JP2006177442A - Acceleration/deceleration control unit - Google Patents

Acceleration/deceleration control unit Download PDF

Info

Publication number
JP2006177442A
JP2006177442A JP2004371343A JP2004371343A JP2006177442A JP 2006177442 A JP2006177442 A JP 2006177442A JP 2004371343 A JP2004371343 A JP 2004371343A JP 2004371343 A JP2004371343 A JP 2004371343A JP 2006177442 A JP2006177442 A JP 2006177442A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
driving force
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004371343A
Other languages
Japanese (ja)
Inventor
Hideki Takamatsu
秀樹 高松
Shoji Inagaki
匠二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004371343A priority Critical patent/JP2006177442A/en
Publication of JP2006177442A publication Critical patent/JP2006177442A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0216Calculation or estimation of post shift values for different gear ratios, e.g. by using engine performance tables

Abstract

<P>PROBLEM TO BE SOLVED: To provide a one-pedal type acceleration/deceleration control unit which can effectively prevent a busy-shift feeling of a continuously variable transmission which is liable to occur in such a running environment that acceleration/deceleration operation is repeatedly required. <P>SOLUTION: The acceleration/deceleration control unit controls acceleration/deceleration of a vehicle by forming a deceleration region and an acceleration region in an operating stroke of a single pedal so as to control a braking force generation device, a driving force generation device and the continuously variable transmission in accordance with the amount of operation of the pedal. In the acceleration/deceleration control unit, a driving force not smaller than a predetermined value which is needed ahead of the present position of the vehicle is estimated as a required estimated driving force from information concerning the operating state and/or the running environment of the vehicle, and the gear shift control of the continuously variable transmission is performed from a point short of the point where the required estimated driving force is to be generated so that the gear-ratio fluctuation resulting from the generation of the required estimated driving force can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単一のペダル操作に応じて制御される制動力発生装置、駆動力発生装置及び無段階変速機を備える車両に適用される加減速度制御装置に関する。   The present invention relates to an acceleration / deceleration control device applied to a vehicle including a braking force generator, a driving force generator, and a continuously variable transmission that are controlled according to a single pedal operation.

従来から、エンジンと無段階変速機との組み合わせによりアクセルペダルの操作量に応じて車両の加速度を制御する技術が知られている(例えば、特許文献1参照)。この従来技術では、車両の運転状態や走行環境を基に定めたアクセル応答余裕分の駆動力(余裕駆動力)を、アクセルペダルの操作量に応じて決定される要求駆動力に加算して目標駆動力を導出し、当該目標駆動力に基づいて無段階変速機の変速制御を行っている。   2. Description of the Related Art Conventionally, a technique for controlling vehicle acceleration according to an operation amount of an accelerator pedal by a combination of an engine and a continuously variable transmission is known (see, for example, Patent Document 1). In this prior art, the driving force for the accelerator response margin (margin driving force) determined based on the driving state and driving environment of the vehicle is added to the required driving force determined according to the amount of operation of the accelerator pedal to achieve the target The driving force is derived and the shift control of the continuously variable transmission is performed based on the target driving force.

また、アクセルペダルの操作に応じて加減速度を制御する加減速度制御装置が知られている(例えば、特許文献2参照)。
特開平11−82084号公報 特開2000−205015号公報
There is also known an acceleration / deceleration control device that controls acceleration / deceleration in accordance with the operation of an accelerator pedal (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 11-82084 JP 2000-205015 A

ところで、上述の特許文献2の従来技術のように、1つのペダル(例えばアクセルペダル)の操作量に応じて車両の加減速度を制御するシステムでは、アクセルペダルのストローク内に加速領域及び減速領域の双方が形成されており、アクセルペダルがドライバにより操作されると、アクセルペダルの操作量に応じて目標減速度が決定され、当該目標減速度に応じた無段階変速機(CVT)の変速比が決定されることになる。   By the way, in the system that controls the acceleration / deceleration of the vehicle according to the operation amount of one pedal (for example, an accelerator pedal) as in the prior art of Patent Document 2 described above, the acceleration region and the deceleration region are included in the stroke of the accelerator pedal. Both are formed, and when the accelerator pedal is operated by the driver, the target deceleration is determined according to the operation amount of the accelerator pedal, and the gear ratio of the continuously variable transmission (CVT) according to the target deceleration is determined. Will be decided.

このようなシステムでは、例えばコーナが連続するワインディング路のような加減速操作が繰り返し必要となる走行環境においても、アクセルペダルのみの操作で対応できるため、アクセルペダルとブレーキペダルの繰り返しの踏み換えが不要となり、ペダル操作の負担が軽減される。しかしながら、この場合、アクセルペダルの操作位置が加速領域及び減速領域間で繰り返して往復動するのに連動して、無段階変速機の変速比が最低値を介して繰り返して往復動することになり、無段階変速機の変速(ひいてはエンジン回転数)の変動のビジー感が増してしまう。   In such a system, for example, even in a driving environment that requires repeated acceleration / deceleration operations such as winding roads with continuous corners, it is possible to respond by operating only the accelerator pedal, so the accelerator pedal and the brake pedal can be repeatedly switched. It becomes unnecessary and the burden of pedal operation is reduced. However, in this case, the operation speed of the accelerator pedal repeatedly reciprocates between the acceleration region and the deceleration region, so that the speed ratio of the continuously variable transmission repeatedly reciprocates through the minimum value. This increases the busy feeling of fluctuations in the speed of the continuously variable transmission (and hence the engine speed).

そこで、本発明は、単一のペダルの操作ストローク内に減速領域と加速領域とを形成し、該ペダルの操作量に応じて制動力発生装置、駆動力発生装置及び無段階変速機を制御して車両の加減速度を制御する加減速度制御装置において、加減速操作が繰り返し必要となる走行環境において発生しやすい無段階変速機の変速のビジー感を効果的に抑制することを課題とする。   Therefore, the present invention forms a deceleration region and an acceleration region within an operation stroke of a single pedal, and controls the braking force generator, the driving force generator, and the continuously variable transmission according to the operation amount of the pedal. An acceleration / deceleration control device that controls acceleration / deceleration of a vehicle effectively suppresses the busy feeling of shifting of a continuously variable transmission that is likely to occur in a traveling environment where acceleration / deceleration operations are repeatedly required.

上記課題を解決するため、本発明の一局面によれば、単一のペダルの操作ストローク内に減速領域と加速領域とを形成し、該ペダルの操作量に応じて制動力発生装置、駆動力発生装置及び無段階変速機を制御して車両の加減速度を制御する加減速度制御装置において、
車両の運転状態及び/又は走行環境に関する情報に基づいて、現在の車両位置よりも前方で必要となる所定値以上の駆動力を必要推定駆動力として推定し、該必要推定駆動力を発生すべき地点よりも手前から、該必要推定駆動力の発生に伴う変速比の変動が抑制されるように無段階変速機の変速制御を行うことを特徴とする、加減速度制御装置が提供される。
In order to solve the above problems, according to one aspect of the present invention, a deceleration region and an acceleration region are formed in an operation stroke of a single pedal, and a braking force generator and a driving force are generated according to the operation amount of the pedal. In an acceleration / deceleration control device for controlling the acceleration / deceleration of a vehicle by controlling a generator and a continuously variable transmission,
Based on information related to the driving state and / or traveling environment of the vehicle, a driving force that is greater than a predetermined value required ahead of the current vehicle position is estimated as a required estimated driving force, and the necessary estimated driving force should be generated. Provided is an acceleration / deceleration control device characterized in that gear change control of a continuously variable transmission is performed from a point before the point so as to suppress a change in gear ratio due to generation of the required estimated driving force.

本局面において、前記必要推定駆動力を発生すべき地点よりも手前から、無段階変速機の変速比を低くする方向の変速を抑制してよい。前記無段階変速機の変速比を低くする方向の変速の抑制は、減速領域から加速領域に向けてペダルの操作量が増加する過程に対して実行されてよい。無段階変速機の変速制御は、ペダルの操作量に基づいて所定のエンジン最適燃費線に沿うように最適変速比を決定することを含み、前記無段階変速機の変速比を低くする方向の変速の抑制状態は、前記ペダルの操作量の増加過程において、前記最適変速比が前記必要推定駆動力に対応した変速比を越えた時点で解除されてよい。   In this aspect, the shift in the direction in which the gear ratio of the continuously variable transmission is lowered may be suppressed from a point before the point where the necessary estimated driving force is to be generated. The suppression of the shift in the direction of decreasing the gear ratio of the continuously variable transmission may be performed for a process in which the pedal operation amount increases from the deceleration region to the acceleration region. Shift control of the continuously variable transmission includes determining an optimal gear ratio so as to follow a predetermined engine optimum fuel consumption line based on an operation amount of a pedal, and shifting in a direction to lower the gear ratio of the continuously variable transmission. This suppression state may be released when the optimum gear ratio exceeds the gear ratio corresponding to the required estimated driving force in the process of increasing the pedal operation amount.

本発明によれば、加減速操作が繰り返し必要となる走行環境において発生しやすい無段階変速機の変速のビジー感を効果的に抑制することができる1ペダル方式の加減速度制御装置を得ることができる。   According to the present invention, it is possible to obtain a one-pedal acceleration / deceleration control device that can effectively suppress the busy feeling of shifting of a continuously variable transmission that is likely to occur in a traveling environment where acceleration / deceleration operations are required repeatedly. it can.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明による加減速度制御装置の一実施例を示すシステム構成図である。本実施例の加減速度制御装置10は、アクセルペダルの開度に応じて目標加減速度を決定する目標加減速度演算装置20を中心に構成される。   FIG. 1 is a system configuration diagram showing an embodiment of an acceleration / deceleration control apparatus according to the present invention. The acceleration / deceleration control device 10 according to the present embodiment is configured around a target acceleration / deceleration calculation device 20 that determines a target acceleration / deceleration in accordance with the opening of an accelerator pedal.

目標加減速度演算装置20には、CAN(controller area
network)などの適切なバスを介して、車両内の各種の電子部品(車速センサのような各種センサやナビゲーションECU70のような各種ECU)が接続される。これらの各種の電子部品には、アクセルペダルの操作量を検出するアクセル開度センサ12や、ブレーキペダルの操作を検出するブレーキ操作量検出手段14が含まれる。
The target acceleration / deceleration calculation device 20 includes a CAN (controller area).
Various electronic components in the vehicle (various sensors such as a vehicle speed sensor and various ECUs such as the navigation ECU 70) are connected via an appropriate bus such as a network. These various electronic components include an accelerator opening sensor 12 that detects the operation amount of the accelerator pedal, and a brake operation amount detection means 14 that detects the operation of the brake pedal.

また、目標加減速度演算装置20は、駆動力発生装置(例えばエンジン)及び制動力発生装置(例えばブレーキ)を統括的に制御するそれぞれ駆動トルクマネージャ40及びブレーキマネージャ50を備える。駆動トルクマネージャ40及びブレーキマネージャ50は、同様にCANなどの適切なバスを介して目標加減速度演算装置20に接続される。尚、電気自動車やハイブリッド車の場合には、駆動力発生装置は車輪駆動用の電動モータを含む。   The target acceleration / deceleration calculation device 20 includes a drive torque manager 40 and a brake manager 50 that collectively control a drive force generation device (for example, an engine) and a braking force generation device (for example, a brake), respectively. The drive torque manager 40 and the brake manager 50 are similarly connected to the target acceleration / deceleration calculation device 20 via an appropriate bus such as CAN. In the case of an electric vehicle or a hybrid vehicle, the driving force generator includes an electric motor for driving wheels.

アクセル開度センサ12は、アクセルペダルの近傍に配設される。アクセル開度センサ12は、アクセルペダルの踏み込みストローク量(以下、「アクセル開度」という)に応じた電気信号を目標加減速度演算装置20に向けて出力する。尚、本実施例のアクセルペダルは、以下で詳説するが、加速領域のみならず減速領域を有する点で、実質的に加速領域しかない通常のアクセルペダルとは異なる。   The accelerator opening sensor 12 is disposed in the vicinity of the accelerator pedal. The accelerator opening sensor 12 outputs an electrical signal corresponding to the accelerator pedal depression stroke amount (hereinafter referred to as “accelerator opening”) to the target acceleration / deceleration calculation device 20. Although the accelerator pedal of this embodiment will be described in detail below, it differs from a normal accelerator pedal having substantially only an acceleration region in that it has not only an acceleration region but also a deceleration region.

ブレーキ操作量検出手段14は、ブレーキペダルの操作量(操作ストローク)を検出するセンサであってよいが、ブレーキ踏力を検出するセンサや、マスタシリンダ圧を検出するセンサなどに基づいて、ブレーキペダルの操作量を検出するものであってもよい。ブレーキペダルは、減速領域しかない通常のブレーキペダルであり、例えばアクセルペダルの減速領域において可能な最大減速度よりも大きい減速度を発生するために操作されるものであってよい。   The brake operation amount detection means 14 may be a sensor that detects the operation amount (operation stroke) of the brake pedal, but based on a sensor that detects the brake pedal force, a sensor that detects the master cylinder pressure, and the like, An operation amount may be detected. The brake pedal is a normal brake pedal that has only a deceleration region and may be operated to generate a deceleration that is greater than the maximum deceleration possible in the accelerator pedal deceleration region, for example.

目標加減速度演算装置20は、アクセルペダルの操作量、即ちアクセル開度センサ12からのアクセル開度に基づいて、車両に発生させるべき目標加減速度を決定する。   The target acceleration / deceleration calculation device 20 determines a target acceleration / deceleration to be generated in the vehicle based on the operation amount of the accelerator pedal, that is, the accelerator opening from the accelerator opening sensor 12.

図2は、目標加減速度演算装置20の一例を示す機能ブロック図である。目標加減速度演算装置20は、図示しないバスを介して互いに接続されたCPU、ROM、及びRAM等からなるマイクロコンピュータとして構成されている。ROMには、目標加減速度演算装置20が実行するプログラムやその際に必要な各種データ(例えば、後述する各種AC-Gマップ)が記憶されている。   FIG. 2 is a functional block diagram illustrating an example of the target acceleration / deceleration calculation device 20. The target acceleration / deceleration calculation device 20 is configured as a microcomputer including a CPU, a ROM, a RAM, and the like connected to each other via a bus (not shown). The ROM stores a program executed by the target acceleration / deceleration calculation device 20 and various data necessary for the program (for example, various AC-G maps described later).

目標加減速度演算装置20は、図2に示すように、AC-Gマップ処理部22において、アクセル開度と目標加減速度との関係を定義したマップ(以下、「AC-Gマップ」という)に従って、アクセル開度[%]に応じた目標加減速度[m/s]を決定する。 As shown in FIG. 2, the target acceleration / deceleration calculation device 20 uses an AC-G map processing unit 22 in accordance with a map that defines the relationship between the accelerator opening and the target acceleration / deceleration (hereinafter referred to as “AC-G map”). The target acceleration / deceleration [m / s 2 ] corresponding to the accelerator opening [%] is determined.

図3は、上述のAC-Gマップの例を幾つか示す。図3(A)に示すAC-Gマップには、0≦アクセル開度<AC1の範囲(アクセルペダルの浅い操作領域)において減速領域(目標加減速度<0)が設けられ、AC2≦アクセル開度の範囲(アクセルペダルの深い操作領域)において加速領域(目標加減速度>0)が設けられている。また、AC1≦アクセル開度<AC2の範囲において、目標加減速度が0となる基準操作領域が設けられる。アクセルペダルの非操作位置(アクセル開度=0)は、減速領域に属し、図3(A)に示す例では最も大きい目標減速度GAC0が設定される。 FIG. 3 shows some examples of the AC-G map described above. In the AC-G map shown in FIG. 3 (A), a deceleration region (target acceleration / deceleration <0) is provided in a range of 0 ≦ accelerator opening <AC1 (shallow operation region of the accelerator pedal), and AC2 ≦ accelerator opening. (Acceleration region where the accelerator pedal is deep) is provided with an acceleration region (target acceleration / deceleration> 0). Further, a reference operation region in which the target acceleration / deceleration is 0 is provided in the range of AC1 ≦ accelerator opening <AC2. The non-operating position of the accelerator pedal (accelerator opening = 0) belongs to the deceleration region, and the largest target deceleration GACO is set in the example shown in FIG.

減速領域及び加速領域では、図3に示すように、アクセル開度に対する目標加減速度の変化勾配がゼロより十分大きい所定の値(但し、一定勾配である必要はなく、可変値でもよい)に設定される。一方、基準操作領域では、目標加減速度の変化勾配がゼロに設定される。   In the deceleration region and the acceleration region, as shown in FIG. 3, the change gradient of the target acceleration / deceleration with respect to the accelerator opening is set to a predetermined value sufficiently larger than zero (however, it does not need to be a constant gradient and may be a variable value). Is done. On the other hand, in the reference operation region, the change gradient of the target acceleration / deceleration is set to zero.

尚、基準操作領域は、図3(A)に示すような一定の幅(AC1〜AC2)を有する領域であってよいが、図3(B)に示すような幅のない領域、即ち点であってもよい。後者の場合、AC-Gマップは、図3(B)に示すように、直線的なパターンを有し、加減速度が0なる基準操作領域AC3の前後に減速領域及び加速領域が形成されることになる。また、この場合、基準操作領域AC3前後の目標加減速度の変化勾配は、図3(C)に示すように、減速領域及び加速領域よりも緩やかな勾配を有するものであってもよい。尚、以下、便宜上、図3(A)に示すAC-Gマップを例にして説明を続ける。   The reference operation area may be an area having a certain width (AC1 to AC2) as shown in FIG. 3A, but is not an area having a width as shown in FIG. There may be. In the latter case, as shown in FIG. 3B, the AC-G map has a linear pattern, and a deceleration region and an acceleration region are formed before and after the reference operation region AC3 where acceleration / deceleration is zero. become. Further, in this case, the change gradient of the target acceleration / deceleration before and after the reference operation region AC3 may have a gentler gradient than the deceleration region and the acceleration region, as shown in FIG. Hereinafter, for convenience, the description will be continued by taking the AC-G map shown in FIG. 3A as an example.

目標加減速度[m/s]は、続く出力軸トルク変換部23において、出力軸トルク[N・m]に変換される。この出力軸トルクは、走行抵抗トルク演算部24にて演算された走行抵抗トルクと足し合わせられ、最終的な目標出力軸トルクとして制駆動分配部26に入力される。 The target acceleration / deceleration [m / s 2 ] is converted into output shaft torque [N · m] in the subsequent output shaft torque converter 23. This output shaft torque is added to the travel resistance torque calculated by the travel resistance torque calculation unit 24 and input to the braking / driving distribution unit 26 as the final target output shaft torque.

尚、走行抵抗トルク演算部24において、走行抵抗トルクは、車速に基づいて適切に算出されてよい。この際、走行抵抗トルクは、路面μ(タイヤと道路の間の摩擦力)及び/又は道路勾配(道路の路面勾配)などの各種因子によって補正されてもよい。この場合には、路面μに影響を与えうる雨や雪などの天気情報が併せて考慮されてもよい。また、道路勾配についても、如何なる適切な手法により検出されてもよく、例えば、ナビゲーション装置の地図データに含まれうる道路勾配情報を利用して検出されてもよく、若しくは、外部の情報提供センタから提供される道路勾配情報を利用して検出されてよい。   In the running resistance torque calculation unit 24, the running resistance torque may be appropriately calculated based on the vehicle speed. At this time, the running resistance torque may be corrected by various factors such as road surface μ (friction force between the tire and the road) and / or road gradient (road surface gradient of the road). In this case, weather information such as rain and snow that may affect the road surface μ may be taken into consideration. Further, the road gradient may be detected by any appropriate method, for example, it may be detected using road gradient information that can be included in the map data of the navigation device, or from an external information providing center. It may be detected using the provided road gradient information.

制駆動分配部26では、目標出力軸トルクを駆動出力軸トルクと制動出力軸トルクとに分配し、当該目標出力軸トルクを実現する目標駆動出力軸トルクと目標制動出力軸トルクを決定する。このようにして得られた目標駆動出力軸トルクは、駆動トルクマネージャ40に入力される。制駆動分配部26では、例えばエンジンブレーキ領域よりも大きい減速が必要とされる場合にのみ、その必要分だけ目標制動出力軸トルクに分配されてよい(即ち、エンジンブレーキ領域で発生可能な減速度より大きな減速が要求された場合にのみ、ブレーキマネージャ50により制動力発生装置が動作されるようにしてもよい)。或いは、燃料カット領域のエンジン回転数が保持されるような態様で、目標出力軸トルクが目標制動出力軸トルクに分配されてもよい。   The braking / driving distribution unit 26 distributes the target output shaft torque to the drive output shaft torque and the braking output shaft torque, and determines the target drive output shaft torque and the target braking output shaft torque that realize the target output shaft torque. The target drive output shaft torque thus obtained is input to the drive torque manager 40. For example, the braking / driving distributing unit 26 may distribute the required braking output shaft torque to the target braking output shaft torque only when the deceleration larger than the engine braking region is required (that is, the deceleration that can be generated in the engine braking region). The brake force generator may be operated by the brake manager 50 only when greater deceleration is required). Alternatively, the target output shaft torque may be distributed to the target braking output shaft torque in such a manner that the engine speed in the fuel cut region is maintained.

目標制動出力軸トルクは、車輪軸トルク変換部28にて車輪軸トルクに変換され、制動トルク調停部36を経てブレーキマネージャ50に入力される。制動トルク調停部36では、上述の車輪軸トルク(アクセルペダルの減速領域における車輪軸トルク)と、ブレーキペダルの操作による要求制動トルクとの調停が行われ、最終的な目標制動トルクが決定される。このようにして得られた目標制動トルクは、ブレーキマネージャ50に入力される。尚、要求制動トルクは、マップ処理部32から得られる要求制動減速度を制動トルク変換部34にて制動トルクに変換することで得られる。要求制動減速度は、マップ処理部32において、ブレーキペダル操作量と要求制動減速度との関係を定義したマップに従って決定される。   The target braking output shaft torque is converted into wheel shaft torque by the wheel shaft torque converting unit 28 and input to the brake manager 50 through the braking torque adjusting unit 36. The braking torque arbitration unit 36 arbitrates between the above-described wheel shaft torque (the wheel shaft torque in the deceleration region of the accelerator pedal) and the required braking torque by operating the brake pedal to determine the final target braking torque. . The target braking torque obtained in this way is input to the brake manager 50. The required braking torque is obtained by converting the required braking deceleration obtained from the map processing unit 32 into braking torque by the braking torque converting unit 34. The required braking deceleration is determined by the map processing unit 32 according to a map that defines the relationship between the brake pedal operation amount and the required braking deceleration.

図4は、ブレーキマネージャ50の一例を示す機能ブロック図である。ブレーキマネージャ50は、図示しないバスを介して互いに接続されたCPU、ROM、及びRAM等からなるマイクロコンピュータとして構成されている。   FIG. 4 is a functional block diagram illustrating an example of the brake manager 50. The brake manager 50 is configured as a microcomputer including a CPU, a ROM, a RAM, and the like connected to each other via a bus (not shown).

ブレーキマネージャ50では、図4に示すように、目標各輪制動圧演算部52において目標制動トルクに応じた目標制動圧が演算され、制動圧制御ブロック54を介してブレーキ制動圧制御が実行される。   In the brake manager 50, as shown in FIG. 4, a target braking pressure according to the target braking torque is calculated in the target wheel braking pressure calculation unit 52, and brake braking pressure control is executed via the braking pressure control block 54. .

図5は、駆動トルクマネージャ40の一例を示す機能ブロック図である。駆動トルクマネージャ40は、図示しないバスを介して互いに接続されたCPU、ROM、及びRAM等からなるマイクロコンピュータとして構成されている。   FIG. 5 is a functional block diagram illustrating an example of the drive torque manager 40. The drive torque manager 40 is configured as a microcomputer including a CPU, a ROM, a RAM, and the like connected to each other via a bus (not shown).

駆動トルクマネージャ40では、図5に示すように、変速比決定部42において目標駆動トルクに応じた変速比が決定され、その変速比に応じて変速実行手段44により無段階変速機の変速が実行される。また、同時に、目標エンジントルク演算部46において目標エンジントルクが決定され、当該目標エンジントルクに基づいて、電子スロットル制御、点火進角遅角制御、燃料カット制御などの各種エンジン制御が実行される。   In the drive torque manager 40, as shown in FIG. 5, a gear ratio according to the target drive torque is determined by the gear ratio determining unit 42, and the gear change execution means 44 executes the gear change of the continuously variable transmission according to the gear ratio. Is done. At the same time, the target engine torque calculation unit 46 determines the target engine torque, and various engine controls such as electronic throttle control, ignition advance / retard angle control, and fuel cut control are executed based on the target engine torque.

尚、本発明は、如何なる構成の無段階変速機(CVT)に対しても適用可能であり、例えば、無段階変速機は、1対のプーリーと金属ベルトから構成される無段階変速機構(図示せず)を含み、プーリーの溝幅を油圧により可変させることで、無段階の変速が実現されるものであってよい。   The present invention can be applied to a continuously variable transmission (CVT) of any configuration. For example, a continuously variable transmission is a continuously variable transmission mechanism (see FIG. Stepwise shifting may be realized by changing the groove width of the pulley by hydraulic pressure.

図6は、以下詳説される無段階変速機の変速比の変動抑制制御と対比できる通常制御の説明図であり、当該通常制御で用いられるエンジン最適燃費線の一例を示す。通常制御時、駆動トルクマネージャ40では、図6に示すように、エンジン最適燃費線(予め設定された燃料消費率の良い高トルク域)をトレースするように目標エンジントルク及び目標エンジン回転数が決定され、目標エンジン回転数に応じて無段階変速機の変速比が決定される。   FIG. 6 is an explanatory diagram of the normal control that can be compared with the variation suppression control of the gear ratio of the continuously variable transmission, which will be described in detail below, and shows an example of the engine optimum fuel consumption line used in the normal control. During normal control, the drive torque manager 40 determines the target engine torque and the target engine speed so as to trace the engine optimum fuel consumption line (a preset high torque range with a good fuel consumption rate), as shown in FIG. Then, the gear ratio of the continuously variable transmission is determined according to the target engine speed.

以下、説明の便宜上、このようにして無段階変速機の通常制御時にアクセル開度に基づいて決定される変速比を、「最適変速比」という(あくまで演算値)。これに対して、無段階変速機の変速比γとは、変速実行手段44により実現される実際の変速比をいう。尚、通常制御時、無段階変速機は、原則的に、変速実行手段44により最適変速比が実現されるよう変速制御されるので、通常制御の説明では、無段階変速機の変速比γ=最適変速比と考えてよい。   Hereinafter, for convenience of explanation, the speed ratio determined based on the accelerator opening during the normal control of the continuously variable transmission is referred to as “optimal speed ratio” (the calculated value). On the other hand, the speed ratio γ of the continuously variable transmission refers to an actual speed ratio realized by the speed changing means 44. Note that, during normal control, the continuously variable transmission is, as a rule, controlled by the shift execution means 44 so as to achieve the optimum gear ratio. Therefore, in the description of the normal control, the gear ratio γ = It may be considered as the optimum gear ratio.

図7は、通常制御時におけるアクセル開度の変化に対する無段階変速機の変速比γの変動態様を示すイメージ図である。   FIG. 7 is an image diagram showing a variation aspect of the speed ratio γ of the continuously variable transmission with respect to a change in accelerator opening during normal control.

図7(A)に示すように、アクセル開度がAC(t0)からAC(t1)まで減少し、次いでAC(t2)まで上昇するような変化態様(アクセルペダルの操作態様)を想定すると、無段階変速機の変速比γは、アクセル開度の上記変化態様に追従して、図7(B)に示すように、γ(t0)から最も低い変速比γminを介してγ(t1)に至り、次いでアクセル開度の上記上昇に伴い、再び変速比γminを介してγ(t2)に至ることになる。   As shown in FIG. 7A, assuming a change mode (accelerator operation mode) in which the accelerator opening decreases from AC (t0) to AC (t1) and then increases to AC (t2). The speed change ratio γ of the continuously variable transmission follows the above change of the accelerator opening, and changes from γ (t0) to γ (t1) through the lowest speed change ratio γmin as shown in FIG. 7 (B). Then, with the increase in the accelerator opening, γ (t2) is reached again via the gear ratio γmin.

従って、本実施例では、図3で示したようにアクセルペダルに車両の加速のみならず減速操作をも付与することから、操作負担や空走距離の低減の観点から有効である反面、図図7(B)に示したような無段階変速機の変速比γの変動態様が、例えば頻繁な加減速操作が必要となる走行環境において、変速比γminを介した頻繁な変速比の往復動(それに伴うエンジン回転数の変動)として具現化され、ビジー感のある無段階変速機の変速という課題をもたらす。   Therefore, in this embodiment, as shown in FIG. 3, since not only the acceleration of the vehicle but also the deceleration operation is given to the accelerator pedal, it is effective from the viewpoint of the operation burden and the reduction of the uninhabited distance, but 7 (B) shows a variation mode of the speed ratio γ of the continuously variable transmission, for example, in a traveling environment where frequent acceleration / deceleration operations are required, a frequent speed ratio reciprocation via the speed ratio γmin ( This is embodied as fluctuations in the engine speed associated therewith) and brings about the problem of shifting the busy continuously variable transmission.

本実施例は、以下詳説する特徴的な構成により、加減速が頻繁に必要な場面でのアクセルペダルの操作に対する良好な加速応答性を維持しつつ、頻繁なアクセルペダルの加減速操作の繰り返し時に生じうる無段階変速機の変速比変動のビジー感を抑制するものである。   In this embodiment, the characteristic configuration described in detail below maintains a good acceleration response to the operation of the accelerator pedal in a scene where acceleration / deceleration is frequently required, and at the time of frequent acceleration / deceleration operations of the accelerator pedal. This suppresses the busy feeling of the speed ratio fluctuation of the continuously variable transmission.

図8は、本実施例の加減速度制御装置10により実現される特徴的な処理流れを示すフローチャートである。   FIG. 8 is a flowchart showing a characteristic processing flow realized by the acceleration / deceleration control apparatus 10 of this embodiment.

先ず、ステップ101では、アクセルペダルの操作量、ステアリングホイールの操作量、車速、ヨーレートなどの各種車両状態量を取得する。   First, in step 101, various vehicle state quantities such as an accelerator pedal operation amount, a steering wheel operation amount, a vehicle speed, and a yaw rate are acquired.

ステップ102では、モード選択スイッチ25の状態に基づいて1ペダルモードか否かが判定される。ここで、1ペダルモードとは、上述の図3で示したようなAC-Gマップに基づいてアクセルペダルの操作により加速制御及び減速制御の双方を行うモードをいう。これに対して、通常モードとは、アクセルペダルの操作により加速制御を行い、且つ、ブレーキペダルの操作により減速制御を行うモードをいう。通常モードと1ペダルモードとは、アクセルペダルの特性、即ち上述のAC-Gマップの特性が主に異なる。その他、アクセルペダルで減速制御が行われないため、ブレーキペダルの操作中の調停が不要であり、車輪軸トルク変換部28や制動トルク調停部36の機能が不要(停止状態)となることが異なる。即ち、通常モードは、通常的な車両においてと同様、ブレーキペダルの操作に対する減速制御と、アクセルペダルの操作に対する加速制御とが、互いに干渉し合わない態様で独立的に実現される。   In step 102, it is determined based on the state of the mode selection switch 25 whether or not the pedal mode is one pedal mode. Here, the one-pedal mode refers to a mode in which both acceleration control and deceleration control are performed by operating the accelerator pedal based on the AC-G map as shown in FIG. On the other hand, the normal mode refers to a mode in which acceleration control is performed by operating the accelerator pedal and deceleration control is performed by operating the brake pedal. The characteristics of the accelerator pedal, that is, the characteristics of the above-mentioned AC-G map are mainly different between the normal mode and the one-pedal mode. In addition, since deceleration control is not performed by the accelerator pedal, arbitration during operation of the brake pedal is unnecessary, and the functions of the wheel shaft torque conversion unit 28 and the braking torque arbitration unit 36 are unnecessary (stopped state). . That is, in the normal mode, as in a normal vehicle, the deceleration control for the operation of the brake pedal and the acceleration control for the operation of the accelerator pedal are independently realized in a manner that does not interfere with each other.

モード選択スイッチ25は、これら1ペダルモードと通常モード間を切り換えるためにユーザにより操作されるスイッチであり、ドライバの操作し易い位置として例えばステアリングコラム付近に配設される。尚、通常モードと1ペダルモード間の切換は、ユーザの操作に限らず、例えば車両の走行環境に応じて自動的に実現されてもよい。   The mode selection switch 25 is a switch operated by the user to switch between the one-pedal mode and the normal mode, and is disposed near the steering column, for example, as a position where the driver can easily operate. Note that switching between the normal mode and the one-pedal mode is not limited to a user operation, and may be automatically realized according to, for example, the traveling environment of the vehicle.

ステップ102で1ペダルモード以外のモード(典型的には通常モード)であると判定された場合、以下詳説される無段階変速機の変速比の変動抑制制御が不要であるとして、そのまま終了する。尚、この場合、上述したような最適変速比に従って無段階変速機の変速の通常制御が実現されることになる。   If it is determined in step 102 that the mode is a mode other than the one-pedal mode (typically the normal mode), it is determined that the control for suppressing variation in the gear ratio of the continuously variable transmission, which will be described in detail below, is unnecessary, and the processing is ended. In this case, normal control of the shift of the continuously variable transmission is realized in accordance with the optimum gear ratio as described above.

ステップ102で現在のモードが1ペダルモードであると判定された場合、ステップ103として、各種センサやナビゲーションECU70から周辺環境情報を取得する。周辺環境情報としては、ナビゲーション装置の地図データベース内に含まれる各種道路情報(例えば道路勾配、交差点情報、コーナ情報等々)、前方監視センサ(例えばレーダーセンサやCCDカメラ)の検出結果に基づく先行車や障害物、建物、歩行者等に関する前方情報、外部のセンタ施設や車車間通信を介して提供されてよい各種環境情報(天気、気温などの気象情報や、渋滞情報、事故や工事による規制情報等)が例として挙げられる。   When it is determined in step 102 that the current mode is the one-pedal mode, as step 103, ambient environment information is acquired from various sensors and the navigation ECU 70. As the surrounding environment information, various road information (e.g., road gradient, intersection information, corner information, etc.) included in the map database of the navigation device, the preceding vehicle based on the detection result of the front monitoring sensor (e.g., radar sensor or CCD camera), Forward information on obstacles, buildings, pedestrians, etc., various environmental information that can be provided through external center facilities and inter-vehicle communication (weather information such as weather and temperature, traffic jam information, regulatory information due to accidents and construction, etc.) ) As an example.

続くステップ104では、図2を参照して説明した態様で、AC-Gマップ処理部22においてアクセルペダルの操作量に応じた目標加減速度が決定される。   In the subsequent step 104, the target acceleration / deceleration according to the operation amount of the accelerator pedal is determined in the AC-G map processing unit 22 in the manner described with reference to FIG.

続くステップ105では、ステップ103で取得した周辺環境情報に基づいて、将来必要な推定車両加減速度(駆動力)を予測・演算する。以下、この将来必要な推定駆動力を“必要推定駆動力”称する。   In the subsequent step 105, the estimated vehicle acceleration / deceleration (driving force) required in the future is predicted and calculated based on the surrounding environment information acquired in step 103. Hereinafter, the estimated driving force required in the future is referred to as “necessary estimated driving force”.

図9は、必要推定駆動力の算出方法の一例を示す図であり、図8のフローチャートにおけるステップ105の処理内容の一例を示すフローチャートである。   FIG. 9 is a diagram showing an example of a method for calculating the required estimated driving force, and is a flowchart showing an example of the processing content of step 105 in the flowchart of FIG.

ステップ1501では、各種センサやナビゲーションECU70から周辺環境情報を取得する。例えば周辺環境情報のコーナ情報として、コーナの開始点及び終了点(座標値)、曲率半径R[m]、カントα[%]、旋回角度θ[rad]等が供給され、道路情報として進行方向前方の道路の路面勾配情報が供給されてよい。また、その他の周辺環境情報として、上述のように前方情報や、前方の路面の状態(積雪、凍結)に関する情報などが供給されてよい。   In step 1501, ambient environment information is acquired from various sensors and the navigation ECU 70. For example, as corner information of the surrounding environment information, corner start and end points (coordinate values), radius of curvature R [m], cant α [%], turning angle θ [rad], etc. are supplied, and the traveling direction as road information Road gradient information of the road ahead may be supplied. In addition, as other surrounding environment information, as described above, forward information, information on a road surface state (snow accumulation, freezing), and the like may be supplied.

ステップ1502〜1505では、ステップ1501で取得した周辺環境情報等に基づいて、車両の走行経路前方で比較的大きな必要推定駆動力が必要となる場面を、各場面に対する所定の各判定条件に基づいて予測・判定し、判定結果に応じて、その際の必要推定駆動力が算出される(ステップ1507〜1511)。   In steps 1502 to 1505, based on the surrounding environment information acquired in step 1501, a scene that requires a relatively large required estimated driving force in front of the vehicle travel route is determined based on each predetermined determination condition for each scene. Prediction / determination is performed, and the required estimated driving force at that time is calculated according to the determination result (steps 1507 to 1511).

例えば、車両の現在位置と地図データに基づいて進行方向前方のコーナが検出された場合(ステップ1502で肯定判定)、曲率半径Rに基づいてコーナ走行時の目標車速Vtgが導出され、現在の車速等から検出される現在までの走行態様に基づいて、コーナ入口で目標車速Vtgとなるための必要推定駆動力やコーナ出口以降の必要推定駆動力が算出される(ステップ1507)。尚、目標速度Vtgは、所定の横加速度(旋回横加速度)の許容限度値をGy[m/s]としたとき、Gy=Vtg/R+α・g/100なる関係に基づいて、Vtg={R(Gy−α・g/100)}1/2により導出されてよい(gは重力加速度)。尚、許容限度値Gyは、車種毎に異なる走行性能等の相違に応じて適宜設定される設計値であるが、可変値であってよく、例えば安全性を重視するユーザに対しては下方修正されてもよい。目標速度Vtgは、コーナ毎に予め生成されていてもよく、この場合、各コーナの目標速度Vtgは、他の周辺環境情報と同様、加減速度制御装置10がアクセス可能なメモリに記憶され、コーナ情報の一部として供給されても良い。 For example, when a corner ahead in the traveling direction is detected based on the current position of the vehicle and the map data (Yes in step 1502), the target vehicle speed Vtg during corner driving is derived based on the radius of curvature R, and the current vehicle speed Based on the travel mode detected from the above to the present, the required estimated driving force for reaching the target vehicle speed Vtg at the corner entrance and the necessary estimated driving force after the corner exit are calculated (step 1507). The target speed Vtg is based on the relationship of Gy = Vtg 2 / R + α · g / 100, where Gy [m / s 2 ] is an allowable limit value of a predetermined lateral acceleration (turning lateral acceleration). {R (Gy−α · g / 100)} 1/2 may be derived (g is gravitational acceleration). The permissible limit value Gy is a design value that is set as appropriate in accordance with differences in driving performance and the like that differ for each vehicle type. However, the allowable limit value Gy may be a variable value, for example, a downward correction for users who place importance on safety. May be. The target speed Vtg may be generated in advance for each corner. In this case, the target speed Vtg of each corner is stored in a memory accessible by the acceleration / deceleration control device 10 like other surrounding environment information. It may be supplied as part of the information.

同様に、前方情報に基づいて先行車が検出された場合(ステップ1503で肯定判定)、当該先行車との相対関係や自車の現在までの走行態様に基づいて、当該先行車に対して適切な相対関係を保つための必要推定駆動力が算出される(ステップ1508)。   Similarly, if a preceding vehicle is detected based on the forward information (affirmative determination in step 1503), an appropriate one is applied to the preceding vehicle based on the relative relationship with the preceding vehicle and the current traveling mode of the host vehicle. A necessary estimated driving force for maintaining a relative relationship is calculated (step 1508).

また、所定以上の路面勾配を有する前方道路が検出された場合(ステップ1504で肯定判定)、路面勾配情報や自車の現在までの走行態様に基づいて、当該前方道路を適切な速度で走行するための必要推定駆動力が算出される(ステップ1509)。尚、路面勾配は、予め計測・記憶された路面勾配情報に代えて若しくはそれに加えて、回転センサ系の検出結果から導出されてよい。   In addition, when a forward road having a road surface gradient greater than or equal to a predetermined value is detected (Yes in step 1504), the vehicle travels at an appropriate speed based on the road surface gradient information and the current driving mode of the vehicle. Necessary estimated driving force is calculated (step 1509). The road surface gradient may be derived from the detection result of the rotation sensor system instead of or in addition to the road surface gradient information measured and stored in advance.

尚、その他の環境情報(例えば路面状態に関する情報や道路工事・規制情報等)に基づいて、同様に、前方道路を走行する際の必要推定駆動力が算出される(ステップ1510)。   In addition, based on other environmental information (for example, information on road surface conditions, road construction / regulation information, etc.), the necessary estimated driving force for traveling on the road ahead is similarly calculated (step 1510).

このようにして複数の必要推定駆動力が算出された場合、ステップ1511において調停が実行され、後述する必要推定変速比γ*が最も高い(最もlow側になる) 必要推定駆動力が選択される。   When a plurality of necessary estimated driving forces are calculated in this way, arbitration is executed in step 1511, and the necessary estimated driving force having the highest necessary estimated gear ratio γ * (to be the lowest side) described later is selected. .

ステップ1502〜1505での判定条件に当てはまらない場合、即ち、例えば路面勾配の無い直線道路が存在する場合等、前方道路を走行する際に加減速の必要となる場面が検出されない場合、現在の駆動力が必要推定駆動力として算出される(ステップ1506)。   If the judgment conditions in steps 1502 to 1505 do not apply, that is, for example, when there is a straight road without a road surface gradient, when a scene requiring acceleration / deceleration is not detected when traveling on the road ahead, the current drive The force is calculated as the necessary estimated driving force (step 1506).

図8に戻るに、ステップ105で上述の如く必要推定駆動力が算出されると、続くステップ106では、現在の運転状態が定常状態又は過渡状態であるかが判断される。ここで、定常状態とは、現在の車両状態が定常走行状態又は減速過程にある状態であり、例えば、図10に示すように、現在の車速Vが所定値V1Pより大きく、現在のシフトモードがシーケンシャルモード(スポーツ走行のためにマニュアルシフトチェンジ可能な状態)でないことを前提として、アクセルペダルの操作量(アクセル開度)が上昇過程にない場合(例えば、今回周期のアクセル開度AC(i)が前回周期のアクセル開度AC(i-1)以下の場合)、定常状態であると判定されてよい。   Returning to FIG. 8, when the required estimated driving force is calculated in step 105 as described above, in the subsequent step 106, it is determined whether the current operating state is a steady state or a transient state. Here, the steady state is a state in which the current vehicle state is in a steady running state or a deceleration process. For example, as shown in FIG. 10, the current vehicle speed V is greater than a predetermined value V1P, and the current shift mode is If the accelerator pedal operation amount (accelerator opening) is not in the ascending process, assuming that it is not in sequential mode (a state in which manual shift changes are possible for sports driving) (for example, the accelerator opening AC (i) in this cycle) May be determined to be in the steady state if the accelerator opening is AC (i-1) or less in the previous cycle.

ステップ106で現在の車両状態が定常状態と判定されると、続くステップ107では、上述したような最適変速比に従って無段階変速機の変速の通常制御が実現されることになる。   If it is determined in step 106 that the current vehicle state is a steady state, in the subsequent step 107, normal control of the shift of the continuously variable transmission is realized in accordance with the optimum gear ratio as described above.

一方、過渡状態とは、現在の車両状態が加速過程にある状態であり、例えば、図10に示すように、現在の車速Vが所定値V1Pより大きく、現在のシフトモードがシーケンシャルモード(スポーツ走行のためにマニュアルシフトチェンジ可能な状態)でないことを前提として、アクセルペダルの操作量(アクセル開度)が上昇過程にある場合(例えば、今回周期のアクセル開度AC(i)が前回周期のアクセル開度AC(i-1)よりも大きい場合)、過渡状態であると判定されてよい。   On the other hand, the transient state is a state in which the current vehicle state is in the acceleration process. For example, as shown in FIG. 10, the current vehicle speed V is larger than a predetermined value V1P, and the current shift mode is the sequential mode (sport driving). If the accelerator pedal operation amount (accelerator opening) is in the rising process (for example, the accelerator opening AC (i) of the current cycle is the accelerator of the previous cycle) If it is larger than the opening degree AC (i-1)), it may be determined to be in a transient state.

ステップ106で現在の車両状態が過渡状態と判定されると、続くステップ107では、図6を参照して上述したような無段階変速機の変速比の通常制御に代えて、ステップ105で求めた必要推定駆動力に基づく無段階変速機の変速制御(以下、「変動抑制制御」と言う)が実行される。変動抑制制御時には、駆動トルクマネージャ40の変速比決定部42において無段階変速機の変速比を低くする方向の変速が抑制される。   If it is determined in step 106 that the current vehicle state is a transient state, in the following step 107, the determination is made in step 105 instead of the normal control of the gear ratio of the continuously variable transmission as described above with reference to FIG. Shift control of the continuously variable transmission based on the necessary estimated driving force (hereinafter referred to as “variation suppression control”) is executed. During the fluctuation suppression control, the gear ratio determination unit 42 of the drive torque manager 40 suppresses the gear shift in the direction of lowering the gear ratio of the continuously variable transmission.

図11は、変動抑制制御時におけるアクセル開度の変化に対する無段階変速機の変速比の変動態様を示すイメージ図であり、通常制御との対比のため、図7を参照して説明した同一のアクセル開度変化に対する変速比の変動態様が示されている。   FIG. 11 is an image diagram showing a variation aspect of the gear ratio of the continuously variable transmission with respect to a change in the accelerator opening during the variation suppression control. For comparison with the normal control, the same accelerator described with reference to FIG. A variation aspect of the gear ratio with respect to a change in the opening degree is shown.

図11(A)に示すように、アクセル開度がAC(t0)からAC(t1)まで減少し、次いでAC(t2)まで上昇すると、変動抑制制御時では、無段階変速機の変速比は、アクセル開度の上記変化態様に追従して、図11(B)に示すように、変速比γ(t0)から最も低い変速比γminを介して変速比γ(t1)に至るものの、続くアクセル開度の増加過程(図中矢印Yで示した過程であり、上述の過渡状態に対応する過程)では、変速比γ(t2)に移行するまで変速比γ(t1)が保持される。即ち、図11(B)で矢印Zにて示すように、変速比γ(t1)が適切な期間保持された後に変速比γ(t2)へと直接的に移行する。これは、同増加過程で変速比γ(t1)から再び変速比γminを介して変速比γ(t2)に至る上述の通常制御時とは対照的である。   As shown in FIG. 11 (A), when the accelerator opening decreases from AC (t0) to AC (t1) and then increases to AC (t2), the gear ratio of the continuously variable transmission is the variable suppression control. Following the above change in the accelerator opening, as shown in FIG. 11 (B), the speed change ratio γ (t0) reaches the speed change ratio γ (t1) via the lowest speed change ratio γmin. In the opening degree increasing process (the process indicated by the arrow Y in the figure and corresponding to the above-described transient state), the speed ratio γ (t1) is maintained until the speed ratio γ (t2) is shifted. That is, as indicated by an arrow Z in FIG. 11B, the gear ratio γ (t1) is directly shifted to the gear ratio γ (t2) after being held for an appropriate period. This is in contrast to the above-described normal control in which the speed ratio γ (t1) reaches the speed ratio γ (t2) again through the speed ratio γmin during the increase process.

ここで、図11中の変速比γ(t2)が、上記ステップ105で推定演算される必要推定駆動力に基づいて決定される変速比γ*(以下、「必要推定変速比γ*」)であるとすると、変動抑制制御時には、アクセルペダルの操作により必要推定駆動力が実際に要求されるまで(即ち最適変速比が必要推定変速比γ*となるまで)、無段階変速機の変速比を低くする方向の変速が抑制されることになる。   Here, the transmission gear ratio γ (t2) in FIG. 11 is a transmission gear ratio γ * (hereinafter referred to as “necessary estimated transmission gear ratio γ *”) determined based on the required estimated driving force estimated in step 105. If there is a fluctuation suppression control, the speed ratio of the continuously variable transmission is changed until the required estimated driving force is actually required by operating the accelerator pedal (that is, until the optimum speed ratio becomes the required estimated speed ratio γ *). The shift in the lowering direction is suppressed.

このように本実施例では、車両の走行経路前方で比較的大きな必要推定駆動力が未必的に必要となることを予測した場合、減速領域から加速領域に向かうアクセルペダルの操作に連動して無段階変速機の変速比が変動するのが防止されるので、無段階変速機の変速比の非効率な変動(それに伴うビジー感)が低減される。   As described above, in this embodiment, when it is predicted that a relatively large necessary estimated driving force is inevitably required in front of the vehicle travel route, there is no operation in conjunction with the accelerator pedal operation from the deceleration region to the acceleration region. Since the gear ratio of the stepped transmission is prevented from fluctuating, inefficiency fluctuation (the accompanying busy feeling) of the gear ratio of the continuously variable transmission is reduced.

尚、必要推定駆動力と必要推定変速比γ*との関係は予めマップに定義しておいてよく、最適変速比の導出時と同様、走行抵抗トルクなどの因子によって適宜補正されるものであってよい。   The relationship between the required estimated driving force and the required estimated gear ratio γ * may be defined in advance in the map, and is corrected as appropriate by factors such as the running resistance torque as in the case of deriving the optimum gear ratio. It's okay.

変動抑制制御状態は、必要推定駆動力が必要とされる場面が実際に到来した段階で、図6を参照して上述したような無段階変速機の変速比の通常制御状態に切り替わる(即ち抑制が解除される)。したがって、先の例では、図11において、時刻t2以降、アクセル開度がAC(t2)を超えて更に増加する場合には、無段階変速機の変速比は、最適変速比に従って必要推定変速比γ*よりも高い変速比側(low側)に移行していくことになり、一方、アクセル開度がAC(t2)から減少する場合には、無段階変速機の変速比は、最適変速比に従って必要推定変速比γ*より低い変速比側(hi側)に移行していくことになる。   The fluctuation suppression control state is switched to the normal control state of the continuously variable transmission as described above with reference to FIG. 6 (i.e., the suppression control state) at the stage when the required estimated driving force is actually reached. Is released). Therefore, in the previous example, in FIG. 11, when the accelerator opening further increases beyond AC (t2) after time t2, the speed ratio of the continuously variable transmission is the required estimated speed ratio according to the optimum speed ratio. On the other hand, when the accelerator opening decreases from AC (t2), the gear ratio of the continuously variable transmission is the optimum gear ratio. Accordingly, the shift to the gear ratio side (hi side) lower than the required estimated gear ratio γ * is made.

また、変動抑制制御状態は、必要推定駆動力が実際に必要とされる場面が到来しない場合にも(即ち予測が外れた場合)、所定時間経過した段階若しくは所定地点を車両が通過した後で、通常制御状態に切り替えられてよい。上記の所定時間若しくは所定地点は、上記ステップ105において、周辺環境情報や現在の車速等に基づいて、必要推定駆動力(必要推定変速比γ*)が必要とされる予測時刻若しくは地点として導出されてよい。   In addition, the fluctuation suppression control state can be used even when a scene where the required estimated driving force is actually required does not arrive (i.e., when the prediction is not satisfied), or after the vehicle has passed through a predetermined point. The normal control state may be switched. In step 105, the predetermined time or the predetermined point is derived as an estimated time or point where the necessary estimated driving force (necessary estimated gear ratio γ *) is required based on the surrounding environment information, the current vehicle speed, or the like. It's okay.

尚、必要推定変速比γ*が、図11に示すように、上述の抑制開始時点t1の変速比γ(t1)と略同一の場合、上述の如く、アクセルペダルの操作量に基づき決定される最適変速比が必要推定変速比γ*となるまで、変速比がγ(t1)で保持されてよい。一方、必要推定変速比γ*が、変速比γ(t1)より高い場合、最適変速比がγ(t1)となるまで、変速比がγ(t1)で保持され、以後、最適変速比に従った通常制御状態に切り替えられてよいし、或いは、必要推定駆動力が必要とされる予測時刻若しくは地点で、変速比が必要推定変速比γ*にされてもよい。   As shown in FIG. 11, when the required estimated gear ratio γ * is substantially the same as the gear ratio γ (t1) at the suppression start time t1, as described above, it is determined based on the amount of operation of the accelerator pedal. The gear ratio may be held at γ (t1) until the optimum gear ratio becomes the necessary estimated gear ratio γ *. On the other hand, if the required estimated gear ratio γ * is higher than the gear ratio γ (t1), the gear ratio is held at γ (t1) until the optimum gear ratio becomes γ (t1). Alternatively, it may be switched to the normal control state, or the gear ratio may be set to the necessary estimated gear ratio γ * at a predicted time or point where the necessary estimated driving force is required.

図12は、本実施例による無段階変速機の変速比の変動抑制制御が適用される場面の一例として連続コーナを示す。図中、X1〜X10は、この連続コーナ走行時の各車両位置を示す。尚、前提として、目標加減速度演算装置20には、上述の周辺環境情報(特にコーナ情報)や自車速情報が、所定周期毎に供給されており、目標加減速度演算装置20は、常時、最新の車両位置及び車速を算出・把握しつつ、上述の図8に示したような処理を実行していくものとする。   FIG. 12 shows a continuous corner as an example of a scene to which the speed ratio fluctuation suppression control of the continuously variable transmission according to this embodiment is applied. In the figure, X1 to X10 indicate vehicle positions at the time of continuous corner traveling. As a premise, the target acceleration / deceleration calculation device 20 is supplied with the above-mentioned surrounding environment information (particularly corner information) and own vehicle speed information every predetermined period, and the target acceleration / deceleration calculation device 20 is always up-to-date. It is assumed that the process as shown in FIG. 8 is executed while calculating and grasping the vehicle position and the vehicle speed.

車両が連続コーナに差しかかる手前の直線区間では(車両位置X1、X2)では、無段階変速機の変速比の通常制御が実行される。連続コーナの入り口付近の車両位置X3でアクセルペダルの踏み込みが緩められ、アクセル開度が図3のAC1より小さくなると、それに伴い変速比γが変速比γminを介してlow側に移行し、減速が実現される(図11の変速比γ(t1)に相当)。この第1コーナの出口では、直ぐ後に第2コーナが存在するので、車両位置X4では、コーナ情報に基づいて算出される必要推定駆動力(<現時点の駆動力)に応じて、アクセルペダルが踏み込まれても変速比γがlow側に制御(保持・変動抑制)される。   In the straight section before the vehicle enters the continuous corner (vehicle positions X1, X2), normal control of the speed ratio of the continuously variable transmission is executed. When the accelerator pedal is depressed at the vehicle position X3 near the entrance of the continuous corner and the accelerator opening becomes smaller than AC1 in FIG. 3, the gear ratio γ shifts to the low side via the gear ratio γmin, and the deceleration is reduced. This is realized (corresponding to the gear ratio γ (t1) in FIG. 11). At the exit of the first corner, there is a second corner immediately after that. At the vehicle position X4, the accelerator pedal is depressed according to the required estimated driving force (<current driving force) calculated based on the corner information. Even so, the gear ratio γ is controlled to the low side (maintenance and fluctuation suppression).

ここで、第2コーナの出口以降の比較的な長い直線区間(車両位置X7)において、上述の周辺環境情報に基づいて、加速が予測され、且つ、当該直線区間が上り勾配であり、当該加速には比較的大きな必要推定駆動力が必要とされると推定できる場合、第2コーナの旋回中(車両位置X6)は、当該必要推定駆動力に基づいて上述の無段階変速機の変動抑制制御が開始される。従って、第2コーナの旋回開始時、加減速度をゼロに保つためにアクセルペダルが踏み込まれてアクセル開度がAC1〜AC2間まで増加しても、それに伴ってlow側にある変速比γがhi側に移行しない(変速比γminに向かって変動せず)。そして、第2コーナ出口(車両位置X7)に車両が至り、加速領域までアクセルペダルが踏み込まれてアクセル開度がAC2を超えると、保持されていたlow側の変速比γ若しくは必要推定変速比γ*に基づく加速が実現される。尚、車両位置X8、X9では車両位置X5、X6と同様であり、車両位置X10からは、比較的大きな必要推定駆動力が必要とされる場面がこの先当分存在しないとして、通常制御に移行する。   Here, in a comparatively long straight section (vehicle position X7) after the exit of the second corner, acceleration is predicted based on the above-mentioned surrounding environment information, and the straight section is an uphill slope. When it is estimated that a relatively large required estimated driving force is required, the above-described continuously variable transmission fluctuation suppression control is performed based on the required estimated driving force during turning of the second corner (vehicle position X6). Is started. Therefore, even when the accelerator pedal is depressed to increase the accelerator opening to between AC1 and AC2 in order to keep the acceleration / deceleration at zero when the turning of the second corner is started, the gear ratio γ on the low side is increased accordingly. Does not shift to the side (does not change toward the gear ratio γmin). When the vehicle reaches the second corner exit (vehicle position X7) and the accelerator pedal is depressed to the acceleration range and the accelerator opening exceeds AC2, the low-side gear ratio γ or the necessary estimated gear ratio γ that has been maintained. * Based on acceleration. The vehicle positions X8 and X9 are the same as the vehicle positions X5 and X6. From the vehicle position X10, it is assumed that there is no scene that requires a relatively large required estimated driving force for the time being, and the normal control is performed.

このように本実施例によれば、繰り返しの加減速操作が必要となる連続コーナにおいても、アクセルペダルとブレーキペダルを頻繁に踏み換える必要がなく、アクセルペダルの操作位置を適切に加速領域及び減速領域に間で往来させることで、アクセルペダル1つで車両の加減速の調整が可能であり、操作負担が著しく低減される。また、かかるアクセルペダルの加速領域と減速領域間での繰り返しの往来に起因した変速比の頻繁な変動(ビジー感)についても、比較的大きな必要推定駆動力が必要とされる場面を予測し、その場面が到来する前から、当該場面が到来した際に実現されるべき必要推定変速比γ*に基づいて変速比の変動を抑制することで、効果的に防止することができる。   As described above, according to the present embodiment, even in a continuous corner where repeated acceleration / deceleration operations are required, it is not necessary to frequently switch between the accelerator pedal and the brake pedal, and the accelerator pedal operation position is appropriately set to the acceleration region and deceleration. By moving between the regions, the acceleration / deceleration of the vehicle can be adjusted with one accelerator pedal, and the operation burden is remarkably reduced. In addition, with regard to frequent fluctuations in the gear ratio (busy feeling) caused by repeated traffic between the acceleration area and the deceleration area of the accelerator pedal, a scene where a relatively large required estimated driving force is required is predicted, It is possible to effectively prevent the change in the gear ratio from being suppressed based on the necessary estimated gear ratio γ * to be realized when the scene arrives before the scene arrives.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述した実施例では、必要推定駆動力が実際に必要とされる場面に至るまでの途中経路において、必要推定駆動力に基づく無段階変速機の変動抑制制御が、過渡状態で、即ちアクセル開度の上昇過程で実行されており、アクセル開度の減少過程では実行されていない。これは、図11に示す先の例で、変速比γ(t0)から最も低い変速比γminを介して変速比γ(t1)に至るようなアクセル開度の減少過程において変速比を変速比γminに向けて低くすることは、燃費の観点で有利であるからである。但し、アクセルペダルの踏み込みが大きく解除されるアクセル開度の減少過程、即ち図11に示す先の例で変速比γ(t1)が所定閾値を超えるようなアクセル開度の減少過程に対しては、変速比γ(t1)が当該所定閾値を上回らないように変速比γを高くすることが抑制されてもよい。   For example, in the above-described embodiment, the variable suppression control of the continuously variable transmission based on the required estimated driving force is performed in a transient state, that is, the accelerator, on the way to the scene where the required estimated driving force is actually required. It is executed in the process of increasing the opening, and is not executed in the process of decreasing the accelerator opening. This is the previous example shown in FIG. 11, in which the gear ratio is changed to the gear ratio γmin in the accelerator opening decreasing process from the gear ratio γ (t0) through the lowest gear ratio γmin to the gear ratio γ (t1). This is because it is advantageous from the viewpoint of fuel consumption. However, for the accelerator opening decreasing process in which the depression of the accelerator pedal is largely released, that is, the accelerator opening decreasing process in which the speed ratio γ (t1) exceeds a predetermined threshold in the previous example shown in FIG. The transmission ratio γ may be suppressed to be high so that the transmission ratio γ (t1) does not exceed the predetermined threshold.

また、上述した実施例では、無段階変速機の変動抑制制御は、所定閾値以上の比較的大きな必要推定駆動力が演算された場合にのみ実行されることとしているが、この場合、当該所定閾値は必ずしも所定値である必要は無く、可変とされてよい。   In the above-described embodiment, the stepless transmission fluctuation suppression control is executed only when a relatively large required estimated driving force equal to or greater than a predetermined threshold value is calculated. Is not necessarily a predetermined value, and may be variable.

また、上述した実施例では、車両の加減速度を車両の前後方向の運動を表わす物理量として採用しているが、車両の加減速度と一対一で対応する他の物理量若しくはそれに関連する他の物理量が代替的に用いられてもよく、又は、車両の加減速度が他の物理量との組み合せで用いられてよい。   In the above-described embodiment, the acceleration / deceleration of the vehicle is adopted as a physical quantity representing the movement of the vehicle in the front-rear direction. However, other physical quantities corresponding to the acceleration / deceleration of the vehicle on a one-to-one basis or other physical quantities related thereto are provided. Alternatively, the acceleration / deceleration of the vehicle may be used in combination with other physical quantities.

また、上述した実施例では、目標加減速度演算装置20により決定される目標加減速度に走行抵抗トルクを加味することで、制動力発生装置及び/又は駆動力発生装置をオープンループで制御しているが、本発明は、車速センサから得られる車速情報に基づいてフィードバック制御を実施することを排除するものではない。目標加減速度が実現されるように車速情報に基づいてフィードバック制御を行うことも有用でありうる。   In the above-described embodiment, the braking force generator and / or the driving force generator is controlled in an open loop by adding the running resistance torque to the target acceleration / deceleration determined by the target acceleration / deceleration calculation device 20. However, the present invention does not exclude performing feedback control based on vehicle speed information obtained from a vehicle speed sensor. It may also be useful to perform feedback control based on vehicle speed information so that the target acceleration / deceleration is achieved.

また、異なる特性パターンの複数のAC-Gマップが用意され、これらが車両走行中の走行環境や、ユーザの選択に応じて適切に切り換えられてもよい。また、このような切り換え時のショックを吸収する(目標加減速度のステップ的な段差を抑制する)ために目標加減速度にフィルタが適用されてもよい(即ち、なましを入れてもよい)。   Also, a plurality of AC-G maps having different characteristic patterns may be prepared, and these may be switched appropriately according to the traveling environment during vehicle traveling and the user's selection. Further, a filter may be applied to the target acceleration / deceleration (that is, annealing may be added) in order to absorb the shock at the time of switching (suppressing a step difference in the target acceleration / deceleration).

本発明による加減速度制御装置の一実施例を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of an acceleration / deceleration control apparatus according to the present invention. 目標加減速度演算装置20の一例を示す機能ブロック図である。3 is a functional block diagram illustrating an example of a target acceleration / deceleration calculation device 20. FIG. AC-Gマップ処理部22で用いられるAC-Gマップの複数例を示す図である。It is a figure which shows the some example of the AC-G map used by the AC-G map process part 22. FIG. ブレーキマネージャ50の一例を示す機能ブロック図である。2 is a functional block diagram illustrating an example of a brake manager 50. FIG. 駆動トルクマネージャ40の一例を示す機能ブロック図である。4 is a functional block diagram illustrating an example of a drive torque manager 40. FIG. 無段階変速機の変速比の通常制御時に用いられてよいエンジン最適燃費線の一例を示す図である。It is a figure which shows an example of the engine optimal fuel consumption line which may be used at the time of the normal control of the gear ratio of a continuously variable transmission. 通常制御時におけるアクセル開度の変化に対する無段階変速機の変速比の変動態様を示すイメージ図である。It is an image figure which shows the fluctuation | variation aspect of the gear ratio of a continuously variable transmission with respect to the change of the accelerator opening at the time of normal control. 本実施例による加減速度制御装置10により実現される特徴的な処理流れを示すフローチャートである。It is a flowchart which shows the characteristic process flow implement | achieved by the acceleration / deceleration control apparatus 10 by a present Example. 図8のフローチャートにおけるステップ105の処理内容の一例を示すフローチャートである。It is a flowchart which shows an example of the processing content of step 105 in the flowchart of FIG. 図8のフローチャートにおけるステップ106の処理内容の一例を示すフローチャートである。It is a flowchart which shows an example of the processing content of step 106 in the flowchart of FIG. 変動抑制制御時におけるアクセル開度の変化に対する無段階変速機の変速比の変動態様を示すイメージ図である。It is an image figure which shows the fluctuation | variation aspect of the gear ratio of a continuously variable transmission with respect to the change of the accelerator opening at the time of fluctuation | variation suppression control. 本実施例による無段階変速機の変速比の変動抑制制御が適用される場面の一例として連続コーナを示す図である。It is a figure which shows a continuous corner as an example of the scene where the fluctuation suppression control of the gear ratio of a continuously variable transmission by a present Example is applied.

符号の説明Explanation of symbols

10 加減速度制御装置
12 アクセル開度センサ
20 目標加減速度演算装置
25 モード選択スイッチ
40 駆動トルクマネージャ
50 ブレーキマネージャ
DESCRIPTION OF SYMBOLS 10 Acceleration / deceleration control device 12 Accelerator opening sensor 20 Target acceleration / deceleration calculation device 25 Mode selection switch 40 Drive torque manager 50 Brake manager

Claims (4)

単一のペダルの操作ストローク内に減速領域と加速領域とを形成し、該ペダルの操作量に応じて制動力発生装置、駆動力発生装置及び無段階変速機を制御して車両の加減速度を制御する加減速度制御装置において、
車両の運転状態及び/又は走行環境に関する情報に基づいて、現在の車両位置よりも前方で必要となる所定値以上の駆動力を必要推定駆動力として推定し、該必要推定駆動力を発生すべき地点よりも手前から、該必要推定駆動力の発生に伴う変速比の変動が抑制されるように無段階変速機の変速制御を行うことを特徴とする、加減速度制御装置。
A deceleration region and an acceleration region are formed within the operation stroke of a single pedal, and the braking force generator, the driving force generator, and the continuously variable transmission are controlled according to the amount of operation of the pedal to control the acceleration / deceleration of the vehicle. In the acceleration / deceleration control device to be controlled,
Based on information related to the driving state and / or traveling environment of the vehicle, a driving force that is greater than a predetermined value required ahead of the current vehicle position is estimated as a required estimated driving force, and the necessary estimated driving force should be generated. An acceleration / deceleration control apparatus for performing a speed change control of a continuously variable transmission so as to suppress a change in a speed change ratio accompanying the generation of the necessary estimated driving force from a point before the point.
前記必要推定駆動力を発生すべき地点よりも手前から、無段階変速機の変速比を低くする方向の変速を抑制する、請求項1に記載の加減速度制御装置。   The acceleration / deceleration control device according to claim 1, wherein a shift in a direction in which a speed ratio of the continuously variable transmission is lowered is suppressed from a position before the point where the necessary estimated driving force is to be generated. 前記無段階変速機の変速比を低くする方向の変速の抑制は、減速領域から加速領域に向けてペダルの操作量が増加する過程に対して実行される、請求項2に記載の加減速度制御装置。   The acceleration / deceleration control according to claim 2, wherein the suppression of the shift in the direction of decreasing the speed ratio of the continuously variable transmission is executed with respect to a process in which the operation amount of the pedal increases from the deceleration region to the acceleration region. apparatus. 無段階変速機の変速制御は、ペダルの操作量に基づいて所定のエンジン最適燃費線に沿うように最適変速比を決定することを含み、
前記無段階変速機の変速比を低くする方向の変速の抑制状態は、前記ペダルの操作量の増加過程において、前記最適変速比が前記必要推定駆動力に対応した変速比を越えた時点で解除される、請求項3に記載の加減速度制御装置。
The shift control of the continuously variable transmission includes determining an optimal gear ratio so as to follow a predetermined engine optimum fuel consumption line based on an operation amount of the pedal,
The state of suppression of shifting in the direction of decreasing the speed ratio of the continuously variable transmission is canceled when the optimum speed ratio exceeds the speed ratio corresponding to the required estimated driving force in the process of increasing the pedal operation amount. The acceleration / deceleration control device according to claim 3.
JP2004371343A 2004-12-22 2004-12-22 Acceleration/deceleration control unit Pending JP2006177442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371343A JP2006177442A (en) 2004-12-22 2004-12-22 Acceleration/deceleration control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371343A JP2006177442A (en) 2004-12-22 2004-12-22 Acceleration/deceleration control unit

Publications (1)

Publication Number Publication Date
JP2006177442A true JP2006177442A (en) 2006-07-06

Family

ID=36731720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371343A Pending JP2006177442A (en) 2004-12-22 2004-12-22 Acceleration/deceleration control unit

Country Status (1)

Country Link
JP (1) JP2006177442A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105511A1 (en) * 2007-03-01 2008-09-04 Toyota Jidosha Kabushiki Kaisha Transmission shift control device
EP2135786A3 (en) * 2008-06-20 2011-01-19 Aisin AW Co., Ltd. Driving support device, driving support method, and driving support program
EP2135790A3 (en) * 2008-06-20 2011-01-19 Aisin AW Co., Ltd. Gear ratio setting device, method, and program
JP2016016801A (en) * 2014-07-10 2016-02-01 本田技研工業株式会社 Travel control device for vehicle
JP2016150672A (en) * 2015-02-18 2016-08-22 本田技研工業株式会社 Vehicular traveling control system
JP2016160865A (en) * 2015-03-03 2016-09-05 マツダ株式会社 Control device for engine
JP2016160864A (en) * 2015-03-03 2016-09-05 マツダ株式会社 Control device for engine
JP2016217292A (en) * 2015-05-22 2016-12-22 マツダ株式会社 Control device of engine
WO2017002557A1 (en) * 2015-06-30 2017-01-05 日立オートモティブシステムズ株式会社 Acceleration and deceleration control device
US9964059B2 (en) 2015-05-22 2018-05-08 Mazda Motor Corporation Control device for engine
US9964060B2 (en) 2015-05-22 2018-05-08 Mazda Motor Corporation Control device for engine
WO2018207870A1 (en) * 2017-05-12 2018-11-15 いすゞ自動車株式会社 Vehicle control device
WO2018207853A1 (en) * 2017-05-12 2018-11-15 いすゞ自動車株式会社 Vehicle control device and vehicle control method
JP2020033884A (en) * 2018-08-27 2020-03-05 日産自動車株式会社 Control method of vehicle and control device
JP2020036426A (en) * 2018-08-29 2020-03-05 日産自動車株式会社 Electric-vehicle control method and electric-vehicle control apparatus
JP2020100320A (en) * 2018-12-24 2020-07-02 本田技研工業株式会社 Vehicle control device
WO2021111802A1 (en) * 2019-12-06 2021-06-10 ジヤトコ株式会社 Control method for transmission and lubricant pressure control valve

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105511A1 (en) * 2007-03-01 2008-09-04 Toyota Jidosha Kabushiki Kaisha Transmission shift control device
JP2008215443A (en) * 2007-03-01 2008-09-18 Toyota Motor Corp Shift control device
EP2135786A3 (en) * 2008-06-20 2011-01-19 Aisin AW Co., Ltd. Driving support device, driving support method, and driving support program
EP2135790A3 (en) * 2008-06-20 2011-01-19 Aisin AW Co., Ltd. Gear ratio setting device, method, and program
US8050834B2 (en) 2008-06-20 2011-11-01 Aisin Aw Co., Ltd. Driving support device, driving support method and driving support program
US8670907B2 (en) 2008-06-20 2014-03-11 Aisin Aw Co., Ltd. Driving support device, driving support method and driving support program
JP2016016801A (en) * 2014-07-10 2016-02-01 本田技研工業株式会社 Travel control device for vehicle
JP2016150672A (en) * 2015-02-18 2016-08-22 本田技研工業株式会社 Vehicular traveling control system
CN105882631A (en) * 2015-02-18 2016-08-24 本田技研工业株式会社 Running control device for vehicles
US9975537B2 (en) 2015-02-18 2018-05-22 Honda Motor Co., Ltd. Running control device for vehicles
JP2016160865A (en) * 2015-03-03 2016-09-05 マツダ株式会社 Control device for engine
JP2016160864A (en) * 2015-03-03 2016-09-05 マツダ株式会社 Control device for engine
US9765704B2 (en) 2015-03-03 2017-09-19 Mazda Motor Corporation Control device for engine
US9964059B2 (en) 2015-05-22 2018-05-08 Mazda Motor Corporation Control device for engine
US9944180B2 (en) 2015-05-22 2018-04-17 Mazda Motor Corporation Control device for engine
US9964060B2 (en) 2015-05-22 2018-05-08 Mazda Motor Corporation Control device for engine
JP2016217292A (en) * 2015-05-22 2016-12-22 マツダ株式会社 Control device of engine
KR102019583B1 (en) 2015-06-30 2019-09-06 히다치 오토모티브 시스템즈 가부시키가이샤 Acceleration / deceleration control device
JPWO2017002557A1 (en) * 2015-06-30 2018-02-22 日立オートモティブシステムズ株式会社 Acceleration / deceleration control device
KR20180022665A (en) * 2015-06-30 2018-03-06 히다치 오토모티브 시스템즈 가부시키가이샤 Acceleration / deceleration control device
WO2017002557A1 (en) * 2015-06-30 2017-01-05 日立オートモティブシステムズ株式会社 Acceleration and deceleration control device
CN107709125B (en) * 2015-06-30 2020-07-10 日立汽车系统株式会社 Acceleration/deceleration control device
CN107709125A (en) * 2015-06-30 2018-02-16 日立汽车系统株式会社 Acceleration/deceleration control device
US10137872B2 (en) 2015-06-30 2018-11-27 Hitachi Automotive Systems, Ltd. Acceleration/deceleration control apparatus
CN110621918A (en) * 2017-05-12 2019-12-27 五十铃自动车株式会社 Vehicle control device
US10975961B2 (en) 2017-05-12 2021-04-13 Isuzu Motors Limited Vehicle control device and vehicle control method
WO2018207853A1 (en) * 2017-05-12 2018-11-15 いすゞ自動車株式会社 Vehicle control device and vehicle control method
JP2018194051A (en) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 Vehicle control device
US11022212B2 (en) 2017-05-12 2021-06-01 Isuzu Motors Limited Vehicle control device
WO2018207870A1 (en) * 2017-05-12 2018-11-15 いすゞ自動車株式会社 Vehicle control device
JP2020033884A (en) * 2018-08-27 2020-03-05 日産自動車株式会社 Control method of vehicle and control device
JP7458698B2 (en) 2018-08-27 2024-04-01 日産自動車株式会社 Vehicle control method and control device
JP2020036426A (en) * 2018-08-29 2020-03-05 日産自動車株式会社 Electric-vehicle control method and electric-vehicle control apparatus
JP7351076B2 (en) 2018-08-29 2023-09-27 日産自動車株式会社 Electric vehicle control method and electric vehicle control device
CN111361548A (en) * 2018-12-24 2020-07-03 本田技研工业株式会社 Vehicle control system
US11318945B2 (en) 2018-12-24 2022-05-03 Honda Motor Co., Ltd. Vehicle control system
JP2020100320A (en) * 2018-12-24 2020-07-02 本田技研工業株式会社 Vehicle control device
WO2021111802A1 (en) * 2019-12-06 2021-06-10 ジヤトコ株式会社 Control method for transmission and lubricant pressure control valve

Similar Documents

Publication Publication Date Title
JP2006177442A (en) Acceleration/deceleration control unit
RU2594059C2 (en) Interaction with driver related to economical automatic maintenance of speed
KR101601889B1 (en) Method and module for controlling a vehicle&#39;s speed based on rules and/or costs
US7308961B2 (en) Vehicle cruise control device and method
JP5026381B2 (en) Acceleration / deceleration control device
KR101572997B1 (en) Module and method pertaining to mode choice when determining reference values
JP4710529B2 (en) Travel control device
RU2493026C2 (en) Module for definition of reference magnitudes for vehicle control system
KR101601890B1 (en) Method and module for determining of at least one reference value for a vehicle control system
KR101604063B1 (en) Method and module for determining of at least one reference value for a vehicle control system
JP2007187090A (en) Speed-maintaining control device
JP2007099125A (en) Deceleration controller for vehicle
KR20140107587A (en) Method and module for controlling a vehicle&#39;s speed based on rules and/or costs
KR101618453B1 (en) one-pedal driving control method of electric car
JP4301162B2 (en) Acceleration / deceleration controller
JP2007276542A (en) Traveling control device for vehicle
KR20160032250A (en) Driver interaction pertaining to reference-speed-regulating cruise control
JP2008081118A (en) Apparatus and method for controlling automobile
KR20190142369A (en) Method and control apparatus for determining a control profile of a vehicle
KR101713725B1 (en) Apparatus and method for controlling driving mode of vehicle
JP4243155B2 (en) Method and apparatus for limiting vehicle speed
JP2006137324A (en) Acceleration/deceleration controller
JP2006151020A (en) Acceleration/deceleration controller
US11623642B2 (en) Travel controller
JP4158764B2 (en) Acceleration / deceleration controller