JP2006173586A - Compact of temperature self-controlling nature and method of fabricating the same - Google Patents

Compact of temperature self-controlling nature and method of fabricating the same Download PDF

Info

Publication number
JP2006173586A
JP2006173586A JP2005332777A JP2005332777A JP2006173586A JP 2006173586 A JP2006173586 A JP 2006173586A JP 2005332777 A JP2005332777 A JP 2005332777A JP 2005332777 A JP2005332777 A JP 2005332777A JP 2006173586 A JP2006173586 A JP 2006173586A
Authority
JP
Japan
Prior art keywords
temperature
temperature self
diamine
tetracarboxylic acid
thermoplastic polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005332777A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hama
信幸 濱
Yasuaki Takeda
泰昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2005332777A priority Critical patent/JP2006173586A/en
Publication of JP2006173586A publication Critical patent/JP2006173586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact of a temperature self-controlling nature useful as a planar or film-like temperature self-controlling heater etc. with a sharp resistance variation in the course of temperature control and a small rate of change in a resistance value (return characteristics) in repeated use, i.e., a small-retrogradation characteristic, at a high temperature. <P>SOLUTION: The compact of a temperature self-controlling nature contains a non-thermoplastic polyimide resin and an electrically conductive powder. The non-thermoplastic polyimide resin is produced by imide-converting: an ester compound derived from at least one kind of tetracarboxylic acid; and at least one kind of diamine or its derivative. The conductive powder is mixed in the non-thermoplastic polyimide resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性粉末を混合した非熱可塑性ポリイミド前駆体組成物を所望の形状に成形した後にイミド転化されて得られる、導電性および温度自己制御性を有する成形体に関するものである。   The present invention relates to a molded article having conductivity and temperature self-controllability obtained by forming a non-thermoplastic polyimide precursor composition mixed with conductive powder into a desired shape and then imide conversion.

ポリイミド樹脂は、耐熱性、機械的特性、化学的特性、寸法安定性など多くの優れた特性を有し、フィルム状、チューブ状、成形物、塗料などの形態で市販されている。このようなポリイミド樹脂は、一般的に、テトラカルボン酸二無水物とジアミンとを極性溶媒中で重合して得られるポリイミド前駆体溶液を出発物とし、その前駆体溶液をキャスティング、浸漬、含浸、流延などの方法で成形した後、加熱して或いは化学的にイミド転化させることにより得ることができる。耐熱性や自己消火性など優れた特性を持つポリイミド樹脂は、発熱体などの高温度領域における絶縁材料としても信頼性が高く、その用途が拡大している。近年、温度の自己制御可能な発熱体が注目され、従来のように電気回路に熱伝対や、サーモスタット、ヒューズ等の温度制御用器物を使用しなくても温度制御が可能である発熱体や有機質サーミスタの開発が進められ、これらの分野でもポリイミド樹脂は注目されている材料である。   Polyimide resins have many excellent properties such as heat resistance, mechanical properties, chemical properties, and dimensional stability, and are commercially available in the form of films, tubes, molded products, paints, and the like. Such a polyimide resin is generally obtained by starting a polyimide precursor solution obtained by polymerizing tetracarboxylic dianhydride and diamine in a polar solvent, and casting, dipping, impregnating the precursor solution, After molding by a method such as casting, it can be obtained by heating or chemical imide conversion. Polyimide resins having excellent characteristics such as heat resistance and self-extinguishing properties are highly reliable as insulating materials in high temperature regions such as heating elements, and their applications are expanding. In recent years, a heating element capable of self-controlling the temperature has attracted attention, and a heating element capable of controlling the temperature without using a thermocouple, a thermostat, a fuse, or the like as in the conventional circuit. The development of organic thermistors has been promoted, and polyimide resin is a material that attracts attention in these fields.

温度の自己制御が可能な発熱体は昇温中に特定の温度(PTC(Positive Temperature Coefficient)特性が発現する温度)を超えると電気抵抗が急激に増加し、電流値を減少させ、発熱体自ら温度を制御するものであり、例えば結晶性高分子材料と導電性粒子とからなる正の温度係数(PTC)を有する粒子分散系高分子材料は導電性材料としての機能以外に、温度自己制御発熱体や自己回復性過電流防止素子などとしても利用できる。   A heating element capable of self-controlling the temperature, when the temperature exceeds a specific temperature (temperature at which PTC (Positive Temperature Coefficient) characteristics are manifested) during temperature rise, the electrical resistance increases rapidly and the current value is decreased. For controlling the temperature, for example, a particle-dispersed polymer material having a positive temperature coefficient (PTC) made of a crystalline polymer material and conductive particles is not only a function as a conductive material but also a temperature self-controlling heat generation. It can also be used as a body or a self-recovery overcurrent prevention element.

PTC特性は粒子分散系高分子材料において高分子材料固有の融点あるいはガラス転移温度近傍で発現する現象であり、高分子材料が加熱されることにより生じる熱的な歪、膨張、流動などによって高分子材料中の導電性粉末が接触、乖離、移動などすることにより発現する現象と考えられている。したがって、希望する設定温度の制御範囲内に融点やガラス転移点を持つ高分子材料を選定し、この高分子材料に適合する導電性粉末を組み合わせることにより、PTC特性を有する粒子分散系高分子材料を製造することができる。そして、このような組合せ例の多くは、過去に発行された文献などに広く開示されている。   PTC characteristics are a phenomenon that occurs in the vicinity of the melting point or glass transition temperature inherent in a polymer material in a particle-dispersed polymer material, and the polymer is caused by thermal distortion, expansion, flow, etc. caused by heating the polymer material. It is considered to be a phenomenon that occurs when the conductive powder in the material is brought into contact, separated, or moved. Therefore, by selecting a polymer material having a melting point or a glass transition point within a desired set temperature control range, and combining a conductive powder suitable for the polymer material, a particle dispersion polymer material having PTC characteristics Can be manufactured. Many of such combinations are widely disclosed in literatures published in the past.

例えば、特開昭61−39475号公報や特開平06−96843号公報には、高分子材料にカーボンブラックを分散した例が開示されている。また、特に高温領域で温度自己制御特性を得るための方法として、ガラス転移点が200℃以上の熱可塑性全芳香族ポリイミド樹脂に球状グラッシカーボンを混合する方法が開示されている(例えば、特許文献1参照)。また、カーボン球表面に銅層を被覆した導電性粉末と熱可塑性ポリイミド樹脂を用いたヒーターが開示されている(例えば、特許文献2参照)。また、エポキシ樹脂などの熱硬化性樹脂と、スパイク状の突起を有する金属粉末と、フレーク状の金属粉末とを用いた有機質正特性サーミスタが開示されている。(例えば、特許文献3参照)
特開平11−297506号公報 特開平09−045466号公報 特開平06−089802号公報
For example, Japanese Patent Laid-Open Nos. 61-39475 and 06-96843 disclose examples in which carbon black is dispersed in a polymer material. In addition, as a method for obtaining temperature self-control characteristics particularly in a high temperature region, a method of mixing spherical glassy carbon with a thermoplastic wholly aromatic polyimide resin having a glass transition point of 200 ° C. or more is disclosed (for example, patent document). 1). Further, a heater using a conductive powder having a carbon sphere surface coated with a copper layer and a thermoplastic polyimide resin is disclosed (for example, see Patent Document 2). Further, an organic positive temperature coefficient thermistor using a thermosetting resin such as an epoxy resin, a metal powder having spike-like protrusions, and a flake-like metal powder is disclosed. (For example, see Patent Document 3)
JP 11-297506 A JP 09-045466 A Japanese Patent Application Laid-Open No. 06-089802

しかしながら、上記特許文献に開示される方法では、熱可塑性のポリイミド樹脂が採用されているため、高温での繰り返し使用において樹脂の軟化や老化が伴い、導電性粒子分散系高分子材料としての構造に変化をきたし、戻り特性(加熱、冷却の繰り返しにおいて、室温まで温度を戻した時の抵抗値の変化率である。室温時の基本抵抗値に対して変化率が小さい成形体が望まれている)が十分でないという問題があった。   However, in the method disclosed in the above patent document, since a thermoplastic polyimide resin is employed, the resin is softened or aged with repeated use at high temperatures, resulting in a structure as a conductive particle-dispersed polymer material. Change characteristics and return characteristics (the rate of change in resistance value when the temperature is returned to room temperature in repeated heating and cooling. A molded body having a small rate of change with respect to the basic resistance value at room temperature is desired. ) Was not enough.

本発明は、特定の温度で電気抵抗値がシャープに変化するPTC特性(立ち上がり特性)と共に、高温度での繰り返し使用において抵抗値の変化率が小さい、すなわち、優れた戻り特性を有する自己温度制御性成形体、およびその製造方法を提供することを目的とする。   The present invention has a PTC characteristic (rise characteristic) in which the electric resistance value sharply changes at a specific temperature, and a small change rate of the resistance value in repeated use at a high temperature, that is, self-temperature control having an excellent return characteristic An object of the present invention is to provide a molded article and a method for producing the same.

本発明に係る温度自己制御性成形体は、少なくとも1種のテトラカルボン酸から誘導されるエステル化合物と、少なくとも1種のジアミン又はその誘導体とをイミド転化して得られる非熱可塑性ポリイミド樹脂と、非熱可塑性ポリイミド樹脂に混合されている導電性粉末とを含有する。
そして、この温度自己制御性成形体において、テトラカルボン酸から誘導されるエステル化合物とジアミン若しくはその誘導体との混合モル比、またはジアミン若しくはその誘導体とテトラカルボン酸から誘導されるエステル化合物との混合モル比は、80:100〜99:100であることが好ましい。つまり、テトラカルボン酸から誘導されるエステル化合物に対して過剰量のジアミン又はその誘導体が混合されてもよいし、ジアミン又はその誘導体に対して過剰量のテトラカルボン酸から誘導されるエステル化合物が混合されてもよい。なお、この混合モル比は、戻り特性の観点から、80:100〜95:100であることがより好ましく、80:100〜90:100であることがさらに好ましく、80:100〜85:100であることがさらに好ましい。また、混合モル比は、成形体の強度の観点から、85:100〜99:100であることがより好ましく、90:100〜99:100であることがさらに好ましく、95:100〜99:100であることがさらに好ましい。また、混合モル比は、戻り特性および成形体の強度のバランスの観点から、85:100〜95:100がより好ましく、90:100付近がさらに好ましい。
A temperature self-controllable molded article according to the present invention is a non-thermoplastic polyimide resin obtained by imide conversion of an ester compound derived from at least one tetracarboxylic acid and at least one diamine or derivative thereof, And a conductive powder mixed in a non-thermoplastic polyimide resin.
In this temperature self-controllable molded article, the mixing molar ratio of the ester compound derived from tetracarboxylic acid and the diamine or derivative thereof, or the mixing mole of the ester compound derived from diamine or derivative thereof and tetracarboxylic acid The ratio is preferably 80: 100 to 99: 100. That is, an excess amount of diamine or a derivative thereof may be mixed with an ester compound derived from tetracarboxylic acid, or an ester compound derived from an excess amount of tetracarboxylic acid with respect to diamine or a derivative thereof. May be. The mixing molar ratio is more preferably 80: 100 to 95: 100, more preferably 80: 100 to 90: 100, and 80: 100 to 85: 100 from the viewpoint of return characteristics. More preferably it is. The mixing molar ratio is more preferably 85: 100 to 99: 100, further preferably 90: 100 to 99: 100, and 95: 100 to 99: 100 from the viewpoint of the strength of the molded body. More preferably. Further, the mixing molar ratio is more preferably 85: 100 to 95: 100, and still more preferably around 90: 100, from the viewpoint of the balance between the return characteristics and the strength of the molded body.

また、この温度自己制御性成形体において、テトラカルボン酸から誘導されるエステル化合物は、化学式(A)〔式中、R1、R2、R3、R4はそれぞれ独立に−H、炭素数1から8である炭化水素基(芳香環、−O−、−CO−、−OH等の官能基を有しても良い)、又はフェニル基を表わし、R’は化学式(A−1)又は化学式(A-2)(式中、Xは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示されるものが好ましい。 In this temperature self-controllable molded article, the ester compound derived from tetracarboxylic acid has the chemical formula (A) [wherein R 1 , R 2 , R 3 , R 4 are each independently —H, carbon number 1 to 8 represents a hydrocarbon group (which may have a functional group such as an aromatic ring, —O—, —CO—, —OH), or a phenyl group, and R ′ represents a chemical formula (A-1) or Chemical formula (A-2) (wherein X is —O—, —S—, —SO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —CO—, or a direct bond) Is preferred.] Is preferred.

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

また、この温度自己制御性成形体において、ジアミン又はその誘導体は、化学式(I)〔式中、R''は化学式(I-1)又は化学式(I-2)(式中、Yは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示されるものが好ましい。 In this temperature self-controllable molded article, the diamine or derivative thereof has the chemical formula (I) [wherein R ″ is the chemical formula (I-1) or chemical formula (I-2) (wherein Y is —O -Represents —S—, —SO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —CO—, or a direct bond).

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

また、この温度自己制御性成形体において、導電性粉末は、窒化タンタル(TaN)、炭化タンタル(TaC)、三珪化モリブデン(Mo5Si3)、レニウム−タングステン合金、二珪化モリブデン(MoSi2)、タングステン(W)、モリブデン(Mo)、炭化タングステン(WC)、チタンカーバイト(TiC)、金属粉末、およびカーボンブラックより成る群から選ばれる少なくとも一つであることが好ましい。 In this temperature self-controllable molded body, the conductive powder is tantalum nitride (TaN), tantalum carbide (TaC), molybdenum trisilicide (Mo 5 Si 3 ), rhenium-tungsten alloy, molybdenum disilicide (MoSi 2 ). And at least one selected from the group consisting of tungsten (W), molybdenum (Mo), tungsten carbide (WC), titanium carbide (TiC), metal powder, and carbon black.

さらに、本発明に係る温度自己制御性成形体は、実質的に非熱可塑性ポリイミド樹脂を主成分とし、導電性および正の温度抵抗特性を有する温度自己制御性成形体であって、25±5℃における初期電気抵抗値に対するPTC特性発現後の25±5℃における電気抵抗値の変化率が±10%以内である。
そして、本発明に係る温度自己制御性成形体の製造方法は、第1組成物調製工程、第2組成物調製工程、およびイミド転化工程を備える。第1組成物調製工程では、少なくとも1種のテトラカルボン酸から誘導されるエステル化合物と少なくとも1種のジアミン若しくはその誘導体との混合モル比、またはジアミン若しくはその誘導体とテトラカルボン酸から誘導されるエステル化合物との混合モル比が80:100〜99:100である非熱可塑性ポリイミド前駆体組成物が調製される。第2組成物調製工程では、非熱可塑性ポリイミド前駆体組成物に導電性粉末を添加して導電性粉末入り非熱可塑性ポリイミド前駆体組成物が調製される。
Furthermore, the temperature self-controllable molded product according to the present invention is a temperature self-controllable molded product that is substantially composed of a non-thermoplastic polyimide resin and has electrical conductivity and positive temperature resistance characteristics. The rate of change of the electrical resistance value at 25 ± 5 ° C. after the expression of the PTC characteristic relative to the initial electrical resistance value at ° C. is within ± 10%.
And the manufacturing method of the temperature self-controllable molded object which concerns on this invention is equipped with a 1st composition preparation process, a 2nd composition preparation process, and an imide conversion process. In the first composition preparation step, a mixed molar ratio of an ester compound derived from at least one tetracarboxylic acid and at least one diamine or derivative thereof, or an ester derived from diamine or derivative thereof and tetracarboxylic acid A non-thermoplastic polyimide precursor composition having a mixing molar ratio with the compound of 80: 100 to 99: 100 is prepared. In the second composition preparation step, conductive powder is added to the non-thermoplastic polyimide precursor composition to prepare a non-thermoplastic polyimide precursor composition containing conductive powder.

イミド転化工程では、導電性粉末入り非熱可塑性ポリイミド前駆体組成物を絶縁性基材上に展開した後にテトラカルボン酸エステルとジアミン又はその誘導体とがイミド転化される。   In the imide conversion step, the non-thermoplastic polyimide precursor composition containing conductive powder is developed on an insulating substrate, and then the tetracarboxylic acid ester and diamine or derivative thereof are imide converted.

本発明に係る温度自己制御性成形体では、マトリックス材料としてのポリイミド樹脂がガラス転移点を有することから、所望する設定温度において、シャープな立ち上り特性が得られる。また、このポリイミド樹脂が非熱可塑性樹脂であることから、この温度自己制御性成形体では、高温から室温までの繰り返し使用において、優れた戻り特性が得られる。また、本発明の温度自己制御性成形体の製造方法では、導電性粉末の前駆体溶液への分散性が良く、前駆体溶液に導電性粉末を均一に分散できるため、電気特性の安定した温度自己制御性成形体が得られる。また、本発明に係る温度自己制御性成形体はポリイミド前駆体組成物を出発物として作製されるため、容易かつ安価にその形状をフィルム状やシート状、あるいは線状、素子状、丸状など、実使用に最も適した形状にすることができる。   In the temperature self-controllable molded article according to the present invention, since the polyimide resin as the matrix material has a glass transition point, sharp rising characteristics can be obtained at a desired set temperature. Further, since this polyimide resin is a non-thermoplastic resin, this temperature self-controllable molded product can provide excellent return characteristics in repeated use from high temperature to room temperature. Further, in the method for producing a temperature self-controllable molded article of the present invention, the conductive powder has good dispersibility in the precursor solution, and the conductive powder can be uniformly dispersed in the precursor solution. A self-controlling shaped body is obtained. In addition, since the temperature self-controllable molded product according to the present invention is prepared using a polyimide precursor composition as a starting material, the shape thereof can be easily and inexpensively formed into a film shape, a sheet shape, a linear shape, an element shape, a round shape, etc. The shape most suitable for actual use can be obtained.

温度自己制御性成形体に所定の電圧を印加すると、温度自己制御性成形体の温度が徐々に上昇していき、所定の温度に達すると温度自己制御性成形体の抵抗値が急激に高くなる。このとき、温度自己制御性成形体は、自体を流れる電流を制御するとともに自体の温度をも制御する、いわゆるPTC特性を発現する。本発明に係る温度自己制御性成形体は、PTC特性の発現温度が200℃を超える高い温度領域にある。そして、このような温度自己制御性成形体では、25±5℃における初期電気抵抗値に対するPTC特性発現後の25±5℃における電気抵抗値の変化率が±10%以内であることが好ましい。より好ましくは±5%以内であり、さらに好ましくは±3%以内である。この変化率が小さいほど、抵抗値の戻り特性が優れた、精度の高い温度自己制御性成形体と呼ぶことができる。   When a predetermined voltage is applied to the temperature self-controllable molded body, the temperature of the temperature self-controllable molded body gradually increases, and when reaching a predetermined temperature, the resistance value of the temperature self-controllable molded body increases rapidly. . At this time, the temperature self-controllable molded article develops so-called PTC characteristics that control the current flowing through itself and the temperature of itself. The temperature self-controllable molded body according to the present invention is in a high temperature region in which the temperature at which the PTC characteristic is expressed exceeds 200 ° C. In such a temperature self-controllable molded article, it is preferable that the rate of change of the electrical resistance value at 25 ± 5 ° C. after the development of the PTC characteristic with respect to the initial electrical resistance value at 25 ± 5 ° C. is within ± 10%. More preferably, it is within ± 5%, and further preferably within ± 3%. It can be called a highly accurate temperature self-controllable molded article having a superior resistance return characteristic as the change rate is smaller.

また、温度自己制御性成形体の材料構成は、少なくとも1種のテトラカルボン酸から誘導されるエステル化合物(以下、テトラカルボン酸エステル化合物と記す)とジアミンまたはその誘導体(以下、ジアミン化合物と記す)と極性溶媒とを含み、さらに導電性粉末を含有する組成物(以下、非熱可塑性ポリイミド前駆体組成物と記す)である。また、テトラカルボン酸エステル化合物とジアミン化合物との混合モル比またはジアミン化合物とテトラカルボン酸エステル化合物との混合モル比は、イミド化されたポリイミド樹脂の分子量を決定することになり、戻り特性を向上させるためには80:100〜99:100であることが好ましい。つまり、混合モル比はテトラカルボン酸エステル化合物およびジアミン化合物のいずれが多くなるように決定されてもよい。そして、より好ましいテトラカルボン酸エステル化合物とジアミン化合物との混合モル比は85:100〜95:100であり、さらに、好ましいテトラカルボン酸エステル化合物とジアミン化合物との混合モル比は90:100付近である。   Further, the material constitution of the temperature self-controllable molded body is an ester compound derived from at least one tetracarboxylic acid (hereinafter referred to as a tetracarboxylic acid ester compound) and a diamine or a derivative thereof (hereinafter referred to as a diamine compound). And a polar solvent, and further a conductive powder (hereinafter referred to as a non-thermoplastic polyimide precursor composition). In addition, the mixing molar ratio of the tetracarboxylic acid ester compound and the diamine compound or the mixing molar ratio of the diamine compound and the tetracarboxylic acid ester compound will determine the molecular weight of the imidized polyimide resin, improving the return characteristics. In order to make it, it is preferable that it is 80: 100-99: 100. That is, the mixing molar ratio may be determined so that either the tetracarboxylic acid ester compound or the diamine compound increases. The more preferable mixing molar ratio of the tetracarboxylic acid ester compound and the diamine compound is 85: 100 to 95: 100, and the preferable mixing molar ratio of the tetracarboxylic acid ester compound and the diamine compound is around 90: 100. is there.

通常、ポリイミドは、極性溶媒中においてテトラカルボン酸二無水物とジアミンとを反応させて前駆体であるポリアミック酸溶液を調製した後に、このポリアミック酸溶液を流延などの方法で成形し乾燥させ、次いで300〜400℃の温度で加熱イミド化させることにより得ることができる。このようなポリイミドのうち非熱可塑性のものは、分子鎖が剛直でガラス転移温度を示しても溶融流動することはない。したがって、このようなポリイミドに導電性粉末を混合分散して得た温度自己制御性成形体は、PTC特性と高い形状安定性を示す。   Usually, after preparing a polyamic acid solution that is a precursor by reacting tetracarboxylic dianhydride and diamine in a polar solvent, the polyimide is molded and dried by a method such as casting, Subsequently, it can obtain by making it heat imidize at the temperature of 300-400 degreeC. Among such polyimides, non-thermoplastic materials do not melt and flow even when the molecular chain is rigid and exhibits a glass transition temperature. Therefore, a temperature self-controllable molded body obtained by mixing and dispersing conductive powder in such polyimide exhibits PTC characteristics and high shape stability.

そして、本発明では、テトラカルボン酸エステル化合物とジアミン化合物とを特定のモル比で混合して非熱可塑性ポリイミド樹脂の分子量を小さくすることにより、発熱を繰り返しても抵抗値の変化率の小さい温度自己制御性成形体を得ることができた。
テトラカルボン酸エステル化合物とジアミン化合物との混合モル比が80:100以下の場合には、ポリイミドの分子量が低くなると同時に成形体としての強度が著しく低下し、成形体が加熱イミド化時の収縮に耐えきれなくなり、成形体に割れやクラックなどが発生する。また、混合モル比が99:100以上の場合はポリイミドが剛直になり室温時の抵抗値の変化率が大きくなり好ましくない。本発明の好ましい実施形態において、テトラカルボン酸とジアミン化合物の混合モル比は90:100である。
In the present invention, the tetracarboxylic acid ester compound and the diamine compound are mixed at a specific molar ratio to reduce the molecular weight of the non-thermoplastic polyimide resin. A self-controlling molded body could be obtained.
When the mixing molar ratio of the tetracarboxylic acid ester compound and the diamine compound is 80: 100 or less, the molecular weight of the polyimide is lowered, and at the same time, the strength as a molded body is remarkably lowered, and the molded body is contracted at the time of heating imidization. It becomes impossible to endure, and cracks and cracks occur in the molded body. On the other hand, when the mixing molar ratio is 99: 100 or more, the polyimide becomes rigid and the rate of change in resistance value at room temperature increases, which is not preferable. In a preferred embodiment of the present invention, the mixing molar ratio of tetracarboxylic acid and diamine compound is 90: 100.

本発明において好ましい原料組成は、テトラカルボン酸エステル化合物が、下記の化学式(A)〔式中、R1、R2、R3、R4はそれぞれ独立に−H、炭素数1から8である炭化水素基(芳香環、−O−、−CO−、−OH等の官能基を有しても良い)、又はフェニル基を表わし、R’は化学式(A−1)又は化学式(A-2)(式中、Xは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示されるテトラカルボン酸から誘導されるエステル化合物である。 In the present invention, a preferable raw material composition is that the tetracarboxylic acid ester compound is represented by the following chemical formula (A): wherein R 1 , R 2 , R 3 and R 4 are each independently —H and having 1 to 8 carbon atoms. It represents a hydrocarbon group (which may have a functional group such as an aromatic ring, —O—, —CO—, —OH) or a phenyl group, and R ′ represents a chemical formula (A-1) or a chemical formula (A-2). (Wherein X represents —O—, —S—, —SO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —CO—, or a direct bond). ] An ester compound derived from a tetracarboxylic acid represented by the formula:

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

また、ジアミン又はその誘導体が、下記の化学式(I)〔式中、R''は化学式(I-1)又は化学式(I-2)(式中、Yは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示されるジアミンまたはその誘導体である。 In addition, diamine or a derivative thereof may be represented by the following chemical formula (I) [wherein R ″ is the chemical formula (I-1) or chemical formula (I-2) (where Y is —O—, —S—, — SO -, - SO 2 -, - CH 2 -, - C (CH 3) 2 -, - CO-, or a diamine or a derivative represented by direct binding represents a) represent].

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

本発明で使用するテトラカルボン酸エステル化合物は、対応するテトラカルボン酸二無水物をアルコールでエステル化することにより極めて簡単に得られる。エステル化は50℃乃至150℃の温度で行うのが好ましい。
テトラカルボン酸エステル化合物を誘導形成するためのテトラカルボン酸二無水物には3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、無水ピロメリット酸、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ジフェニルスルホキシドテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,4,3’,4’−ジフェニルスルフィドテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルメタンテトラカルボン酸二無水物、3,4,3’,4’−ジフェニル(2,2−イソプロピリデン)テトラカルボン酸二無水物、2,3,3’,4’−ジフェニルスルホキシドテトラカルボン酸二無水物、3,4,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,4,3’,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルスルフィドテトラカルボン酸二無水物、3,4,3’,4’−ジフェニルスルホンメタンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ジフェニル(2,2−イソプロピリデン)テトラカルボン酸二無水物などが挙げられ、これらは単独あるいは2種以上混合して用いることができる。
The tetracarboxylic acid ester compound used in the present invention can be obtained very simply by esterifying the corresponding tetracarboxylic dianhydride with an alcohol. The esterification is preferably performed at a temperature of 50 ° C to 150 ° C.
Tetracarboxylic dianhydrides for inducing formation of tetracarboxylic acid ester compounds include 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, pyromellitic anhydride, 3,4,3 ′, 4 '-Biphenyltetracarboxylic dianhydride, 3,4,3', 4'-diphenyl sulfoxide tetracarboxylic dianhydride, 2,3,3 ', 4'-diphenyl ether tetracarboxylic dianhydride, 3,4 , 3 ′, 4′-diphenylsulfide tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylmethanetetracarboxylic dianhydride 3,4,3 ′, 4′-diphenyl (2,2-isopropylidene) tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenyl sulfoxide tetracarboxylic dianhydride, 3,4 , 3 ', 4'-diphenyl ether tetracarboxylic dianhydride, 3,4,3', 4'-diphenylsulfone tetracarboxylic dianhydride, 2,3,3 ', 4'-diphenylsulfone tetracarboxylic dianhydride 2,3,3 ′, 4′-diphenylsulfide tetracarboxylic dianhydride, 3,4,3 ′, 4′-diphenylsulfone methanetetracarboxylic dianhydride, 2,3,3 ′, 4′- Examples include benzophenone tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenyl (2,2-isopropylidene) tetracarboxylic dianhydride, and these may be used alone or in combination of two or more. Can do.

またテトラカルボン酸エステル化合物を誘導形成するためのアルコールには、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル−1−プロパノール、1−ヘキサノール、2−メチル−1−ペンタノール、4−メチル−2−ペンタノール、2−エチル−1−ブタノール、シクロヘキサノール、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、2−ブトキシエタノール、フェノール、1−ヒドロキシ−2−プロパノン、4−ヒドロキシ−2−ブタノン、3−ヒドロキシ−2−ブタノン、1−ヒドロキシ−2−ブタノン、2−フェニルエタノール、1−フェニル−1−ヒドロキシエタン、2−フェノキシエタノールなどが挙げられ、さらに1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、グリセロール、2−エチル−2−(ヒドロキシメチル)−1,3−プロパンジオール、1,2,6−ヘキサントリオール、2,2’−ジヒドロキシジエチルエーテル、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール、3,6−ジオキサオクタン−1,8−ジオール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、ジプロピレングリコールなどの多価アルコールも用いることができる。これらは単独あるいは2種以上混合して用いることができる。   Examples of the alcohol for inducing formation of the tetracarboxylic acid ester compound include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2- Propanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 2 , 2-dimethyl-1-propanol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, cyclohexanol, 2-methoxyethanol, 2-ethoxy Ethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, 2- Toxiethanol, phenol, 1-hydroxy-2-propanone, 4-hydroxy-2-butanone, 3-hydroxy-2-butanone, 1-hydroxy-2-butanone, 2-phenylethanol, 1-phenyl-1-hydroxyethane 2-phenoxyethanol and the like, and 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butane Diol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, glycerol, 2-ethyl-2- (hydroxymethyl) -1,3-propanediol, 1,2,6-hexanetriol, 2 , 2′-dihydroxydiethyl ether, 2- (2-methoxyethoxy) ethanol, 2- ( 2-ethoxyethoxy) ethanol, 3,6-dioxaoctane-1,8-diol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, and other polyhydric alcohols can also be used. . These may be used alone or in combination of two or more.

テトラカルボン酸エステル化合物は、また他の方法、例えばテトラカルボン酸の直接エステル化によっても製造することができる。
また、本発明のジアミンの例では4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,4−ジアミノトルエン、3,4’ −ビフェニルジアミン、3,4’−ジアミノジフェニルスルホキシド、2,2−ビス(3−アミノフェニル)プロパン、4,4’−ジアミノベンゾフェノン、3,3’ −ビフェニルジアミン、3,4’−ジアミノジフェニルエーテル、2,6−ジアミノトルエン、4,4’−ビフェニルジアミン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルエーテル、4,4’−ビス(4−アミノフェニル)スルフィド、3,3’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、2,2−(3−アミノフェニル)(4−アミノフェニル)プロパン、3,3’−ジアミノベンゾフェノン、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノジフェニルスルホキシド、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホン、2,5−ジアミノトルエン、3,3’−ジアミノジフェニルエーテル、4,4’−ビス(4−アミノフェニル)スルフィド、3,3’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、2,2−(3−アミノフェニル)(4−アミノフェニル)プロパン、3,3’−ジアミノベンゾフェノン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,4’−ビス(4−アミノフェニル)スルフィド、3,3’−ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノジフェニルスルホキシド、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホン、2,5−ジアミノトルエン、3,3’−ヒドロキシ−4,4’−ジアミノビフェニルが挙げられ、これらは単独あるいは2種以上混合して用いることができる。
Tetracarboxylic acid ester compounds can also be produced by other methods, for example by direct esterification of tetracarboxylic acid.
Examples of the diamine of the present invention include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl ether, 1,4-diaminobenzene, 1,3-diaminobenzene, 2, 2′-dimethyl-4,4′-diaminobiphenyl, 2,4-diaminotoluene, 3,4′-biphenyldiamine, 3,4′-diaminodiphenyl sulfoxide, 2,2-bis (3-aminophenyl) propane, 4,4′-diaminobenzophenone, 3,3′-biphenyldiamine, 3,4′-diaminodiphenyl ether, 2,6-diaminotoluene, 4,4′-biphenyldiamine, 3,3′-diaminodiphenylsulfone, 3, 4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 4,4′-bis (4-aminophenyl) Nyl) sulfide, 3,3′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 2,2- (3-aminophenyl) (4-aminophenyl) propane, 3,3′-diaminobenzophenone 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-bis (4-aminophenyl) sulfide, 4,4′-diaminodiphenyl sulfoxide, 3,4′-diaminobenzophenone, 3,3 '-Diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 3,3'-diaminodiphenyl ether, 4,4'-bis (4-aminophenyl) sulfide, 3,3'-diamino Diphenylmethane, 2,2-bis (4-aminophenyl) propane, 2,2- (3-aminophenyl) (4-amino) Phenyl) propane, 3,3′-diaminobenzophenone, 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,4′-bis (4 -Aminophenyl) sulfide, 3,3'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfoxide, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenyl sulfoxide, 3,4 ' -Diaminodiphenyl sulfone, 2,5-diaminotoluene, 3,3'-hydroxy-4,4'-diaminobiphenyl may be mentioned, and these may be used alone or in combination of two or more.

本発明において有用な極性有機溶媒は、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、N−メチルカプロラクタム、ヘキサメチルホスホリックトリアミド、1,2−ジメトキシエタン、ジグライム、トリグライム、テトラヒドロフラン、1,4−ジオキサン、γ−ブチロラクトン、炭酸ジメチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレン、ジエトキシエタン、ジメチルスルホキシド、スルホランなどが挙げられる。好ましい溶媒はN−メチル−2−ピロリドン(NMP)である。これらの溶媒を単独で又は混合物としてあるいはトルエン、キシレン、すなわち芳香族炭化水素、メタノール、エタノール、すなわちアルコールなどの他の溶媒と混合して用いることができる。   Polar organic solvents useful in the present invention include, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazo Lidinone, N-methylcaprolactam, hexamethylphosphoric triamide, 1,2-dimethoxyethane, diglyme, triglyme, tetrahydrofuran, 1,4-dioxane, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, Examples include diethoxyethane, dimethyl sulfoxide, and sulfolane. A preferred solvent is N-methyl-2-pyrrolidone (NMP). These solvents can be used alone or as a mixture or mixed with other solvents such as toluene, xylene, ie, aromatic hydrocarbon, methanol, ethanol, ie, alcohol.

好ましい実施形態において、本発明の温度自己制御性成形体の前駆体組成物である非熱可塑性ポリイミド前駆体組成物は芳香族テトラカルボン酸二無水物として下記の化学式(A-3)で示される3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)を採用したものであり、これをアルコール、好ましくはエタノールおよび極性溶媒、好ましくはN−メチル−2−ピロリドン中で50℃乃至150℃の温度に加熱、攪拌しテトラカルボン酸のエステル化合物の溶液とする。ついで、この溶液に、テトラカルボン酸成分とジアミン成分との混合モル比が80:100〜99:100、より好ましくは90:100となるように、以下の化学式(I-3)の4,4’−ジアミノジフェニルメタン(MDA)を加え室温乃至150℃の温度で攪拌してポリイミド前駆体溶液を製造する。そして、最後に、このポリイミド前駆体溶液に導電性粉末が加えられる。   In a preferred embodiment, the non-thermoplastic polyimide precursor composition which is a precursor composition of the temperature self-controllable molded article of the present invention is represented by the following chemical formula (A-3) as an aromatic tetracarboxylic dianhydride. 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride (BTDA) is employed, which is 50 in alcohol, preferably ethanol and a polar solvent, preferably N-methyl-2-pyrrolidone. A solution of tetracarboxylic acid ester compound is obtained by heating and stirring at a temperature of from 150 ° C. to 150 ° C. Next, in this solution, 4, 4 of the following chemical formula (I-3) is used so that the mixing molar ratio of the tetracarboxylic acid component and the diamine component is 80: 100 to 99: 100, more preferably 90: 100. '-Diaminodiphenylmethane (MDA) is added and stirred at room temperature to 150 ° C. to prepare a polyimide precursor solution. Finally, conductive powder is added to the polyimide precursor solution.

Figure 2006173586
Figure 2006173586

Figure 2006173586
Figure 2006173586

なお、ポリイミド前駆体溶液の取り扱いを容易にするために、溶液中の固形分濃度が30〜80重量%であることが好ましく、40〜70重量%であることがより好ましい。固形分濃度が低くなるとポリイミド前駆体溶液の粘度が極端に低くなり、混合分散されている導電性粉末が沈降し、立ち上がり特性や戻り特性の安定した温度自己制御性成形体を得ることが困難になる。また、固形分濃度が高すぎるとポリイミド前駆体溶液の流動性が著しく失われ、さらにはガラス状の固形物となり、導電性粉末の混合分散および組成物の成形が極めて困難となる。   In order to facilitate handling of the polyimide precursor solution, the solid concentration in the solution is preferably 30 to 80% by weight, and more preferably 40 to 70% by weight. When the solid content concentration decreases, the viscosity of the polyimide precursor solution becomes extremely low, and the mixed and dispersed conductive powder settles, making it difficult to obtain a temperature self-controllable molded product with stable rise and return characteristics. Become. On the other hand, when the solid content concentration is too high, the fluidity of the polyimide precursor solution is remarkably lost, and further, it becomes a glassy solid, and it becomes extremely difficult to mix and disperse the conductive powder and to mold the composition.

なお、本発明のポリイミド前駆体溶液にはPTC特性に悪影響を及ぼさない範囲で酸化防止剤、窒化硼素などの熱伝導性物質などの添加剤を含有することもできる。
本発明で用いる導電性粉末は、窒化タンタル(TaN)、炭化タンタル(TaC)、三珪化モリブデン(Mo5Si3)、レニウム−タングステン合金、二珪化モリブデン(MoSi2)、タングステン(W)、モリブデン(Mo)、炭化タングステン(WC)、チタンカーバイト(TiC)、金属粉末、およびカーボンブラックより成る群から選ばれる少なくとも一つであることが好ましい。炭化タングステンはより好ましい導電性粉末の一つである。導電性粉末の配合量は、導電粉末材料の選定によって異なるが、ポリイミド前駆体溶液の固形分濃度に対して20重量%〜90重量%が一般的である。
The polyimide precursor solution of the present invention may contain an additive such as an antioxidant and a heat conductive material such as boron nitride as long as the PTC characteristics are not adversely affected.
The conductive powder used in the present invention is tantalum nitride (TaN), tantalum carbide (TaC), molybdenum trisilicide (Mo 5 Si 3 ), rhenium-tungsten alloy, molybdenum disilicide (MoSi 2 ), tungsten (W), molybdenum It is preferably at least one selected from the group consisting of (Mo), tungsten carbide (WC), titanium carbide (TiC), metal powder, and carbon black. Tungsten carbide is one of the more preferred conductive powders. Although the compounding quantity of electroconductive powder changes with selection of electroconductive powder material, 20 to 90 weight% is common with respect to the solid content density | concentration of a polyimide precursor solution.

本発明に係る温度自己制御性成形物は、非熱可塑性ポリイミド前駆体組成物を絶縁性基材上に展開し、加熱イミド化処理して得られる。好ましい実施形態において、面状の温度自己制御性成形体は、セラミックス基板などの表面に、導電性粉末を混合分散した非熱可塑性ポリイミド前駆体組成物をバーコート、あるいはスクリーン印刷などの周知の方法で成形される。その後、その成形物をオーブンなどで段階的に加熱することによって極性溶媒の除去、及びポリイミド前駆体のイミド転化が逐次に又は同時に行われる。   The temperature self-controllable molded product according to the present invention is obtained by spreading a non-thermoplastic polyimide precursor composition on an insulating substrate and heating imidization treatment. In a preferred embodiment, the planar temperature self-controllable molded body is a known method such as bar coating or screen printing of a non-thermoplastic polyimide precursor composition in which conductive powder is mixed and dispersed on the surface of a ceramic substrate or the like. Molded with. Thereafter, the molded product is heated stepwise in an oven or the like to remove the polar solvent and to convert the polyimide precursor to imide sequentially or simultaneously.

さらに好ましい実施形態において、非熱可塑性ポリイミド樹脂製の温度自己制御性成形体は、非熱可塑性ポリイミド前駆体組成物を基板上表面に展開し、80〜120℃の温度で30〜120分にわたり乾燥させ、次に温度を200℃に上げ、この温度で10〜180分にわたり加熱した後、温度をさらに250〜400℃に上げ、この温度で30〜120分にわたり加熱してイミド転化を完結させることにより得ることができる。なお、温度自己制御性成形体には銀ペーストなどの導電性塗料で通電あるいは抵抗値の変化量を検出するための電極を形成することができる。   In a more preferred embodiment, the temperature self-controllable molded body made of non-thermoplastic polyimide resin is developed by spreading the non-thermoplastic polyimide precursor composition on the surface of the substrate and drying at a temperature of 80 to 120 ° C. for 30 to 120 minutes. The temperature is then raised to 200 ° C. and heated at this temperature for 10-180 minutes, then the temperature is further raised to 250-400 ° C. and heated at this temperature for 30-120 minutes to complete the imide conversion. Can be obtained. In addition, the temperature self-controllable molded body can be formed with an electrode for detecting the amount of current flow or resistance change with a conductive paint such as silver paste.

また、電極を取り付けた成形体では、両電極に、両電極の一部を残した状態で、導電性粉末を含まないポリイミド前駆体溶液を周知の方法で塗布した後にイミド転化処理することにより、両電極に絶縁保護膜を形成することができる。また、フッ素樹脂ディスパージョンなどの材料を発熱体の表面にコーティングし焼成することによって絶縁保護膜を形成することもできる。   In addition, in the molded body with the electrodes attached, by applying a polyimide precursor solution not containing conductive powder in a well-known manner in a state where a part of both electrodes is left on both electrodes, an imide conversion treatment is performed, An insulating protective film can be formed on both electrodes. The insulating protective film can also be formed by coating a material such as a fluororesin dispersion on the surface of the heating element and baking it.

以下に、本発明を実施例に基づき具体的に説明する。各実施例、及び比較例で作製したポリイミド前駆体組成物、及び温度自己制御性成形体の諸特性は下記の測定方法で測定した。
(1)電気抵抗値の測定
横河電気株式会社製デジタルマルチメーターModel7562を用いて電気抵抗を測定した。
The present invention will be specifically described below based on examples. Various characteristics of the polyimide precursor composition and the temperature self-controllable molded body produced in each Example and Comparative Example were measured by the following measuring methods.
(1) Measurement of electric resistance value Electric resistance was measured using a digital multimeter Model 7562 manufactured by Yokogawa Electric Corporation.

(a)ポリイミド前駆体溶液の作製
500mLの3つ口フラスコに、ポリテトラフルオロエチレン製の攪拌羽を取り付けた攪拌棒を取り付けて合成容器とした。そして、その合成容器に、ポリイミド前駆体溶液の固形分が55質量%となるように酸成分としてALLCO製の3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)32.667g(0.1014mol)を、溶媒として三菱ガス化学社製のN−メチル−2−ピロリドン(NMP)30.326gを、エステル化剤として和光純薬工業社製のエタノール14.674g(0.3041mol)を投入し、60℃に加熱して2時間撹拌し、BTDAのエステル化合物を得た。その後、テトラカルボン酸成分のモル数がジアミン成分のモル数の0.9倍となるようにCiba−Geigy社製の4,4’−ジアミノジフェニルメタン(MDA)21.052g(0.1126mol)を加えさらに60℃で1時間撹拌してポリイミド前駆体溶液を得た。
(A) Preparation of polyimide precursor solution A 500 mL three-necked flask was equipped with a stirring rod equipped with a stirring blade made of polytetrafluoroethylene to prepare a synthesis container. Then, in the synthesis container, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride (BTDA) manufactured by ALLCO as an acid component so that the solid content of the polyimide precursor solution is 55 mass%. 667 g (0.1014 mol) as a solvent, 30.326 g of N-methyl-2-pyrrolidone (NMP) manufactured by Mitsubishi Gas Chemical Co., Ltd. and 14.674 g (0.3041 mol) of ethanol manufactured by Wako Pure Chemical Industries as an esterifying agent. ), And heated to 60 ° C. and stirred for 2 hours to obtain an ester compound of BTDA. Thereafter, 21.052 g (0.1126 mol) of 4,4′-diaminodiphenylmethane (MDA) manufactured by Ciba-Geigy was added so that the number of moles of the tetracarboxylic acid component was 0.9 times the number of moles of the diamine component. Furthermore, it stirred at 60 degreeC for 1 hour, and obtained the polyimide precursor solution.

(b)導電性粉末の配合
ついで導電性粉末として炭化タングステン粉末(アライドマテリアル社製WC10)をポリイミド前駆体溶液の固形分100重量部に対して277重量部配合し、超音波を当てながら攪拌機で30分間攪拌して混合し、炭化タングステンが均一に混合分散されたポリイミド前駆体組成物を得た。このポリイミド前駆体組成物はペースト状であった。
(B) Blending of conductive powder Next, 277 parts by weight of tungsten carbide powder (WC10 manufactured by Allied Material Co., Ltd.) as a conductive powder was blended with respect to 100 parts by weight of the solid content of the polyimide precursor solution, and stirred with an ultrasonic wave. The mixture was stirred for 30 minutes and mixed to obtain a polyimide precursor composition in which tungsten carbide was uniformly mixed and dispersed. This polyimide precursor composition was pasty.

(c)温度自己制御発熱体の作製
図1に示すように幅20mm、長さ300mm、厚み3mmのセラミックス基板1の幅方向に平行に3mmの間隔を空け、銀導電性インキを厚み20μmの厚みで塗布し、150℃の温度で10分間乾燥後600℃の温度で20分間焼付け、基板の両端に電極2を形成した。その後、ポリイミド前駆体組成物を、これらの電極の一部分を残し電極上に幅7mm長さ220mmの長方形状にスクリーン印刷法により20μmの厚さ(固形分含量基準)で均一に塗布した。その後、成形品をオーブンに入れ、80℃で20分、次に110℃で30分、120℃で30分、150℃で20分、200℃で20分、次に300℃で1時間、その後400℃の温度で20分間保持しイミド化反応を完結させ温度自己制御発熱体3を得た。さらにその上に電極部の一部分を除いて基板全体を覆うようにポリイミドワニス((株)I.S.T社製RC5019)を塗布し、加熱イミド化させ、20μm厚のポリイミド絶縁被覆層4を設け、温度自己制御発熱試験体5を得た。23℃での電気抵抗値は25Ωであった。
(C) Production of Temperature Self-Controlling Heating Element As shown in FIG. 1, the silver conductive ink is 20 μm thick with a spacing of 3 mm parallel to the width direction of the ceramic substrate 1 having a width of 20 mm, a length of 300 mm and a thickness of 3 mm. The electrode 2 was formed on both ends of the substrate by coating at 150 ° C. for 10 minutes and baking at 600 ° C. for 20 minutes. Thereafter, the polyimide precursor composition was uniformly coated on the electrodes in a rectangular shape having a width of 7 mm and a length of 220 mm with a thickness of 20 μm (based on solid content) by leaving a part of these electrodes. The molded article is then placed in an oven for 20 minutes at 80 ° C., then 30 minutes at 110 ° C., 30 minutes at 120 ° C., 20 minutes at 150 ° C., 20 minutes at 200 ° C., then 1 hour at 300 ° C. The temperature was maintained at 400 ° C. for 20 minutes to complete the imidization reaction, and a temperature self-control heating element 3 was obtained. Furthermore, a polyimide varnish (RC5019 manufactured by IST Co., Ltd.) is applied so as to cover the entire substrate except for a part of the electrode portion thereon, and is heated to imidize to form a polyimide insulating coating layer 4 having a thickness of 20 μm. A temperature self-control exothermic test body 5 was obtained. The electric resistance value at 23 ° C. was 25Ω.

(d)温度−抵抗曲線
(c)項で作製した温度自己制御発熱試験体の両電極からリード線をとり、恒温層に挿入後、室温から350℃まで徐々に昇温し温度上昇に伴う電気抵抗値の変化を測定した。図3にその温度‐抵抗曲線を示す。温度の上昇に伴う抵抗値の変化は250℃近傍で非常にシャープに立ち上り、350℃時の抵抗値は室温時の抵抗値の15倍まで上昇した。また室温から350℃までの昇温・冷却操作を10回繰り返した後の抵抗値は23℃において25.5Ωであり、抵抗値の変化率は+2%であり非常に安定した戻り特性が得られた。
(D) Temperature-resistance curve Take the lead wires from both electrodes of the temperature self-control exothermic test body prepared in (c) and insert it into the thermostatic layer. The change in resistance value was measured. FIG. 3 shows the temperature-resistance curve. The change in resistance value with increasing temperature rose very sharply around 250 ° C., and the resistance value at 350 ° C. increased to 15 times the resistance value at room temperature. In addition, the resistance value after repeating the temperature raising / cooling operation from room temperature to 350 ° C. 10 times is 25.5Ω at 23 ° C., the rate of change of the resistance value is + 2%, and a very stable return characteristic is obtained. It was.

(e)電圧印加特性
(c)項で作製した温度自己制御発熱試験体の両電極からリード線をとり、発熱体中央部表面に熱電対を設け温度を計測しながら、試料に直流電圧を徐々に印加した。発熱体の表面温度は290℃で温度制御され一定になり290℃以上に温度が上がることはなくその後、電圧を徐々に下げていき、試験体の表面温度を室温まで戻した。この操作を10回繰り返した後の室温における抵抗値を測定し変化率を求めた。抵抗値の変化率は+2.3%であり抵抗値の変化が非常に小さい、戻り特性の優れた安定した温度自己制御発熱体を得ることができた。
(E) Voltage application characteristics
Lead wires were taken from both electrodes of the temperature self-control exothermic test body prepared in (c), and a DC voltage was gradually applied to the sample while a thermocouple was provided on the surface of the central portion of the exothermic body and the temperature was measured. The surface temperature of the heating element was controlled at 290 ° C. and became constant, and the temperature did not rise above 290 ° C. Thereafter, the voltage was gradually lowered to return the surface temperature of the test body to room temperature. The resistance value at room temperature after repeating this operation 10 times was measured to determine the rate of change. The rate of change in the resistance value was + 2.3%, and the change in the resistance value was very small, and a stable temperature self-control heating element excellent in return characteristics could be obtained.

酸成分としてビフェニルテトラカルボン酸二無水物(BPDA)28.384g(0.0965mol)を、溶媒としてNMP35.727gを、エステル化剤としてメタノール9.273g(0.2894mol)を用い80℃で2時間攪拌してテトラカルボン酸エステル化合物を作製し、エステル化合物成分とジアミン成分との混合モル比が90:100となるように4、4’−ジアミノジフェニルスルホン(44DDS)26.616g(0.1072mol)を用い、反応温度を80℃とした以外は、実施例1と同様にポリイミド前駆体溶液を合成した。次いで、ポリイミド前駆体溶液の固形分100重量部に対して炭化タングステン粉末277重量部配合し、実施例1と同様の条件で温度自己制御発熱試験体を作製した。その後、実施例1と同様に発熱試験体の特性評価を行った。この試験体の温度−抵抗特性では280℃の近傍で抵抗値がシャープに立ち上りPTC特性が得られ、また試験体の電極から電圧を印加し表面温度を280℃上昇させ、さらに室温まで戻す操作を5回繰り返した後の試験体の抵抗値の変化率は−3%であり、室温から高温領域までの繰り返し試験において安定した抵抗値を有する温度自己制御発熱体を得ることができた。   Biphenyltetracarboxylic dianhydride (BPDA) 28.384 g (0.0965 mol) as the acid component, NMP 35.727 g as the solvent, and 9.273 g (0.2894 mol) of methanol as the esterifying agent were used at 80 ° C. for 2 hours. Stirring to prepare a tetracarboxylic acid ester compound, 26.616 g (0.1072 mol) of 4,4′-diaminodiphenylsulfone (44DDS) so that the mixing molar ratio of the ester compound component and the diamine component is 90: 100. A polyimide precursor solution was synthesized in the same manner as in Example 1 except that the reaction temperature was 80 ° C. Next, 277 parts by weight of tungsten carbide powder was blended with respect to 100 parts by weight of the solid content of the polyimide precursor solution, and a temperature self-control exothermic test body was produced under the same conditions as in Example 1. Thereafter, the characteristics of the exothermic test body were evaluated in the same manner as in Example 1. In the temperature-resistance characteristics of this specimen, the resistance value sharply rises in the vicinity of 280 ° C., and PTC characteristics are obtained. In addition, the voltage applied from the electrode of the specimen is raised to 280 ° C., and the temperature is further returned to room temperature. The change rate of the resistance value of the test body after 5 repetitions was −3%, and a temperature self-control heating element having a stable resistance value in a repeated test from room temperature to a high temperature region could be obtained.

実施例1で作製したポリイミド前駆体溶液の固形分100重量部に対して炭化タンタル粉末(和光一級)を438重量部配合し、実施例1と同様の条件で温度自己制御発熱試験体を作製し、温度上昇に伴う電気抵抗値の変化を測定したところ200℃の近傍で抵抗値がシャープに立ち上り、その抵抗値は265℃までに2.5倍まで上昇した。また、このときの試験体の抵抗値の変化率は+10%であった(図4参照)。   438 parts by weight of tantalum carbide powder (Wako Grade 1) is blended with 100 parts by weight of the solid content of the polyimide precursor solution prepared in Example 1, and a temperature self-control exothermic test body is prepared under the same conditions as in Example 1. When the change in the electrical resistance value accompanying the temperature rise was measured, the resistance value sharply rose in the vicinity of 200 ° C., and the resistance value increased to 2.5 times by 265 ° C. Further, the change rate of the resistance value of the test specimen at this time was + 10% (see FIG. 4).

実施例1で作製したポリイミド前駆体溶液の固形分100重量部に対してフィラメント状ニッケル粉末(INCO社製Type210)を51.5重量部配合し、実施例1と同様の条件で温度自己制御発熱試験体を作製し、温度上昇に伴う電気抵抗値の変化を測定したところ300℃の近傍で抵抗値がシャープに立ち上り、その抵抗値は350℃までに2.2倍まで上昇した。また、このときの試験体の抵抗値の変化率は−3%であった(図5参照)。   51.5 parts by weight of filamentous nickel powder (Type 210 manufactured by INCO) is blended with 100 parts by weight of the solid content of the polyimide precursor solution prepared in Example 1, and temperature self-controlled heat generation is performed under the same conditions as in Example 1. A test specimen was prepared and the change in the electrical resistance value accompanying a temperature rise was measured. The resistance value sharply rose in the vicinity of 300 ° C., and the resistance value increased to 2.2 times by 350 ° C. Further, the change rate of the resistance value of the test specimen at this time was −3% (see FIG. 5).

酸成分としてBTDA29.627g(0.0922mol)を、溶媒としてNMP43.408gを、エステル化剤としてエチレングリコール6.292g(0.1014mol)を用い60℃で2時間攪拌してテトラカルボン酸エステル化合物を作製し、エステル化合物成分とジアミン成分との混合モル比が90:100となるようにMDA20.303g(0.102mol)を用いた以外は、実施例1と同様にポリイミド前駆体溶液を合成した。このポリイミド前駆体溶液の固形分100重量部に対してチタンカーバイド粉末(アライドマテリアル製OP10)を189重量部配合し、実施例1と同様の条件で温度自己制御発熱試験体を作製した。この温度自己制御発熱試験体の温度上昇に伴う電気抵抗値の変化を測定したところ250℃の近傍で抵抗値がシャープに立ち上り、その抵抗値は300℃までに33倍まで上昇した。また、このときの試験体の抵抗値の変化率は+2%であった(図6参照)。   29.627 g (0.0922 mol) of BTDA as an acid component, 43.408 g of NMP as a solvent and 6.292 g (0.1014 mol) of ethylene glycol as an esterifying agent were stirred at 60 ° C. for 2 hours to obtain a tetracarboxylic acid ester compound. A polyimide precursor solution was synthesized in the same manner as in Example 1 except that 20.303 g (0.102 mol) of MDA was used so that the mixing molar ratio of the ester compound component and the diamine component was 90: 100. 189 parts by weight of titanium carbide powder (OP10 manufactured by Allied Material) was blended with 100 parts by weight of the solid content of this polyimide precursor solution, and a temperature self-control exothermic test body was produced under the same conditions as in Example 1. When the change in the electrical resistance value accompanying the temperature rise of the temperature self-control exothermic test piece was measured, the resistance value sharply rose in the vicinity of 250 ° C., and the resistance value increased to 33 times by 300 ° C. Further, the change rate of the resistance value of the test specimen at this time was + 2% (see FIG. 6).

酸成分としてBTDA32.180g(0.0999mol)を、溶媒としてNMP43.181gを、エステル化剤としてエチレングリコール6.819g(0.1099mol)を用い60℃で2時間攪拌してテトラカルボン酸エステル化合物を作製し、エステル化合物成分とジアミン成分との混合モル比が100:90となるようにMDA17.820g(0.0899mol)を用いた以外は、実施例1と同様にポリイミド前駆体溶液を合成した。このポリイミド前駆体溶液の固形分100重量部に対してチタンカーバイド粉末を151重量部配合し、実施例1と同様の条件で温度自己制御発熱試験体を作製した。この温度自己制御発熱試験体の温度上昇に伴う電気抵抗値の変化を測定したところ250℃の近傍で抵抗値がシャープに立ち上り、その抵抗値は300℃までに17倍まで上昇した。また、このときの試験体の抵抗値の変化率は−5%であった(図7参照)。   BTDA 32.180 g (0.0999 mol) as an acid component, NMP 43.181 g as a solvent, and ethylene glycol 6.819 g (0.1099 mol) as an esterifying agent were stirred at 60 ° C. for 2 hours to obtain a tetracarboxylic acid ester compound. A polyimide precursor solution was synthesized in the same manner as in Example 1 except that 17.820 g (0.0899 mol) of MDA was used so that the mixing molar ratio of the ester compound component and the diamine component was 100: 90. 151 parts by weight of titanium carbide powder was blended with 100 parts by weight of the solid content of this polyimide precursor solution, and a temperature self-control exothermic test body was produced under the same conditions as in Example 1. When the change in the electrical resistance value accompanying the temperature rise of this temperature self-control exothermic test body was measured, the resistance value sharply rose in the vicinity of 250 ° C., and the resistance value increased to 17 times by 300 ° C. Further, the change rate of the resistance value of the test specimen at this time was −5% (see FIG. 7).

(比較例)
ポリイミド前駆体溶液の固形分が17質量%となるように、ジアミン成分としてMDA6.903g(0.0348mol)を、重合溶媒としてNMP83.0gを投入し、MDAがNMPに完全に溶解後、酸成分とジアミン成分との混合モル比が100:90となるよう2官能酸無水物としてBTDA10.097g(0.0313mol)を固体のままで5分間かけて添加し、室温で12時間反応させ、ポリイミド前駆体溶液を得た。その後ポリイミド前駆体溶液の固形分100重量部に対して炭化タングステン粉末277重量部配合し、実施例1と同様の条件で温度自己制御発熱体を作製しようとしたが、加熱イミド化中にひび割れが発生し、試験体とすることが出来なかった。すなわちテトラカルボン酸二無水物をエステル化しない状態で、酸成分とジアミン成分の混合割合のみ90:100にして調製したポリイミド組成物は脆弱で成形体として作製することができなかった。
(Comparative example)
6.903 g (0.0348 mol) of MDA as a diamine component and 83.0 g of NMP as a polymerization solvent were added so that the solid content of the polyimide precursor solution was 17% by mass, and after the MDA was completely dissolved in NMP, the acid component BTDA 10.097 g (0.0313 mol) was added as a bifunctional acid anhydride over 5 minutes as a bifunctional acid anhydride so that the mixing molar ratio of the diamine component and the diamine component was 100: 90, and allowed to react at room temperature for 12 hours. A body solution was obtained. Thereafter, 277 parts by weight of tungsten carbide powder was blended with respect to 100 parts by weight of the solid content of the polyimide precursor solution, and an attempt was made to produce a temperature self-control heating element under the same conditions as in Example 1, but cracking occurred during heating imidization. It occurred and could not be used as a specimen. That is, the polyimide composition prepared by setting the mixing ratio of the acid component and the diamine component to 90: 100 in a state where the tetracarboxylic dianhydride was not esterified was brittle and could not be produced as a molded product.

本発明に係る温度自己制御性成形体は、優れたPTC特性(立ち上がり特性)および戻り特性を有しており、自己回復性過電流制御素子や、シート状あるいはフィルム状のヒーター、オンデマンド定着方式が採用されたレーザービームプリンターや複写機などに組み込まれる発熱体、あるいは有機質サーミスタ等として有用である。   The temperature self-controllable molded product according to the present invention has excellent PTC characteristics (rise characteristics) and return characteristics, and is a self-recovery overcurrent control element, a sheet-like or film-like heater, an on-demand fixing method. Is useful as a heating element or an organic thermistor incorporated in a laser beam printer or a copying machine in which is used.

温度自己制御性成形体の上部からの平面と側面断面の概略図である。It is the schematic from the upper surface of a temperature self-control property molded object, and a side surface cross section. 図1に示す温度自己制御性成形体の幅方向断面の概略図である。It is the schematic of the cross section of the width direction of the temperature self-control property molded object shown in FIG. 実施例1に示された発熱体の温度・抵抗特性を示す図である。It is a figure which shows the temperature and resistance characteristic of the heat generating body shown by Example 1. FIG. 実施例3に示された発熱体の温度・抵抗特性を示す図である。It is a figure which shows the temperature and resistance characteristic of the heat generating body shown by Example 3. FIG. 実施例4に示された発熱体の温度・抵抗特性を示す図である。It is a figure which shows the temperature and resistance characteristic of the heat generating body shown by Example 4. FIG. 実施例5に示された発熱体の温度・抵抗特性を示す図である。It is a figure which shows the temperature and resistance characteristic of the heat generating body shown by Example 5. FIG. 実施例6に示された発熱体の温度・抵抗特性を示す図である。It is a figure which shows the temperature and resistance characteristic of the heat generating body shown by Example 6. FIG.

符号の説明Explanation of symbols

1 セラミックス基板
2 電極
3 温度自己制御性成型部
4 保護層
5 温度自己制御発熱試験体
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Electrode 3 Temperature self-control molding part 4 Protective layer 5 Temperature self-control exothermic test body

Claims (7)

少なくとも1種のテトラカルボン酸から誘導されるエステル化合物と、少なくとも1種のジアミン又はその誘導体とをイミド転化して得られる非熱可塑性ポリイミド樹脂と、
前記非熱可塑性ポリイミド樹脂に混合されている導電性粉末と、
を含有する、温度自己制御性成形体。
A non-thermoplastic polyimide resin obtained by imide conversion of an ester compound derived from at least one tetracarboxylic acid and at least one diamine or derivative thereof;
Conductive powder mixed in the non-thermoplastic polyimide resin;
A temperature self-controllable molded article containing
前記テトラカルボン酸から誘導されるエステル化合物と前記ジアミン若しくはその誘導体との混合モル比、または前記ジアミン若しくはその誘導体と前記テトラカルボン酸から誘導されるエステル化合物との混合モル比は、80:100〜99:100である、
請求項1に記載の温度自己制御性成形体。
The mixing molar ratio of the ester compound derived from the tetracarboxylic acid and the diamine or derivative thereof, or the mixing molar ratio of the ester compound derived from the diamine or derivative thereof and the tetracarboxylic acid is from 80: 100 to 99: 100,
The temperature self-controllable molded article according to claim 1.
前記テトラカルボン酸から誘導されるエステル化合物は、化学式(A)〔式中、R1、R2、R3、R4はそれぞれ独立に−H、炭素数1から8である炭化水素基(芳香環、−O−、−CO−、−OH等の官能基を有しても良い)、又はフェニル基を表わし、R’は化学式(A−1)又は化学式(A-2)(式中、Xは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示される、
請求項1または2に記載の温度自己制御性成形体。
Figure 2006173586
Figure 2006173586
Figure 2006173586
The ester compound derived from the tetracarboxylic acid has the chemical formula (A) [wherein R 1 , R 2 , R 3 , R 4 are each independently —H, a hydrocarbon group having 1 to 8 carbon atoms (aromatic A ring, a functional group such as —O—, —CO—, and —OH), or a phenyl group, and R ′ represents a chemical formula (A-1) or a chemical formula (A-2) (wherein X is -O -, - S -, - SO -, - SO 2 -, - CH 2 -, - C (CH 3) 2 -, - CO-, or represented by a direct bond represents a) represents a]
The temperature self-controllable molded article according to claim 1 or 2.
Figure 2006173586
Figure 2006173586
Figure 2006173586
前記ジアミン又はその誘導体は、化学式(I)〔式中、R''は化学式(I-1)又は化学式(I-2)(式中、Yは−O−、−S−、−SO−、−SO2−、−CH2−、−C(CH32−、−CO−、又は直接結合を表わす)を表わす〕で示される、
請求項1から3のいずれかに記載の温度自己制御性成形体。
Figure 2006173586
Figure 2006173586
Figure 2006173586
The diamine or derivative thereof has the chemical formula (I) [wherein R ″ is the chemical formula (I-1) or the chemical formula (I-2) (where Y is —O—, —S—, —SO—, -SO 2 -, - CH 2 - , - C (CH 3) 2 -, - CO-, or represented by a direct bond represents a) represents a]
The temperature self-controllable molded article according to any one of claims 1 to 3.
Figure 2006173586
Figure 2006173586
Figure 2006173586
前記導電性粉末は、窒化タンタル(TaN)、炭化タンタル(TaC)、三珪化モリブデン(Mo5Si3)、レニウム−タングステン合金、二珪化モリブデン(MoSi2)、タングステン(W)、モリブデン(Mo)、炭化タングステン(WC)、チタンカーバイト(TiC)、金属粉末、およびカーボンブラックより成る群から選ばれる少なくとも一つである、
請求項1から4のいずれかに記載の温度自己制御性成形体。
The conductive powder includes tantalum nitride (TaN), tantalum carbide (TaC), molybdenum trisilicide (Mo 5 Si 3 ), rhenium-tungsten alloy, molybdenum disilicide (MoSi 2 ), tungsten (W), molybdenum (Mo). , At least one selected from the group consisting of tungsten carbide (WC), titanium carbide (TiC), metal powder, and carbon black.
The temperature self-controllable molded article according to any one of claims 1 to 4.
実質的に非熱可塑性ポリイミド樹脂を主成分とし、導電性および正の温度抵抗特性を有する温度自己制御性成形体であって、
25±5℃における初期電気抵抗値に対するPTC特性発現後の25±5℃における電気抵抗値の変化率が±10%以内である、
温度自己制御性成形体。
A temperature self-controllable molded body having a non-thermoplastic polyimide resin as a main component and having conductive and positive temperature resistance characteristics,
The rate of change of the electrical resistance value at 25 ± 5 ° C. after the expression of the PTC characteristic relative to the initial electrical resistance value at 25 ± 5 ° C. is within ± 10%.
Temperature self-control molded body.
少なくとも1種のテトラカルボン酸から誘導されるエステル化合物と少なくとも1種のジアミン若しくはその誘導体との混合モル比、または前記ジアミン若しくはその誘導体と前記テトラカルボン酸エステルから誘導されるエステル化合物との混合モル比が80:100〜99:100である非熱可塑性ポリイミド前駆体組成物を調製する第1組成物調製工程と、
前記非熱可塑性ポリイミド前駆体組成物に導電性粉末を添加して導電性粉末入り非熱可塑性ポリイミド前駆体組成物を調製する第2組成物調製工程と、
前記導電性粉末入り非熱可塑性ポリイミド前駆体組成物を絶縁性基材上に展開した後に前記テトラカルボン酸エステルと前記ジアミン又はその誘導体とをイミド転化させるイミド転化工程と、
を備える、温度自己制御性成形体の製造方法。
Mixing molar ratio of an ester compound derived from at least one tetracarboxylic acid and at least one diamine or a derivative thereof, or a mixing mole of an ester compound derived from the diamine or a derivative thereof and the tetracarboxylic acid ester A first composition preparation step of preparing a non-thermoplastic polyimide precursor composition having a ratio of 80: 100 to 99: 100;
A second composition preparation step of preparing a non-thermoplastic polyimide precursor composition containing conductive powder by adding conductive powder to the non-thermoplastic polyimide precursor composition;
An imide conversion step in which the tetracarboxylic acid ester and the diamine or derivative thereof are imide-converted after the conductive powder-containing non-thermoplastic polyimide precursor composition is developed on an insulating substrate;
A method for producing a temperature self-controllable molded article.
JP2005332777A 2004-11-18 2005-11-17 Compact of temperature self-controlling nature and method of fabricating the same Pending JP2006173586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332777A JP2006173586A (en) 2004-11-18 2005-11-17 Compact of temperature self-controlling nature and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004334553 2004-11-18
JP2005332777A JP2006173586A (en) 2004-11-18 2005-11-17 Compact of temperature self-controlling nature and method of fabricating the same

Publications (1)

Publication Number Publication Date
JP2006173586A true JP2006173586A (en) 2006-06-29

Family

ID=36673945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332777A Pending JP2006173586A (en) 2004-11-18 2005-11-17 Compact of temperature self-controlling nature and method of fabricating the same

Country Status (1)

Country Link
JP (1) JP2006173586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069316A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Adhesive for mounting electronic part and electronic part mounted structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233881A (en) * 1988-07-25 1990-02-05 Mitsui Petrochem Ind Ltd Composition for print heater
JPH09246011A (en) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd Conductive polymer
JP2004200681A (en) * 2002-12-17 2004-07-15 E I Du Pont De Nemours & Co Resistor component having substantially neutral temperature coefficient of resistance, and method and component relating thereto

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233881A (en) * 1988-07-25 1990-02-05 Mitsui Petrochem Ind Ltd Composition for print heater
JPH09246011A (en) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd Conductive polymer
JP2004200681A (en) * 2002-12-17 2004-07-15 E I Du Pont De Nemours & Co Resistor component having substantially neutral temperature coefficient of resistance, and method and component relating thereto

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069316A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Adhesive for mounting electronic part and electronic part mounted structure
US8034447B2 (en) 2006-09-15 2011-10-11 Panasonic Corporation Electronic components mounting adhesive and electronic components mounting structure

Similar Documents

Publication Publication Date Title
EP1553134B1 (en) Polyimide compositions having resistance to water sorption, and methods relating thereto
JP2006294604A (en) Planar heater, its manufacturing method, and image fixing device
JP4947989B2 (en) Polyimide precursor solution, polyimide porous film, and production method thereof
JP5708676B2 (en) Method for producing polyimide precursor composition
JPH10182820A (en) Polyimide precursor composition and polyimide film
JP2004200681A (en) Resistor component having substantially neutral temperature coefficient of resistance, and method and component relating thereto
TW200811220A (en) Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
JP2017149796A (en) Polyimide precursor composition, and method for producing polyimide precursor composition
JP2015117258A (en) Method of producing polyimide precursor composition
JP6056512B2 (en) Method for producing polyimide molded body, method for producing liquid crystal alignment film, method for producing passivation film, method for producing electric wire coating material, and method for producing adhesive film
JP2017052877A (en) Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
JP2017115147A (en) Polyimide-based polymer thick film compositions
JP2008505435A (en) Layers used for indoor electrical equipment
Sinh et al. Thermal, dielectric, and rheological properties of aluminum nitride/liquid crystalline copoly (ester amide) composite for the application of thermal interface materials
US10153075B2 (en) Polyimide-based polymer thick film resistor composition
WO2014073402A1 (en) Planar heater
JP2006173586A (en) Compact of temperature self-controlling nature and method of fabricating the same
CN115637045A (en) Heat-conducting electric-insulation polyimide film
JP2015120904A (en) Polyimide precursor composition, production method of polyimide precursor composition, production method of polyimide molded article, polyimide molded article, liquid crystal alignment layer, passivation film, electric wire coating material, and adhesive film
US9649730B2 (en) Paste and process for forming a solderable polyimide-based polymer thick film conductor
US10508217B2 (en) Polyimide-based polymer thick film resistor composition
JP7233088B2 (en) Polyimide precursor solution
JP4693378B2 (en) Laminated body and method for producing the same
TW200822152A (en) Low temperature coefficient of resistivity polymeric resistors based on metal carbides and nitrides
TW200918616A (en) Ink composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A977 Report on retrieval

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A02 Decision of refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A02