3:電磁弁対
B1,B2:捕集バッグ
10: difference method analyzer 12: converter 13: analyzer 16: pump 17A, 17B: sampling line 18: pressure gauge 20, 25: sampling device 21: liquid (incompressible fluid)
22: Sealed container 23, 24: Sampling line V1, V2a, V2b, V3a, V3b: Solenoid valve V2, V3: Solenoid valve pair B1, B2: Collection bag

Claims (3)

導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1,第2の捕集バッグに交互に捕集するための第1のサンプリング用切換弁と、
第1,第2の捕集バッグに捕集された試料Aを前記分析計用切換弁の流入側に交互に導入するための第2のサンプリング用切換弁と、を備え、
第1,第2のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたことを特徴とするサンプリング装置。
The operation of supplying the introduced sample A directly to a single analysis unit and performing the analysis and the operation of supplying the sample B generated from the sample A via a converter to the analysis unit and performing the analysis alternately are performed. A differential method comprising an analyzer switching valve for analyzing the target component contained in the sample A based on the analysis results and switching the sample A between the analysis unit side and the converter side. In the sampling device provided in the front stage of the analyzer,
First and second collection bags that are accommodated in a fluid filled in a sealed container and whose volume changes with the inflow and outflow of the sample A;
A first sampling switching valve for alternately collecting the sample A in the first and second collection bags;
A second sampling switching valve for alternately introducing the sample A collected in the first and second collection bags into the inflow side of the analyzer switching valve;
Sampling characterized in that the switching cycles of the first and second sampling switching valves are the same, and these switching cycles are 2n (n is a natural number) times the switching cycle of the analyzer switching valve. apparatus.
導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1の捕集バッグに捕集するための動作と、捕集した試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第3のサンプリング用切換弁と、
第3のサンプリング用切換弁により第1の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入している間に試料Aを第2の捕集バッグに捕集するための動作と、第3のサンプリング用切換弁により試料Aを第1の捕集バッグに捕集している間に第2の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第4のサンプリング用切換弁と、を備え、
第3,第4のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたことを特徴とするサンプリング装置。
The operation of supplying the introduced sample A directly to a single analysis unit and performing the analysis and the operation of supplying the sample B generated from the sample A via a converter to the analysis unit and performing the analysis alternately are performed. A differential method comprising an analyzer switching valve for analyzing the target component contained in the sample A based on the analysis results and switching the sample A between the analysis unit side and the converter side. In the sampling device provided in the front stage of the analyzer,
First and second collection bags that are accommodated in a fluid filled in a sealed container and whose volume changes with the inflow and outflow of the sample A;
For the third sampling, the operation for collecting the sample A in the first collection bag and the operation for introducing the collected sample A into the inflow side of the analyzer switching valve are alternately performed. A switching valve;
For collecting the sample A in the second collection bag while the sample A in the first collection bag is being introduced into the inflow side of the analyzer switching valve by the third sampling switching valve. While the sample A is being collected in the first collection bag by the operation and the third sampling switching valve, the sample A in the second collection bag is introduced into the inflow side of the analyzer switching valve. And a fourth sampling switching valve that alternately performs the operation for
Sampling characterized in that the switching cycles of the third and fourth sampling switching valves are the same, and these switching cycles are 2n (n is a natural number) times the switching cycle of the analyzer switching valve. apparatus.
請求項1または2に記載したサンプリング装置において、
前記流体が水、油等の非圧縮性流体であることを特徴とするサンプリング装置。
The sampling device according to claim 1 or 2,
The sampling apparatus, wherein the fluid is an incompressible fluid such as water or oil.
JP2004371321A 2004-12-22 2004-12-22 Sampling device Expired - Fee Related JP4521264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371321A JP4521264B2 (en) 2004-12-22 2004-12-22 Sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371321A JP4521264B2 (en) 2004-12-22 2004-12-22 Sampling device

Publications (2)

Publication Number Publication Date
JP2006177775A true JP2006177775A (en) 2006-07-06
JP4521264B2 JP4521264B2 (en) 2010-08-11

Family

ID=36732025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371321A Expired - Fee Related JP4521264B2 (en) 2004-12-22 2004-12-22 Sampling device

Country Status (1)

Country Link
JP (1) JP4521264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333380A (en) * 2018-01-25 2018-07-27 北京普立泰科仪器有限公司 A kind of automatic sampling apparatus and its automatic sampling method
CN108333380B (en) * 2018-01-25 2024-05-10 北京普立泰科仪器有限公司 Automatic sample injection device and automatic sample injection method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337587U (en) * 1976-09-04 1978-04-01
JPS542186A (en) * 1977-06-07 1979-01-09 Sumitomo Metal Ind Measurement of blast furnace gas component
JPS5788341A (en) * 1980-11-20 1982-06-02 Hitachi Zosen Corp Method for sampling of gas for analysis
JPH02151744A (en) * 1988-12-05 1990-06-11 Nec Corp Gas storage container
JPH09126999A (en) * 1995-10-28 1997-05-16 Horiba Ltd Sulfur component measuring apparatus
JPH1144620A (en) * 1997-07-28 1999-02-16 Horiba Ltd Ozone measuring instrument
JP2001013120A (en) * 1999-04-30 2001-01-19 Shimadzu Corp Gas measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337587U (en) * 1976-09-04 1978-04-01
JPS542186A (en) * 1977-06-07 1979-01-09 Sumitomo Metal Ind Measurement of blast furnace gas component
JPS5788341A (en) * 1980-11-20 1982-06-02 Hitachi Zosen Corp Method for sampling of gas for analysis
JPH02151744A (en) * 1988-12-05 1990-06-11 Nec Corp Gas storage container
JPH09126999A (en) * 1995-10-28 1997-05-16 Horiba Ltd Sulfur component measuring apparatus
JPH1144620A (en) * 1997-07-28 1999-02-16 Horiba Ltd Ozone measuring instrument
JP2001013120A (en) * 1999-04-30 2001-01-19 Shimadzu Corp Gas measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333380A (en) * 2018-01-25 2018-07-27 北京普立泰科仪器有限公司 A kind of automatic sampling apparatus and its automatic sampling method
CN108333380B (en) * 2018-01-25 2024-05-10 北京普立泰科仪器有限公司 Automatic sample injection device and automatic sample injection method thereof

Also Published As

Publication number Publication date
JP4521264B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
NL2012788B1 (en) Gas component concentration measurement device and method for gas component concentration measurement.
US7030381B2 (en) Method for detecting a gas using an infrared gas analyser and gas analyser suitable for carrying out said method
CN103149250B (en) Online total organic carbon water quality analyzer and online total organic carbon water quality analyzing method
JP2007309770A (en) Analyzer for in-oil gas, transformer equipped with the analyzer for in-oil gas, and analysis method for in-oil gas
EP1950774A2 (en) Quantitative measurement of production and consumption of gases in power transformers and device
JPWO2011074382A1 (en) Exhaust gas sampling device
US10309889B2 (en) Exhaust gas analysis system, recording medium recorded with program for exhaust gas analysis system, and exhaust gas analyzing method
JP2003240670A (en) Air leakage test method and device
JP4521264B2 (en) Sampling device
CN107356712A (en) A kind of SF6Analyte detector calibration equipment
CN108776194B (en) Analysis device and gas analyzer
JP2014174054A (en) Exhaust gas analyzer
CN109709056A (en) A kind of quantitative analysis method of mixture flash and analyzer based on spectral information
JPH0943245A (en) Automatic calibration method of automatic analyzer
CN214011151U (en) Gas circuit system and non-methane total hydrocarbon on-line monitoring chromatograph
CN201707300U (en) Two-channel SF6 gas decomposition product tester
JP2008261865A (en) Instrument for measuring volatile organic compound
CN108519254B (en) Sampling flow control device and gas analyzer
JP2006214949A (en) Instrument for measuring exhaust gas
JPH0231156A (en) System for analysis of metal component
JP2001255244A (en) Carbon dioxide measuring device
KR101189037B1 (en) Apparatus and method for gas collection
MX166960B (en) METHOD AND DEVICE TO ANALYZE A GAS
JP2000275240A (en) Water quality analyzer
JPS6219971Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees