JP2006174845A - Method for decreasing acrylamide in food - Google Patents

Method for decreasing acrylamide in food Download PDF

Info

Publication number
JP2006174845A
JP2006174845A JP2006076900A JP2006076900A JP2006174845A JP 2006174845 A JP2006174845 A JP 2006174845A JP 2006076900 A JP2006076900 A JP 2006076900A JP 2006076900 A JP2006076900 A JP 2006076900A JP 2006174845 A JP2006174845 A JP 2006174845A
Authority
JP
Japan
Prior art keywords
acrylamide
amino acids
amino acid
asparagine
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006076900A
Other languages
Japanese (ja)
Inventor
Kazuo Kamiyama
和夫 神山
Yukihiro Nomura
幸弘 野村
Akio Sakurai
昭夫 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
House Foods Corp
Original Assignee
House Foods Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by House Foods Corp filed Critical House Foods Corp
Priority to JP2006076900A priority Critical patent/JP2006174845A/en
Publication of JP2006174845A publication Critical patent/JP2006174845A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decreasing acrylamide in food through suppressing production of acrylamide in food material cooking processes. <P>SOLUTION: This method for decreasing acrylamide in food comprises adding basic amino acid, sulfur-containing amino acid or the like to a food material followed by cooking. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジャガイモ等の食品材料を調理して製造される食品中のアクリルアミドを低減する方法に関する。   The present invention relates to a method for reducing acrylamide in foods produced by cooking food materials such as potatoes.

炭水化物を多く含む食材を高温で加熱して製造した食品(例えばポテトチップ、フライドポテト、ビスケット)にアクリルアミドが高濃度に含まれていることが、平成14年4月にスウェーデン食品庁により発表された(非特許文献1参照)。その後に、ジャガイモや穀類の主要アミノ酸の一つであるアスパラギンが糖とのメイラード反応を経てアクリルアミドとなることが2つの研究グループにより明らかにされた(非特許文献2および非特許文献3参照)。   It was announced by the Swedish Food Agency in April 2002 that acrylamide was contained in foods (such as potato chips, french fries, biscuits) made by heating foods rich in carbohydrates at high temperatures. (Refer nonpatent literature 1). Subsequently, two research groups revealed that asparagine, which is one of the main amino acids of potato and cereals, becomes acrylamide through Maillard reaction with sugar (see Non-Patent Document 2 and Non-Patent Document 3).

アクリルアミドは従来から広く知られた化学物質であるが、食品として摂取した場合に健康に与える影響などは従来検討されておらず、食品中のアクリルアミドを低減する先行技術は存在しない。   Acrylamide is a chemical substance that has been widely known in the past, but its influence on health when ingested as a food has not been studied so far, and there is no prior art for reducing acrylamide in food.

独立行政法人食品総合研究所、2002年7月25日掲載、インターネット<URL: http://aa.iacfc.affrc.go.jp/keika.html>National Food Research Institute, July 25, 2002, Internet <URL: http://aa.iacfc.affrc.go.jp/keika.html> モトラム,D.S.、ブロニスロウ,L.W.およびドドソン,A.T.(Mottram, D.S., Bronislaw, L.W. & Dodson, A.T.)著、「アクリルアミドはメイラード反応で発生する(Acrylamide is formed in the Maillard reaction.)」 「ネイチャー(Nature)」,(英国)、2002年 419巻, p.448-449Motram, DS, Bronislow, LW and Dodson, AT (Mottram, DS, Bronislaw, LW & Dodson, AT), “Acrylamide is formed in the Maillard reaction.” “Nature ”, (UK), 2002, 419, 448-449. スタドラー,R.H.ら(Stadler, R.H. et al.)著、「メイラード反応生成物からのアクリルアミド(Acrylamide from Maillard reaction products.)」 2002年、「ネイチャー(Nature)」,(英国)、2002年 419巻, p.449Stadler, RH et al., “Acrylamide from Maillard reaction products.” 2002, “Nature” (UK), 419, 2002 p.449

本発明の目的は、食品材料の調理工程においてアクリルアミドの発生を抑制することによって食品中のアクリルアミドを低減する方法を提供することである。   An object of the present invention is to provide a method for reducing acrylamide in food by suppressing the generation of acrylamide in the cooking process of the food material.

本発明の更なる目的は、新たなアクリルアミドの発生を抑制することに加えて、既にアクリルアミドを含んでいる食品材料中のアクリルアミド含量を調理工程において低下させることによって食品中のアクリルアミドを低減する方法を提供することである。   It is a further object of the present invention to provide a method for reducing acrylamide in foods by reducing the acrylamide content in food materials that already contain acrylamide in the cooking process, in addition to suppressing the generation of new acrylamides. Is to provide.

本発明の更なる目的は、アクリルアミド含量が低減された食品、特にポテトスナックを提供することである。   It is a further object of the present invention to provide foods, particularly potato snacks, with reduced acrylamide content.

本発明は、以下の発明を包含する。   The present invention includes the following inventions.

(1) 塩基性アミノ酸、塩基性アミノ酸誘導体、構成アミノ酸として塩基性アミノ酸を含むペプチド、グリシン、グリシン誘導体、構成アミノ酸としてグリシンを含むペプチド、アラニン、アラニン誘導体、構成アミノ酸としてアラニンを含むペプチド、含硫アミノ酸、含硫アミノ酸誘導体、構成アミノ酸として含硫アミノ酸を含むペプチド、ウロン酸、ウロン酸誘導体、アミノグアニジン、ビタミンB1、ビタミンB1誘導体、ビタミンB6およびビタミンB6誘導体、ならびにこれらの少なくとも1種を含有する成分からなる群から選択される少なくとも1種を食品材料に添加した後に調理を行うことを特徴とする、食品中のアクリルアミドを低減する方法。
(2) 前記食品材料がアスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する、上記(1)に記載の方法。
(3) 前記のアスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する食品材料がジャガイモ、エンドウ、黒胡椒、白胡椒、グリーンアスパラ、ゴボウ、インゲン、ウコン、カボチャ、サツマイモ、トウモロコシ、タマネギ、ニンニク、生姜、小麦および米ならびにこれらの少なくとも1種に由来する材料からなる群から選択される少なくとも1種を含む、上記(2)に記載の方法。
(4) 前記塩基性アミノ酸がリシン、アルギニンまたはヒスチジンである、上記(1)〜(3)のいずれかに記載の方法。
(5) 前記含硫アミノ酸がシステイン、メチオニンまたはシスチンである、上記(1)〜(3)のいずれかに記載の方法。
(6)調理温度が100〜250℃である、上記(1)〜(5)のいずれかに記載の方法。
(7) アクリルアミドを含む食品材料に、含硫アミノ酸、含硫アミノ酸誘導体および構成アミノ酸として含硫アミノ酸を含むペプチドならびにこれらの少なくとも1種を含有する成分からなる群から選択される少なくとも1種を添加した後に調理を行うことを特徴とする、食品中のアクリルアミドを低減する方法。
(8) 調理温度が80〜110℃である、上記(7)に記載の方法。
(9) 上記(1)〜(8)のいずれかに記載の方法により製造された、ポテトスナック。
(1) Basic amino acids, basic amino acid derivatives, peptides containing basic amino acids as constituent amino acids, glycine, glycine derivatives, peptides containing glycine as constituent amino acids, alanine, alanine derivatives, peptides containing alanine as constituent amino acids, sulfur containing Contains amino acids, sulfur-containing amino acid derivatives, peptides containing sulfur-containing amino acids as constituent amino acids, uronic acid, uronic acid derivatives, aminoguanidine, vitamin B1, vitamin B1 derivatives, vitamin B6 and vitamin B6 derivatives, and at least one of these A method for reducing acrylamide in foods, comprising cooking after adding at least one selected from the group consisting of ingredients to the food material.
(2) The method according to (1) above, wherein the food material contains at least one selected from the group consisting of asparagine, an asparagine derivative, and a peptide containing asparagine as a constituent amino acid.
(3) The food material containing at least one selected from the group consisting of the asparagine, the asparagine derivative and the peptide containing asparagine as a constituent amino acid is potato, pea, black pepper, white pepper, green asparagus, burdock, green beans, The method according to (2) above, comprising at least one selected from the group consisting of turmeric, pumpkin, sweet potato, corn, onion, garlic, ginger, wheat and rice and materials derived from at least one of these.
(4) The method according to any one of (1) to (3) above, wherein the basic amino acid is lysine, arginine or histidine.
(5) The method according to any one of (1) to (3) above, wherein the sulfur-containing amino acid is cysteine, methionine or cystine.
(6) The method in any one of said (1)-(5) whose cooking temperature is 100-250 degreeC.
(7) Add at least one selected from the group consisting of sulfur-containing amino acids, sulfur-containing amino acid derivatives, peptides containing sulfur-containing amino acids as constituent amino acids, and ingredients containing at least one of these to food materials containing acrylamide A method for reducing acrylamide in foods, which comprises cooking after cooking.
(8) The method according to (7) above, wherein the cooking temperature is 80 to 110 ° C.
(9) A potato snack manufactured by the method according to any one of (1) to (8) above.

本発明により、食品材料の調理工程においてアクリルアミドの発生を抑制することによって食品中のアクリルアミドを低減する方法が提供される。特に、糖のアルデヒド基と迅速にメイラード反応を起こすアミノ酸(リシンなど)またはその誘導体を食品材料に添加して加熱調理した場合には、メイラード反応の好ましい効果を保持しつつアクリルアミドを低減することができる点で有利である。既にアクリルアミドを含んでいる食品材料中のアクリルアミド含量を調理工程において低下させることによって食品中のアクリルアミドを低減する方法が提供される。   The present invention provides a method for reducing acrylamide in food by suppressing the generation of acrylamide in the cooking process of the food material. In particular, when an amino acid (such as lysine) or a derivative thereof that rapidly undergoes a Maillard reaction with an aldehyde group of sugar is added to a food material and cooked, acrylamide can be reduced while maintaining the favorable effect of the Maillard reaction. This is advantageous. A method is provided for reducing acrylamide in food by reducing the acrylamide content in food ingredients that already contain acrylamide in the cooking process.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の第一の形態は、食品材料の調理工程においてアクリルアミドの発生を抑制することによって食品中のアクリルアミドを低減する方法である。   The first aspect of the present invention is a method for reducing acrylamide in food by suppressing the generation of acrylamide in the cooking process of the food material.

本発明の第二の形態は、新たなアクリルアミドの発生を抑制することに加えて、既にアクリルアミドを含んでいる食品材料中のアクリルアミド含量を調理工程において低下させることによって食品中のアクリルアミドを低減する方法である。   The second aspect of the present invention is a method for reducing acrylamide in a food by reducing the acrylamide content in a food material that already contains acrylamide in the cooking process, in addition to suppressing the generation of new acrylamide. It is.

本発明の第三の形態は、アクリルアミド含量が低減された食品、特にポテトスナックである。   The third form of the present invention is a food, particularly potato snacks, with a reduced acrylamide content.

本発明に使用することのできる食品材料は食品として許容できる任意の材料である。特に、アスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する食品材料が好ましい。なお本明細書においてアミノ酸の「誘導体」とは、食品として許容し得る任意の誘導体を意味する。   The food material that can be used in the present invention is any material acceptable as food. In particular, a food material containing at least one selected from the group consisting of asparagine, an asparagine derivative and a peptide containing asparagine as a constituent amino acid is preferable. In the present specification, the “derivative” of an amino acid means any derivative acceptable as food.

食品材料中のアスパラギンがメイラード反応を経てアクリルアミドに変化することが知られている。従って、アスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する食品材料を調理する際に本発明の方法を使用することが特に有用である。   It is known that asparagine in food materials is converted to acrylamide via Maillard reaction. Therefore, it is particularly useful to use the method of the present invention in cooking a food material containing at least one selected from the group consisting of asparagine, an asparagine derivative and a peptide containing asparagine as a constituent amino acid.

アスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する食品材料としては、ジャガイモ、エンドウ、黒胡椒、白胡椒、グリーンアスパラ、ゴボウ、インゲン、ウコン、カボチャ、サツマイモ、トウモロコシ、タマネギ、ニンニク、生姜、小麦および米ならびにこれらの少なくとも1種に由来する材料が挙げられる。例えばジャガイモに由来する材料としてはジャガイモ乾燥粉体が挙げられる。なお、食品総合研究所報告, No.31, pp.42-70, 1976年によると生のジャガイモ中のアスパラギン含量は101.7mg/100gであり、出願人が実施例に記載する方法により測定したところによるとジャガイモ乾燥粉体および黒胡椒中のアスパラギン含量はそれぞれ1163mg/100g、および344mg/100gである。   Food materials containing at least one selected from the group consisting of asparagine, an asparagine derivative and a peptide containing asparagine as a constituent amino acid include potato, pea, black pepper, white pepper, green asparagus, burdock, green beans, turmeric, pumpkin , Sweet potato, corn, onion, garlic, ginger, wheat and rice and materials derived from at least one of these. For example, a potato-derived material includes potato dry powder. According to the Food Research Institute report, No.31, pp.42-70, 1976, the content of asparagine in raw potatoes was 101.7mg / 100g, which was measured by the method described in the Examples by the applicant. According to the results, the asparagine content in dried potato powder and black pepper is 1163 mg / 100 g and 344 mg / 100 g, respectively.

本発明に使用することができる塩基性アミノ酸としては、リシン、アルギニン、ヒスチジンなどの天然に存在する塩基性アミノ酸、および合成により得られた塩基性アミノ酸、ならびにそれらの食品として許容し得る塩が挙げられ、特にリシンが好ましい。   Examples of basic amino acids that can be used in the present invention include naturally occurring basic amino acids such as lysine, arginine, and histidine, synthetically obtained basic amino acids, and food-acceptable salts thereof. In particular, lysine is preferred.

本発明には他に、塩基性アミノ酸誘導体、構成アミノ酸として上記塩基性アミノ酸を含むペプチドなどを使用することができる。   In addition to the above, a basic amino acid derivative, a peptide containing the above basic amino acid as a constituent amino acid, and the like can be used.

塩基性アミノ酸によるアクリルアミドの低減の機構は次の通りである。すなわち、塩基性アミノ酸は塩基性官能基を2つ有しているために、アスパラギンよりも迅速に糖のカルボニル基と求核反応し、その結果としてアスパラギンと糖とのメイラード反応が阻害されるので、アクリルアミドの生成量が低減される。この効果は特に塩基性アミノ酸がリシンである場合に顕著となる。なぜなら、リシンのε位アミノ基は立体的に自由度が大きいので糖のカルボニル基への求核反応がより起こり易いからである。なお、特公平6−67827号公報には「メイラード反応阻害物質」としてリシンが挙げられている。しかしながら本発明においては、リシンその他の塩基性アミノ酸、塩基性アミノ酸誘導体または構成アミノ酸として塩基性アミノ酸を含むペプチドが用いられる場合にメイラード反応自体は阻害されない。すなわち、本発明においては、メイラード反応が促進されながらもアクリルアミドの生成が抑制される。メイラード反応には好ましい色と香りを食品に付与する効果があることから、本発明は、塩基性アミノ酸、塩基性アミノ酸誘導体または構成アミノ酸として塩基性アミノ酸を含むペプチドを用いた場合に、メイラード反応の好ましい効果を損なうことなく食品中のアクリルアミドを低減できるという有利な効果を有するといえる。   The mechanism of reduction of acrylamide by basic amino acids is as follows. In other words, since basic amino acids have two basic functional groups, nucleophilic reaction with the carbonyl group of sugar more rapidly than asparagine, and as a result, the Maillard reaction between asparagine and sugar is inhibited. The amount of acrylamide produced is reduced. This effect is particularly remarkable when the basic amino acid is lysine. This is because the ε-position amino group of lysine has a large degree of steric freedom, so that a nucleophilic reaction to the carbonyl group of the sugar is more likely to occur. JP-B-6-67827 discloses lysine as a “Maillard reaction inhibitor”. However, in the present invention, the Maillard reaction itself is not inhibited when lysine or other basic amino acids, basic amino acid derivatives, or peptides containing basic amino acids as constituent amino acids are used. That is, in the present invention, the generation of acrylamide is suppressed while the Maillard reaction is promoted. Since the Maillard reaction has the effect of imparting a favorable color and fragrance to foods, the present invention is effective when the peptide containing a basic amino acid as a basic amino acid, a basic amino acid derivative or a constituent amino acid is used. It can be said that it has the advantageous effect that acrylamide in food can be reduced without impairing the favorable effect.

また本発明には、塩基性アミノ酸、塩基性アミノ酸誘導体または構成アミノ酸として塩基性アミノ酸を含むペプチド以外にも、アスパラギンよりも迅速に糖のカルボニル基と求核反応できる任意のアミノ酸、アミノ酸誘導体または構成アミノ酸として当該アミノ酸を含むペプチドも使用できる。かかるアミノ酸、アミノ酸誘導体または構成アミノ酸として当該アミノ酸を含むペプチドとしては、グリシン、グリシン誘導体、構成アミノ酸としてグリシンを含むペプチド、アラニン、アラニン誘導体、構成アミノ酸としてアラニンを含むペプチドが挙げられる。グリシンおよびアラニンは、アミノ基周辺の立体障害が少なく、糖のアルデヒド基と求核反応を起こし易いため、塩基性アミノ酸、塩基性アミノ酸誘導体または構成アミノ酸として塩基性アミノ酸を含むペプチドと同様に、メイラード反応の好ましい効果を損なうことなく食品中のアクリルアミドを低減できるという有利な効果を有する。   Further, the present invention includes any amino acid, amino acid derivative or constitution capable of nucleophilic reaction with a carbonyl group of sugar more rapidly than asparagine, in addition to a basic amino acid, a basic amino acid derivative or a peptide containing a basic amino acid as a constituent amino acid. A peptide containing the amino acid can also be used as the amino acid. Examples of such amino acids, amino acid derivatives or peptides containing the amino acids as constituent amino acids include glycine, glycine derivatives, peptides containing glycine as constituent amino acids, alanine, alanine derivatives, and peptides containing alanine as constituent amino acids. Glycine and alanine have few steric hindrances around the amino group and easily undergo a nucleophilic reaction with the aldehyde group of the sugar. Therefore, as with basic amino acids, basic amino acid derivatives, or peptides containing basic amino acids as constituent amino acids, Maillard It has the advantageous effect that acrylamide in the food can be reduced without impairing the favorable effect of the reaction.

本発明に使用することができる含硫アミノ酸としては、システイン、メチオニン、シスチンなどの天然に存在する含硫アミノ酸、および合成により得られた含硫アミノ酸、ならびにそれらの食品として許容し得る塩が挙げられ、特にシステイン、メチオニンおよびシスチンが好ましい。   Examples of the sulfur-containing amino acids that can be used in the present invention include naturally-occurring sulfur-containing amino acids such as cysteine, methionine, and cystine, synthetically-containing sulfur-containing amino acids, and food-acceptable salts thereof. Especially preferred are cysteine, methionine and cystine.

本発明には他に、含硫アミノ酸誘導体、構成アミノ酸として上記含硫アミノ酸を含むペプチドなどを使用することができる。構成アミノ酸として含硫アミノ酸を含むペプチドとしては、具体的には、還元型または酸化型のグルタチオンが挙げられる。また、本発明に使用することができる含硫アミノ酸および/またはその誘導体を含有する成分としては酵母エキスが挙げられる。   In the present invention, sulfur-containing amino acid derivatives, peptides containing the above-mentioned sulfur-containing amino acids as constituent amino acids, and the like can be used. Specific examples of peptides containing sulfur-containing amino acids as constituent amino acids include reduced or oxidized glutathione. Moreover, yeast extract is mentioned as a component containing the sulfur-containing amino acid which can be used for this invention, and / or its derivative (s).

なお、本発明に使用されるアミノ酸は、それが不斉炭素原子を有するアミノ酸である場合、D−アミノ酸もしくはL−アミノ酸またはそれらの混合物のいずれであってもよい。また本発明に使用されるアミノ酸は食用に適するものであれば特に限定されない。   In addition, when the amino acid used in the present invention is an amino acid having an asymmetric carbon atom, it may be any of a D-amino acid, an L-amino acid, or a mixture thereof. The amino acid used in the present invention is not particularly limited as long as it is suitable for food.

本発明に使用することができるウロン酸としては、グルクロン酸、ガラクツロン酸、マンヌロン酸,イズヌロン酸が挙げられ、特にグルクロン酸が好ましい。
本発明に使用することができるウロン酸誘導体としては、ポリウロン酸が挙げられる。
Examples of uronic acid that can be used in the present invention include glucuronic acid, galacturonic acid, mannuronic acid, and iduronic acid, with glucuronic acid being particularly preferred.
Examples of uronic acid derivatives that can be used in the present invention include polyuronic acid.

本発明に使用することができるビタミンB1としては、チアミンおよびその食品として許容し得る塩が挙げられる。食品として許容できる塩としては、例えば塩酸塩、硝酸塩が挙げられる。
本発明に使用することができるビタミンB1誘導体としては、チアミンのリン酸エステルが挙げられる。
Vitamin B1 that can be used in the present invention includes thiamine and food acceptable salts thereof. Examples of salts acceptable as food include hydrochlorides and nitrates.
Examples of vitamin B1 derivatives that can be used in the present invention include thiamine phosphates.

本発明に使用することができるビタミンB6としては、ピリドキシン、ピリドキサール、ピリドキサミンおよびそれらの食品として許容し得る塩が挙げられる。食品として許容できる塩としては、例えば塩酸塩、硝酸塩が挙げられる。
本発明に使用することができるビタミンB6誘導体としては、ピリドキシン、ピリドキサールまたはピリドキサミンのリン酸エステルが挙げられる。
Vitamin B6 that can be used in the present invention includes pyridoxine, pyridoxal, pyridoxamine and food acceptable salts thereof. Examples of salts acceptable as food include hydrochlorides and nitrates.
Vitamin B6 derivatives that can be used in the present invention include pyridoxine, pyridoxal, or phosphates of pyridoxamine.

含硫アミノ酸、含硫アミノ酸誘導体、構成アミノ酸として含硫アミノ酸を含むペプチド、ウロン酸、ウロン酸誘導体、アミノグアニジン、ビタミンB1、ビタミンB1誘導体、ビタミンB6またはビタミンB6誘導体が食品中のアクリルアミドを低減する作用機構は必ずしも明らかではない。しかしながら実施例に示す通り食品中のアクリルアミドを低減する効果を有する。   Sulfur-containing amino acids, sulfur-containing amino acid derivatives, peptides containing sulfur-containing amino acids as constituent amino acids, uronic acid, uronic acid derivatives, aminoguanidine, vitamin B1, vitamin B1 derivatives, vitamin B6 or vitamin B6 derivatives reduce acrylamide in foods The mechanism of action is not always clear. However, as shown in the examples, it has the effect of reducing acrylamide in food.

本発明の方法に使用できる調理工程は任意の調理工程であってよく、好ましくは加熱調理工程である。具体的な加熱調理工程としては、例えば油ちょう、焼成、焙煎、煮炊きが挙げられる。   The cooking process that can be used in the method of the present invention may be any cooking process, preferably a cooking process. Specific examples of the cooking process include oil frying, baking, roasting, and cooking.

本発明の第一の形態では、アクリルアミドの顕著な低減が認められる点で、調理工程の温度が100〜250℃であることが好ましい。   In the 1st form of this invention, it is preferable that the temperature of a cooking process is 100-250 degreeC at the point by which the remarkable reduction | decrease of acrylamide is recognized.

本発明の第二の形態は、第一の形態と同様に新たなアクリルアミドの発生を抑制する効果に加えて、既にアクリルアミドを含んでいる食品材料中のアクリルアミド含量を調理工程を通じて低下させる効果を有する点が特徴的である。   The second form of the present invention has the effect of reducing the acrylamide content in the food material that already contains acrylamide through the cooking process in addition to the effect of suppressing the generation of new acrylamide as in the first form. The point is characteristic.

実施例において示す通り、食品材料中に既に存在するアクリルアミドの含量を低下させる効果は、含硫アミノ酸、含硫アミノ酸誘導体および構成アミノ酸として含硫アミノ酸を含むペプチドならびにこれらの少なくとも1種以上を含有する成分からなる群から選択される少なくとも1種を添加した場合にのみ見出されるものである。   As shown in the examples, the effect of reducing the content of acrylamide already present in the food material contains a sulfur-containing amino acid, a sulfur-containing amino acid derivative, a peptide containing a sulfur-containing amino acid as a constituent amino acid, and at least one of these. It is found only when at least one selected from the group consisting of components is added.

「アクリルアミドを含む食品材料」または「既にアクリルアミドを含んでいる食品材料」には任意の原因でアクリルアミドを含むに至った食品材料が含まれる。例えば、前処理工程によりアクリルアミドを含むに至った食品材料が含まれる。   “A food material containing acrylamide” or “a food material that already contains acrylamide” includes a food material that has, for any reason, led to containing acrylamide. For example, the food material which came to contain acrylamide by the pre-processing process is contained.

ここで、「前処理工程」とは、下ごしらえなどの調理を事前に行う工程を指す。該工程には、例えば、アスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含む野菜等と食用油脂を高温で混合加熱して調味素材を製造する工程が含まれる。   Here, the “pretreatment step” refers to a step in which cooking such as preparation is performed in advance. The step includes, for example, a step of producing a seasoning material by mixing and heating edible oils and fats and vegetables containing at least one selected from the group consisting of asparagine, an asparagine derivative and a peptide containing asparagine as a constituent amino acid at high temperature. included.

「前処理工程によりアクリルアミドを含むに至った食品材料」とは、例えば、前処理工程としての加熱調理によりメイラード反応が起こりアクリルアミドが生成した中間加工品を指す。当該中間加工品には、例えば、食品の製造過程において調製される上記調味素材や、別途調製加工されて流通に供せられる調味素材が含まれる。   The “food material that has led to the inclusion of acrylamide in the pretreatment process” refers to, for example, an intermediate processed product in which Maillard reaction has occurred by heat cooking as the pretreatment process and acrylamide has been produced. The intermediate processed product includes, for example, the above-described seasoning material prepared in the manufacturing process of food and the seasoning material separately prepared and processed for distribution.

本発明の第二の形態での調理工程は任意の調理工程であってよく、好ましくは加熱調理工程である。加熱調理工程としては例えば油ちょう、焼成、焙煎、煮炊きが挙げられる。また調理工程の温度は、メイラード反応が起こりにくい90℃前後においても食品材料中に含まれる既存のアクリルアミドの含量を低下させる効果が認められるという点で、80〜110℃であることが好ましい。   The cooking process in the second embodiment of the present invention may be an arbitrary cooking process, preferably a heating cooking process. Examples of the cooking process include oil butter, baking, roasting, and cooking. Moreover, it is preferable that the temperature of a cooking process is 80-110 degreeC at the point that the effect which reduces the content of the existing acrylamide contained in foodstuff material is recognized also at about 90 degreeC which a Maillard reaction does not occur easily.

本発明の対象となる食品としては、厚生労働省ホームページに2002年11月1日に掲載された国立医薬品食品衛生研究所食品部による食品中のアクリルアミド分析結果(インターネットhttp://www.mhlw.go.jp/topics/2002/11/tp1101-1a.html)においてアクリルアミド含量が測定された食品が例示でき、具体的には、ポテトチップ、ポップコーン、スナック菓子、米菓、クッキー、クラッカー、かりんとう、即席麺、即席ワンタン、シリアルが挙げられ、特にポテトチップ等のポテトスナックが好ましい。   The food subject to the present invention is the result of analysis of acrylamide in food by the Food Department of the National Institute of Health Sciences published on November 1, 2002 on the Ministry of Health, Labor and Welfare website (Internet http: //www.mhlw.go jp / topics / 2002/11 / tp1101-1a.html) can be exemplified by foods whose acrylamide content is measured. Specifically, potato chips, popcorn, snacks, rice crackers, cookies, crackers, karinto, instant noodles , Instant wonton and cereal, and potato snacks such as potato chips are particularly preferable.

通常の方法により製造されるポテトスナック中のアクリルアミド含量は、使用原料、製造条件によっても変動するが、6.57×10-6〜5.00×10-5mol/kgである。一方、本発明の方法によれば通常の方法により製造されるポテトスナックよりもアクリルアミド含量が格段に少ない、例えば5.1×10-7〜4.3×10-6mol/kgであるポテトスナックを製造することができる。前記のポテトスナック中のアクリルアミド含量は後述するGCMSによる分析方法の条件で測定したときに得られる値である。 The acrylamide content in the potato snack produced by the usual method is 6.57 × 10 −6 to 5.00 × 10 −5 mol / kg, although it varies depending on the raw materials used and production conditions. On the other hand, according to the method of the present invention, it is possible to produce a potato snack having an acrylamide content much lower than that of a potato snack produced by a usual method, for example, 5.1 × 10 −7 to 4.3 × 10 −6 mol / kg. Can do. The acrylamide content in the potato snack is a value obtained when measured under the analytical method conditions described later by GCMS.

以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.

ガスクロマトグラフ質量分析計(GCMS)によるアクリルアミド含量の分析
GCMSによるアクリルアミド含量の定量分析を以下の手順で行った。
この方法では、水-メタノール溶液で抽出したアクリルアミド(AA)を臭素で2,3-ジブロモプロピルアミド(2,3-DBPA)にジブロモ化し、酢酸エチルに転溶、濃縮後、トリエチルアミンで2-ブロモプロピルアミド(2-BPA)にモノブロモ化した後、GCMSで検出した。ブロモ化率が不均一であるため、抽出時に1,2,3-13C3-アクリルアミドを内部標準として加えた。
Analysis of acrylamide content by gas chromatograph mass spectrometer (GCMS)
Quantitative analysis of acrylamide content by GCMS was performed by the following procedure.
In this method, acrylamide (AA) extracted with a water-methanol solution is dibrominated with bromine to 2,3-dibromopropylamide (2,3-DBPA), transferred to ethyl acetate, concentrated, and then 2-bromo with triethylamine. After monobromination to propylamide (2-BPA), detection was performed by GCMS. Due to the heterogeneous bromination rate, 1,2,3- 13 C 3 -acrylamide was added as an internal standard during extraction.

試薬
該分析に用いた試薬は次の通りである。アクリルアミドとしては特級アクリルアミド‐HG(和光純薬工業製)を用いた。10, 1, 0.1mg/L水溶液に調製して用いた。1,2,3‐13C3‐アクリルアミド(内部標準)としては、1000mg/L 1,2,3‐13C3‐アクリルアミド/メタノール溶液(Cambridge Isotope Laboratories Inc.製, 和光純薬工業より購入)を用いた。0.2mol/L臭素酸カリウム水溶液を用いた。1mol/Lチオ硫酸ナトリウム水溶液を用いた。25%硫酸水溶液を用いた。メタノール、ヘキサン、酢酸エチル、トリエチルアミンまたは臭化カリウムはいずれも特級試薬を用いた。
Reagents The reagents used in the analysis are as follows. As the acrylamide, special grade acrylamide-HG (manufactured by Wako Pure Chemical Industries) was used. 10, 1, 0.1 mg / L aqueous solution prepared. 1,2,3-13 C 3 - acrylamide as the (internal standard), 1000mg / L 1,2,3- 13 C 3 - acrylamide / methanol solution (Cambridge Isotope Laboratories Inc. Ltd., purchased from Wako Pure Chemical Industries) Was used. A 0.2 mol / L potassium bromate aqueous solution was used. A 1 mol / L aqueous sodium thiosulfate solution was used. A 25% aqueous sulfuric acid solution was used. For methanol, hexane, ethyl acetate, triethylamine or potassium bromide, special reagents were used.

抽出操作
フードミルで適宜粉砕した試料2gと20mg/L内部標準溶液0.1mlとを10ml容蓋付遠心管に採取した。20%メタノール水溶液7mlを加えた。10分振とう後、3000rpmで10分間遠心分離した(遠心分離器:KUBOTA5010(久保田製作所))。上清をNo.5Bろ紙でろ過した。沈殿に20%メタノール水溶液5mlを加え、再度No.5Bろ紙でろ過した。試料の場合はろ液すべてを10ml容栓付遠心管に採取した。一方、上記したアクリルアミドを用いた各標準溶液1mlおよび20mg/L内部標準溶液0.1mlを10ml容栓付遠心管に採取した。脂質が多い場合はヘキサン2mlを加え、2分間振り混ぜ、適宜遠心分離し、ヘキサン層を捨てた。25%硫酸水溶液を加えてpH1以下にした。臭化カリウム1gを加えて完全に溶かした。0.2mol/L臭素酸カリウム水溶液0.2mlを加えて混合し、黄色になることを確認した。5℃冷蔵庫中で60分間静置して、AAを2,3-DBPAへと反応させた。1mol/Lチオ硫酸ナトリウム水溶液を黄色が消失するまで滴下して、過剰のBr2を分解した。酢酸エチル4ml×2回を加え、10分間振り混ぜ、場合により遠心分離した。酢酸エチル層を無水硫酸ナトリウムをのせたろ紙に通過させ、ろ液を50ml容ナスフラスコに採取した。ロータリーエバポレーターで0.5ml以下になるまで、乾固させないで濃縮した。トリエチルアミン40μlを加えて、2,3-DBPAを2-BPAへと反応させた。シリンジに0.45μmフィルターを付け、1mlに定容後、ろ液を検液とした。
2 g of a sample appropriately pulverized with an extraction operation food mill and 0.1 ml of a 20 mg / L internal standard solution were collected in a centrifuge tube with a 10 ml cap. 7 ml of 20% aqueous methanol solution was added. After shaking for 10 minutes, the mixture was centrifuged at 3000 rpm for 10 minutes (centrifuge: KUBOTA5010 (Kubota Seisakusho)). The supernatant was filtered through No. 5B filter paper. To the precipitate, 5 ml of 20% aqueous methanol solution was added, and the mixture was again filtered with No. 5B filter paper. In the case of a sample, all the filtrate was collected in a 10 ml centrifuge tube with a stopper. Meanwhile, 1 ml of each standard solution using acrylamide described above and 0.1 ml of a 20 mg / L internal standard solution were collected in a centrifuge tube with a 10 ml stopper. When there was a lot of lipids, 2 ml of hexane was added, shaken for 2 minutes, centrifuged as appropriate, and the hexane layer was discarded. A 25% aqueous sulfuric acid solution was added to adjust the pH to 1 or less. 1 g of potassium bromide was added and completely dissolved. 0.2 ml of 0.2 mol / L potassium bromate aqueous solution was added and mixed, and it was confirmed that the solution became yellow. The AA was reacted with 2,3-DBPA by leaving it in a refrigerator at 5 ° C. for 60 minutes. 1 mol / L sodium thiosulfate aqueous solution was added dropwise until the yellow color disappeared to decompose excess Br 2 . Ethyl acetate 4 ml x 2 was added, shaken for 10 minutes, and optionally centrifuged. The ethyl acetate layer was passed through a filter paper on which anhydrous sodium sulfate was placed, and the filtrate was collected in a 50 ml eggplant flask. It concentrated without making it dry until it became 0.5 ml or less with a rotary evaporator. 40 μl of triethylamine was added to react 2,3-DBPA to 2-BPA. A 0.45 μm filter was attached to the syringe, the volume was adjusted to 1 ml, and the filtrate was used as a test solution.

GCMS条件
以下の条件でガスクロマトグラフ質量分析計(GCMS)を行った。
GCMS AutoMass System II(日本電子製)
キャピラリーカラム DB-5(J&W製)
長さ30m、内径0.25mm、膜厚0.25μm
キャリアガス ヘリウム
注入口背圧 70 kPa
注入口温度 220℃
注入法 スプリットレス、パージオン0.5分、オフ0分
注入量 1μL
オーブン昇温 DB-5:50℃,1分→10℃/分→260℃,5分
イオン化法 EI(70eV)
イオン源温度 210℃
インターフェース温度 240℃
走査 SIM、m/z 44-45,70,73,106,108,110,149-155
GCMS conditions A gas chromatograph mass spectrometer (GCMS) was performed under the following conditions.
GCMS AutoMass System II (JEOL)
Capillary column DB-5 (manufactured by J & W)
Length 30m, inner diameter 0.25mm, film thickness 0.25μm
Carrier gas Helium inlet back pressure 70 kPa
Inlet temperature 220 ° C
Injection method Splitless, purge on 0.5 min, off 0 min Injection volume 1 μL
Oven temperature rise DB-5: 50 ℃, 1 minute → 10 ℃ / minute → 260 ℃, 5 minutes ionization method EI (70eV)
Ion source temperature 210 ℃
Interface temperature 240 ℃
Scanning SIM, m / z 44-45,70,73,106,108,110,149-155

解析
標準溶液の濃度に対し、標準溶液と内部標準溶液のピーク面積比からなる検量線を作成し、試料中のアクリルアミド濃度(ng/g)を求めた。
標準 :m/z149 [12C3H4NO79Br]+ または m/z151 [12C3H4NO81Br]+
内部標準 :m/z152 [13C3H4NO79Br]+ または m/z154 [13C3H4NO81Br]+
A calibration curve consisting of the peak area ratio of the standard solution and the internal standard solution was prepared with respect to the concentration of the analysis standard solution, and the acrylamide concentration (ng / g) in the sample was determined.
Standard: m / z149 [12 C 3 H 4 NO 79 Br] + or m / z151 [12 C 3 H 4 NO 81 Br] +
Internal standard: m / z 152 [ 13 C 3 H 4 NO 79 Br] + or m / z 154 [ 13 C 3 H 4 NO 81 Br] +

液体クロマトグラフィーによるアスパラギンの分析
遊離アスパラギンをオルトフタルアルデヒド(OPA)で誘導体化後、蛍光検出器付液体クロマトグラフィー(HPLC)で検出した。抽出後は速やかにHPLC分析を行った。
Analysis of asparagine by liquid chromatography Free asparagine was derivatized with orthophthalaldehyde (OPA) and then detected by liquid chromatography (HPLC) with a fluorescence detector. After the extraction, HPLC analysis was performed promptly.

試薬
該分析には特にpH 2.2クエン酸リチウム緩衝液(和光純薬工業製、アミノ酸自動分析計用)、アミノ酸分析用移動相キットリチウム型(島津製作所製)およびアミノ酸分析用OPA反応液キット(島津製作所製)を用いた。
Reagents Especially for the analysis, pH 2.2 lithium citrate buffer (manufactured by Wako Pure Chemical Industries, for amino acid automatic analyzer), mobile phase kit for amino acid analysis lithium type (manufactured by Shimadzu Corporation) and OPA reaction solution kit for amino acid analysis (Shimadzu) Manufactured by Seisakusho Co., Ltd.).

抽出操作
試料2gに70%エタノール水溶液を加えて100mlの定容後、No.5Bろ紙でろ過して、タンパク質を除去した。ろ液をナスフラスコに移し、ローターリーエバボレーターで乾固させてエタノールを除去した。残留物をpH 2.2クエン酸リチウム緩衝液で適当濃度に希釈溶解させた。溶液を0.45μmフィルターでろ過し、HPLC検液とした。
A 70% aqueous ethanol solution was added to 2 g of the extraction operation sample, and the volume was adjusted to 100 ml, followed by filtration with No. 5B filter paper to remove proteins. The filtrate was transferred to an eggplant flask and dried with a rotary evaporator to remove ethanol. The residue was diluted and dissolved to an appropriate concentration with a pH 2.2 lithium citrate buffer. The solution was filtered through a 0.45 μm filter to obtain an HPLC test solution.

HPLC条件
HPLC 島津製作所製LC-10A
カラム Shim-Pack ISC-30/S0504-Li, AMINO-Li
検出器 蛍光検出器RF-10A
励起波長350nm、蛍光波長400nm
移動相流量 0.6ml/分
オーブン温度 39℃
HPLC conditions
HPLC Shimadzu LC-10A
Column Shim-Pack ISC-30 / S0504-Li, AMINO-Li
Detector Fluorescence detector RF-10A
Excitation wavelength 350nm, fluorescence wavelength 400nm
Mobile phase flow rate 0.6ml / min Oven temperature 39 ℃

解析
特級アスパラギン(和光純薬工業製)の1×10-4mol/L 溶液(pH 2.2 クエン酸リチウム緩衝液)をアスパラギン標準溶液とした。該標準溶液の濃度とピーク面積から検量線(1点検量線)を作成し、試料中のアスパラギン濃度(mg/100g)を求めた。
A 1 × 10 −4 mol / L solution (pH 2.2 lithium citrate buffer) of analysis- grade asparagine (manufactured by Wako Pure Chemical Industries, Ltd.) was used as an asparagine standard solution. A calibration curve (one inspection calibration curve) was created from the concentration and peak area of the standard solution, and the asparagine concentration (mg / 100 g) in the sample was determined.

本発明の実施例に用いた各アクリルアミド低減物質は以下の経路で入手した。システイン、シスチン、メチオニン、酸化型グルタチオン、還元型グルタチオン、グルクロン酸、リシン塩酸塩、アミノグアニジン、チアミン-5'-ピロリン酸、ピリドキサール塩酸塩、ピリドキサール-5'-リン酸、ピリドキサミン二塩酸塩、ピリドキシン塩酸塩、グリシン、アラニンは特級試薬(和光純薬工業またはナカライテスク製)を用いた。なお以下の実施例に用いた不斉炭素原子を有するアミノ酸は原則としてすべてL−アミノ酸であるが、アラニンについてはD,L−アラニンを使用した。酵母エキスは総グルタチオン含量が8%のパン酵母エキス(協和発酵工業製)を用いた。ビタミンB6混合物は、ピリドキサール-5'-リン酸、ピリドキサミン二塩酸塩およびピリドキシン塩酸塩を各々等量ずつ添加し、合計添加量が9.0または90mmol/kgとなるようにした。   Each acrylamide reducing substance used in the examples of the present invention was obtained by the following route. Cysteine, cystine, methionine, oxidized glutathione, reduced glutathione, glucuronic acid, lysine hydrochloride, aminoguanidine, thiamine-5'-pyrophosphate, pyridoxal hydrochloride, pyridoxal-5'-phosphate, pyridoxamine dihydrochloride, pyridoxine For hydrochloride, glycine and alanine, special grade reagents (Wako Pure Chemical Industries or Nacalai Tesque) were used. The amino acids having asymmetric carbon atoms used in the following examples are all L-amino acids in principle, but D, L-alanine was used for alanine. As the yeast extract, a baker's yeast extract (manufactured by Kyowa Hakko Kogyo Co., Ltd.) having a total glutathione content of 8% was used. To the vitamin B6 mixture, pyridoxal-5′-phosphate, pyridoxamine dihydrochloride and pyridoxine hydrochloride were added in equal amounts, respectively, so that the total addition amount was 9.0 or 90 mmol / kg.

実施例1
アスパラギンおよびグルコースを含有する溶液に各種の物質を添加して加熱し、各物質の有するアクリルアミド低減効果を確認した。
0.2 mmolのアスパラギン(和光純薬工業製)、0.2 mmolのグルコース(和光純薬工業製)および表1に示す量(約0.02または約0.2mmol)の各物質を1mlのリン酸緩衝液(pH6.1)に溶解させた。該水溶液を2gのセライト(No.545,ナカライテスク製)と磁性皿上で混合した(各物質/セライト=10または100mmol/kg)。ただし、グリシンまたはアラニンのアクリルアミド低減効果を確認したときは、0.177mmolのアスパラギンおよび0.177mmolのグルコースを使用して同様の操作を行った。
Example 1
Various substances were added to a solution containing asparagine and glucose and heated, and the acrylamide reduction effect of each substance was confirmed.
0.2 mmol asparagine (manufactured by Wako Pure Chemical Industries, Ltd.), 0.2 mmol glucose (manufactured by Wako Pure Chemical Industries, Ltd.) and each substance in the amount shown in Table 1 (about 0.02 or about 0.2 mmol) in 1 ml phosphate buffer (pH 6. Dissolved in 1). The aqueous solution was mixed with 2 g of celite (No. 545, manufactured by Nacalai Tesque) on a magnetic dish (each substance / celite = 10 or 100 mmol / kg). However, when the acrylamide reduction effect of glycine or alanine was confirmed, the same operation was performed using 0.177 mmol asparagine and 0.177 mmol glucose.

該混合物をオーブン(ガスクロマトグラフ用、5890,ヒューレットパッカード製)中で140℃にて15分加熱した。該混合物が130℃以上に達しており、5分間保持されていることを確認した。加熱後に各試料中のアクリルアミド含量を上記の手順で測定した。   The mixture was heated in an oven (for gas chromatograph, 5890, manufactured by Hewlett Packard) at 140 ° C. for 15 minutes. It was confirmed that the mixture had reached 130 ° C. or higher and was maintained for 5 minutes. After heating, the acrylamide content in each sample was measured by the above procedure.

対照実験として、0.2 mmolのアスパラギンおよび0.2 mmolのグルコースを1mlのリン酸緩衝液(pH6.1)に溶解させたものについて同様の実験を並行して行った。   As a control experiment, a similar experiment was conducted in parallel with 0.2 mmol asparagine and 0.2 mmol glucose dissolved in 1 ml phosphate buffer (pH 6.1).

アクリルアミド低減物質を添加していない加熱済み試料(対照試料)のアクリルアミド含量に対するアクリルアミド低減物質を添加した加熱済み試料のアクリルアミド含量の割合(以下、アクリルアミド残存率)を、アクリルアミド低減物質のアクリルアミド低減能力の指標として用いた。   The ratio of the acrylamide content of the heated sample to which the acrylamide reducing substance is added to the acrylamide content of the heated sample to which the acrylamide reducing substance is not added (control sample) (hereinafter referred to as acrylamide residual ratio) Used as an indicator.

アクリルアミド残存率(%)=[(アクリルアミド低減物質を添加した加熱済み試料のアクリルアミド含量)/(加熱済み対照試料のアクリルアミド含量)]×100   Acrylamide residual rate (%) = [(acrylamide content of heated sample to which acrylamide reducing substance is added) / (acrylamide content of heated control sample)] × 100

Figure 2006174845
Figure 2006174845

実施例2
ポテトフレークを用いてアクリルアミド低減効果を確認した。ポテトフレークとは、生ジャガイモを剥皮、輪切りし、約70℃で予備蒸煮を行った後、一旦冷却し、これを蒸煮し、マッシングした後、水分4〜9%程度にまで熱風乾燥処理して粉砕したものを指す。ポテトフレークはアスパラギン88.0mmol/kgを含む(測定方法は上記の通り)。各種のアクリルアミド低減物質の約8.80mmol/L〜約88.0mmol/L水溶液2mlをポテトフレーク2gと混合した(アクリルアミド低減物質/ポテトフレークの割合(mmol/kg)は、表2の「添加量」の欄に記載)。該混合物を厚さ0.8mmに圧延し、オーブン(ガスクロマトグラフ用、5890,ヒューレットパッカード製)中で140℃にて15分間加熱した。該混合物が130℃以上に達しており、5分間保持されていることを確認した。加熱後に各試料中のアクリルアミド含量を上記の手順で測定した。
Example 2
Potato flakes were used to confirm the acrylamide reduction effect. Potato flakes are peeled raw potatoes, cut into slices, pre-cooked at about 70 ° C, cooled once, cooked, mashed, and then dried with hot air to a moisture content of about 4-9%. It refers to the pulverized one. Potato flakes contain 88.0 mmol / kg asparagine (measurement method as described above). 2 ml of an aqueous solution of about 8.80 mmol / L to about 88.0 mmol / L of various acrylamide reducing substances was mixed with 2 g of potato flakes (the ratio of acrylamide reducing substance / potato flakes (mmol / kg) In the column). The mixture was rolled to a thickness of 0.8 mm and heated in an oven (for gas chromatography, 5890, manufactured by Hewlett Packard) at 140 ° C. for 15 minutes. It was confirmed that the mixture had reached 130 ° C. or higher and was maintained for 5 minutes. After heating, the acrylamide content in each sample was measured by the above procedure.

対照実験として、アクリルアミド低減物質を含有しない水2mlをポテトフレーク2gと混合した試料(対照試料)を用いて同様の実験を並行して行った。   As a control experiment, a similar experiment was performed in parallel using a sample (control sample) in which 2 ml of water not containing an acrylamide reducing substance was mixed with 2 g of potato flakes.

アクリルアミド残存率(%)=[(アクリルアミド低減物質を添加した加熱済み試料のアクリルアミド含量)/(加熱済み対照試料のアクリルアミド含量)]×100   Acrylamide residual rate (%) = [(acrylamide content of heated sample to which acrylamide reducing substance is added) / (acrylamide content of heated control sample)] × 100

なお、加熱済み対照試料のアクリルアミド含量は0.067mmol/kgであった。上記の通り実験前のポテトフレークのアスパラギン含量は88.0mmol/kgであるから、アスパラギンの約1000分の1がアクリルアミドに変換されたことになる。   The acrylamide content of the heated control sample was 0.067 mmol / kg. As described above, since the asparagine content of the potato flakes before the experiment was 88.0 mmol / kg, about 1/1000 of asparagine was converted to acrylamide.

Figure 2006174845
Figure 2006174845

実施例3
ポテトスナックを作成し、アクリルアミド低減物質の効果を確認した。
ポテトフレーク63重量部、粉末調味料3重量部、水34重量部、および、アクリルアミド低減物質/ポテトフレークの割合(mmol/kg)が表3の「添加量」の欄に示す割合となる重量部の各アクリルアミド低減物質からなるドウを厚さ0.8mmに圧延し、175℃,15秒間、食物油中でフライしてスナックを作成した。こうして作成されたスナック中のアクリルアミド含量を上記の手順で測定した。
Example 3
Potato snacks were made and the effects of acrylamide reducing substances were confirmed.
63 parts by weight of potato flakes, 3 parts by weight of powder seasoning, 34 parts by weight of water, and parts by weight in which the ratio of acrylamide reducing substance / potato flakes (mmol / kg) is the ratio shown in the column “Addition” in Table 3. A dough comprising each acrylamide-reducing substance was rolled to a thickness of 0.8 mm and fried in food oil at 175 ° C. for 15 seconds to prepare a snack. The acrylamide content in the snack thus prepared was measured by the above procedure.

対照実験としてポテトフレーク63重量部、粉末調味料3重量部、および、水34重量部からなるアクリルアミド低減物質を添加しないドウを用いて同様の実験を並行して行った。   As a control experiment, a similar experiment was performed in parallel using a dough containing 63 parts by weight of potato flakes, 3 parts by weight of a powder seasoning, and 34 parts by weight of water to which no acrylamide reducing substance was added.

アクリルアミド残存率(%)=[(アクリルアミド低減物質添加スナックのアクリルアミド含量)/(アクリルアミド低減物質無添加スナックのアクリルアミド含量)]×100   Acrylamide remaining rate (%) = [(acrylamide content of snack with added acrylamide reducing substance) / (acrylamide content of snack without added acrylamide reducing substance)] × 100

Figure 2006174845
Figure 2006174845

実施例4
ポテトスナックを作成し、アクリルアミド低減物質の効果を確認した。
ポテトフレーク55重量部、粉末調味料2重量部、水43重量部、および、アクリルアミド低減物質/ポテトフレークの割合(mmol/kg)が表4の「添加量」の欄に示す割合となる重量部の各アクリルアミド低減物質からなるドウを厚さ0.8mmに圧延し、260℃,50秒間、加熱乾燥させた後、160℃,25秒間、食油中でフライしてスナックを作成した。こうして作成されたスナック中のアクリルアミド含量を上記の手順で測定した。
Example 4
Potato snacks were made and the effects of acrylamide reducing substances were confirmed.
55 parts by weight of potato flakes, 2 parts by weight of powder seasoning, 43 parts by weight of water, and parts by weight in which the ratio of acrylamide reducing substance / potato flakes (mmol / kg) is the ratio shown in the column “Addition” in Table 4 The dough comprising each acrylamide-reducing substance was rolled to a thickness of 0.8 mm, heat-dried at 260 ° C. for 50 seconds, and then fried in cooking oil at 160 ° C. for 25 seconds to prepare a snack. The acrylamide content in the snack thus prepared was measured by the above procedure.

対照実験として、ポテトフレーク55重量部、粉末調味料2重量部、および、水43重量部からなるアクリルアミド低減物質を添加しないドウを用いて同様の実験を並行して行った。   As a control experiment, a similar experiment was conducted in parallel using a dough containing 55 parts by weight of potato flakes, 2 parts by weight of a powder seasoning, and 43 parts by weight of water and not containing an acrylamide reducing substance.

Figure 2006174845
Figure 2006174845

表4に示す通り、リシン塩酸塩、グリシン、アラニンの各物質の添加により、アクリルアミドを低減することができた。なかでも、グリシンを添加した場合に、少量の添加で高いアクリルアミド低減効果が得られた。グリシンはポテトスナックの味覚を損なわないうえ、安価に入手できることから、より好ましいアクリルアミド低減物質といえる。   As shown in Table 4, acrylamide could be reduced by the addition of lysine hydrochloride, glycine, and alanine. In particular, when glycine was added, a high acrylamide reduction effect was obtained with a small amount. Glycine is a more preferable acrylamide-reducing substance because it does not impair the taste of potato snacks and is available at low cost.

実施例5
アクリルアミド低減物質が既存のアクリルアミドを減少させる効果を確認するために、アクリルアミド(和光純薬工業製:特級)(0.019mmol/L)および表5に示す各物質(約1.9または約19.0mmol/L)を含有する混合水溶液2mlを栓付試験管に採取し、沸騰水浴中(99.5℃)で15分間加熱した。加熱後に各試料中のアクリルアミド含量を上記の手順で測定した。
Example 5
Acrylamide (Wako Pure Chemical Industries: Special grade) (0.019mmol / L) and each of the substances shown in Table 5 (about 1.9 or about 19.0mmol / L) were used to confirm the effect of reducing the acrylamide by existing acrylamide reducing substances. 2 ml of a mixed aqueous solution containing was collected in a test tube with a stopper and heated in a boiling water bath (99.5 ° C.) for 15 minutes. After heating, the acrylamide content in each sample was measured by the above procedure.

対照実験として、表5に示す各物質を含まないアクリルアミド水溶液(0.019mmol/L)2mlを用いて同様の実験を並行して行った。   As a control experiment, a similar experiment was performed in parallel using 2 ml of an acrylamide aqueous solution (0.019 mmol / L) not containing each substance shown in Table 5.

アクリルアミド残存率(%)=[(アクリルアミド低減物質を添加した加熱済み試料のアクリルアミド含量)/(加熱済み対照試料のアクリルアミド含量)]×100   Acrylamide residual rate (%) = [(acrylamide content of heated sample to which acrylamide reducing substance is added) / (acrylamide content of heated control sample)] × 100

Figure 2006174845
Figure 2006174845

表5に示す通り、システイン、シスチン、グルタチオンまたは酵母エキスを用いた場合にのみ、加熱前から存在するアクリルアミドが減少した。   As shown in Table 5, acrylamide present from before heating decreased only when cysteine, cystine, glutathione or yeast extract was used.

Claims (7)

塩基性アミノ酸、塩基性アミノ酸誘導体、構成アミノ酸として塩基性アミノ酸を含むペプチド、グリシン、グリシン誘導体、構成アミノ酸としてグリシンを含むペプチド、アラニン、アラニン誘導体、構成アミノ酸としてアラニンを含むペプチド、含硫アミノ酸、含硫アミノ酸誘導体、構成アミノ酸として含硫アミノ酸を含むペプチド、ウロン酸、ウロン酸誘導体、アミノグアニジン、ビタミンB1、ビタミンB1誘導体、ビタミンB6およびビタミンB6誘導体、ならびにこれらの少なくとも1種を含有する成分からなる群から選択される少なくとも1種を食品材料に添加した後に調理を行うことを特徴とする、食品中のアクリルアミドを低減する方法。   Basic amino acids, basic amino acid derivatives, peptides containing basic amino acids as constituent amino acids, glycine, glycine derivatives, peptides containing glycine as constituent amino acids, alanine, alanine derivatives, peptides containing alanine as constituent amino acids, sulfur-containing amino acids, Sulfur amino acid derivatives, peptides containing sulfur amino acids as constituent amino acids, uronic acid, uronic acid derivatives, aminoguanidine, vitamin B1, vitamin B1 derivatives, vitamin B6 and vitamin B6 derivatives, and components containing at least one of these A method for reducing acrylamide in foods, comprising cooking after adding at least one selected from the group to the food material. 前記食品材料がアスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する、請求項1に記載の方法。   The method according to claim 1, wherein the food material contains at least one selected from the group consisting of asparagine, an asparagine derivative, and a peptide containing asparagine as a constituent amino acid. 前記のアスパラギン、アスパラギン誘導体および構成アミノ酸としてアスパラギンを含むペプチドからなる群から選択される少なくとも1種を含有する食品材料がジャガイモ、エンドウ、黒胡椒、白胡椒、グリーンアスパラ、ゴボウ、インゲン、ウコン、カボチャ、サツマイモ、トウモロコシ、タマネギ、ニンニク、生姜、小麦および米ならびにこれらの少なくとも1種に由来する材料からなる群から選択される少なくとも1種を含む、請求項2に記載の方法。   The food material containing at least one selected from the group consisting of the asparagine, the asparagine derivative and the peptide containing asparagine as a constituent amino acid is potato, pea, black pepper, white pepper, green asparagus, burdock, green beans, turmeric, pumpkin 3. The method of claim 2, comprising at least one selected from the group consisting of: potato, sweet potato, corn, onion, garlic, ginger, wheat and rice and materials derived from at least one of these. 前記塩基性アミノ酸がリシン、アルギニンまたはヒスチジンである、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the basic amino acid is lysine, arginine or histidine. 前記含硫アミノ酸がシステイン、メチオニンまたはシスチンである、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the sulfur-containing amino acid is cysteine, methionine or cystine. 調理温度が100〜250℃である、請求項1〜5のいずれか1項に記載の方法。   The method of any one of Claims 1-5 whose cooking temperature is 100-250 degreeC. 請求項1〜6のいずれか1項に記載の方法により製造された、ポテトスナック。   Potato snack manufactured by the method according to any one of claims 1 to 6.
JP2006076900A 2003-04-04 2006-03-20 Method for decreasing acrylamide in food Pending JP2006174845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076900A JP2006174845A (en) 2003-04-04 2006-03-20 Method for decreasing acrylamide in food

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003102095 2003-04-04
JP2006076900A JP2006174845A (en) 2003-04-04 2006-03-20 Method for decreasing acrylamide in food

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004083059A Division JP2004313183A (en) 2003-04-04 2004-03-22 Method for decreasing acrylamide in food

Publications (1)

Publication Number Publication Date
JP2006174845A true JP2006174845A (en) 2006-07-06

Family

ID=36729492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076900A Pending JP2006174845A (en) 2003-04-04 2006-03-20 Method for decreasing acrylamide in food

Country Status (1)

Country Link
JP (1) JP2006174845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162250A1 (en) 2010-06-25 2011-12-29 吉岡 禎三 Method for reduction of acrylamide content in heat-treated processed food

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140838A (en) * 1983-01-31 1984-08-13 Daiee Shokuhin Kogyo Kk Method for preventing browning of saccharide and browning preventive agent
JPS6232865A (en) * 1985-08-02 1987-02-12 Nisshin Flour Milling Co Ltd White sauce
JPS62142114A (en) * 1985-11-14 1987-06-25 ザ ロツクフエラ− ユニバ−シテイ Protein senescence controlling composition, pharmaceutical composition and method therewith
JPH05219916A (en) * 1991-11-01 1993-08-31 Soc Prod Nestle Sa Browning-free food and method for preventing food from browning
JPH06217686A (en) * 1993-01-28 1994-08-09 Snow Brand Food Co Ltd Retort pouch sweet corn with cob and its preparation
JPH09224601A (en) * 1996-02-27 1997-09-02 Katsuyuki Kurata Production of bread crumb-like food
JP2001178363A (en) * 1999-10-14 2001-07-03 House Foods Corp Oil and fat composition and method of producing fried food by using the same
JP2002045134A (en) * 2000-07-31 2002-02-12 Kohjin Co Ltd Improver for coating of tempura and composition for coating of tempura containing the same
JP2002517988A (en) * 1998-06-16 2002-06-25 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Flavored noodles
WO2004075656A2 (en) * 2003-02-21 2004-09-10 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
WO2004075655A2 (en) * 2003-02-21 2004-09-10 Frito-Lay North America, Inc. Formerly Known As Recot, Inc. Method for reducing acrylamide formation in thermally processed foods
JP2004305201A (en) * 2002-11-27 2004-11-04 Hayashibara Biochem Lab Inc Method for controlling formation of acrylamide and use of the same
JP2005021150A (en) * 2002-12-03 2005-01-27 Toyo Suisan Kaisha Ltd Method for producing heat-cooked food capable of reducing acrylamide

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140838A (en) * 1983-01-31 1984-08-13 Daiee Shokuhin Kogyo Kk Method for preventing browning of saccharide and browning preventive agent
JPS6232865A (en) * 1985-08-02 1987-02-12 Nisshin Flour Milling Co Ltd White sauce
JPS62142114A (en) * 1985-11-14 1987-06-25 ザ ロツクフエラ− ユニバ−シテイ Protein senescence controlling composition, pharmaceutical composition and method therewith
JPH05219916A (en) * 1991-11-01 1993-08-31 Soc Prod Nestle Sa Browning-free food and method for preventing food from browning
JPH06217686A (en) * 1993-01-28 1994-08-09 Snow Brand Food Co Ltd Retort pouch sweet corn with cob and its preparation
JPH09224601A (en) * 1996-02-27 1997-09-02 Katsuyuki Kurata Production of bread crumb-like food
JP2002517988A (en) * 1998-06-16 2002-06-25 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Flavored noodles
JP2001178363A (en) * 1999-10-14 2001-07-03 House Foods Corp Oil and fat composition and method of producing fried food by using the same
JP2002045134A (en) * 2000-07-31 2002-02-12 Kohjin Co Ltd Improver for coating of tempura and composition for coating of tempura containing the same
JP2004305201A (en) * 2002-11-27 2004-11-04 Hayashibara Biochem Lab Inc Method for controlling formation of acrylamide and use of the same
JP2005021150A (en) * 2002-12-03 2005-01-27 Toyo Suisan Kaisha Ltd Method for producing heat-cooked food capable of reducing acrylamide
WO2004075656A2 (en) * 2003-02-21 2004-09-10 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
WO2004075655A2 (en) * 2003-02-21 2004-09-10 Frito-Lay North America, Inc. Formerly Known As Recot, Inc. Method for reducing acrylamide formation in thermally processed foods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATURE, 2002, VOL.419, P.448-449, JPN4006012811, ISSN: 0000757896 *
NATURE, 2002, VOL.419, P.449-450, JPN4006012812, ISSN: 0000757897 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162250A1 (en) 2010-06-25 2011-12-29 吉岡 禎三 Method for reduction of acrylamide content in heat-treated processed food

Similar Documents

Publication Publication Date Title
Kim et al. Reducing acrylamide in fried snack products by adding amino acids
Ou et al. Interaction of acrylamide, acrolein, and 5-hydroxymethylfurfural with amino acids and DNA
CA2516456C (en) Method for reducing acrylamide formation in thermally processed foods
CA2557784A1 (en) Reduction of acrylamide in processed foods
AU2005280231B2 (en) Method for reducing acrylamide formation in thermally processed foods
JP2004313183A (en) Method for decreasing acrylamide in food
Yu et al. Evaluation of the extent of initial Maillard reaction during cooking some vegetables by direct measurement of the Amadori compounds
US8206766B2 (en) Method for using bamboo leaf extract as acrylamide inhibitor for heat processing food
JP2008521439A (en) Methods for increasing the degradation of acrylamide
Hamzalıoğlu et al. Investigation of the reactions of acrylamide during in vitro multistep enzymatic digestion of thermally processed foods
JP2012504400A (en) Method for producing food or feed flavor using glutathione or cysteine
JP2005278448A (en) Method for suppressing generation of acrylamide in processed food, acrylamide generation depressant, and method for producing the processed food
JP2006522593A (en) Method for reducing acrylamide formation during heating of amino group-containing compounds
JP6181932B2 (en) Composition and seasoning used for enhancing sesame flavor, imparting sesame flavor, and / or nut flavor
Razia et al. Investigation of acrylamide levels in branded biscuits, cakes and potato chips commonly consumed in Pakistan.
JP2006174845A (en) Method for decreasing acrylamide in food
KR20150093516A (en) kneading composition using Scapharca subcrenata and manufacturing method of pastry, bread
TWI683629B (en) Spice composition
Yuan et al. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products
JP2007105015A (en) Method for producing food decreased in acrylamide
Radu et al. Beta-carotene and lycopene determination in new enriched bakery products by HPLC-DAD method
KR101985447B1 (en) Separation method and extruding apparatus of crab leg meat
Fang et al. Effects of different protease treatment on protein degradation and flavor components of Lentinus edodes
Lazarick Cause of color component formation in oils during frying
Šimko et al. Formation, Analysis, Occurrence and Mitigation of Acrylamide Content in Foods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617