JP2006175503A - Different metals-welding method by high energy beam - Google Patents

Different metals-welding method by high energy beam Download PDF

Info

Publication number
JP2006175503A
JP2006175503A JP2004373408A JP2004373408A JP2006175503A JP 2006175503 A JP2006175503 A JP 2006175503A JP 2004373408 A JP2004373408 A JP 2004373408A JP 2004373408 A JP2004373408 A JP 2004373408A JP 2006175503 A JP2006175503 A JP 2006175503A
Authority
JP
Japan
Prior art keywords
melting point
joining
materials
energy beam
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004373408A
Other languages
Japanese (ja)
Other versions
JP4962752B2 (en
Inventor
Minoru Kasukawa
実 粕川
Nariyuki Nakagawa
成幸 中川
Kenji Miyamoto
健二 宮本
Masayuki Inoue
雅之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004373408A priority Critical patent/JP4962752B2/en
Publication of JP2006175503A publication Critical patent/JP2006175503A/en
Application granted granted Critical
Publication of JP4962752B2 publication Critical patent/JP4962752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a different metals-welding method capable of tightly attaching welding interfaces of materials to be welded, allowing the heat to be reliably transferred from a material of high melting point to a material of low melting point, and realizing consistent welding in the overlap welding of different metals to irradiate high energy beams to the side of the material of high melting point through defocus while the different materials of different melting points overlap each other. <P>SOLUTION: A material 2 of high melting point and a material 3 of low melting point which are different in melting point overlap each other, and are overlap-welded to each other by irradiating high energy beams 1 defocused on the surface on the material side of high melting point in a spot to perform the overlap-welding of these materials. By using a pressing means such as an air cylinder, a weld part is locally pressed in a tightly attaching direction of both materials from an irradiation surface of the high energy beams 1 and the opposite surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異種金属、例えばスチール材とアルミニウム合金材のように、互いに異なる融点を有する異種材料同士の接合技術に係わり、電子ビームやレーザビームのような高エネルギビームをデフォーカスさせた状態で重ね合わせた高融点材料と低融点材料の高融点側の材料表面に照射することによって、両材料を接合する異種金属の重ね接合方法に関するものである。   The present invention relates to a joining technique of different kinds of materials having different melting points such as different kinds of metals, for example, steel materials and aluminum alloy materials, in a state where a high energy beam such as an electron beam or a laser beam is defocused. The present invention relates to a method for lap joining of dissimilar metals in which both materials are joined by irradiating the surface of the high melting point side of the superimposed high melting point material and low melting point material.

従来、電子ビームやレーザビームなどのような高エネルギビームを用いた異種材料の重ね接合においては、脆い金属間化合物の生成を抑制するために高融点材料側からデフォーカスさせた高エネルギビームを照射し、高融点材料からの伝熱で低融点材料を溶融させて接合する方法がとられていた(例えば、非特許文献1参照)。
このような場合、溶接条件をコントロールし、接合界面において片側の材料(低融点材料)のみを溶融させ、材料の拡散を利用して接合することで、金属間化合物層の成長を抑え、その厚さを薄くすることによって、材料を両方溶融させたときよりも接合部の単位面積当たりの強度を高くすることができると考えられていた。
「溶接学会全国大会講演概要」、社団法人日本溶接学会、2003年4月、第72集、p.152
Conventionally, in the lap joining of dissimilar materials using a high energy beam such as an electron beam or a laser beam, a high energy beam defocused from the high melting point material side is applied to suppress the formation of brittle intermetallic compounds. However, the low melting point material is melted and joined by heat transfer from the high melting point material (for example, see Non-Patent Document 1).
In such cases, controlling the welding conditions, melting only the material on one side (low melting point material) at the joining interface, and joining using the diffusion of the material suppresses the growth of the intermetallic compound layer. By reducing the thickness, it has been considered that the strength per unit area of the joint can be made higher than when both materials are melted.
“Overview of the National Conference of the Japan Welding Society”, Japan Welding Society, April 2003, Vol. 72, p. 152

レーザを用いた接合では、高エネルギビームを材料表面に照射するため、図4に示すように、通常はビーム1を照射する側には、ビーム1と干渉しないような逃げを作った治具(押さえプレート)5を用いて高融点材料2と低融点材料3の重ね部位を挟み込むことによって、これら被接合材2及び3を固定しながら接合を行っていた。
なお、図4において、符号6はベースプレート、符号4は治具5を被接合材2及び3と共にベースプレート6に固定するためのボルトである。
In joining using a laser, a material surface is irradiated with a high-energy beam, and therefore, as shown in FIG. Joining was performed while fixing the materials 2 and 3 to be joined by sandwiching the overlapping portion of the high melting point material 2 and the low melting point material 3 using the pressing plate 5.
In FIG. 4, reference numeral 6 is a base plate, and reference numeral 4 is a bolt for fixing the jig 5 together with the materials 2 and 3 to the base plate 6.

しかしながら、デフォーカスビームを照射して上記のような接合を行う場合、キーホール溶接とは異なって、接合界面における伝熱が極めて重要なものとなるが、このような治具5ではスポット溶接のように接合面を直接加圧することができないため、接合面において高融点材料2から低融点材料3にうまく熱が伝わらずに、接合ができなかったり、接合できたとしても長い時間が必要となったりするという問題があった。
また、材料の拡散を利用した接合においては、接合面に適切な圧力をかけながら接合する必要があるが、そのコントロールが極めて難しいという問題点があった。
However, when performing the above-described joining by irradiating a defocused beam, heat transfer at the joining interface is extremely important, unlike keyhole welding. As described above, since the joint surface cannot be directly pressurized, heat cannot be transferred well from the high melting point material 2 to the low melting point material 3 on the joint surface, so that it is impossible to join or a long time is required. There was a problem that.
Further, in joining using diffusion of materials, it is necessary to join while applying an appropriate pressure to the joining surface, but there is a problem that it is extremely difficult to control.

本発明は、デフォーカスさせた高エネルギビームを高融点材料の材料表面に照射し、高融点材料からの伝熱で低融点材料を溶融させて接合する従来の異材重ね接合における上記課題に鑑みてなされたものであって、両被接合材の接合界面を密着させることができ、高融点材料から低融点材料への伝熱を確実なものとし、もって安定な異材重ね接合が可能な異種金属の接合方法を提供することを目的としている。   The present invention has been made in view of the above-described problems in conventional dissimilar material lap joining in which a defocused high-energy beam is irradiated onto the surface of a high-melting-point material, and the low-melting-point material is melted and joined by heat transfer from the high-melting-point material. It is made of a dissimilar metal that can adhere to the joining interface of both materials to be bonded, ensure heat transfer from the high melting point material to the low melting point material, and can perform stable dissimilar material overlapping joining. The object is to provide a joining method.

本発明者らは、上記目的を達成するために、高エネルギビームの照射条件(デフォーカス条件)や照射位置等と共に、被接合材の拘束方法などについて、鋭意検討した結果、高エネルギビームの照射面の裏面側から、すなわち低融点材料側から、被接合材の接合部位を直接加圧することによって、被接合材の接合界面を密着させることができ、安定な伝熱状態と材料拡散が達成されることを見出し、本発明を完成するに到った。   In order to achieve the above-described object, the present inventors have made extensive studies on the high energy beam irradiation conditions (defocusing conditions), irradiation positions, and the like, as well as methods for restraining the material to be joined. By directly pressurizing the joining part of the material to be joined from the back side of the surface, that is, from the low melting point material side, the joining interface of the material to be joined can be brought into close contact, and a stable heat transfer state and material diffusion can be achieved. As a result, the present invention has been completed.

本発明は上記知見に基づくものであって、高エネルギビームを用いた本発明の異種金属の接合方法においては、融点が互いに異なる高融点材料と低融点材料を重ね合わせ、高融点材料側の表面にデフォーカスされた高エネルギビームをスポット状に照射して、これら材料同士を重ね接合するに際して、例えばエアシリンダのような加圧手段を用いて、高エネルギビームの照射面と反対側の面から、両材料が密着する方向に接合部位を局部的に加圧しながら接合するようになすことを特徴としている。   The present invention is based on the above knowledge, and in the dissimilar metal joining method of the present invention using a high energy beam, a high melting point material and a low melting point material having different melting points are overlapped, and the surface on the high melting point material side is overlapped. When a high energy beam defocused on the surface is irradiated in a spot shape and these materials are overlapped and joined together, for example, using a pressurizing means such as an air cylinder, the surface opposite to the irradiation surface of the high energy beam is used. And, it is characterized in that the joining parts are joined while locally pressurizing in the direction in which both materials are in close contact.

本発明によれば、高エネルギビームを用いて異種金属を重ね接合するに際して、高エネルギビームの照射面の裏面、すなわち低融点材料の側から、両被接合材料が密着する方向に接合部位を局部的に加圧しながらデフォーカスされた高エネルギビームを照射するようにしていることから、接合部位における高融点材料と低融点材料の密着性が増して伝熱性が向上し、また伝熱状態が安定して、材料の拡散に必要な圧力を接合面に確実に加えることができるようになると共に、材料表面の酸化皮膜が破壊されやすくなるため、接合強度を向上させることができるという極めて優れた効果がもたらされる。   According to the present invention, when dissimilar metals are overlapped and bonded using a high energy beam, the bonding site is locally positioned in the direction in which both the bonded materials are in close contact from the back surface of the irradiation surface of the high energy beam, that is, the low melting point material side. Since the defocused high energy beam is irradiated while applying pressure, the adhesion between the high melting point material and the low melting point material at the joint is increased to improve heat transfer and the heat transfer state is stable. In addition, the pressure required for material diffusion can be reliably applied to the bonding surface, and the oxide film on the material surface is easily destroyed, so that the bonding strength can be improved. Is brought about.

以下、本発明による異種金属の接合方法について、詳細かつ具体的に説明する。   Hereinafter, the dissimilar metal joining method according to the present invention will be described in detail and specifically.

本発明の異種金属の接合方法は、電子ビームやレーザビームのような高エネルギビームを融点の異なる異種材料から成る重ね継手における高融点側材料にデフォーカスした状態で照射することによってこれら両材料を接合するに際して、両材料を接合部位において密着させるべく、加圧手段を用いて高エネルギビームの反照射面側から接合部位を局部的に直接加圧するようになすものであるが、上記加圧手段における被接合材料と接する圧子の先端形状としては、被接合材料との当接面が円形平面状をなし、その直径Dpとデフォーカスされた高エネルギビームの材料表面上におけるビーム径Dbとの比(Dp/Db)が0.8〜1.2の範囲となっていることが望ましく、これによって接合部にかかる単位面積当たりの圧力が均等かつ適正なものとなり、また接合される部位の面積を適性にすることができるため、継手強度を向上させることができる。
このとき、(Dp/Db)比が0.8に満たない場合には、ビーム径に対して圧子の先端径が過小となって、加圧され適正に接合される面積が小さくなり、継手強度が低下する一方、当該比が1.2を超えると、ビーム径に対して圧子の先端径が過大なものとなって、圧子先端面上における単位面積当たりの加圧力が低くなり、加圧手段によって加えられた力を効率的に接合部に伝えることができないという不具合が生じる可能性がある。
The dissimilar metal joining method of the present invention irradiates a high energy beam such as an electron beam or a laser beam in a defocused state on a high melting point side material in a lap joint made of dissimilar materials having different melting points. At the time of joining, in order to bring both materials into close contact with each other at the joining part, the joining part is directly and locally pressurized from the side opposite to the irradiation surface of the high energy beam by using a pressurizing means. The shape of the tip of the indenter in contact with the material to be bonded is a ratio of the diameter Dp to the beam diameter Db on the material surface of the defocused high energy beam. It is desirable that (Dp / Db) is in the range of 0.8 to 1.2, whereby the pressure per unit area applied to the joint is uniform and appropriate. Become things, also because the area of the portion to be joined can be made proper, it is possible to improve the joint strength.
At this time, if the (Dp / Db) ratio is less than 0.8, the tip diameter of the indenter becomes too small with respect to the beam diameter, and the area to be pressed and properly joined is reduced, and the joint strength is reduced. On the other hand, if the ratio exceeds 1.2, the tip diameter of the indenter becomes excessive with respect to the beam diameter, and the applied pressure per unit area on the tip surface of the indenter becomes low, and the pressurizing means There is a possibility that a problem may occur in that the force applied by can not be efficiently transmitted to the joint.

すなわち、ビーム径に対して圧子先端径が小さい場合には、接合界面において、ビームが照射され加熱されている範囲の中で、加圧されて適正に接合される領域は中央の一部分のみとなり、加圧されていない外周部分に関しては単位面積当たりの強度が低くなることから、ビーム照射されている範囲全体を均一に高強度で接合することができず、効率的な接合ができない。また、逆にビーム径に対して圧子径が大きすぎる場合は、同じ力で圧子を押し上げた場合、圧子径が適正な場合と比較して圧子先端面における単位面積当たりにかかる力が減少するため、単位面積当たりの力を同等とするためにはより高い圧力を発生させることができるエアシリンダ等が必要となり装置が大型化してしまうことになる。圧子径が大きい場合には、ビームが照射されていない部分まで押さえることとなり、この部分は継手強度には寄与していないため、装置が大型化するだけで効率的とはいえない。   That is, when the indenter tip diameter is smaller than the beam diameter, the region where the beam is irradiated and heated in the bonding interface is pressurized and properly bonded only in the middle part, Since the strength per unit area is low with respect to the outer peripheral portion that is not pressurized, the entire range irradiated with the beam cannot be uniformly bonded with high strength, and efficient bonding cannot be performed. Conversely, if the indenter diameter is too large relative to the beam diameter, the force applied per unit area on the tip surface of the indenter will decrease when the indenter is pushed up with the same force compared to the case where the indenter diameter is appropriate. In order to make the force per unit area equal, an air cylinder or the like that can generate a higher pressure is required, which increases the size of the apparatus. When the diameter of the indenter is large, the portion that is not irradiated with the beam is pressed, and this portion does not contribute to the joint strength.

また、上記加圧手段としては、特に限定されるものではないが、例えばエアシリンダを用いることが望ましく、これによって材料が溶融、変形して加圧方向への変位が生じたような場合でも、常に接合部にかかる力を一定に保つことができ、継手強度を向上させることができる。
なお、このようなエアシリンダ以外にも、油圧シリンダ等、他の流体を用いた機構を用いることもでき、同様の効果が得られる。
Further, the pressure means is not particularly limited, but it is desirable to use an air cylinder, for example, and even when the material is melted and deformed to cause displacement in the pressure direction, The force applied to the joint can always be kept constant, and the joint strength can be improved.
In addition to such an air cylinder, a mechanism using other fluid such as a hydraulic cylinder can be used, and the same effect can be obtained.

さらに、上記加圧手段において、被接合材料と直接に接触する圧子については、水冷などによる冷却機構を設けることが望ましく、これによって低融点材料側の抜熱ができるようになり、低融点材料の溶け落ちを防止して、異材重ね接合継手の品質を安定させることができる。   Furthermore, it is desirable to provide a cooling mechanism, such as water cooling, for the indenter that is in direct contact with the material to be joined in the pressurizing means, so that heat can be removed from the low melting point material side. It is possible to stabilize the quality of the dissimilar material lap joint joint by preventing melting.

そして、高エネルギビームを高融点側材料にデフォーカスした状態で照射する際には、当該高融点材料の表面を高エネルギビームを透過する材料によって押さえるようにすることも望ましく、高エネルギビームが照射される表面を直接固体材料で押さえることによって、被接合材料が溶融したような場合でも、加圧手段による下側からの押圧によってビーム照射側に湾曲するような材料の変形を抑えることができるようになることから、接合部を安定して加圧することができ、継手強度を向上させることができる。   When irradiating a high-energy beam in a defocused state on the high-melting-point side material, it is also desirable to hold the surface of the high-melting-point material with a material that transmits the high-energy beam. By directly pressing the surface to be bonded with a solid material, even when the material to be joined is melted, it is possible to suppress deformation of the material that is curved to the beam irradiation side by pressing from the lower side by the pressurizing means. Therefore, the joint can be stably pressurized, and the joint strength can be improved.

なお、高エネルギビームを透過する固体材料としては、使用する高エネルギビームが変わるとビームの波長も変わるため、そのビームの波長の光を透過するような材料を選択する必要がある。
例えば、Nd:YAGレーザの場合には、その波長が1064nmであることから、その波長の光を透過する材料としては、一般的に紫外領域まで透過する純粋な石英ガラスを用いることができる。また、10.6μmの波長を有するCOレーザの場合には、一般的にZnSe(ジンクセレン)やGaAsを用いることができる。
As the solid material that transmits the high energy beam, the wavelength of the beam changes when the high energy beam to be used changes. Therefore, it is necessary to select a material that transmits the light having the wavelength of the beam.
For example, in the case of an Nd: YAG laser, the wavelength is 1064 nm. Therefore, as a material that transmits light having the wavelength, pure quartz glass that generally transmits to the ultraviolet region can be used. In the case of a CO 2 laser having a wavelength of 10.6 μm, generally ZnSe (zinc selenium) or GaAs can be used.

本発明の異種金属の接合方法において、高融点材料と低融点材料の組合せとしては、例えば鋼材とアルミニウム合金の組合せを好適に採用することができる。被接合材料の組合せが鋼材とアルミニウム合金であることによって、両材料の融点の間に適度の相違があることから、接合界面において、高融点材料を溶融させることなく低融点材料のみを溶融させることができ、材料の拡散を利用して金属間化合物層の生成を抑制しながら接合することができるため、優れた継手強度が得られる。
なお、鋼材とマグネシウム合金の組合せを採用した場合においても、同様の効果が得られる。
In the method for joining dissimilar metals of the present invention, as a combination of the high melting point material and the low melting point material, for example, a combination of a steel material and an aluminum alloy can be suitably employed. Since the combination of materials to be joined is steel and aluminum alloy, there is a moderate difference between the melting points of both materials, so that only the low melting point material is melted without melting the high melting point material at the joining interface. And can be joined while suppressing the formation of the intermetallic compound layer by utilizing the diffusion of the material, so that excellent joint strength can be obtained.
The same effect can be obtained when a combination of steel and magnesium alloy is employed.

また、本発明の異種金属の接合方法においては、両材料の接合界面に共晶溶融を生じさせて接合することにより、低温状態で酸化皮膜を除去することができるようになり、接合界面温度の制御が可能となり、金属間化合物の生成を抑制し、接合材の新生面同士の強固な接合を得ることができるようになる。
この場合、接合される二つの材料とは異なる第三の材料をインサート材として利用し、または接合される材料の少なくとも一方にめっきされた材料を第三の材料として用い、第三の金属と少なくとも一方の接合材料との間で、界面に共晶溶融を生じさせて接合する。例えば、アルミニウム材と鋼材の接合の場合には、第三の材料として、Ni、Ag、Cu、Znなど、Alと低融点共晶を形成する材料が挙げられる。
Further, in the bonding method of dissimilar metals of the present invention, the oxide film can be removed at a low temperature state by causing eutectic melting at the bonding interface between the two materials and bonding. Control becomes possible, generation | occurrence | production of an intermetallic compound is suppressed, and the strong joining of the new surfaces of a joining material can be obtained now.
In this case, a third material different from the two materials to be joined is used as the insert material, or a material plated on at least one of the materials to be joined is used as the third material, and at least the third metal and the third material are used. Eutectic melting occurs at the interface between one bonding material and bonding. For example, in the case of joining an aluminum material and a steel material, examples of the third material include a material that forms a low melting point eutectic with Al, such as Ni, Ag, Cu, and Zn.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited at all by these Examples.

高融点材料2として、板厚0.55mmの亜鉛めっき鋼板を使用すると共に、低融点材料3として、板厚1.0mmの6000系アルミニウム合金板材を使用し、これらを70mm×20mmの大きさに切断すると共に、亜鉛めっき鋼板2(高融点材料)が上側になるように、長手方向に20mmだけ重ね、図1(a)及び(b)に示すように、ビーム照射面と反対側からこれら被接合材料2,3を加圧するエアシリンダ(加圧手段)8を備えた治具の上に、スペーサ7と、レーザビーム1が通る位置に孔を開けた押さえプレート5を介して2本のボルト4によって当該被接合材料2,3を固定した。   A galvanized steel sheet having a thickness of 0.55 mm is used as the high melting point material 2, and a 6000 series aluminum alloy sheet having a thickness of 1.0 mm is used as the low melting point material 3, which has a size of 70 mm × 20 mm. In addition to cutting, the galvanized steel sheet 2 (high melting point material) is overlapped by 20 mm in the longitudinal direction so that it is on the upper side, and as shown in FIGS. Two bolts are provided on a jig provided with an air cylinder (pressurizing means) 8 for pressurizing the joining materials 2 and 3 through a spacer 7 and a holding plate 5 having a hole at a position where the laser beam 1 passes. The bonded materials 2 and 3 were fixed by 4.

上記治具は、エアシリンダ8の可動部先端に圧子9を取り付けてあり、エアシリンダ8にエアを導入することによって、圧子9が上側に作動し、アルミニウム合金材3(低融点材料)を押し上げることで接合部位をアルミニウム合金材3の側から直接加圧できる構造となっている。   The jig has an indenter 9 attached to the tip of the movable part of the air cylinder 8. By introducing air into the air cylinder 8, the indenter 9 operates upward to push up the aluminum alloy material 3 (low melting point material). Thus, the joining portion can be directly pressurized from the aluminum alloy material 3 side.

亜鉛メッキ鋼板2(高融点材料)の側から被接合材料2,3のラップ中央部にNd:YAGレーザビームを移動させることなく、一点に照射することにより亜鉛メッキ鋼板2とアルミニウム合金材3を接合した。
YAGレーザの照射条件は、亜鉛メッキ鋼板2側が溶融することなく、アルミニウム合金材3のみが溶融するような温度分布となるように、レーザの亜鉛メッキ鋼板2上でのスポット径、レーザ出力、照射時間を設定した。具体的には、最大出力3kWのYAGレーザ発振器、焦点距離100mmのレンズを用い、亜鉛めっき鋼板2の表面上におけるスポット径Rbが7mmとなるようにビームをデフォーカスし、レーザ出力1.5kW、照射時間1.4秒とした。また、レーザ照射中には、レーザと同軸のノズルからアルゴンガスを20L/minの流量で流して、接合部をシールドするようにした。
The galvanized steel sheet 2 and the aluminum alloy material 3 can be irradiated by irradiating one point without moving the Nd: YAG laser beam from the galvanized steel sheet 2 (high melting point material) side to the lap center of the materials 2 and 3 to be joined. Joined.
The irradiation condition of the YAG laser is such that the spot diameter of the laser on the galvanized steel sheet 2, the laser output, and the irradiation are such that the temperature distribution is such that only the aluminum alloy material 3 is melted without melting the galvanized steel sheet 2 side. Set the time. Specifically, using a YAG laser oscillator with a maximum output of 3 kW and a lens with a focal length of 100 mm, the beam is defocused so that the spot diameter Rb on the surface of the galvanized steel sheet 2 is 7 mm, and the laser output is 1.5 kW, The irradiation time was 1.4 seconds. During laser irradiation, argon gas was flowed from a nozzle coaxial with the laser at a flow rate of 20 L / min to shield the joint.

また、加圧治具については、約80kgfの力でアルミニウム合金材3の側から接合部を加圧できるように、エアの圧力を調整し、ビーム照射する前に加圧を始め、ビーム照射終了後にエアを抜いて加圧力を解除するようにした。
なお、エアシリンダ8の圧子9の先端面は、円形平面状をなし、アルミニウム合金材3との当接面径Dpが4mm(Dp/Db=0.57)、8mm(Dp/Db=1.14)、及び10mm(Dp/Db=1.43)の3種のものを使用した。
For the pressurizing jig, the air pressure is adjusted so that the joint can be pressed from the aluminum alloy material 3 side with a force of about 80 kgf, pressurization is started before beam irradiation, and beam irradiation ends. Later, the pressure was released by removing the air.
The tip surface of the indenter 9 of the air cylinder 8 has a circular flat shape, and the contact surface diameter Dp with the aluminum alloy material 3 is 4 mm (Dp / Db = 0.57), 8 mm (Dp / Db = 1. 14) and 3 types of 10 mm (Dp / Db = 1.43) were used.

図4に示したような、ビーム照射面と反対側から被接合材料を加圧する加圧手段を持たない従来の治具によって接合部位を加圧することなく接合を行った場合には、接合部位での材料同士の接触状態が変動して、毎回一定とならないために、良好な接合状態を得るための接合時間が安定しないばかりか、高融点材料である鋼材から低融点材料であるアルミニウム合金材への良好な伝熱が行われないために、接合時間も長くなる傾向があったのに対し、上記のような治具を用いて、接合部位を局部的に加圧しながら接合するようにした本発明の接合方法においては、良好な接合状態を得るための接合時間が安定し、また短時間で接合が可能となることが確認された。   As shown in FIG. 4, when joining is performed without pressurizing the joining portion with a conventional jig having no pressurizing means for pressurizing the material to be joined from the side opposite to the beam irradiation surface, Since the contact state of the materials of the material fluctuates and does not become constant every time, the bonding time for obtaining a good bonding state is not stable, and from a steel material which is a high melting point material to an aluminum alloy material which is a low melting point material Since the heat transfer was not performed well, the bonding time tended to be long, whereas the jig was used to bond the bonded parts while locally pressurizing them. In the joining method of the invention, it has been confirmed that the joining time for obtaining a good joining state is stable and that joining is possible in a short time.

そして、接合した試験片について引張りせん断強度試験を行った結果、圧子先端のアルミニウム合金材との当接面径Dpが8mmの場合には、0.9kNの接合強度が得られたのに対し、上記当接面径Dpが4mm及び10mmの場合には、それぞれ0.55kN及び0.75kNとなり、アルミニウム合金材との当接面径Dpがデフォーカスされた高エネルギビームの材料表面上におけるビーム径Dbに対して過小であっても過大であっても継手強度が低下する傾向が認められた。   And as a result of conducting a tensile shear strength test on the bonded specimen, when the contact surface diameter Dp with the aluminum alloy material at the tip of the indenter is 8 mm, a bonding strength of 0.9 kN was obtained, When the contact surface diameter Dp is 4 mm and 10 mm, they are 0.55 kN and 0.75 kN, respectively, and the beam diameter on the material surface of the high energy beam with the contact surface diameter Dp with the aluminum alloy material defocused. There was a tendency for the joint strength to decrease even if it was too small or too large relative to Db.

なお、上記のような亜鉛めっき鋼板とアルミニウム合金を接合する場合には、接合部を直接加圧しているため、接合部が密着すると共にアルミニウム合金の表面酸化皮膜の破壊が生じ、ZnとAlの接触が起こると、AlとZnの共晶溶融が生じる。共晶溶融と共に酸化皮膜が接合部周囲に排出され、その結果、残存亜鉛めっき層と、AlとZnの共晶金属層を介して鋼板とアルミニウム合金材が接合されることになる。   In addition, when joining the galvanized steel sheet and the aluminum alloy as described above, since the joint is directly pressurized, the joint is in close contact and the surface oxide film of the aluminum alloy is destroyed, and Zn and Al When contact occurs, eutectic melting of Al and Zn occurs. The oxide film is discharged around the joint together with the eutectic melting, and as a result, the steel sheet and the aluminum alloy material are joined via the remaining galvanized layer and the eutectic metal layer of Al and Zn.

被接合材料2,3をレーザビームの側から押さえる押さえプレート5には、レーザを通過させるための孔が形成されているが、図2に示すように、当該押さえプレート5と高融点材料2(亜鉛メッキ鋼板)の間にNd:YAGレーザを透過する材料である石英ガラス11を設置することによって、レーザビームが照射される高融点材料2の表面を直接固体材料で押さえることができ、これら被接合材料2,3が溶融したような場合でも、被接合材料2,3の下側からの加圧によって、材料がレーザビームの照射側に湾曲するような変形を抑えることができるようになり、接合部位をより安定して加圧することが可能となる。   The presser plate 5 that presses the materials 2 and 3 to be joined from the laser beam side has a hole for allowing the laser to pass through. As shown in FIG. 2, the presser plate 5 and the high melting point material 2 ( By placing the quartz glass 11 which is a material that transmits the Nd: YAG laser between the galvanized steel sheets), the surface of the refractory material 2 irradiated with the laser beam can be directly pressed with a solid material. Even when the bonding materials 2 and 3 are melted, the pressurization from the lower side of the materials to be bonded 2 and 3 can suppress deformation such that the material curves to the irradiation side of the laser beam, It becomes possible to pressurize the bonding site more stably.

また、図3に示すように、加圧手段であるエアシリンダ8の圧子9の内部に、冷却機構として冷却水路12を設けることによって、圧子9によって低融点材料3(アルミニウム合金材)を加圧しながら、同時に抜熱することが可能となり、低融点材料3の溶け落ちを防止できることから、接合部の品質を安定させることが可能となる。なお、圧子9の材料として、銅など伝熱性の高い材料を用いることもでき、これによってより効果的に抜熱することが可能となる。   Further, as shown in FIG. 3, by providing a cooling water passage 12 as a cooling mechanism inside an indenter 9 of an air cylinder 8 that is a pressurizing means, the low melting point material 3 (aluminum alloy material) is pressurized by the indenter 9. However, it is possible to remove heat at the same time and prevent the low melting point material 3 from being melted down, so that the quality of the joint can be stabilized. In addition, as a material of the indenter 9, a material having high heat conductivity such as copper can be used, and thereby heat can be extracted more effectively.

本発明の異種金属の接合方法に用いる治具の構造と接合要領を説明する断面説明図(a)及び斜視図(b)である。It is sectional explanatory drawing (a) and a perspective view (b) explaining the structure and joining procedure of the jig | tool used for the joining method of the dissimilar metal of this invention. 本発明の異種金属の接合方法において、高融点材料の表面を高エネルギビームを透過する材料で押えた状態で接合する要領を示す斜視図である。In the joining method of the dissimilar metals of this invention, it is a perspective view which shows the point to join in the state which pressed down the surface of the high melting-point material with the material which permeate | transmits a high energy beam. 圧子に冷却機構を設けた加圧手段の構造例を示す断面説明図である。It is sectional explanatory drawing which shows the structural example of the pressurization means which provided the cooling mechanism in the indenter. 異種金属の従来の接合方法を示す断面説明図である。It is sectional explanatory drawing which shows the conventional joining method of a dissimilar metal.

符号の説明Explanation of symbols

1 高エネルギビーム
2 高融点材料
3 低融点材料
8 エアシリンダ(加圧手段)
9 圧子
11 石英ガラス(高エネルギビームを透過する材料)
12 冷却水路(冷却機構)
1 High energy beam 2 High melting point material 3 Low melting point material 8 Air cylinder (pressurizing means)
9 Indenter 11 Quartz glass (material that transmits high energy beam)
12 Cooling channel (cooling mechanism)

Claims (7)

互いに融点の異なる高融点材料と低融点材料を重ね合わせた状態でデフォーカスされた高エネルギビームを高融点材料表面にスポット状に照射して、上記材料同士を重ね接合する異種金属接合において、高エネルギビームの照射面と反対側の面から、加圧手段によって上記両材料が密着する方向に接合部位を局部的に加圧しながら接合することを特徴とする異種金属の接合方法。   In dissimilar metal bonding, where high-melting materials with different melting points and low-melting materials are overlapped with each other, the defocused high-energy beam is irradiated onto the surface of the high-melting material in a spot shape, A method for joining dissimilar metals, characterized in that joining is performed while locally pressurizing a joining portion from a surface opposite to an energy beam irradiation surface in a direction in which the two materials are in close contact with each other by a pressurizing means. 上記加圧手段が被接合材料を押圧する圧子を備え、該圧子の低融点材料との当接面が円形平面状をなし、該当接面の直径Dpとデフォーカスされた高エネルギビームの材料表面上におけるビーム径Dbとの比Dp/Dbが0.8〜1.2の範囲であることを特徴とする請求項1に記載の接合方法。   The pressurizing means includes an indenter that presses the material to be joined, the contact surface of the indenter with the low-melting-point material has a circular flat surface, and the surface of the high energy beam defocused with the diameter Dp of the corresponding contact surface The bonding method according to claim 1, wherein the ratio Dp / Db to the upper beam diameter Db is in the range of 0.8 to 1.2. 上記加圧手段がエアシリンダであることを特徴とする請求項1又は2に記載の接合方法。   The joining method according to claim 1, wherein the pressurizing means is an air cylinder. 上記加圧手段の圧子が冷却機構を備えていることを特徴とする請求項2又は3に記載の接合方法。   The joining method according to claim 2 or 3, wherein the indenter of the pressurizing means includes a cooling mechanism. 高エネルギビームを透過する材料によって高融点材料の表面を押えることを特徴とする請求項1〜4のいずれか1つの項に記載の接合方法。   The bonding method according to claim 1, wherein the surface of the high melting point material is pressed by a material that transmits a high energy beam. 高融点材料が鋼材であり、低融点材料がアルミニウム合金又はマグネシウム合金であることを特徴とする請求項1〜5のいずれか1つの項に記載の接合方法。   The joining method according to any one of claims 1 to 5, wherein the high melting point material is a steel material, and the low melting point material is an aluminum alloy or a magnesium alloy. 被接合材料の界面に共晶溶融を生じさせて接合することを特徴とする請求項1〜6のいずれか1つの項に記載の接合方法。   The joining method according to claim 1, wherein eutectic melting is caused at the interface of the materials to be joined, and joining is performed.
JP2004373408A 2004-12-24 2004-12-24 Method of joining dissimilar metals with high energy beam Active JP4962752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373408A JP4962752B2 (en) 2004-12-24 2004-12-24 Method of joining dissimilar metals with high energy beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373408A JP4962752B2 (en) 2004-12-24 2004-12-24 Method of joining dissimilar metals with high energy beam

Publications (2)

Publication Number Publication Date
JP2006175503A true JP2006175503A (en) 2006-07-06
JP4962752B2 JP4962752B2 (en) 2012-06-27

Family

ID=36730090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373408A Active JP4962752B2 (en) 2004-12-24 2004-12-24 Method of joining dissimilar metals with high energy beam

Country Status (1)

Country Link
JP (1) JP4962752B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107158A (en) * 2007-10-27 2009-05-21 Institute Of National Colleges Of Technology Japan Different metal joined body and its manufacturing process
JP2009248184A (en) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp Welded joint, and method for producing the same
JP2010058124A (en) * 2008-09-01 2010-03-18 Sankei Giken Kogyo Co Ltd Laser beam welding apparatus and method of manufacturing cylindrical body
JP2010075976A (en) * 2008-09-26 2010-04-08 Hitachi Via Mechanics Ltd Laser beam machine
JP2012254484A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Method for joining dissimilar metals
WO2014167027A1 (en) * 2013-04-12 2014-10-16 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
JP2015223618A (en) * 2014-05-29 2015-12-14 キヤノン株式会社 Method for manufacturing structure, and retainer therefor
JP2017160470A (en) * 2016-03-07 2017-09-14 大日本印刷株式会社 Manufacturing method of vapor deposition mask device and vapor deposition mask device
JP2020093302A (en) * 2018-12-03 2020-06-18 株式会社ジェイテクト Joint device
KR20200131947A (en) * 2019-05-14 2020-11-25 주식회사 새한산업 Laser spot welding apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180794A (en) * 1987-12-28 1989-07-18 Nissan Motor Co Ltd Laser beam welding equipment
JPH08281451A (en) * 1995-04-04 1996-10-29 Sollac Butt welding method of two kinds of metal blanks
JPH08309445A (en) * 1995-04-04 1996-11-26 Sollac Molding part for automobile or railroad vehicle
JP2001198687A (en) * 2000-01-11 2001-07-24 Kobe Steel Ltd Method of laser welding for aluminum material
JP2003001455A (en) * 2001-06-15 2003-01-08 Matsushita Electric Ind Co Ltd Method and apparatus for joining metal and resin and method for producing damping steel sheet
JP2004174529A (en) * 2002-11-26 2004-06-24 Suzuki Motor Corp Laser beam welding equipment
JP2004216840A (en) * 2003-01-17 2004-08-05 Matsushita Electric Works Ltd Thermoplastic resin joining method using laser
JP2004291090A (en) * 2002-09-26 2004-10-21 Fine Process:Kk Method and equipment of laser roll welding for different kinds of metal
JP2004322205A (en) * 2002-09-26 2004-11-18 Fine Process:Kk Method and apparatus for rolling-joining different kinds of metals with laser beam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180794A (en) * 1987-12-28 1989-07-18 Nissan Motor Co Ltd Laser beam welding equipment
JPH08281451A (en) * 1995-04-04 1996-10-29 Sollac Butt welding method of two kinds of metal blanks
JPH08309445A (en) * 1995-04-04 1996-11-26 Sollac Molding part for automobile or railroad vehicle
JP2001198687A (en) * 2000-01-11 2001-07-24 Kobe Steel Ltd Method of laser welding for aluminum material
JP2003001455A (en) * 2001-06-15 2003-01-08 Matsushita Electric Ind Co Ltd Method and apparatus for joining metal and resin and method for producing damping steel sheet
JP2004291090A (en) * 2002-09-26 2004-10-21 Fine Process:Kk Method and equipment of laser roll welding for different kinds of metal
JP2004322205A (en) * 2002-09-26 2004-11-18 Fine Process:Kk Method and apparatus for rolling-joining different kinds of metals with laser beam
JP2004174529A (en) * 2002-11-26 2004-06-24 Suzuki Motor Corp Laser beam welding equipment
JP2004216840A (en) * 2003-01-17 2004-08-05 Matsushita Electric Works Ltd Thermoplastic resin joining method using laser

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107158A (en) * 2007-10-27 2009-05-21 Institute Of National Colleges Of Technology Japan Different metal joined body and its manufacturing process
JP2009248184A (en) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp Welded joint, and method for producing the same
JP2010058124A (en) * 2008-09-01 2010-03-18 Sankei Giken Kogyo Co Ltd Laser beam welding apparatus and method of manufacturing cylindrical body
JP2010075976A (en) * 2008-09-26 2010-04-08 Hitachi Via Mechanics Ltd Laser beam machine
JP2012254484A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Method for joining dissimilar metals
FR3004369A1 (en) * 2013-04-12 2014-10-17 Thales Sa METHOD FOR ESTABLISHING PERMANENT BOND BETWEEN FERROUS ALLOY AND ALUMINUM OR ALUMINUM ALLOY
WO2014167027A1 (en) * 2013-04-12 2014-10-16 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
JP2016522748A (en) * 2013-04-12 2016-08-04 タレス Method for establishing a permanent bond between an iron alloy and aluminum or an aluminum alloy
US9908194B2 (en) 2013-04-12 2018-03-06 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
JP2015223618A (en) * 2014-05-29 2015-12-14 キヤノン株式会社 Method for manufacturing structure, and retainer therefor
JP2017160470A (en) * 2016-03-07 2017-09-14 大日本印刷株式会社 Manufacturing method of vapor deposition mask device and vapor deposition mask device
JP2020093302A (en) * 2018-12-03 2020-06-18 株式会社ジェイテクト Joint device
JP7331478B2 (en) 2018-12-03 2023-08-23 株式会社ジェイテクト Welding equipment
KR20200131947A (en) * 2019-05-14 2020-11-25 주식회사 새한산업 Laser spot welding apparatus
KR102215509B1 (en) * 2019-05-14 2021-02-16 주식회사 새한산업 Laser spot welding apparatus

Also Published As

Publication number Publication date
JP4962752B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP6911153B2 (en) Methods and systems for welding copper using a blue laser
US8093531B2 (en) Method of energy beam welding aluminum to titanium
JP4868210B2 (en) Bonding method of dissimilar materials
KR101554800B1 (en) Method of manufacturing laser welded steel pipe
JP4780526B2 (en) Joining method, joining apparatus and joining structure of different materials
JP2006224134A (en) Structure, method, and equipment for joining different kind of metals by high energy beam
JP4962752B2 (en) Method of joining dissimilar metals with high energy beam
JP2008006465A (en) Method for joining dissimilar metals
CN111050981A (en) Laser welding of aluminium blanks
JP2006281279A (en) Different material joining method using laser welding
JP4978121B2 (en) Butt joining method of metal plates
JP4919006B2 (en) Dissimilar metal panel joining method
JP2006289437A (en) Method and device for joining different kinds of metal using high energy beam
JP2006289386A (en) Method and device for joining different kinds of metal using high energy beam and the joined member
JP2005238249A (en) Method and apparatus for bonding dissimilar materials by irradiating laser beam
JP4518892B2 (en) Dissimilar material joining method
JP2005169418A (en) Method and device for joining dissimilar materials
JP4337721B2 (en) High energy density beam welding product, high energy density beam welding method, and welding auxiliary device used therefor
CN109014580B (en) Lapping laser gap powder filling welding method with rolling assistance
JP2008155226A (en) Laser lap weld joint of steel plate, and method for laser lap welding
JP2006116600A (en) Method for joining different materials
JP2007331018A (en) Method of and apparatus for joining different kinds of metal panels, and joined structure
JP4857869B2 (en) Laser brazing method for lap fillet joints
JP2006198678A (en) Different kind of metal joining method
Boumerzoug A Review: Welding by Laser Beam of Dissimilar Metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4962752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3