JP2006176399A - Phillipsite-type-zeolite membrane and its manufacturing method - Google Patents

Phillipsite-type-zeolite membrane and its manufacturing method Download PDF

Info

Publication number
JP2006176399A
JP2006176399A JP2005344634A JP2005344634A JP2006176399A JP 2006176399 A JP2006176399 A JP 2006176399A JP 2005344634 A JP2005344634 A JP 2005344634A JP 2005344634 A JP2005344634 A JP 2005344634A JP 2006176399 A JP2006176399 A JP 2006176399A
Authority
JP
Japan
Prior art keywords
phi
membrane
zeolite
film
zeolite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005344634A
Other languages
Japanese (ja)
Other versions
JP4820631B2 (en
Inventor
Yoshimichi Kiyozumi
嘉道 清住
Yasuhisa Hasegawa
泰久 長谷川
Takako Nagase
多加子 長瀬
Fujio Mizukami
富士夫 水上
Masayoshi O
王  正宝
Hironobu Shirataki
浩伸 白瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Kasei Corp
Priority to JP2005344634A priority Critical patent/JP4820631B2/en
Publication of JP2006176399A publication Critical patent/JP2006176399A/en
Application granted granted Critical
Publication of JP4820631B2 publication Critical patent/JP4820631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phillipsite (PHI)-zeolite membrane formed on a porous base material such as alumina, and to provide its manufacturing method and its uses. <P>SOLUTION: The zeolite membrane, which is formed on a supporting base material, has a structure of a phillipsite (PHI) membrane formed on the supporting base material, and has characteristics of high hydrophilicity and high acid resistance. The manufacturing method and the uses, such as a separation membrane, of the zeolite membrane are provided. By the manufacturing method, a new phillipsite membrane can be synthesized, so that a PHI membrane preferably usable for industrial uses as a membrane reactor or a catalyst membrane, which performs not only separation and concentration of gas and liquid but catalytic reactions simultaneously, is synthesized and provided. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、ゼオライト膜に関するものであり、更に詳しくは、そのゼオライト膜が支持体上に製膜されたフィリップサイト(Phillipsite、PHI:英文字3文字で表記)膜であり、高親水性及び高耐酸性の特性を有することを特徴とするフィリップサイト型ゼオライト膜、その合成方法及び分離膜等の用途に関するものである。本発明は、特に、耐酸性が要求される系で好適に使用することが可能な新規PHI膜に関する新技術・新製品を提供するものである。   The present invention relates to a zeolite membrane, and more particularly, a Philipsite (PHI: written in English three letters) membrane in which the zeolite membrane is formed on a support. The present invention relates to a use of a Philippine type zeolite membrane characterized by having acid resistance characteristics, a synthesis method thereof, a separation membrane and the like. In particular, the present invention provides a new technology and a new product related to a novel PHI film that can be suitably used in a system that requires acid resistance.

ゼオライトは、規則的に配列したミクロ孔を有し、一般に、耐熱性が高く、化学的にも安定なものが数多く得られることから、様々な分野で利用されている。このゼオライトは、その骨格構造が、Siの一部がAlに置換したアルミノシリケートであり、分子オーダー(3−10Å程度)の細孔を有し、立体選択的な吸着作用を持つことより、モレキュラーシーブ(分子ふるい)としての機能を有する。数十種類の天然に産出するゼオライトの他に、これまでに、150種類以上のゼオライトが合成されており、固体酸触媒、分離吸着剤、及びイオン交換剤等の分野で幅広く用いられている。   Zeolites have regularly arranged micropores, and are generally used in various fields because many heat resistant and chemically stable materials can be obtained. This zeolite is an aluminosilicate in which a part of Si is substituted with Al, has a pore of molecular order (about 3-10Å), and has a stereoselective adsorption action. It functions as a sieve (molecular sieve). In addition to dozens of naturally occurring zeolites, more than 150 types of zeolites have been synthesized so far and are widely used in fields such as solid acid catalysts, separated adsorbents, and ion exchangers.

このゼオライトは、可塑性に乏しいため、膜化する場合、ほとんどの場合は水熱合成法により、基板上にゼオライト膜を合成している。すなわち、大量の水とアルミニウム源、シリカ源、アルカリ金属、アミン類などの有機結晶化調整剤を適宜目的の生成物のゼオライト組成になるように調合し、オートクレーブ等の圧力容器にそれらを封じ込めて、アルミナやムライトなどの多孔質基板やチューブを共存させて加熱することにより、それらの基板上にゼオライト膜を合成している。   Since this zeolite is poor in plasticity, when it is formed into a film, in most cases, the zeolite film is synthesized on a substrate by a hydrothermal synthesis method. That is, a large amount of water and an organic crystallization regulator such as an aluminum source, a silica source, an alkali metal, and amines are appropriately formulated so as to have a desired zeolite composition, and they are sealed in a pressure vessel such as an autoclave. A zeolite membrane is synthesized on these substrates by heating in the presence of a porous substrate or tube such as alumina or mullite.

これまでに、例えば、MFI、MEL、LTA、ANA、CHA、FAU、SOD、MOR、ERI、BEA、LTL、DDRといったゼオライト膜が合成されており、それぞれのゼオライトの性質(例えば、細孔径・親和性)から、分離対象を適宜選択している。また、先行文献には、ゼオライト種結晶を塗布した後、更に、水熱合成することにより欠陥のないゼオライト膜を合成する方法が開示されており(特許文献1)、また、これらの手法で合成されたゼオライト膜は、気体又は液体混合物からの分離・濃縮などに利用されることが開示されている(特許文献2)。   So far, for example, zeolite membranes such as MFI, MEL, LTA, ANA, CHA, FAU, SOD, MOR, ERI, BEA, LTL, DDR have been synthesized, and the properties of each zeolite (for example, pore size / affinity) The separation target is appropriately selected. In addition, the prior literature discloses a method of synthesizing a zeolite membrane having no defect by hydrothermal synthesis after applying a zeolite seed crystal (Patent Document 1). The disclosed zeolite membrane is disclosed to be used for separation / concentration from a gas or liquid mixture (Patent Document 2).

近年、ゼオライト膜の合成技術の向上により、蒸留法に代る分離法として実用化された例として、A型ゼオライトの親水性を利用したアルコール水溶液からの水選択透過による、アルコールの濃縮方法などがある(特許文献3)。このA型ゼオライトは、耐酸性が、他の高シリカ型ゼオライトと比較して劣るため(酸と接触するとその構造が破壊される)、酸性の混合物と水の分離には使用することが困難であるという課題があった。そこで、T型ゼオライト(特許文献4)、モルデナイトやシリカライトなどの高シリカ型ゼオライト膜による分離・濃縮が提案されている。   As an example of practical use as a separation method instead of the distillation method due to the improvement of zeolite membrane synthesis technology in recent years, there is a method for concentrating alcohol by selective permeation of water from an aqueous alcohol solution utilizing the hydrophilicity of A-type zeolite. Yes (Patent Document 3). This type A zeolite is inferior in acid resistance to other high silica type zeolites (its structure is destroyed when it comes into contact with an acid), so it is difficult to use it for separation of an acidic mixture from water. There was a problem that there was. Therefore, separation / concentration using a T-type zeolite (Patent Document 4), a high silica type zeolite membrane such as mordenite and silicalite has been proposed.

特開2003−159518号公報JP 2003-159518 A 特開2003−144871号公報JP 2003-144871 A 特許第3431973号明細書Japanese Patent No. 3431973 特開2000−042387号公報JP 2000-042387 A

このような状況下にあって、本発明者らは、これまでに報告されていないPHI(フィリップサイト:酸素8員環構造を有し、3.8×3.8Å:[100], 3.0×4.3Å[010], 3.3×3.2Å[001]の細孔径)膜に着目し、PHI膜を開発すべく、鋭意検討を行った結果、基材上にPHI膜を製膜することに成功し、本発明を完成するに至った。本発明は、従来、合成された例がない、高耐酸性を有する親水性PHIゼオライト膜を合成し、提供することを目的とするものである。   Under such circumstances, the present inventors have not yet reported PHI (Phillipsite: having an oxygen 8-membered ring structure, 3.8 × 3.8 mm: [100], 3. As a result of diligent research to develop a PHI film, focusing on the 0 × 4.3 mm [010] and 3.3 × 3.2 mm [001] pore diameter), the PHI film was manufactured on the substrate. We succeeded in forming a film, and completed the present invention. An object of the present invention is to synthesize and provide a hydrophilic PHI zeolite membrane having high acid resistance, which has not been synthesized conventionally.

また、本発明は、PHIゼオライト膜を合成するにあたり、アルミナなどの多孔質チューブ管や平板の内側と外側、あるいは上下に製膜するゼオライトの種類を任意に変えることにより、親和性及び構造が異なるゼオライト膜を合成し、提供することを目的とするものである。更に、本発明は、気体又は液体混合物からの分離・濃縮と同時に、反応を行える触媒膜として使用できるゼオライト膜及びその合成法を提供することを目的とするものである。   Further, in the synthesis of the PHI zeolite membrane, the affinity and structure of the PHI zeolite membrane are different by arbitrarily changing the kind of zeolite to be formed on the inner and outer sides of porous tube tubes such as alumina or on the upper and lower sides, or on the upper and lower sides. The object is to synthesize and provide a zeolite membrane. Furthermore, an object of the present invention is to provide a zeolite membrane that can be used as a catalyst membrane capable of performing a reaction simultaneously with separation / concentration from a gas or liquid mixture, and a synthesis method thereof.

上記課題を解決するための本発明は、支持体基材上に製膜されたゼオライト膜において、その構造が支持体上に形成されたフィリップサイト(PHI)膜であり、高親水性及び高耐酸性の特性を有することを特徴とするゼオライト膜、である。本ゼオライト膜は、(1)基材が、金属及び/又は金属酸化物基材であること、(2)基材が、アルミナ、ムライト、ジルコニア、又はSUSの多孔質基材であること、(3)PHI膜が、空気を透過しない非透過性を有すること、を好ましい態様としている。また、本発明は、上記の高親水性及び高耐酸性ゼオライト膜から成ることを特徴とする分離膜、である。本分離膜は、脱水用親水性ゼオライト膜であること、を好ましい態様としている。また、本発明は、上記の高親水性及び高耐酸性ゼオライト膜から成ることを特徴とする分離と反応を同時に行うことができるメンブレンリアクター、である。   The present invention for solving the above-mentioned problems is a Philipsite (PHI) membrane having a structure formed on a support in a zeolite membrane formed on a support substrate, and has a high hydrophilicity and a high acid resistance. A zeolite membrane characterized by having a property of In the present zeolite membrane, (1) the substrate is a metal and / or metal oxide substrate, (2) the substrate is an alumina, mullite, zirconia, or SUS porous substrate, 3) It is a preferable aspect that the PHI membrane has non-permeability that does not transmit air. The present invention also provides a separation membrane comprising the above highly hydrophilic and highly acid-resistant zeolite membrane. The separation membrane is preferably a hydrophilic zeolite membrane for dehydration. The present invention also provides a membrane reactor capable of simultaneously performing separation and reaction, characterized by comprising the above-mentioned highly hydrophilic and highly acid-resistant zeolite membrane.

また、本発明は、PHI組成を持つ原料溶液を用いて、水熱合成法によりゼオライトに転換する手法又はアルミノシリケートゲルを水蒸気処理によってゼオライトに転換する手法により、支持体基材上にPHIゼオライト膜を製膜することを特徴とするゼオライト膜の製造方法、である。また、本発明は、PHI組成を持つ原料溶液を用いて作製した、種晶を多孔質支持体基材に塗布した後、水熱合成法によりゼオライトに転換する手法又はアルミノシリケートゲルを水蒸気処理によってゼオライトに転換する手法により、多孔質支持体基材上にPHIゼオライト膜を製膜することを特徴とするゼオライト膜の製造方法、である。本方法は、(1)種晶を二次成長させて連続膜とすること、(2)PHI膜の合成後に、膜の表面処理を行うこと、(3)膜の表面処理を、アルカリ水溶液処理、研磨処理、又は超音波処理により行うことで、膜表面に余分に存在するPHI結晶、非晶質ゲル、及び/又は他の結晶相を取り除くこと、を好ましい態様としている。   In addition, the present invention provides a PHI zeolite membrane on a support substrate by using a raw material solution having a PHI composition and converting it to zeolite by a hydrothermal synthesis method or converting aluminosilicate gel to zeolite by steam treatment. Is a method for producing a zeolite membrane, characterized by comprising: In addition, the present invention is a method in which a seed crystal prepared by using a raw material solution having a PHI composition is applied to a porous support substrate and then converted into zeolite by a hydrothermal synthesis method or an aluminosilicate gel is subjected to steam treatment. A method for producing a zeolite membrane, characterized in that a PHI zeolite membrane is formed on a porous support base material by a technique for conversion to zeolite. This method includes (1) secondary growth of seed crystals to form a continuous film, (2) surface treatment of the film after synthesis of the PHI film, and (3) surface treatment of the film by alkaline aqueous solution treatment. It is preferable to remove PHI crystals, amorphous gel, and / or other crystal phases that are excessively present on the film surface by performing polishing treatment or ultrasonic treatment.

次に、本発明について更に詳細に説明する。
本発明者らは、上記の目的に適合するPHIゼオライト膜合成法について鋭意検討した結果、多孔質支持体基材(多孔質支持体又は支持体と記載することがある)に、あらかじめ水熱合成法により合成したPHI結晶を種晶として塗布し、その後、多孔質支持体ごとオートクレーブ中に移し、水熱合成法により多孔質支持体上の種晶を二次成長させることにより比較的簡単にPHI膜を得ることに成功した。すなわち、本発明は、PHI構造を有する膜を多孔質支持体上に製膜したゼオライト膜を提供するものである。
Next, the present invention will be described in more detail.
As a result of intensive studies on a PHI zeolite membrane synthesis method suitable for the above-mentioned purpose, the present inventors previously synthesized a hydrothermal synthesis on a porous support substrate (sometimes referred to as a porous support or a support). The PHI crystal synthesized by the method is applied as a seed crystal, then transferred to the autoclave together with the porous support, and the seed crystal on the porous support is secondarily grown by the hydrothermal synthesis method. Succeeded in obtaining a membrane. That is, the present invention provides a zeolite membrane in which a membrane having a PHI structure is formed on a porous support.

次に、本発明の好適な実施の形態について説明する。なお、本発明において、数値範囲の記載は、両端の値のみならず、その範囲の中に含まれる全ての任意の中間の値を含むものである。本発明において、多孔質支持体基材としては、例えば、アルミナ、ムライト、ジルコニア、ステンレススチール及びアルミニウムを代表とする金属あるいは合金製の多孔質支持体基材が例示され、具体的には、例えば、陽極酸化膜多孔質支持体やそれと同等ないし類似の特性を持つ支持体などが例示される。また、その形態としては、好ましくは平均細孔径が0.1〜10ミクロンを有する多孔質であり、例えば、管状、平板状、円盤状又は角板形状などの多孔質支持体があげられるが、これらに制限されるものではなく、任意の多孔質及び形状の支持体を使用することができる。これらの支持体の表面の洗浄方法としては、例えば、水洗い、超音波洗浄などが例示されるが、好ましくは水による1〜10分の超音波洗浄により、支持体表面を洗浄する方法が例示される。   Next, a preferred embodiment of the present invention will be described. In the present invention, the description of a numerical range includes not only the values at both ends but also any arbitrary intermediate value included in the range. In the present invention, as the porous support substrate, for example, a porous support substrate made of a metal or an alloy represented by alumina, mullite, zirconia, stainless steel, and aluminum is exemplified. Specifically, for example, Examples thereof include an anodized film porous support and a support having the same or similar characteristics. The form is preferably a porous material having an average pore diameter of 0.1 to 10 microns, for example, a porous support such as a tubular shape, a flat plate shape, a disk shape, or a square plate shape. However, the present invention is not limited to these, and any porous and shaped support can be used. Examples of the method for cleaning the surface of the support include water washing and ultrasonic cleaning. Preferably, the method of cleaning the surface of the support by ultrasonic cleaning with water for 1 to 10 minutes is exemplified. The

本発明においては、水熱合成法により前述の多孔質支持体にゼオライトを製膜する。その際に、PHI(又はフォージャサイトなど)の種晶を多孔質支持体に擦り込んだ後、再度、水熱合成あるいは水蒸気処理により、種晶を二次成長させて強固な連続膜にしたり、あるいは、PHI結晶が支持体表面に配されている膜にする。この水熱合成には、適当な容器、例えば、耐圧容器が使用される。   In the present invention, a zeolite is formed on the porous support by the hydrothermal synthesis method. At that time, after rubbing the seed crystal of PHI (or faujasite, etc.) on the porous support, the seed crystal is secondarily grown by hydrothermal synthesis or steam treatment to form a strong continuous film. Alternatively, a film in which PHI crystals are arranged on the surface of the support is used. For this hydrothermal synthesis, a suitable vessel, for example, a pressure vessel is used.

本発明において、PHI膜の合成条件としては、PHI組成を持つ原料溶液を用いる。出発原料として、水及び水酸化カリウム又は水酸化ナトリウム、アルミナ、コロイダルシリカなどを用いて、0.5−3NaO(又はKO) : Al :2−10 SiO :20−300 HO のモル組成(好ましくは、2−2.5NaO (又はKO): Al :4−5SiO : 80−100HO)になるように出発原料を調製する。 In the present invention, a raw material solution having a PHI composition is used as a PHI film synthesis condition. Using water and potassium hydroxide or sodium hydroxide, alumina, colloidal silica, etc. as starting materials, 0.5-3Na 2 O (or K 2 O): Al 2 O 3 : 2-10 SiO 2 : 20- The starting material is prepared so as to have a molar composition of 300 H 2 O (preferably 2-2.5Na 2 O (or K 2 O): Al 2 O 3 : 4-5SiO 2 : 80-100H 2 O). .

このアルミナ源としては、市販の活性アルミナやベーマイト、塩化アルミニウム、アルミン酸ナトリウムなど適当なアルミナ原料であれば適宜使用可能である。シリカ源としては、コロイダルシリカや水ガラス、市販粉末シリカ、ヒュームドシリカ、アルコキシドなど適当なシリカ原料であれば適宜使用可能である。アルカリ源としては、KOH、NaOHなどが使用できる。この出発原料を、オートクレーブなどの圧力容器内に移し、80〜200℃で3時間以上、好ましくは100〜120℃では5〜7日間、150〜200℃では4〜12時間、水熱合成することによりPHI結晶を得ることができる。   As the alumina source, any suitable alumina raw material such as commercially available activated alumina, boehmite, aluminum chloride, or sodium aluminate can be used as appropriate. As the silica source, any suitable silica raw material such as colloidal silica, water glass, commercially available powdered silica, fumed silica, and alkoxide can be used as appropriate. As the alkali source, KOH, NaOH or the like can be used. This starting material is transferred into a pressure vessel such as an autoclave and hydrothermally synthesized at 80 to 200 ° C. for 3 hours or longer, preferably 100 to 120 ° C. for 5 to 7 days, and 150 to 200 ° C. for 4 to 12 hours. Thus, a PHI crystal can be obtained.

本発明では、前述のように、多孔質支持基材にPHI結晶を種晶として塗布するが、ここで、塗布とは、擦り込み及び/又は水に分散させたものをディップコートなどにより外表面に塗布すること及びそれらと同等の方法を意味する。その後、2−2.5KO (又はNaO):Al: 2−4SiO : 80−100HOのモル組成に調整した溶液にて、150〜200℃で3−20時間水熱合成処理を行うことで種晶を二次成長させて膜厚2〜100μm好ましくは膜厚5〜50μm程度の連続膜とすることができる。 In the present invention, as described above, the PHI crystal is applied as a seed crystal to the porous support substrate. Here, the coating is applied to the outer surface by rubbing and / or dispersing in water on the outer surface by dip coating or the like. It means applying and equivalent methods. Then, in a solution adjusted to a molar composition of 2-2.5K 2 O (or Na 2 O): Al 2 O 3 : 2-4SiO 2 : 80-100H 2 O, 150 to 200 ° C. for 3 to 20 hours By performing hydrothermal synthesis treatment, the seed crystal is secondarily grown to form a continuous film having a thickness of 2 to 100 μm, preferably about 5 to 50 μm.

PHIは、その骨格構造から、酸素8員環を有し(3.8×3.8Å:[100], 3.0×4.3Å[010], 3.3×3.2Å[001]:Atlas of Zeolite Framework Types, IZA,Ch.Baerlocher, W.M.Meier, D.H.Olson, ELSEVIER編)、Si/Al比=1.5前後であり、親水性である。本発明のPHI膜は、その3次元細孔構造と比較的小さな細孔径を有することから、低分子ガス、例えば、COとCHの分離に好適に使用することが可能であり、また、PHI膜は、Si/Al比から親水性膜であることから、水/アルコール分離にも応用できるし、耐薬品性もLTAやFAU型ゼオライトに比較して優れていることから、例えば、酢酸濃縮などの分離プロセスへの応用が可能である。本発明のフィリップサイト型ゼオライト膜は、高性能・高選択な液体及び気体分離膜に応用可能であり、特に、耐酸性の脱水膜として使用できる。また、このPHI膜は、分離と反応を同時に行える触媒膜、メンブレンリアクターなどとして利用できる。本発明のPHI膜は、特に、耐酸性が要求される系で好適に使用できる利点を有する。 PHI has an oxygen 8-membered ring due to its skeleton structure (3.8 × 3.8 ×: [100], 3.0 × 4.3 × [010], 3.3 × 3.2Å [001]: Atlas of Zeolite Framework Types, IZA, Ch. Baerlocher, WMMeier, DHOlson, ELSEVIER), Si / Al ratio is around 1.5 and is hydrophilic. Since the PHI membrane of the present invention has a three-dimensional pore structure and a relatively small pore diameter, it can be suitably used for the separation of low molecular gases such as CO 2 and CH 4 . Since the PHI membrane is a hydrophilic membrane from the Si / Al ratio, it can be applied to water / alcohol separation, and its chemical resistance is superior to that of LTA and FAU type zeolites. Application to separation processes such as is possible. The philipsite-type zeolite membrane of the present invention can be applied to high-performance and highly selective liquid and gas separation membranes, and can be used particularly as an acid-resistant dehydration membrane. Moreover, this PHI membrane can be used as a catalyst membrane, a membrane reactor, etc. that can perform separation and reaction simultaneously. The PHI film of the present invention has an advantage that it can be suitably used particularly in a system that requires acid resistance.

本発明では、PHI膜の合成後に、膜の表面処理を行うことで、膜表面に余分に存在するPHI結晶、非晶質ゲル部分、及び/又は他の結晶相(例えば、チャバサイト、モルデナイト等)を取り除くことが好ましい。この場合、表面処理の手段としては、例えば、NaOH等のアルカリ水溶液による方法、適宜の研磨材又は手段による研磨方法、超音波による方法等が例示されるが、これらに制限されるものではなく、任意の方法及び手段により、膜の表面処理を行うことができる。上記表面処理により、膜の分離性能を向上させることができる。   In the present invention, after the synthesis of the PHI film, the surface treatment of the film is performed, so that PHI crystals, amorphous gel portions, and / or other crystal phases (for example, chabasite, mordenite, etc.) that are excessively present on the film surface are present. ) Is preferably removed. In this case, examples of the surface treatment include, but are not limited to, for example, a method using an alkaline aqueous solution such as NaOH, a polishing method using an appropriate abrasive or means, a method using ultrasonic waves, and the like. The membrane can be surface treated by any method and means. By the surface treatment, the separation performance of the membrane can be improved.

本発明により、次のような効果が奏される。
(1)現在までに報告されていないPHI膜を多孔質支持体上に合成した高耐酸性の特性を有する親水性PHIゼオライト膜を提供できる。
(2)高耐酸性の特性を有する親水性ゼオライト膜の合成方法を提供できる。
(3)本発明のPHIゼオライト膜は、例えば、耐酸性の脱水膜、分離膜、分離と反応を同時に行えるメンブレンリアクター、及び触媒膜等として利用できる。
(4)これまでに知られていない高耐酸性の特性を有する親水性PHIゼオライト膜を提供できる。
(5)本発明のPHIゼオライト膜は、高い水分離性能を有し、酸性条件下での分離膜として好適に使用することができる。
(6)脱水精製プロセス、蒸留プロセスに、PHIゼオライト膜による分離手段を併用することにより、熱源や設備の省コスト化が実現できる。
The present invention has the following effects.
(1) It is possible to provide a hydrophilic PHI zeolite membrane having a high acid resistance property by synthesizing a PHI membrane that has not been reported so far on a porous support.
(2) A method for synthesizing a hydrophilic zeolite membrane having high acid resistance can be provided.
(3) The PHI zeolite membrane of the present invention can be used as, for example, an acid-resistant dehydration membrane, a separation membrane, a membrane reactor capable of performing separation and reaction simultaneously, and a catalyst membrane.
(4) It is possible to provide a hydrophilic PHI zeolite membrane having a high acid resistance characteristic that has not been known so far.
(5) The PHI zeolite membrane of the present invention has high water separation performance and can be suitably used as a separation membrane under acidic conditions.
(6) By using a separation means using a PHI zeolite membrane in combination with the dehydration purification process and the distillation process, the cost of the heat source and equipment can be reduced.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、PHI種晶の合成と二次成長を行った。イオン交換水99.0gにNaOH(和光純薬(株)製)1.53gを加えて、完全に溶解した。更に、この溶液にKOH(和光純薬(株)製)1.90gを加えて、完全に溶解するまで攪拌した。次に、これにアルミン酸ナトリウム(関東化学(株)製)12.6gを加えて、完全に溶解するまで攪拌した。この溶液を、Cataloid SI−30(触媒化成(株)製、コロイダルシリカ、SiO:30wt%、HO:70wt%)67.0gに徐々に加えて均一なゲル溶液を得た。 In this example, PHI seed crystals were synthesized and secondary grown. To 99.0 g of ion-exchanged water, 1.53 g of NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added and completely dissolved. Further, 1.90 g of KOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution and stirred until it was completely dissolved. Next, 12.6 g of sodium aluminate (manufactured by Kanto Chemical Co., Inc.) was added thereto and stirred until it was completely dissolved. This solution, Cataloid SI-30 (Shokubai Kasei Co., Ltd., colloidal silica, SiO 2: 30wt%, H 2 O: 70wt%) was obtained gradually added to a homogeneous gel solution 67.0 g.

このゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、100℃で7日間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。生成物を100℃で24時間乾燥した後、粉末X線回折を行ったところ、PHIの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。   The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (inner volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 100 ° C. for 7 days. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7. The product was dried at 100 ° C. for 24 hours and then subjected to powder X-ray diffraction. As a result, the diffraction pattern of PHI (Edited by Collection of Simulated XRD Powder Patterns for Zeolites, MMJ Treacy and JB Higgins, IZA, ISBN 044507027, ELSEVIER p230, 231 (2001)).

次に、このようにして得られたPHI種晶を、乳鉢で1〜2分程度すり潰した後、ムライトチューブ(ニッカトー(株)製、PMチューブ、Al=65%、SiO=33%、平均細孔径1.8ミクロン、かさ密度1.70g/cc、気孔率44.7%、外径6ミリ、内径3ミリ、長さ80ミリ)外表面に塗布した。塗布後、ムライトチューブをSUS製のオートクレーブ(内容積120cc)内にテフロン(登録商標)製の治具に固定して縦方向に設置した。水ガラス(小宗化学、3号SiO 28%, NaO 9〜10%)と塩化アルミニウム6水和物(ナカライ)をアンモニアで共沈、洗浄して調製したSi/Al=2のモル比に調製した含水酸化物をNaOH水溶液に2.5NaO: Al:4SiO:80HO のモル組成となる様に混合して調製した溶液をこのオートクレーブ内に移し、200℃で3時間半温風式オーブン内で静置して水熱処理した。なお、ムライトチューブの外側のみにフィリップサイトを被覆するために、ムライトチューブの両端をテフロン(登録商標)テープで閉じた。 Next, the PHI seed crystal thus obtained was ground in a mortar for about 1 to 2 minutes, and then mullite tube (manufactured by Nikkato Co., Ltd., PM tube, Al 2 O 3 = 65%, SiO 2 = 33). %, Average pore diameter 1.8 microns, bulk density 1.70 g / cc, porosity 44.7%, outer diameter 6 mm, inner diameter 3 mm, length 80 mm). After the application, the mullite tube was fixed in a Teflon (registered trademark) jig in a SUS autoclave (internal volume 120 cc) and installed in the vertical direction. Si / Al = 2 mole prepared by co-precipitation with water and washing aluminum chloride hexahydrate (Nacalai) with water glass (Koso Chemical, No. 3 SiO 2 28%, Na 2 O 9-10%) A solution prepared by mixing the hydrated oxide prepared in a ratio with a NaOH aqueous solution so as to have a molar composition of 2.5Na 2 O: Al 2 O 3 : 4SiO 2 : 80H 2 O was transferred into this autoclave, and 200 ° C. And left for 3 hours in a warm air oven for hydrothermal treatment. Note that both ends of the mullite tube were closed with Teflon (registered trademark) tape in order to cover only the outside of the mullite tube with the lip site.

種晶を塗布する方法としては、乾式でPHI種晶をキムワイプなどの紙や各種不織布などで擦り込んでもよいし、素手で擦り込んでもよい。また、PHI種晶を水などの溶液に入れた懸濁液を用いてムライトチューブ外表面にDip−coatしてもよい。上記の水熱処理をチューブ固定の向きの上下を変えて二度行った後、オートクレーブを水冷した後、ムライトチューブを取り出し、十分に水洗した。次に、100℃で24時間乾燥した後、60℃で24時間乾燥した。このようにして合成したPHI膜をトールシール(ニラコ(株)製)で片端を封止し、もう一方の側から0.2MPaの圧力で空気を送り込み、ムライトチューブを水の中に浸して、空気によるリーク試験を行ったところ、乾燥後の膜では、空気が透過しなかった。また、水熱処理後にオートクレーブ内の底部にPHI結晶ができていることを確認した。   As a method for applying the seed crystal, the dry PHI seed crystal may be rubbed with paper such as Kimwipe or various non-woven fabrics, or rubbed with bare hands. Alternatively, a dip-coat may be applied to the outer surface of the mullite tube using a suspension in which a PHI seed crystal is placed in a solution such as water. After performing the above hydrothermal treatment twice while changing the direction of tube fixation, the autoclave was cooled with water, and then the mullite tube was taken out and thoroughly washed with water. Next, after drying at 100 degreeC for 24 hours, it dried at 60 degreeC for 24 hours. The PHI membrane synthesized in this way was sealed at one end with a toll seal (manufactured by Niraco Co., Ltd.), air was fed from the other side at a pressure of 0.2 MPa, the mullite tube was immersed in water, When a leak test using air was performed, air did not permeate through the dried film. It was also confirmed that PHI crystals were formed at the bottom in the autoclave after the hydrothermal treatment.

以下、使用した試薬については、特にことわりがない場合は、実施例1と同じものを使用した。塩化アルミニウム6水和物(ナカライ)水溶液を撹拌しながら、これに水ガラス(小宗化学、3号SiO 28%, NaO 9〜10%)を徐々に加え、Si/Al=2のモル比にとなる様に混合した後、撹拌しながらアンモニアを添加して、生じた沈殿物を濾過/洗浄し、含水酸化物を調製した。Si/Al=2のモル比に調製した含水酸化物をNaOH水溶液に2.5NaO: Al:4SiO:83HOのモル組成となる様に混合して均一なゲル溶液を得た。 Hereinafter, the same reagents as used in Example 1 were used unless otherwise specified. While stirring an aqueous solution of aluminum chloride hexahydrate (Nacalai), water glass (Koso Chemical, No. 3, SiO 2 28%, Na 2 O 9-10%) was gradually added thereto, and Si / Al = 2 After mixing at a molar ratio, ammonia was added with stirring, and the resulting precipitate was filtered / washed to prepare a hydrous oxide. A hydrous oxide prepared to a molar ratio of Si / Al = 2 is mixed with a NaOH aqueous solution so as to have a molar composition of 2.5Na 2 O: Al 2 O 3 : 4SiO 2 : 83H 2 O to obtain a uniform gel solution. Obtained.

このゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、200℃で4時間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。生成物を60℃で24時間乾燥した後、粉末X線回折を行ったところ、PHIの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。   The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (internal volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 200 ° C. for 4 hours. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7. The product was dried at 60 ° C. for 24 hours and then subjected to powder X-ray diffraction. As a result, the diffraction pattern of PHI (Edited by Collection of Simulated XRD Powder Patterns for Zeolites, MMJTreacy and JBHiggins, IZA, ISBN 044507027, ELSEVIER p230, 231 (2001)).

次に、このようにして得られたPHI種晶を、ムライトチューブに擦り込んだ後、種晶合成に用いたものと同様に調製した溶液にて、実施例1と同様に、3時間半水熱処理を行った。水熱処理後、実施例1と同様に、ムライトチューブを乾燥し、空気が透過しないことを確認した。また、チューブ表面、断面の走査型電子顕微鏡観察によって20〜30μm厚のPHI膜の生成を確認した。   Next, after the PHI seed crystals thus obtained were rubbed into a mullite tube, the solution prepared in the same manner as that used for seed crystal synthesis was used for 3 hours and a half in the same manner as in Example 1. Heat treatment was performed. After the hydrothermal treatment, in the same manner as in Example 1, the mullite tube was dried, and it was confirmed that air did not permeate. Moreover, the production | generation of 20-30 micrometers thick PHI film | membrane was confirmed by the scanning electron microscope observation of the tube surface and a cross section.

イオン交換水70.0gにアルミン酸ナトリウム(関東化学(株)製)8.6gを加えて完全に溶解するまで攪拌した。次に、イオン交換水20.0gにNaOH(和光純薬(株)製)6gを加えて完全に溶解し、前述のアルミン酸ナトリウム水溶液に添加して均一になるまで攪拌した。次に、この溶液に、Cataloid SI−30 40.0gを徐々に加えて均一なゲル溶液を得た。このゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、150℃で6時間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。   8.6 g of sodium aluminate (manufactured by Kanto Chemical Co., Inc.) was added to 70.0 g of ion-exchanged water and stirred until it was completely dissolved. Next, 6 g of NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) 6 g was added to 20.0 g of ion-exchanged water and completely dissolved, added to the aqueous sodium aluminate solution and stirred until uniform. Next, 40.0 g of Cataloid SI-30 was gradually added to this solution to obtain a uniform gel solution. The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (internal volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 150 ° C. for 6 hours. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7.

生成物を60℃で24時間乾燥した後、粉末X線回折を行ったところ、FAUの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。次に、このようにして得られたFAU種晶を、ムライトチューブに擦り込んだ後、実施例2と同様に、200℃で19時間半水熱処理を行い、実施例2と同様に、PHI膜の生成を確認した。   The product was dried at 60 ° C. for 24 hours and then subjected to powder X-ray diffraction. FAU diffraction patterns (Collection of Simulated XRD Powder Patterns for Zeolites, MMJTreacy and JBHiggins, edited by IZA, ISBN 044507027, ELSEVIER p230, 231 (2001)). Next, the FAU seed crystal thus obtained was rubbed into a mullite tube and then subjected to a hydrothermal treatment at 200 ° C. for 19 hours and a half as in Example 2. As in Example 2, a PHI film Confirmed the generation of.

実施例2と同様にして得られたPHI種結晶をムライトチューブに擦り込んだ後、実施例1と同様に、3時間半、更に、チューブの上下を変えて2時間半、水熱処理を行った。実施例2と同様に、PHI膜の生成を確認した。   After the PHI seed crystal obtained in the same manner as in Example 2 was rubbed into a mullite tube, the hydrothermal treatment was carried out for 3 hours and a half, and further, for 2.5 hours by changing the top and bottom of the tube, as in Example 1. . As in Example 2, the formation of a PHI film was confirmed.

実施例3と同様にして得られたFAU種結晶をムライトチューブに擦り込んだ後、実施例1と同様に、3時間半水熱処理を行った。実施例2と同様に、PHI膜の生成を確認した。また、前述の方法以外に、種晶として市販のPHI/FAU(フォージャサイト)ゼオライトを使用できる。これらの種晶を前記出発原料中に存在させることにより、合成時間を短縮することができることを確認した。   The FAU seed crystal obtained in the same manner as in Example 3 was rubbed into a mullite tube and then subjected to hydrothermal treatment for 3 and a half hours in the same manner as in Example 1. As in Example 2, the formation of a PHI film was confirmed. In addition to the method described above, commercially available PHI / FAU (Faujasite) zeolite can be used as seed crystals. It was confirmed that the synthesis time can be shortened by the presence of these seed crystals in the starting material.

実施例4で得られたPHI膜の浸透気化法(PV法)による分離特性を調べた。供給液にはエタノール90wt%の水溶液を用いて、75℃で測定した結果、透過流束(Q)= 1.12kg/m・h、分離係数α(HO/EtOH)=631であった。このことから、本発明で得られたPHI膜は水選択透過膜であることが明らかとなった。更に、耐薬品性を調べる目的で、PHI種晶、FAU(フォージャサイト、Y型及びX型)を0.5g採り、0.1Nの塩酸水溶液で85℃・1時間及び10wt%のNaOH水溶液で室温・7日間処理した後、水洗・乾燥した各種ゼオライト試料の粉末X線回折を測定したところ、PHIは、他のゼオライトに比較してピーク強度の低下やピークブロードが観察されなかったことから、耐薬品性に優れていることがわかった。同様にして、PHI膜が高耐薬品性を有していることを確認した。 The separation characteristics of the PHI membrane obtained in Example 4 by the pervaporation method (PV method) were examined. As a result of measuring at 75 ° C. using an aqueous solution of 90 wt% ethanol as the feed solution, the permeation flux (Q) = 1.12 kg / m 2 · h and the separation factor α (H 2 O / EtOH) = 631. It was. From this, it became clear that the PHI membrane obtained in the present invention is a water permselective membrane. Furthermore, for the purpose of investigating chemical resistance, 0.5 g of PHI seed crystals and FAU (Faujasite, Y-type and X-type) were taken, and a 0.1N hydrochloric acid aqueous solution at 85 ° C. for 1 hour and a 10 wt% NaOH aqueous solution. When X-ray powder diffraction was measured for various zeolite samples that had been treated at room temperature for 7 days, washed with water, and dried, PHI showed no reduction in peak intensity or peak broadening compared to other zeolites. The chemical resistance was found to be excellent. Similarly, it was confirmed that the PHI film has high chemical resistance.

PHIゼオライト膜を用いて、浸透気化法により水/エタノール分離能の評価を行った。
(1)実験方法
膜作製については、ニッカトー製6mmφ×3〜5cmのムライトチューブに予め合成した、例えば、種結晶を塗布し、二次成長させて、ゼオライト膜を作製した。PV測定については、40℃一定でエタノール3wt%溶液を供給液として攪拌し、製膜したチューブを垂直に浸液して行った。分離係数(α=HO/EtOH)は、透過側の蒸気圧の安定化後、数時間にわたってトラップされた透過液の総量をGC−TCDによって分析した値から計算した。
Using a PHI zeolite membrane, water / ethanol separation ability was evaluated by pervaporation.
(1) Experimental method For membrane preparation, a zeolite membrane was prepared by, for example, applying a seed crystal synthesized in advance to a 6 mmφ × 3-5 cm mullite tube manufactured by Nikkato, and performing secondary growth. The PV measurement was performed by stirring at a constant temperature of 40 ° C. using a 3 wt% ethanol solution as a supply liquid, and vertically immersing the formed tube. The separation factor (α = H 2 O / EtOH) was calculated from the value analyzed by GC-TCD for the total amount of permeate trapped over several hours after stabilization of the vapor pressure on the permeate side.

(2)結果
上記条件で作製したゼオライト膜の膜厚は、20〜50μmであり、膜の粒子サイズは1〜5μm径前後であり、膜表面のEDX分析によると、Si/Al比は2.5〜3.0の範囲であった。PV測定に先立って、ゼオライト粉末の平衡状態での水吸着量を調べた結果、I型(Langmuir型)の吸着等温線が得られた。膜の水/エタノール分離係数(α値)及びFlux(Q)のPV測定結果(Q値)は、6.6及び0.01であった。測定時の透過側の蒸気圧は10〜15PaでQ値に対応していた。
(2) Results The film thickness of the zeolite membrane produced under the above conditions is 20 to 50 μm, the particle size of the membrane is around 1 to 5 μm, and according to EDX analysis of the membrane surface, the Si / Al ratio is 2. It was in the range of 5-3.0. Prior to PV measurement, the amount of water adsorbed in the equilibrium state of the zeolite powder was examined. As a result, an adsorption isotherm of type I (Langmuir type) was obtained. The water / ethanol separation factor (α value) of the membrane and the PV measurement result (Q value) of Flux (Q) were 6.6 and 0.01. The vapor pressure on the permeation side at the time of measurement was 10-15 Pa, corresponding to the Q value.

(PHI種晶の合成方法)
PHI種晶の合成は、以下のようにして行った。イオン交換水99.0gにNaOH(和光純薬(株)製)1.53gを加えて、完全に溶解した。更に、この溶液にKOH(和光純薬(株)製)1.90gを加えて、完全に溶解するまで攪拌した。次に、これにアルミン酸ナトリウム(関東化学(株)製)12.6gを加えて、完全に溶解するまで攪拌した。この溶液を、Cataloid SI−30(触媒化成(株)製、コロイダルシリカ、SiO:30wt%、HO:70wt%)67.0gに徐々に加えて均一なゲル溶液を得た。
(Method for synthesizing PHI seed crystal)
The PHI seed crystal was synthesized as follows. To 99.0 g of ion-exchanged water, 1.53 g of NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added and completely dissolved. Further, 1.90 g of KOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution and stirred until it was completely dissolved. Next, 12.6 g of sodium aluminate (manufactured by Kanto Chemical Co., Inc.) was added thereto and stirred until it was completely dissolved. This solution, Cataloid SI-30 (Shokubai Kasei Co., Ltd., colloidal silica, SiO 2: 30wt%, H 2 O: 70wt%) was obtained gradually added to a homogeneous gel solution 67.0 g.

上記ゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、100℃で7日間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。生成物を100℃で24時間乾燥した後、粉末X線回折を行ったところ、PHIの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。   The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (internal volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 100 ° C. for 7 days. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7. The product was dried at 100 ° C. for 24 hours and then subjected to powder X-ray diffraction. As a result, the diffraction pattern of PHI (Edited by Collection of Simulated XRD Powder Patterns for Zeolites, MMJ Treacy and JB Higgins, IZA, ISBN 044507027, ELSEVIER p230, 231 (2001)).

(PHI種晶の固定方法及び二次成長方法)
次に、このようにして得られたPHI種晶を、乳鉢で1〜2分程度すり潰した後、ムライトチューブ(ニッカトー(株)製、PMチューブ、Al=65%、SiO=33%、平均細孔径1.8ミクロン、かさ密度1.70g/cc、気孔率44.7%、外径6ミリ、内径3ミリ、長さ80ミリ)外表面に塗布した。種晶を塗布する方法としては、乾式でPHI種晶をキムワイプなどの紙や各種不織布などで擦り込んでもよいし、素手で擦り込んでもよい。また、PHI種晶を水などの溶液に入れた懸濁液を用いてムライトチューブ外表面にDip−coatしてもよい。塗布後、ムライトチューブをSUS製のオートクレーブ(内容積120cc)内にテフロン(登録商標)製の治具に固定して縦方向に設置した。
(PHI seed crystal fixing method and secondary growth method)
Next, the PHI seed crystal thus obtained was ground in a mortar for about 1 to 2 minutes, and then mullite tube (manufactured by Nikkato Co., Ltd., PM tube, Al 2 O 3 = 65%, SiO 2 = 33). %, Average pore diameter 1.8 microns, bulk density 1.70 g / cc, porosity 44.7%, outer diameter 6 mm, inner diameter 3 mm, length 80 mm). As a method for applying the seed crystal, the dry PHI seed crystal may be rubbed with paper such as Kimwipe or various non-woven fabrics, or rubbed with bare hands. Alternatively, a dip-coat may be applied to the outer surface of the mullite tube using a suspension in which a PHI seed crystal is placed in a solution such as water. After the application, the mullite tube was fixed in a Teflon (registered trademark) jig in a SUS autoclave (internal volume 120 cc) and installed in the vertical direction.

アルミン酸ナトリウム(NaAlO:ナカライテスク、特級)9.0gをイオン交換水50.0gに溶解し、約20分攪拌して、完全に溶解させた。この溶液に、NaOH(和光純薬、特級)1.0gをイオン交換水10.0gに予め溶解させておいたNaOH水溶液を加えた。更に、イオン交換水10.0gを加えた後、コロイダルシリカ(Cataloid−SI−30:触媒化成(株)製)40.0gを少量づつ滴加し、約20分攪拌することにより、均一なゲル溶液得た。 9.0 g of sodium aluminate (NaAlO 2 : Nacalai Tesque, special grade) was dissolved in 50.0 g of ion-exchanged water and stirred for about 20 minutes to completely dissolve it. To this solution, an aqueous NaOH solution in which 1.0 g of NaOH (Wako Pure Chemicals, special grade) was dissolved in 10.0 g of ion-exchanged water in advance was added. Further, after adding 10.0 g of ion-exchanged water, 40.0 g of colloidal silica (Cataloid-SI-30: produced by Catalytic Chemical Co., Ltd.) is added in small portions and stirred for about 20 minutes to obtain a uniform gel. A solution was obtained.

このゲル溶液をオートクレーブ内に移し、150℃で6時間温風式オーブン内で静置して水熱処理した。なお、ムライトチューブの外側のみにPHIを被覆するために、ムライトチューブの両端をテフロン(登録商標)テープで封止した。オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄した。次に、これを空気中で24時間乾燥した。このようにして合成したPHI膜をトールシール(ニラコ(株)製)で片端を封止し、もう一方の側から0.2MPaの圧力で空気を送り込み、ムライトチューブを水の中に浸して、空気によるリーク試験を行ったところ、乾燥後の膜では、空気が透過しなかった。また、PHI種晶を二次成長させたムライトチューブ外表面のX線回折測定(XRD)を行ったところ、ムライトの回折パターンとPHIの回折パターンが得られたことから、外表面はPHI膜のみで覆われていることがわかった。また、チューブ表面、断面の走査型電子顕微鏡(SEM)観察の結果、膜厚は約10−12μmであった。図3に、6時間二次成長させたPHI膜表面のSEM像を示す。   This gel solution was transferred into an autoclave and left to stand in a warm air oven at 150 ° C. for 6 hours for hydrothermal treatment. In order to coat PHI only on the outside of the mullite tube, both ends of the mullite tube were sealed with Teflon (registered trademark) tape. After the autoclave was cooled with water, the mullite tube was taken out and washed with ion-exchanged water. This was then dried in air for 24 hours. The PHI membrane synthesized in this way was sealed at one end with a toll seal (manufactured by Niraco Co., Ltd.), air was fed from the other side at a pressure of 0.2 MPa, the mullite tube was immersed in water, When a leak test using air was performed, air did not permeate through the dried film. In addition, when the X-ray diffraction measurement (XRD) of the outer surface of the mullite tube in which the PHI seed crystal was secondary grown was performed, a mullite diffraction pattern and a PHI diffraction pattern were obtained. It was found that it was covered with. As a result of observation of the tube surface and cross section by a scanning electron microscope (SEM), the film thickness was about 10-12 μm. FIG. 3 shows an SEM image of the surface of the PHI film grown for 6 hours.

(浸透気化法による分離性能の評価)
次に、このようにして得られたPHI膜の浸透気化法による分離特性を調べた。供給液にはエタノール90wt%の水溶液を用いて、40℃で測定を行った。膜を装置に装着後、浸透気化分離を開始してから1時間半後から透過液の回収を始めた。その後、2時間までの透過流束をQ1、分離係数をα1とし、4時間までの透過流束をQ2、分離係数をα2とした。
(Evaluation of separation performance by pervaporation method)
Next, the separation characteristics of the PHI membrane thus obtained by the pervaporation method were examined. Measurement was performed at 40 ° C. using an aqueous solution of 90 wt% ethanol as the supply solution. After the membrane was attached to the apparatus, the permeate collection was started 1 hour and a half after the start of pervaporation separation. Thereafter, the permeation flux up to 2 hours was Q1, the separation factor was α1, the permeation flux up to 4 hours was Q2, and the separation factor was α2.

なお、透過流束(Q)は、膜面積(m)、1時間当たり(h)の透過量(kg):kg/m・hとし、分離係数(α)は、供給液に対する透過液の重量%濃度の比とした(HO/EtOH)。その結果、Q1=0.54kg/m・h、α1=455、Q2=0.47kg/m・h、α2=630であった。 The permeation flux (Q) is the membrane area (m 2 ), the permeation amount (kg) per hour (h): kg / m 2 · h, and the separation factor (α) is the permeation liquid with respect to the supply liquid. (H 2 O / EtOH). As a result, Q1 = 0.54 kg / m 2 · h, α1 = 455, Q2 = 0.47 kg / m 2 · h, and α2 = 630.

(二次成長時間の影響)
二次成長時間を150℃で8時間とした以外は、PHI種晶の合成方法、固定方法及び二次成長方法は、実施例8と全く同様に行った。水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄した。その後、空気中で24時間乾燥した。この膜も、外表面がPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約8−10μmであった。表面には、ゲル状の生成物も確認された。
(Influence of secondary growth time)
The PHI seed crystal synthesis method, fixing method, and secondary growth method were the same as in Example 8, except that the secondary growth time was 8 hours at 150 ° C. After completion of hydrothermal synthesis, the autoclave was cooled with water, the mullite tube was taken out, and the mullite tube was washed with ion-exchanged water. Thereafter, it was dried in air for 24 hours. This film also confirmed by an XRD pattern that the outer surface was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 8-10 μm. A gel-like product was also confirmed on the surface.

図4に、8時間二次成長させたPHI膜表面のSEM像を示す。実施例8と同様に、この二次成長時間を150℃で8時間としたPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.42kg/m・h、α1=20、Q2=0.46kg/m・h、α2=18であった。実施例8に比較して、Q及びαが低かったのは、ゲル状の生成物が膜表面に生成したためと考えられる。 FIG. 4 shows an SEM image of the surface of the PHI film that has been subjected to secondary growth for 8 hours. As in Example 8, the evaluation of the separation performance by the pervaporation method of the PHI membrane with the secondary growth time of 8 hours at 150 ° C. was performed. As a result, Q1 = 0.42 kg / m 2 · h, α1 = 20 Q2 = 0.46 kg / m 2 · h and α2 = 18. The reason why Q and α were lower than in Example 8 is considered to be that a gel-like product was generated on the film surface.

二次成長時間を150℃で12時間とした以外は、PHI種晶の合成方法、固定方法及び二次成長方法は、実施例8と全く同様に行った。水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄した。その後、空気中で24時間乾燥した。この膜も、外表面がPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約15−18μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が集合した形態をしていた。   The PHI seed crystal synthesis method, fixing method, and secondary growth method were the same as in Example 8 except that the secondary growth time was 12 hours at 150 ° C. After completion of hydrothermal synthesis, the autoclave was cooled with water, the mullite tube was taken out, and the mullite tube was washed with ion-exchanged water. Thereafter, it was dried in air for 24 hours. This film also confirmed by an XRD pattern that the outer surface was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 15-18 μm. The surface had almost no gel-like product and was in the form of aggregated spherical crystals.

図5に、12時間二次成長させたPHI膜表面のSEM像を示す。実施例8と同様に、この二次成長時間を150℃で12時間としたPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.28kg/m・h、α1=750、Q2=0.30kg/m・h、α2=1060であった。 FIG. 5 shows an SEM image of the surface of the PHI film that has been subjected to secondary growth for 12 hours. In the same manner as in Example 8, the separation performance was evaluated by the pervaporation method of the PHI membrane in which the secondary growth time was 12 hours at 150 ° C. As a result, Q1 = 0.28 kg / m 2 · h, α1 = 750 Q2 = 0.30 kg / m 2 · h, and α2 = 1060.

二次成長時間を150℃で24時間とした以外は、PHI種晶の合成方法、固定方法及び二次成長方法は、実施例8と全く同様に行った。水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄した。その後、空気中で24時間乾燥した。この膜も、外表面がPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約35−40μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が緻密に集合した形態をしていた。   The PHI seed crystal synthesis method, fixing method, and secondary growth method were the same as in Example 8 except that the secondary growth time was 24 hours at 150 ° C. After completion of hydrothermal synthesis, the autoclave was cooled with water, the mullite tube was taken out, and the mullite tube was washed with ion-exchanged water. Thereafter, it was dried in air for 24 hours. This film also confirmed by an XRD pattern that the outer surface was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 35-40 μm. The surface had almost no gel-like product and had a form in which spherical crystals were densely assembled.

図6に、24時間二次成長させたPHI膜表面のSEM像を示す。実施例8と同様に、この二次成長時間を150℃で24時間としたPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.24kg/m・h、α1=4500以上、Q2=0.24kg/m・h、α2=4500以上であった。 FIG. 6 shows an SEM image of the surface of the PHI film that has been subjected to secondary growth for 24 hours. As in Example 8, the separation performance was evaluated by the pervaporation method of the PHI membrane in which the secondary growth time was 24 hours at 150 ° C. As a result, Q1 = 0.24 kg / m 2 · h, α1 = 4500 As described above, Q2 = 0.24 kg / m 2 · h and α2 = 4500 or more.

(膜洗浄方法及び水浸漬の影響)
実施例8の手法で、PHI膜を合成した。ただし、150℃で6時間の水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄する際、すすぎと浸漬を3回繰り返した。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約8−10μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が集合した形態をしていた。
(Effect of membrane cleaning method and water immersion)
A PHI film was synthesized by the method of Example 8. However, after completion of hydrothermal synthesis at 150 ° C. for 6 hours, the autoclave was cooled with water, and then the mullite tube was taken out, and when the mullite tube was washed with ion-exchanged water, rinsing and immersion were repeated three times. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 8-10 μm. The surface had almost no gel-like product and was in the form of aggregated spherical crystals.

更に、浸透気化法による分離性能の評価を行う前に、イオン交換水に約1時間浸漬してから装置に装着した。その後、実施例8と同様に、このPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.29kg/m・h、α1=4500以上、Q2=0.35kg/m・h、α2=4500以上であった。実施例8と比較すると、Qは減少するものの、αは格段に改善されることがわかった。 Further, before the separation performance was evaluated by the pervaporation method, it was immersed in ion-exchanged water for about 1 hour and then attached to the apparatus. After that, as in Example 8, the separation performance of this PHI membrane was evaluated by the pervaporation method. As a result, Q1 = 0.29 kg / m 2 · h, α1 = 4500 or more, Q2 = 0.35 kg / m 2 H, α2 = 4500 or more. As compared with Example 8, it was found that although Q was decreased, α was remarkably improved.

実施例9の手法で、PHI膜を合成した。ただし、150℃で8時間の水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出しイオン交換水でムライトチューブを洗浄する際、すすぎと浸漬を3回繰り返した。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約10−12μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が集合した形態をしていた。   A PHI film was synthesized by the method of Example 9. However, after completion of hydrothermal synthesis at 150 ° C. for 8 hours, the autoclave was cooled with water, and then the mullite tube was taken out and rinsed and immersed three times when the mullite tube was washed with ion-exchanged water. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 10-12 μm. The surface had almost no gel-like product and was in the form of aggregated spherical crystals.

更に、浸透気化法による分離性能の評価を行う前に、イオン交換水に約1時間浸漬してから装置に装着した。その後、実施例9と同様に、このPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.33kg/m・h、α1=4500以上、Q2=0.39kg/m・h、α2=4500以上であった。実施例9と比較すると、Qは減少するものの、αは格段に改善されることがわかった。 Further, before the separation performance was evaluated by the pervaporation method, it was immersed in ion-exchanged water for about 1 hour and then attached to the apparatus. Thereafter, as in Example 9, the separation performance of the PHI membrane was evaluated by the pervaporation method. As a result, Q1 = 0.33 kg / m 2 · h, α1 = 4500 or more, Q2 = 0.39 kg / m 2 H, α2 = 4500 or more. As compared with Example 9, it was found that although Q was decreased, α was remarkably improved.

実施例10の手法で、PHI膜を合成した。ただし、150℃で12時間の水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄する際、すすぎと浸漬を3回繰り返した。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約15−18μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が集合した形態をしていた。   A PHI film was synthesized by the method of Example 10. However, after completion of hydrothermal synthesis at 150 ° C. for 12 hours, the autoclave was cooled with water, and then the mullite tube was taken out, and when the mullite tube was washed with ion-exchanged water, rinsing and immersion were repeated three times. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 15-18 μm. The surface had almost no gel-like product and was in the form of aggregated spherical crystals.

更に、浸透気化法による分離性能の評価を行う前に、イオン交換水に約1時間浸漬してから装置に装着した。その後、実施例10と同様に、このPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.38kg/m・h、α1=4500以上、Q2=0.32kg/m・h、α2=4500以上であった。実施例10と比較すると、Q、αともに格段に改善されることがわかった。 Further, before the separation performance was evaluated by the pervaporation method, it was immersed in ion-exchanged water for about 1 hour and then attached to the apparatus. Thereafter, as in Example 10, the separation performance of this PHI membrane was evaluated by the pervaporation method. As a result, Q1 = 0.38 kg / m 2 · h, α1 = 4500 or more, Q2 = 0.32 kg / m 2 H, α2 = 4500 or more. Compared to Example 10, it was found that both Q and α were significantly improved.

実施例11の手法で、PHI膜を合成した。ただし、150℃で24時間の水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄する際、すすぎと浸漬を3回繰り返した。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約35−40μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が緻密に集合した形態をしていた。   A PHI film was synthesized by the method of Example 11. However, after completion of hydrothermal synthesis at 150 ° C. for 24 hours, the autoclave was cooled with water, and then the mullite tube was taken out and rinsed and immersed three times when the mullite tube was washed with ion-exchanged water. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 35-40 μm. The surface had almost no gel-like product and had a form in which spherical crystals were densely assembled.

更に、浸透気化法による分離性能の評価を行う前に、イオン交換水に約1時間浸漬してから装置に装着した。その後、実施例11と同様に、このPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.27kg/m・h、α1=4500以上、Q2=0.32kg/m・h、α2=4500以上であった。実施例11と比較すると、Qが格段に改善されることがわかった。 Further, before the separation performance was evaluated by the pervaporation method, it was immersed in ion-exchanged water for about 1 hour and then attached to the apparatus. Thereafter, as in Example 11, the separation performance of this PHI membrane was evaluated by the pervaporation method. As a result, Q1 = 0.27 kg / m 2 · h, α1 = 4500 or more, Q2 = 0.32 kg / m 2 H, α2 = 4500 or more. As compared with Example 11, it was found that Q was remarkably improved.

このように、PHI膜合成後の洗浄方法及び浸透気化分離前の膜表面の処理の方法を変えるだけで、その分離性能が大きく変化することが明らかとなった。このことは、親水性膜であるPHI膜の場合、合成時間の短い場合(実施例8及び9、10)は、膜を構成するPHI結晶以外に、非晶質ゲル部分や他の結晶相(PHIの場合、チャバサイトやモルデナイトが混晶しやすい)が混入するため、より高性能な分離性能を得るためには、これらの影響を取り除く必要があることを意味している。   As described above, it has been clarified that the separation performance greatly changes only by changing the washing method after the PHI membrane synthesis and the membrane surface treatment method before the pervaporation separation. This is because, in the case of a PHI film which is a hydrophilic film, when the synthesis time is short (Examples 8 and 9, 10), in addition to the PHI crystal constituting the film, an amorphous gel portion or other crystal phase ( In the case of PHI, chabasite and mordenite tend to be mixed), which means that these effects need to be removed in order to obtain higher performance separation performance.

なお、上記実施例で、XRDパターンにはこれらの混晶が見られなかったのは、その重量が5%以下であったためと思われる(XRDには、主相であるPHIのみが観測された)。事実、実施例8及び9では、膜表面のSEM観察からは、PHI結晶以外に、非晶質ゲルが観測された。   In the above examples, these mixed crystals were not observed in the XRD pattern because the weight was 5% or less (only PHI as the main phase was observed in XRD). ). In fact, in Examples 8 and 9, from the SEM observation of the film surface, an amorphous gel was observed in addition to the PHI crystal.

実施例11の手法で、PHI膜を合成した。ただし、150℃で24時間の水熱合成終了後、オートクレーブを水冷した後、ムライトチューブを取り出し、イオン交換水でムライトチューブを洗浄する際、すすぎのみを1度だけ行い、イオン交換水への浸漬は行わなかった。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約35−40μmであった。表面は、ゲル状の生成物はほとんどなく、球状の結晶が緻密に集合した形態をしていた。   A PHI film was synthesized by the method of Example 11. However, after completion of hydrothermal synthesis at 150 ° C. for 24 hours, the autoclave is cooled with water, the mullite tube is taken out, and when the mullite tube is washed with ion-exchanged water, it is rinsed only once and immersed in ion-exchanged water. Did not. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 35-40 μm. The surface had almost no gel-like product and had a form in which spherical crystals were densely assembled.

図7に、洗浄なしのPHI膜表面のSEM像を示す。浸透気化法による分離性能の評価をする際は、60℃で24時間乾燥を行った。その結果、Q1=0.22kg/m・h、α1=290、Q2=0.17kg/m・h、α2=350であった。実施例4に比較して、Q及びαが低下した。 FIG. 7 shows an SEM image of the PHI film surface without cleaning. When evaluating the separation performance by the pervaporation method, drying was performed at 60 ° C. for 24 hours. As a result, Q1 = 0.22 kg / m 2 · h, α1 = 290, Q2 = 0.17 kg / m 2 · h, and α2 = 350. Compared to Example 4, Q and α decreased.

(NaOH水溶液処理)
実施例11の手法で、PHI膜を合成した。すなわち、二次成長条件を150℃で24時間とした。その後、膜を0.1NのNaOH水溶液に3時間浸漬し、最後はイオン交換水に24時間浸漬した。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約35−40μmであった。表面は、ゲル状の生成物はほとんどなく、実施例11の膜とほぼ同様の球状の結晶が緻密に集合した形態をしていた。また、膜を処理したNaOH水溶液中には、膜表面から剥がれ落ちたと思われる固形物があった。この固形物は、粉末XRD解析の結果、非晶質ハローピークを含んだPHIであることがわかった。このように、NaOH水溶液処理によって、膜表面のPHI及び支持体であるムライトが剥離・溶解することがわかった。
(NaOH aqueous solution treatment)
A PHI film was synthesized by the method of Example 11. That is, the secondary growth condition was set at 150 ° C. for 24 hours. Thereafter, the membrane was immersed in an aqueous 0.1N NaOH solution for 3 hours, and finally immersed in ion-exchanged water for 24 hours. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 35-40 μm. The surface had almost no gel-like product and had a form in which spherical crystals almost the same as the film of Example 11 were densely assembled. Moreover, in the NaOH aqueous solution which processed the film | membrane, there existed the solid substance which seems to have peeled off from the film | membrane surface. As a result of powder XRD analysis, this solid was found to be PHI containing an amorphous halo peak. Thus, it was found that PHI on the film surface and mullite as a support were peeled and dissolved by the NaOH aqueous solution treatment.

図8に、0.1N−NaOH水溶液処理後のPHI膜表面のSEM像を示す。実施例8と同様に、このNaOH水溶液処理したPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.28kg/m・h、α1=24、Q2=0.30kg/m・h、α2=40であった。実施例4と比較すると、αが2桁低下した。 FIG. 8 shows an SEM image of the surface of the PHI film after the treatment with the 0.1N NaOH aqueous solution. As in Example 8, the separation performance of the PHI membrane treated with aqueous NaOH was evaluated by the pervaporation method. As a result, Q1 = 0.28 kg / m 2 · h, α1 = 24, Q2 = 0.30 kg / m 2 · h, α2 = 40. Compared to Example 4, α decreased by two orders of magnitude.

(歯ブラシによる膜表面研磨処理)
実施例11の手法で、PHI膜を合成した。すなわち、二次成長条件を150℃で24時間とした。その後、200mLのイオン交換水中で市販の歯ブラシを用いてPHI膜表面を磨いた。膜の外表面はPHI結晶のみで覆われていることをXRDパターンにより確認した。SEM観察の結果から、膜厚は約25―30μmであり、実施例11の膜厚に比べるとやや薄くなっていた。表面は、ゲル状の生成物はほとんどなく、実施例11の膜で観察された球状集合体が平滑になっていた。また、膜を処理したイオン交換水中には、膜表面から剥がれ落ちたと思われる固形物があった。この固形物は、粉末XRD解析の結果、PHI結晶であることがわかった。このように、歯ブラシによる膜表面研磨処理によって、膜表面のPHI膜が一部剥離することがわかった。
(Film surface polishing with toothbrush)
A PHI film was synthesized by the method of Example 11. That is, the secondary growth condition was set at 150 ° C. for 24 hours. Thereafter, the surface of the PHI membrane was polished using a commercially available toothbrush in 200 mL of ion exchange water. The XRD pattern confirmed that the outer surface of the film was covered only with PHI crystals. From the result of SEM observation, the film thickness was about 25-30 μm, which was slightly thinner than the film thickness of Example 11. The surface had almost no gel-like product, and the spherical aggregates observed in the film of Example 11 were smooth. Moreover, in the ion-exchange water which processed the film | membrane, there existed the solid substance which seems to have peeled off from the film | membrane surface. As a result of powder XRD analysis, this solid was found to be PHI crystals. Thus, it was found that the PHI film on the film surface was partly peeled off by the film surface polishing treatment with a toothbrush.

図9に、歯ブラシ研磨後のPHI膜表面のSEM像を示す。実施例8と同様に、この歯ブラシによる膜表面研磨処理したPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.24kg/m・h、α1=3860、Q2=0.19kg/m・h、α2=3360であった。実施例11と比較しても、Q及びαは、遜色のない良好な結果が得られた。このように、膜表面に余分に存在するPHI結晶を取り除いても、分離性能にはほとんど影響を及ぼさないことがわかった。 FIG. 9 shows an SEM image of the surface of the PHI film after toothbrush polishing. As in Example 8, as a result of evaluating the separation performance of the PHI membrane subjected to membrane surface polishing treatment with this toothbrush by the pervaporation method, Q1 = 0.24 kg / m 2 · h, α1 = 3860, Q2 = 0. It was 19 kg / m 2 · h and α2 = 3360. Even when compared with Example 11, good results were obtained in which Q and α were not inferior. Thus, it was found that even if PHI crystals existing on the surface of the membrane were removed, the separation performance was hardly affected.

(サンドペーパーによる膜表面研磨処理)
実施例11の手法で、PHI膜を合成した。すなわち、二次成長条件を150℃で24時間とした。その後、膜表面のPHI結晶を更に強制的に剥離することを目的として、市販の1000番のサンドペーパーを用いてPHI膜表面を磨いた。サンドペーパーを膜の外径に沿って丸め、上下30往復させることで、外表面のPHI結晶を剥離させた。SEM観察の結果から、膜表面はPHI特有の球状集合体の結晶が削ぎ落とされた様子が観察された。
(Membrane surface polishing with sandpaper)
A PHI film was synthesized by the method of Example 11. That is, the secondary growth condition was set at 150 ° C. for 24 hours. Thereafter, for the purpose of further forcibly peeling the PHI crystal on the surface of the film, the surface of the PHI film was polished using a commercially available No. 1000 sandpaper. The PHI crystal on the outer surface was peeled off by rolling the sandpaper along the outer diameter of the membrane and reciprocating up and down 30 times. From the result of SEM observation, it was observed that the crystal of the spherical aggregate peculiar to PHI was scraped off on the film surface.

図10に、サンドペーパー研磨後のPHI膜表面のSEM像を示す。実施例8と同様に、このサンドペーパーによる膜表面研磨処理したPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.22kg/m・h、α1=1450、Q2=0.22kg/m・h、α2=3000であった。実施例11と比較しても、Q及びαは遜色のない良好な結果が得られた。このように、実施例18と同様に膜表面に余分に存在するPHI結晶を取り除いても、分離性能にはほとんど影響を及ぼさないことがわかった。 FIG. 10 shows an SEM image of the PHI film surface after sandpaper polishing. As in Example 8, the separation performance of the PHI membrane that had been subjected to membrane surface polishing treatment with sandpaper was evaluated by the pervaporation method. As a result, Q1 = 0.22 kg / m 2 · h, α1 = 1450, Q2 = 0 .22 kg / m 2 · h, α2 = 3000. Even when compared with Example 11, good results were obtained in which Q and α were not inferior. Thus, it was found that the separation performance was hardly affected even if PHI crystals existing on the membrane surface were removed as in Example 18.

(超音波処理による膜表面処理)
実施例11の手法で、PHI膜を合成した。すなわち、二次成長条件を150℃で24時間とした。その後、ビーカーに200mLのイオン交換水を採り、ビーカー内にこのPHI膜を浸し、市販の500Wの超音波洗浄機(アズワン、US−4型)を用いて、1時間超音波処理を施した。SEM観察の結果から、膜表面はPHI特有の球状集合体の結晶が削ぎ落とされ、平滑な表面になっている様子が観察された。また、膜表面には、巨視的なひび割れが観察された。
(Film surface treatment by ultrasonic treatment)
A PHI film was synthesized by the method of Example 11. That is, the secondary growth condition was set at 150 ° C. for 24 hours. Thereafter, 200 mL of ion exchange water was taken into the beaker, the PHI membrane was immersed in the beaker, and subjected to ultrasonic treatment for 1 hour using a commercially available 500 W ultrasonic cleaner (As One, US-4 type). From the results of SEM observation, it was observed that the spherical surface crystals peculiar to PHI were scraped off and the surface of the film was smooth. Further, macroscopic cracks were observed on the film surface.

図11に、超音波処理後のPHI膜表面のSEM像を示す。実施例8と同様に、この超音波処理を行ったPHI膜の浸透気化法による分離性能の評価を行った結果、Q1=0.28kg/m・h、α1=4500以上、Q2=0.32kg/m・h、α2=4500以上であった。実施例11と比較しても、Q及びαは、遜色のない良好な結果が得られた。このように、実施例19と同様に、膜表面に余分に存在するPHI結晶を取り除いても、分離性能にはほとんど影響を及ぼさないことがわかった。そればかりか、膜表面には、巨視的なひび割れが観察されたのにも係らず、分離性能が出現した。 FIG. 11 shows an SEM image of the PHI film surface after ultrasonic treatment. As in Example 8, the separation performance of the PHI membrane subjected to this ultrasonic treatment was evaluated by the pervaporation method. As a result, Q1 = 0.28 kg / m 2 · h, α1 = 4500 or more, Q2 = 0. It was 32 kg / m 2 · h and α2 = 4500 or more. Even when compared with Example 11, good results were obtained in which Q and α were not inferior. Thus, as in Example 19, it was found that even if PHI crystals existing on the surface of the membrane were removed, the separation performance was hardly affected. In addition, separation performance appeared on the surface of the membrane despite the fact that macroscopic cracks were observed.

上記実施例17から20の結果から、PHI種晶をムライトチューブ表面に二次成長させて分離膜として利用するにあたり、膜の表面処理を行うことが、より高い分離能を出現させることになることがわかった。実施例8から20までを表1にまとめて示す。   From the results of Examples 17 to 20, when the PHI seed crystal is secondarily grown on the surface of the mullite tube and used as a separation membrane, the surface treatment of the membrane will cause higher separation ability to appear. I understood. Examples 8 to 20 are summarized in Table 1.

(膜の経時変化)
実施例12から15において、浸透気化法による分離性能評価の際の水浸漬の影響について、水浸漬後、ただちに分離性能評価を始めることで、αが向上することを示したが、実施例8の手法で合成したPHI膜を用いて、60時間までの経時変化を測定した。その結果、Qは、この時間内で0.5kg/m・h前後で安定していたが、αが、初期の450(α1)から40時間後には1500まで上昇した。その後、60時間まで、αは1500となり、安定することがわかった。 図12に、PHI膜の浸透気化分離における経時変化を示す。
(Membrane change over time)
In Examples 12 to 15, it was shown that α was improved by immediately starting separation performance evaluation after water immersion with respect to the influence of water immersion during the separation performance evaluation by the pervaporation method. Using the PHI membrane synthesized by the method, the change with time up to 60 hours was measured. As a result, Q was stable at around 0.5 kg / m 2 · h within this time, but α increased from the initial 450 (α1) to 1500 after 40 hours. Thereafter, until 60 hours, α was 1500, which was found to be stable. FIG. 12 shows changes with time in pervaporation separation of the PHI membrane.

以上詳述したように、本発明は、フィリップサイト型ゼオライト膜、その製造方法及びその分離膜等の用途に係るものであり、本発明により、現在までに報告されていないPHI膜を多孔質支持体に合成できることが明らかになった。本発明によれば、耐酸性、耐薬品性に優れた親水性ゼオライト膜が合成可能であり、例えば、工業的な液体及びガス分離プロセス等に採用することが可能なゼオライト膜を、簡便に、かつ短期間で製造し、提供することが可能である。また、本発明のPHI膜は、石油化学工業において、分離と触媒作用を持ち合わせたメンブレンリアクターとしても応用可能である。本発明は、特に、耐酸性が要求される系における分離膜等として好適に使用できるPHI膜に関する新技術・新製品を提供するものとして有用である。   As described above in detail, the present invention relates to applications such as a Philipsite type zeolite membrane, a production method thereof, and a separation membrane thereof. According to the present invention, a PHI membrane that has not been reported so far is porously supported. It became clear that it could be synthesized into the body. According to the present invention, a hydrophilic zeolite membrane excellent in acid resistance and chemical resistance can be synthesized. For example, a zeolite membrane that can be employed for industrial liquid and gas separation processes, In addition, it can be manufactured and provided in a short period of time. The PHI membrane of the present invention can also be applied as a membrane reactor having both separation and catalytic action in the petrochemical industry. The present invention is particularly useful for providing new technologies and new products related to PHI membranes that can be suitably used as separation membranes in systems that require acid resistance.

PHI型ゼオライト膜の電子顕微鏡写真(a:PHI被覆ムライトチューブ断面、b:PHI膜表面)を示す。An electron micrograph of a PHI type zeolite membrane (a: PHI-coated mullite tube cross section, b: PHI membrane surface) is shown. PHI型及びFAU型ゼオライトの耐酸性比較の結果を示す。The result of acid resistance comparison of PHI type and FAU type zeolite is shown. 6時間二次成長させたPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface grown by secondary growth for 6 hours is shown. 8時間二次成長させたPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface grown by secondary growth for 8 hours is shown. 12時間二次成長させたPHI膜表面のSEM像を示す。An SEM image of the surface of a PHI film that has been subjected to secondary growth for 12 hours is shown. 24時間二次成長させたPHI膜表面のSEM像を示す。An SEM image of the surface of a PHI film that has been subjected to secondary growth for 24 hours is shown. 洗浄なしのPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface without washing | cleaning is shown. 0.1N−NaOH水溶液処理後のPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface after 0.1N-NaOH aqueous solution process is shown. 歯ブラシ研磨後のPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface after toothbrush grinding | polishing is shown. サンドペーパー研磨後のPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface after sandpaper grinding | polishing is shown. 超音波処理後のPHI膜表面のSEM像を示す。The SEM image of the PHI film | membrane surface after ultrasonication is shown. PHI膜の浸透気化分離における経時変化を示す。The time-dependent change in the pervaporation separation of a PHI membrane is shown.

Claims (12)

支持体基材上に製膜されたゼオライト膜において、その構造が支持体上に形成されたフィリップサイト(PHI)膜であり、高親水性及び高耐酸性の特性を有することを特徴とするゼオライト膜。 A zeolite membrane formed on a support substrate, the structure of which is a philipsite (PHI) membrane formed on a support and has characteristics of high hydrophilicity and high acid resistance film. 基材が、金属及び/又は金属酸化物基材である請求項1に記載のゼオライト膜。   The zeolite membrane according to claim 1, wherein the substrate is a metal and / or metal oxide substrate. 基材が、アルミナ、ムライト、ジルコニア、又はSUSの多孔質基材である請求項2に記載のゼオライト膜。   The zeolite membrane according to claim 2, wherein the substrate is an alumina, mullite, zirconia, or SUS porous substrate. PHI膜が、空気を透過しない非透過性を有する請求項1に記載のゼオライト膜。   The zeolite membrane according to claim 1, wherein the PHI membrane has non-permeability that does not allow air to pass therethrough. 請求項1から4のいずれかに記載の高親水性及び高耐酸性ゼオライト膜から成ることを特徴とする分離膜。   A separation membrane comprising the highly hydrophilic and highly acid-resistant zeolite membrane according to any one of claims 1 to 4. 脱水用親水性ゼオライト膜である請求項5に記載の分離膜。   The separation membrane according to claim 5, which is a hydrophilic zeolite membrane for dehydration. 請求項1から4のいずれかに記載の高親水性及び高耐酸性ゼオライト膜から成ることを特徴とする分離と反応を同時に行うことができるメンブレンリアクター。   A membrane reactor capable of simultaneously performing separation and reaction, comprising the highly hydrophilic and highly acid-resistant zeolite membrane according to any one of claims 1 to 4. PHI組成を持つ原料溶液を用いて、水熱合成法によりゼオライトに転換する手法又はアルミノシリケートゲルを水蒸気処理によってゼオライトに転換する手法により、支持体基材上にPHIゼオライト膜を製膜することを特徴とするゼオライト膜の製造方法。   Using a raw material solution having a PHI composition, a PHI zeolite membrane is formed on a support substrate by a method of converting to a zeolite by a hydrothermal synthesis method or a method of converting an aluminosilicate gel to a zeolite by a steam treatment. A method for producing a zeolite membrane. PHI組成を持つ原料溶液を用いて作製した、種晶を多孔質支持体基材に塗布した後、水熱合成法によりゼオライトに転換する手法又はアルミノシリケートゲルを水蒸気処理によってゼオライトに転換する手法により、多孔質支持体基材上にPHIゼオライト膜を製膜する請求項8に記載のゼオライト膜の製造方法。   By applying seed crystals prepared using a raw material solution having a PHI composition to a porous support substrate and then converting to zeolite by hydrothermal synthesis or by converting aluminosilicate gel to zeolite by steam treatment The method for producing a zeolite membrane according to claim 8, wherein a PHI zeolite membrane is formed on the porous support substrate. 種晶を二次成長させて連続膜とする請求項9に記載のゼオライト膜の製造方法。   The method for producing a zeolite membrane according to claim 9, wherein the seed crystal is secondarily grown to form a continuous membrane. PHI膜の合成後に、膜の表面処理を行う請求項8又は9に記載のゼオライト膜の製造方法。   The method for producing a zeolite membrane according to claim 8 or 9, wherein the membrane is subjected to a surface treatment after the synthesis of the PHI membrane. 膜の表面処理を、アルカリ水溶液処理、研磨処理、又は超音波処理により行うことで、膜表面に余分に存在するPHI結晶、非晶質ゲル、及び/又は他の結晶相を取り除く請求項11に記載のゼオライト膜の製造方法。   The surface treatment of the film is performed by alkaline aqueous solution treatment, polishing treatment, or ultrasonic treatment to remove PHI crystals, amorphous gel, and / or other crystal phases that are excessively present on the film surface. The manufacturing method of the zeolite membrane of description.
JP2005344634A 2004-11-29 2005-11-29 Philipsite type zeolite membrane and method for producing the same Expired - Fee Related JP4820631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344634A JP4820631B2 (en) 2004-11-29 2005-11-29 Philipsite type zeolite membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004345034 2004-11-29
JP2004345034 2004-11-29
JP2005344634A JP4820631B2 (en) 2004-11-29 2005-11-29 Philipsite type zeolite membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006176399A true JP2006176399A (en) 2006-07-06
JP4820631B2 JP4820631B2 (en) 2011-11-24

Family

ID=36730858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344634A Expired - Fee Related JP4820631B2 (en) 2004-11-29 2005-11-29 Philipsite type zeolite membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4820631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797831B2 (en) 2006-06-27 2010-09-21 Brother Kogyo Kabushiki Kaisha Method for manufacturing recording apparatus
CN102294175A (en) * 2010-10-28 2011-12-28 华南理工大学 Method for synthesizing PHI type molecular sieve membrane on surface of alpha-Al2O3 supporting body
WO2012153763A1 (en) * 2011-05-09 2012-11-15 日立造船株式会社 Zeolite-membrane separation/recovery system for co2
JP2014240072A (en) * 2014-07-22 2014-12-25 日立造船株式会社 Co2 separation and recovery system by zeolite membrane
CN110860268A (en) * 2018-08-28 2020-03-06 美国分子工程股份有限公司 Structural material hydrothermal growth reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632610A (en) * 1992-07-17 1994-02-08 Kobe Steel Ltd Production of type a or faujasite-type zeolite membrane
JPH06115926A (en) * 1992-04-09 1994-04-26 Joseph Crosfield & Sons Ltd Method of producing p-type zeolite
JPH06321524A (en) * 1993-05-07 1994-11-22 Nippon Steel Corp Method for modifying coal ash
JPH11209120A (en) * 1998-01-27 1999-08-03 Mitsui Eng & Shipbuild Co Ltd Production of zeolite film
JP2003081629A (en) * 2001-09-10 2003-03-19 National Institute For Materials Science Method for synthesizing porous silicate film
JP2003144871A (en) * 2001-08-24 2003-05-20 Tosoh Corp Mordenite type zeolite film composite and method for manufacturing the same and thickening method using the composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115926A (en) * 1992-04-09 1994-04-26 Joseph Crosfield & Sons Ltd Method of producing p-type zeolite
JPH0632610A (en) * 1992-07-17 1994-02-08 Kobe Steel Ltd Production of type a or faujasite-type zeolite membrane
JPH06321524A (en) * 1993-05-07 1994-11-22 Nippon Steel Corp Method for modifying coal ash
JPH11209120A (en) * 1998-01-27 1999-08-03 Mitsui Eng & Shipbuild Co Ltd Production of zeolite film
JP2003144871A (en) * 2001-08-24 2003-05-20 Tosoh Corp Mordenite type zeolite film composite and method for manufacturing the same and thickening method using the composite
JP2003081629A (en) * 2001-09-10 2003-03-19 National Institute For Materials Science Method for synthesizing porous silicate film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797831B2 (en) 2006-06-27 2010-09-21 Brother Kogyo Kabushiki Kaisha Method for manufacturing recording apparatus
CN102294175A (en) * 2010-10-28 2011-12-28 华南理工大学 Method for synthesizing PHI type molecular sieve membrane on surface of alpha-Al2O3 supporting body
WO2012153763A1 (en) * 2011-05-09 2012-11-15 日立造船株式会社 Zeolite-membrane separation/recovery system for co2
JP2012232274A (en) * 2011-05-09 2012-11-29 Hitachi Zosen Corp Zeolite-membrane separation recovery system for co2
CN103635248A (en) * 2011-05-09 2014-03-12 日立造船株式会社 Zeolite-membrane separation/recovery system for CO2
US9333457B2 (en) 2011-05-09 2016-05-10 Hitachi Zosen Corporation Zeolite membrane separation and recovery system for CO2
JP2014240072A (en) * 2014-07-22 2014-12-25 日立造船株式会社 Co2 separation and recovery system by zeolite membrane
CN110860268A (en) * 2018-08-28 2020-03-06 美国分子工程股份有限公司 Structural material hydrothermal growth reactor

Also Published As

Publication number Publication date
JP4820631B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US10639594B2 (en) Zeolite membrane, production method therefor, and separation method using same
JP5108525B2 (en) Method for producing zeolite membrane
JP4856595B2 (en) Method for producing zeolite membrane composite for gas separation
JP6446378B2 (en) Method for producing a crystalline film of zeolite and / or zeolite-like crystals on a porous substrate
JP5051816B2 (en) Philipsite type zeolite composite membrane and method for producing the same
JP5569901B2 (en) Zeolite membrane, separation membrane module and manufacturing method thereof
JP6171151B2 (en) Zeolite membrane and method for producing the same
JP7056658B2 (en) Ammonia separation method and zeolite
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
JP4820631B2 (en) Philipsite type zeolite membrane and method for producing the same
JP4759724B2 (en) Zeolite membrane and method for producing the same
US8263179B2 (en) Process for producing zeolite separation membrane
EP0481659A1 (en) Deposition process
JP2003159518A (en) Method for manufacturing ddr type zeolite membrane
JP2008188564A (en) Separation membrane for organic mixed solution and manufacturing method for this separation membrane
JP7321260B2 (en) Zeolite membrane composite, manufacturing method thereof, and fluid separation method
JP4599144B2 (en) MARLINOITE TYPE ZEOLITE MEMBRANE AND METHOD FOR PRODUCING THE SAME
AU9638698A (en) Water treatment process
WO2000020105A1 (en) Membrane structure
JP5366189B2 (en) Method for producing zeolite material comprising zeolite or zeolite membrane
JP4990193B2 (en) MFI-type zeolite membrane and gas separation method
JP4348431B2 (en) High silica type CDS-1 zeolite membrane and method for producing the same
Anbia et al. Synthesis and characterization of a novel modified ANA zeolite membrane
JP2023151632A (en) Zeolite membrane composite
JP2023151631A (en) Zeolite membrane composite

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees