JP2006172900A - Non-aqueous electrolytic liquid secondary battery - Google Patents

Non-aqueous electrolytic liquid secondary battery Download PDF

Info

Publication number
JP2006172900A
JP2006172900A JP2004363848A JP2004363848A JP2006172900A JP 2006172900 A JP2006172900 A JP 2006172900A JP 2004363848 A JP2004363848 A JP 2004363848A JP 2004363848 A JP2004363848 A JP 2004363848A JP 2006172900 A JP2006172900 A JP 2006172900A
Authority
JP
Japan
Prior art keywords
negative electrode
capacity
positive electrode
secondary battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004363848A
Other languages
Japanese (ja)
Inventor
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004363848A priority Critical patent/JP2006172900A/en
Publication of JP2006172900A publication Critical patent/JP2006172900A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic liquid secondary battery in which lithium titanate is used as a positive electrode active material and voltage drop at the initial stage of discharge is suppressed, while being able to obtain high capacity and high reliability. <P>SOLUTION: The non-aqueous electrolytic liquid secondary battery has a positive electrode, using lithium titanate as a positive electrode active material and a negative electrode, using a material capable of storing and releasing lithium ion as a negative electrode active material. The battery has lithium, capable of being used for charge and discharge at a quantity, corresponding to 105-120% of the negative electrode capacity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン酸リチウムを正極活物質に有する非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery having lithium titanate as a positive electrode active material.

現在、携帯機器の電源としては、主としてリチウムイオン二次電池が使用されており、この理由として、ニッケル−カドミウム二次電池や金属水素化物(MH)二次電池に代表される従来の二次電池に比べて、軽量化が可能となったこと、および高電圧化を達成できたことが挙げられる。現行のリチウムイオン電池では、例えば、LiCoOなどの金属酸化物を正極に、黒鉛を負極に用いており、その充放電時の電圧は、充電時において4V以上、放電時の平均電圧で3〜4Vである。 Currently, lithium-ion secondary batteries are mainly used as power sources for portable devices. The reason for this is that conventional secondary batteries represented by nickel-cadmium secondary batteries and metal hydride (MH) secondary batteries. Compared to the above, it is possible to reduce the weight and to achieve a higher voltage. In the current lithium ion battery, for example, a metal oxide such as LiCoO 2 is used as a positive electrode, and graphite is used as a negative electrode. 4V.

しかしながら、次の理由から、リチウムイオン二次電池の低電圧化が要求されている。一つには、携帯機器の駆動ICの低電圧化が進んでいるからであり、今一つには、携帯機器用の二次電池の充電に太陽電池を用られることが一般的となっているが、太陽電池の電圧が通常1V以下であることから、高電圧のリチウムイオン二次電池の充電には、太陽電池の積層数を多くしなければならない、という問題があるからである。   However, lowering the voltage of lithium ion secondary batteries is required for the following reasons. One reason is that the driving IC of portable devices is being lowered in voltage, and another is that solar cells are generally used for charging secondary batteries for portable devices. This is because, since the voltage of the solar cell is usually 1 V or less, charging of the high voltage lithium ion secondary battery has a problem that the number of stacked solar cells has to be increased.

他方、低電圧化を達成可能な二次電池として、チタン酸リチウムを活物質とする正極と、金属Liや炭素などを活物質とする負極を有する二次電池も開発されている(例えば、特許文献1〜2)。特許文献1〜2に開示の二次電池では、充電時の電圧が3V以下、放電時の平均電圧が2V以下となるため、上述の低電圧化の要請に応え得る。   On the other hand, secondary batteries having a positive electrode using lithium titanate as an active material and a negative electrode using metal Li or carbon as an active material have been developed as secondary batteries capable of achieving low voltage (for example, patents). Literatures 1-2). In the secondary batteries disclosed in Patent Documents 1 and 2, since the voltage at the time of charging is 3 V or less and the average voltage at the time of discharging is 2 V or less, the above-described request for lowering the voltage can be met.

特許文献1〜2に開示の如きチタン酸リチウムを正極活物質に用いた二次電池では、負極活物質として、上記の金属リチウム(Li)や炭素の他、Liと合金化し得るSiやSnなどの使用が考えられる。しかしながら、金属リチウムを使用した場合には満足できるサイクル性能が確保し難い。また、チタン酸リチウムは、LiCoOなどと異なり、充放電時に構成元素のLiがモビリティとはならず、Liが脱離し得ない。よって、炭素などを負極活物質とした場合、正負極のいずれにも充放電に用い得るLiソースを持たないため、外部からLiを導入することが行われている。
特開平10−64592号公報 特開平10−334917号公報
In a secondary battery using lithium titanate as disclosed in Patent Documents 1 and 2 as a positive electrode active material, as the negative electrode active material, in addition to the above metal lithium (Li) and carbon, Si, Sn, etc. that can be alloyed with Li Can be used. However, when metallic lithium is used, it is difficult to ensure satisfactory cycle performance. Further, unlike LiCoO 2 or the like, lithium titanate does not allow mobility of Li as a constituent element during charge / discharge, and Li cannot be detached. Therefore, when carbon or the like is used as the negative electrode active material, Li is introduced from the outside because neither of the positive and negative electrodes has a Li source that can be used for charging and discharging.
Japanese Patent Laid-Open No. 10-64592 Japanese Patent Laid-Open No. 10-334917

特許文献1〜2に開示されているようなチタン酸リチウムを正極活物質に用いた二次電池でも、現行のリチウムイオン二次電池と同様に、高容量化、高信頼性、高負荷特性の要求もある。例えば、負荷特性については、こうした二次電池が使用される最近の携帯機器では通信機能を有するものが多いことから、例えばパルス放電での瞬間的な大電流に対応できることが求められている。この他、低温環境下での携帯機器の使用時における分極低下抑制も求められている。   Even in a secondary battery using lithium titanate as a positive electrode active material as disclosed in Patent Documents 1 and 2, as in current lithium ion secondary batteries, high capacity, high reliability, and high load characteristics are achieved. There is also a demand. For example, as for load characteristics, since many recent portable devices using such secondary batteries have a communication function, it is required to be able to cope with an instantaneous large current, for example, in pulse discharge. In addition, there is a demand for suppression of polarization reduction when the portable device is used in a low temperature environment.

一般に二次電池では、放電が始まると電圧が急激に低下し、その後再び電圧がある程度まで上昇し、さらに放電が進むと徐々に電圧が低下していくといった、放電初期での電圧降下現象が見られる。よって、パルス放電のタイミングと、上記の電圧降下が生じるタイミングが合致すると、電圧降下の程度が大きい場合には、携帯機器の保護装置のカット電圧を下回り、携帯機器が停止することがある。よって、こうした電圧降下を可及的に抑制することが求められている。また、低温環境下において電池内で分極が大きくなることによっても、電圧降下が生じ、上記と同様の現象が発生する。   In general, in secondary batteries, a voltage drop phenomenon occurs at the beginning of discharge, such as when the discharge starts, the voltage suddenly drops, then the voltage rises again to a certain level, and further when the discharge proceeds, the voltage gradually decreases. It is done. Therefore, if the timing of the pulse discharge matches the timing at which the above voltage drop occurs, if the degree of voltage drop is large, the portable device may stop because it falls below the cut voltage of the protection device of the portable device. Therefore, it is required to suppress such a voltage drop as much as possible. In addition, when the polarization increases in the battery in a low temperature environment, a voltage drop occurs and the same phenomenon as described above occurs.

上記の放電初期の電圧降下現象を抑制するには、電極に用いる導電助剤の選定によって、二次電池の負荷特性を改善する方法が考えられる。例えば、導電助剤として、人造黒鉛、ケッチェンブラックなどを用い、これらの使用量を増やすことで、二次電池の負荷特性を改善することができるが、一方で、導電助剤の使用量を増加させると、活物質量を低減せざるを得ず、結果として電池容量が低下するという問題がある。   In order to suppress the voltage drop phenomenon at the initial stage of the discharge, a method of improving the load characteristics of the secondary battery by selecting a conductive additive used for the electrode can be considered. For example, artificial graphite, ketjen black, etc. can be used as a conductive aid, and by increasing the amount of these used, the load characteristics of the secondary battery can be improved. If it is increased, the amount of the active material must be reduced, resulting in a problem that the battery capacity decreases.

本発明は、上記事情に鑑みてなされたものであり、チタン酸リチウムを正極活物質に使用し、放電初期の電圧低下を抑制し得ると共に、高い容量や高い信頼性を確保し得る非水電解液二次電池を提供することを課題とする。   The present invention has been made in view of the above circumstances, and uses lithium titanate as a positive electrode active material, can suppress a voltage drop at the initial stage of discharge, and can ensure high capacity and high reliability. It is an object to provide a liquid secondary battery.

本発明は、チタン酸リチウムを正極活物質とする正極と、リチウムイオンを吸蔵、放出可能な材料を負極活物質とする負極を有する非水電解液二次電池において、充放電に使用し得るリチウムを、負極容量の105〜120%に相当する量で含有させることによって、上記課題を解決したものである。   The present invention relates to lithium that can be used for charging and discharging in a nonaqueous electrolyte secondary battery having a positive electrode using lithium titanate as a positive electrode active material and a negative electrode using a material capable of occluding and releasing lithium ions as a negative electrode active material. Is solved in an amount corresponding to 105 to 120% of the negative electrode capacity.

本発明は、上記構成の採用によって、チタン酸リチウムを正極活物質に用いた非水電解液二次電池において、放電初期の電圧降下を抑制しつつ、高容量と高い信頼性を確保することができた。   In the non-aqueous electrolyte secondary battery using lithium titanate as a positive electrode active material, the present invention can ensure high capacity and high reliability while suppressing a voltage drop at the initial stage of discharge in the non-aqueous electrolyte secondary battery using the positive electrode active material. did it.

上記の通り、チタン酸リチウムを正極活物質とする正極を有する非水電解液二次電池では、充放電時にモビリティとなり得る金属Liのような負極を用いない場合には、別途充放電に使用し得るLiを導入する必要があるが、本発明者は、こうした充放電に使用し得るLiの導入量を最適化することで、チタン酸リチウムを正極活物質とする正極を有する従来の二次電池が抱えていた上記課題(放電初期の電圧降下抑制、高容量化、高い信頼性の確保)を解決できることを見出し、本発明を完成させた。以下、本発明を詳細に説明する。   As described above, in a non-aqueous electrolyte secondary battery having a positive electrode using lithium titanate as a positive electrode active material, if a negative electrode such as metal Li that can become a mobility during charge and discharge is not used, it is separately used for charge and discharge. However, the present inventor has optimized the amount of Li that can be used for such charge and discharge to optimize the conventional secondary battery having a positive electrode using lithium titanate as a positive electrode active material. Have found that the above problems (suppression of voltage drop at the initial stage of discharge, increase in capacity, and ensuring high reliability) can be solved, and the present invention has been completed. Hereinafter, the present invention will be described in detail.

本発明では、正極活物質としてチタン酸リチウム(LiTi12)を用いる。チタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得られる。上記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。 In the present invention, lithium titanate (Li 4 Ti 5 O 12 ) is used as the positive electrode active material. Lithium titanate is obtained, for example, by heat-treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.

正極の作製に当たっては、チタン酸リチウムと導電助剤とバインダーとを混合して調製した正極合剤を加圧成形することが好ましく、このようにして得られる正極の形状としては、例えばペレット状が挙げられる。上記導電助剤としては、例えば、鱗片状黒鉛、アセチレンブラック、ケッチェンブラック、カーボンブラックなどが用いられる。また、バインダーとしては、フッ素樹脂が好適に用いられ、その具体例としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどが挙げられる。ただし、正極の作製方法は上記例示のものに限られることはなく、他の方法によってもよい。   In producing the positive electrode, it is preferable to pressure mold a positive electrode mixture prepared by mixing lithium titanate, a conductive additive, and a binder. The shape of the positive electrode thus obtained is, for example, a pellet shape. Can be mentioned. Examples of the conductive aid include flaky graphite, acetylene black, ketjen black, and carbon black. As the binder, a fluororesin is preferably used, and specific examples thereof include polytetrafluoroethylene and polyvinylidene fluoride. However, the method for producing the positive electrode is not limited to the above-described examples, and other methods may be used.

負極は、例えば、負極活物質を含む負極合剤の成形体(例えば、ペレット状成形体)で構成すればよい。負極活物質としては、Liイオンを吸蔵、放出できるものであれば特に限定されないが、例えば、黒鉛、カーボンナノチューブ、気相成長炭素繊維、低結晶カーボンなどの炭素材料、Si、Snなどの金属の酸化物などが好適に用いられる。   What is necessary is just to comprise a negative electrode with the molded object (for example, pellet-shaped molded object) of the negative mix containing a negative electrode active material, for example. The negative electrode active material is not particularly limited as long as it can occlude and release Li ions. For example, carbon materials such as graphite, carbon nanotubes, vapor-grown carbon fibers, and low crystalline carbon, and metals such as Si and Sn can be used. An oxide or the like is preferably used.

また、負極を負極合剤のペレット状成形体で構成する場合、その作製にあたって、上記負極活物質以外にバインダーが必要である。バインダーとしては、特に限定されることはないが、例えば、ポリフッ化ビニリデン、スチレンブタジエンゴムとカルボキシメチルセルロースとの混合物、ポリアミドイミドなどが好ましい。また、負極合剤の調製にあたって、必要に応じて、前記正極の場合に例示したような導電助剤を用いることができる。   Moreover, when comprising a negative electrode with the pellet-shaped molded object of negative electrode mixture, in preparation, the binder is required other than the said negative electrode active material. The binder is not particularly limited, and for example, polyvinylidene fluoride, a mixture of styrene butadiene rubber and carboxymethyl cellulose, polyamideimide, and the like are preferable. Moreover, in preparing the negative electrode mixture, a conductive additive as exemplified in the case of the positive electrode can be used as necessary.

電解液としては、有機溶媒にリチウム塩を電解質として溶解することによって調製された有機電解液が用いられる。   As the electrolytic solution, an organic electrolytic solution prepared by dissolving a lithium salt as an electrolyte in an organic solvent is used.

上記電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの非環状カーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類などを用いることができるが、特に環状カーボネートと非環状カーボネートとを含む2種以上の混合溶媒が好ましい。また、電解質としては、例えば、LiPF、LiCFSOなどのLiC2n+1SO(n>1)、LiClO、LiBF、LiAsF、(C2n+1SO)(C2m+1SO)NLi(m、n≧1)、(RfOSONLi(Rfは炭素数が2以上のハロゲン化アルキル)などを用いることができる。 Examples of the solvent for the electrolytic solution include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, acyclic carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, 1,2-dimethoxyethane, and 1,2-diethyl. Ethers such as ethoxyethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran and 2-methyltetrahydrofuran can be used, but two or more kinds of mixed solvents including cyclic carbonate and acyclic carbonate are particularly preferable. As the electrolyte, for example, LiC n F 2n + 1 SO 3 (n> 1) , such as LiPF 6, LiCF 3 SO 3, LiClO 4, LiBF 4, LiAsF 6, (C n F 2n + 1 SO 2) (C m F 2m + 1 SO 2 ) NLi (m, n ≧ 1), (RfOSO 2 ) 2 NLi (Rf is an alkyl halide having 2 or more carbon atoms), or the like can be used.

上記の通り、本発明の非水電解液二次電池では、正負極がモビリティとなるLiを持たないため、充放電に使用し得るLiを別途導入する。このLiは、例えば金属Li箔を、正極または負極に貼り付けることにより、導入することができる。本発明の非水電解液二次電池では、この充放電に使用し得るLi量を、負極容量の105%以上120%以下に相当する量とする。   As described above, in the non-aqueous electrolyte secondary battery of the present invention, since the positive and negative electrodes do not have Li for mobility, Li that can be used for charging and discharging is separately introduced. This Li can be introduced, for example, by attaching a metal Li foil to the positive electrode or the negative electrode. In the non-aqueous electrolyte secondary battery of the present invention, the amount of Li that can be used for charging and discharging is an amount corresponding to 105% or more and 120% or less of the negative electrode capacity.

チタン酸リチウムを正極活物質に用いた非水電解液二次電池において、正極容量が負極容量よりも大きいと、正負極のいずれかにLi(Liイオン)が全て移動した場合に負極でLiが析出しやすくなるため、通常は負極容量を大きくする。このとき、導入されるLi量は、初回の充放電時に正負極で不可逆容量として消費される分(詳しくは後述する)を除くと、少なければ電池容量が小さくなり、多ければ電池容量が大きくなるが、この電池容量は正極容量によって規制される。一方、負極容量と、導入するLi量を比較すると、このLi量が少ないとLiデンドライトは析出しないが電池容量が小さくなり、他方、Liが多いと電池容量は大きくなるが、例えば過充電時にLiデンドライトが析出して、短絡による電池の発火などが生じるなど、電池の信頼性が損なわれる虞がある。   In a non-aqueous electrolyte secondary battery using lithium titanate as a positive electrode active material, when the positive electrode capacity is larger than the negative electrode capacity, when Li (Li ion) is completely transferred to one of the positive and negative electrodes, Li is not present in the negative electrode. Usually, the capacity of the negative electrode is increased because of easy precipitation. At this time, if the amount of Li introduced is less than the amount consumed as the irreversible capacity at the positive and negative electrodes during the first charge / discharge (details will be described later), the battery capacity will be small if it is small, and the battery capacity will be large if it is large. However, this battery capacity is regulated by the positive electrode capacity. On the other hand, when comparing the negative electrode capacity and the amount of Li introduced, if the amount of Li is small, Li dendrite does not precipitate but the battery capacity is small. On the other hand, if the amount of Li is large, the battery capacity is large. There is a possibility that the reliability of the battery may be impaired, for example, the dendrite is deposited and the battery is ignited due to a short circuit.

しかしながら、本発明者は、非水電解液二次電池に導入するLi量を、負極容量の105%以上120%以下に相当する量とすれば、Liデンドライトの析出が生じないことを見出した。よって、上記Li量を上記範囲内とすることで、電池の高容量化を達成できると共に、Liデンドライトの析出による短絡を防止して、電池の信頼性も高めることができる。   However, the present inventor has found that if the amount of Li introduced into the non-aqueous electrolyte secondary battery is an amount corresponding to 105% or more and 120% or less of the negative electrode capacity, Li dendrite does not precipitate. Therefore, by making the amount of Li within the above range, it is possible to achieve a high capacity of the battery, to prevent a short circuit due to precipitation of Li dendrite, and to improve the reliability of the battery.

さらに、非水電解液二次電池に導入するLi量を、負極容量の105%以上120%以下に相当する量とすることで、上述の放電初期の電圧低下も抑制できる。放電初期では、Liイオンは負極に吸蔵されており、通常、正極にはLiイオンは存在しない。正極にLiイオンが存在しない状態で放電すると、Liイオンの拡散速度が極めて小さいために放電電圧が低くなる。ところが、ある程度Liイオンが正極に吸蔵されると、Liイオンの拡散速度が急激に増大するため、再び放電電圧が上昇するのである。本発明では、導入するLi量を上記範囲とすることで、充電完了(すなわち、負極にLiイオンが吸蔵されている状態)の時点で、放電初期の電圧の低下を抑制すべくLiイオンの拡散速度を維持できる程度に、Liイオンの一部(すなわち、負極容量の5%以上20%以下に相当する量)が正極に残るようにしている。電池に導入するLi量の下限は、負極容量に対して110%であることがより好ましく、上限は、負極容量に対して、115%であることがより好ましい。   Furthermore, the voltage drop at the initial stage of discharge can be suppressed by setting the amount of Li introduced into the non-aqueous electrolyte secondary battery to an amount corresponding to 105% to 120% of the negative electrode capacity. In the early stage of discharge, Li ions are occluded in the negative electrode, and normally there are no Li ions in the positive electrode. When the discharge is performed in the absence of Li ions on the positive electrode, the discharge voltage is lowered because the diffusion rate of Li ions is extremely small. However, when Li ions are occluded in the positive electrode to some extent, the diffusion rate of Li ions rapidly increases, so that the discharge voltage rises again. In the present invention, the amount of Li to be introduced is in the above range, so that when the charging is completed (that is, the state where Li ions are occluded in the negative electrode), the diffusion of Li ions is suppressed in order to suppress the voltage drop at the initial stage of discharge. A part of Li ions (that is, an amount corresponding to 5% or more and 20% or less of the negative electrode capacity) remains on the positive electrode to such an extent that the speed can be maintained. The lower limit of the amount of Li introduced into the battery is more preferably 110% with respect to the negative electrode capacity, and the upper limit is more preferably 115% with respect to the negative electrode capacity.

なお、チタン酸リチウムを正極活物質に用いた非水電解液二次電池では、初回の充放電の際に、導入したLiの一部が電極表面で反応物(化合物)を形成し、次回以降の充放電に関与し得なくなる。本発明でいう「充放電に使用し得るLiの量」とは、電池に導入するLi量から、初回の充放電時に反応物となり、次回以降に充放電に関与し得なくなった量(不可逆容量成分量)を除いた量を意味している(以下、「充放電に使用し得るLi」を、「可逆Li」という場合がある)。よって、電池製造に際して導入するLiの量は、可逆Li量に、不可逆容量となるLi量を足した量とする。   In the non-aqueous electrolyte secondary battery using lithium titanate as the positive electrode active material, a part of the introduced Li forms a reaction product (compound) on the electrode surface during the first charge / discharge, and the next and subsequent times. It is impossible to participate in the charge / discharge. The “amount of Li that can be used for charging / discharging” as used in the present invention is an amount that becomes a reactant during the first charge / discharge from the amount of Li introduced into the battery and can no longer be involved in charge / discharge after the next time (irreversible capacity). This means the amount excluding the component amount (hereinafter, “Li that can be used for charging and discharging” may be referred to as “reversible Li”). Therefore, the amount of Li introduced at the time of manufacturing the battery is an amount obtained by adding the amount of Li that becomes irreversible capacity to the amount of reversible Li.

本発明の非水電解液二次電池に係る負極容量は、上記負極を作用極とし、対極および参照極にLi金属箔を、電解液には、エチレンカーボネートとメチルエチルカーボネートを1:1の割合(体積比)で混合した混合液にLiPFを1mol/Lの濃度で溶解させた溶液を用い、セパレーターにはポリエチレン製の微多孔フィルムを用いてモデルセルを構成し、これにより求める。このモデルセルを、0.05mA/cmの電流密度で10mV(Li電位、以下同じ)まで放電して放電容量を求めた後、同電流密度で2Vまで充電して、その充電容量を求める。そしてこの充電容量を負極容量とし、さらに上記放電容量から、この充電容量を引いた容量を、上記の不可逆容量とする。また、電池に導入するLi量は、これら負極容量および不可逆容量に基づいて、理論的に求めることができる。なお、負極容量と比較するための正極容量は、作用極を上記正極に変更した上記モデルセルを用い、充電時の電圧を0.5〜3Vまでとして測定される充電容量とする。 The negative electrode capacity according to the non-aqueous electrolyte secondary battery of the present invention is such that the negative electrode is a working electrode, Li metal foil is used as a counter electrode and a reference electrode, and ethylene carbonate and methyl ethyl carbonate are used as the electrolyte in a ratio of 1: 1. A model cell is formed by using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solution mixed at (volume ratio), and using a microporous film made of polyethylene as a separator. The model cell is discharged at a current density of 0.05 mA / cm 2 to 10 mV (Li potential, the same applies hereinafter) to obtain a discharge capacity, and then charged to 2 V at the same current density to obtain the charge capacity. The charge capacity is defined as the negative electrode capacity, and the capacity obtained by subtracting the charge capacity from the discharge capacity is defined as the irreversible capacity. The amount of Li introduced into the battery can be theoretically determined based on these negative electrode capacity and irreversible capacity. In addition, the positive electrode capacity | capacitance for comparing with a negative electrode capacity | capacitance shall be the charge capacity measured using the said model cell which changed the working electrode into the said positive electrode, and the voltage at the time of charge to 0.5-3V.

本発明において、正極缶、負極缶、セパレーター、絶縁性ガスケットなどは、特に限定されることなく、従来構成のものを用いることができる。   In the present invention, the positive electrode can, the negative electrode can, the separator, the insulating gasket and the like are not particularly limited, and those having a conventional configuration can be used.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
正極活物質であるLiTi12と、導電助剤であるケッチェンブラックを、質量比で85:7となるように混合し、これを、予めバインダーとしてのポリフッ化ビニリデン(PVDF)を全正極合剤中の8質量%となるように溶解させたN−メチル−2−ピロリドン(NMP)溶液に混合し、攪拌して正極合剤含有スラリーを作製した。この正極合剤含有スラリーを一旦乾燥させてNMPを除去した後、乳鉢で粉砕し、これを加圧成形することによって、直径6mmで厚さ0.95mmのペレット状の正極を作製した。
Example 1
Li 4 Ti 5 O 12 as a positive electrode active material and Ketjen black as a conductive auxiliary agent are mixed so that the mass ratio is 85: 7, and this is preliminarily mixed with polyvinylidene fluoride (PVDF) as a binder. It mixed with the N-methyl-2-pyrrolidone (NMP) solution dissolved so that it might become 8 mass% in all the positive mixes, and stirred, and the positive mix mixture containing slurry was produced. This positive electrode mixture-containing slurry was once dried to remove NMP, and then pulverized in a mortar, followed by pressure molding to produce a pellet-like positive electrode having a diameter of 6 mm and a thickness of 0.95 mm.

次に、負極活物質として、天然黒鉛と、MCMB(メソカーボンマイクロビーズ)を3000℃で黒鉛化処理したものとを、質量比で45:45となるように混合し、これを、予めバインダーとしてのPVDFを全負極合剤中の10質量%となるように溶解させたNMP溶液に混合し、攪拌して負極合剤含有スラリーを作製した。この負極合剤含有スラリーを一旦乾燥させてNMPを除去した後、乳鉢で粉砕し、これを加圧成形することによって、直径7mmで厚さ0.63mmのペレット状の負極を作製した。なお、上記のモデルセルによって測定した負極容量は10.9mAhで、不可逆容量は1.1mAhであった。   Next, as a negative electrode active material, natural graphite and MCMB (mesocarbon microbeads) obtained by graphitization at 3000 ° C. are mixed so as to have a mass ratio of 45:45. Was mixed with an NMP solution in which 10% by mass of PVDF was dissolved in the total negative electrode mixture, and stirred to prepare a negative electrode mixture-containing slurry. This negative electrode mixture-containing slurry was once dried to remove NMP, and then pulverized in a mortar, and this was pressure-molded to produce a pellet-shaped negative electrode having a diameter of 7 mm and a thickness of 0.63 mm. The negative electrode capacity measured by the model cell was 10.9 mAh, and the irreversible capacity was 1.1 mAh.

このようにして得られた正極および負極を、それぞれ正極缶および負極缶に固定し、負極上に0.12mmの金属Li箔を貼り付けた後、電解液として、エチレンカーボネートとジメチルカーボネートとの体積比1:3の混合溶媒にLiPFを1mol/L溶解させて調製した有機電解液を注入し、ポリプロピレン製の微多孔フィルムからなるセパレーターを介して封口することで、図1に示す構造で、直径10mm、厚さ2.5mmの非水電解液二次電池を作製した。なお、導入した金属Li箔の量は、可逆Li量で10.9mAhであり、負極容量に対して107%であった。 The positive electrode and the negative electrode thus obtained were fixed to the positive electrode can and the negative electrode can, respectively, and a 0.12 mm metal Li foil was pasted on the negative electrode, and then the volume of ethylene carbonate and dimethyl carbonate was used as the electrolyte. By injecting an organic electrolyte prepared by dissolving 1 mol / L of LiPF 6 in a mixed solvent of a ratio 1: 3, and sealing through a separator made of a microporous film made of polypropylene, the structure shown in FIG. A non-aqueous electrolyte secondary battery having a diameter of 10 mm and a thickness of 2.5 mm was produced. The amount of the introduced metal Li foil was 10.9 mAh in terms of reversible Li amount, 107% with respect to the negative electrode capacity.

ここで、図1に示す電池について説明すると、1は正極、2は負極、3はセパレーター、4は正極缶、5は負極缶、6は絶縁パッキングである。セパレーター3は、正極1と負極2の間に配置されている。負極2には、セパレーター3と対向する側に金属Li箔を配置している(図示しない)。そして、正極1、負極2、セパレーター3および電解液(図示しない)は、ステンレス鋼製の正極缶4とステンレス鋼製の負極缶5とポリプロピレン製の絶縁パッキング6とで形成される空間内に封入されている。   Here, the battery shown in FIG. 1 will be described. 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode can, 5 is a negative electrode can, and 6 is an insulating packing. The separator 3 is disposed between the positive electrode 1 and the negative electrode 2. In the negative electrode 2, a metal Li foil is disposed on the side facing the separator 3 (not shown). The positive electrode 1, the negative electrode 2, the separator 3, and the electrolyte (not shown) are sealed in a space formed by the stainless steel positive electrode can 4, the stainless steel negative electrode can 5, and the polypropylene insulating packing 6. Has been.

実施例2
導入する金属Li箔を、厚さが0.14mmのものに変更した他は、実施例1と同様にして非水電解液二次電池を作製した。なお、導入した金属Li箔の量は、可逆Li量で、負極容量に対して119%であった。
Example 2
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the metal Li foil to be introduced was changed to one having a thickness of 0.14 mm. The amount of the introduced metal Li foil was a reversible Li amount and was 119% with respect to the negative electrode capacity.

比較例1
導入する金属Li箔を、厚さが0.11mmのものに変更した他は、実施例1と同様にして非水電解液二次電池を作製した。なお、導入した金属Li箔の量は、可逆Li量で、負極容量に対して90%であった。
Comparative Example 1
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the metal Li foil to be introduced was changed to one having a thickness of 0.11 mm. The amount of the introduced metal Li foil was a reversible Li amount and was 90% with respect to the negative electrode capacity.

比較例2
導入する金属Li箔を、厚さが0.16mmのものに変更した他は、実施例1と同様にして非水電解液二次電池を作製した。なお、導入した金属Li箔の量は、可逆Li量で、負極容量に対して130%であった。
Comparative Example 2
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the metal Li foil to be introduced was changed to one having a thickness of 0.16 mm. The amount of the introduced metal Li foil was a reversible Li amount and was 130% with respect to the negative electrode capacity.

以上の実施例1〜2、および比較例1〜2の非水電解液二次電池を、Liドーピングを目的として60℃で10日間貯蔵した。これらの非水電解液二次電池について、0.5mA/cmの定電流で2.6Vまで、引き続き2.6Vの定電圧で、充電時間が、充電初期から終了までで40時間となるように充電し、続いて1mA/cmで終止電圧が0.5Vまで放電する操作を1サイクルとし、1サイクル目の放電容量を求めた。また、5サイクル目の充電まで行った電池について、放電条件を変更して放電初期の閉路電圧を求めた。具体的には、5サイクル目の充電まで行った電池を0.2mAで10秒間放電し、これを放電初期としてその閉路電圧を測定した。さらに、5サイクル目の終了後の電池について、0.5mA/cmの定電流で3.1Vになるまで20時間過充電し、その後に電池を分解して負極表面の状態(Li析出の有無)を、以下のようにして確認した。電池分解後の負極を作用極とし、対極にLi金属を用いて、電解液を入れたセルに挿入し、モデルセルを構成した。このセルに、サイクリックボルタンメトリーによって電圧を掃引すると、Liが析出している場合には、0Vにおいて電流にピークが生じる。このピークの有無によって、Li析出の有無を確認した。これらの結果を表1に示す。 The nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were stored at 60 ° C. for 10 days for the purpose of Li doping. For these non-aqueous electrolyte secondary batteries, the charging time is 40 hours from the beginning of charging to the end of charging with a constant current of 0.5 mA / cm 2 up to 2.6 V, and subsequently with a constant voltage of 2.6 V. The discharge capacity at the first cycle was determined by assuming that the operation of charging at 1 mA / cm 2 and discharging the battery to a final voltage of 0.5 V was taken as one cycle. Further, for the battery that had been charged up to the fifth cycle, the discharge conditions were changed to determine the closed circuit voltage at the beginning of discharge. Specifically, the battery that had been charged up to the fifth cycle was discharged at 0.2 mA for 10 seconds, and the closed circuit voltage was measured using this as the initial stage of discharge. Furthermore, the battery after the end of the fifth cycle was overcharged for 20 hours until it reached 3.1 V at a constant current of 0.5 mA / cm 2 , and then the battery was disassembled, and the state of the negative electrode surface (presence of Li deposition) ) Was confirmed as follows. The negative electrode after battery decomposition was used as a working electrode, Li metal was used as a counter electrode, and the cell was inserted into a cell containing an electrolytic solution to constitute a model cell. When a voltage is swept through the cell by cyclic voltammetry, if Li is deposited, a peak occurs in the current at 0V. The presence or absence of Li precipitation was confirmed by the presence or absence of this peak. These results are shown in Table 1.

Figure 2006172900
Figure 2006172900

表1において、「負極表面状態」は、5サイクル終了後に3.1Vまで過充電した後の負極の表面状態を、「放電初期の閉路電圧」は、5サイクル目の放電初期の閉路電圧を意味している。   In Table 1, “negative electrode surface state” means the surface state of the negative electrode after being overcharged to 3.1 V after the end of the fifth cycle, and “closed voltage at the beginning of discharge” means the closed circuit voltage at the beginning of discharge in the fifth cycle. is doing.

表1から分かるように、実施例1〜2の非水電解液二次電池では、初回容量が比較的大きく、また、5サイクル終了後の過充電時においても、負極表面にLiの析出が見られず、高容量で、高い信頼性も有している。さらに、5サイクル目の放電初期の閉路電圧が高くなっており、放電初期の電圧低下が抑制されている。   As can be seen from Table 1, in the non-aqueous electrolyte secondary batteries of Examples 1 and 2, the initial capacity was relatively large, and Li deposition was observed on the negative electrode surface even during overcharge after the end of 5 cycles. In addition, it has a high capacity and high reliability. Further, the closed circuit voltage at the initial stage of the fifth cycle discharge is high, and the voltage drop at the initial stage of the discharge is suppressed.

これに対し、導入された可逆Li量が少なかった比較例1の非水電解液二次電池では、初回容量、および5サイクル目の放電初期の閉路電圧が劣っており、高容量化および放電初期の電圧低下抑制が達成されていない。また、導入された可逆Li量が多かった比較例2の非水電解液二次電池では、初回容量および5サイクル目の放電初期の閉路電圧は優れているものの、5サイクル終了後の過充電時において負極表面にLiが析出しており、短絡の可能性があり、信頼性が損なわれている。   On the other hand, in the nonaqueous electrolyte secondary battery of Comparative Example 1 in which the amount of reversible Li introduced was small, the initial capacity and the closed circuit voltage at the beginning of discharge in the fifth cycle were inferior. The voltage drop suppression is not achieved. In addition, in the nonaqueous electrolyte secondary battery of Comparative Example 2 in which the amount of reversible Li introduced was large, the initial capacity and the closed circuit voltage at the beginning of discharge of the fifth cycle were excellent, but at the time of overcharge after the end of the fifth cycle. In this case, Li is deposited on the negative electrode surface, which may cause a short circuit and impair reliability.

本発明の非水電解液二次電池の一例を示す一部断面図である。It is a partial cross section figure which shows an example of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレーター
4 正極缶
5 負極缶
6 絶縁パッキング
1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Insulation packing

Claims (1)

チタン酸リチウムを正極活物質とする正極と、リチウムイオンを吸蔵、放出可能な材料を負極活物質とする負極を有する非水電解液二次電池であって、
充放電に使用し得るリチウムを、負極容量の105〜120%に相当する量で有することを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery having a positive electrode using lithium titanate as a positive electrode active material and a negative electrode using a material capable of occluding and releasing lithium ions as a negative electrode active material,
A nonaqueous electrolyte secondary battery comprising lithium that can be used for charging and discharging in an amount corresponding to 105 to 120% of a negative electrode capacity.
JP2004363848A 2004-12-16 2004-12-16 Non-aqueous electrolytic liquid secondary battery Withdrawn JP2006172900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363848A JP2006172900A (en) 2004-12-16 2004-12-16 Non-aqueous electrolytic liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363848A JP2006172900A (en) 2004-12-16 2004-12-16 Non-aqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JP2006172900A true JP2006172900A (en) 2006-06-29

Family

ID=36673413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363848A Withdrawn JP2006172900A (en) 2004-12-16 2004-12-16 Non-aqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JP2006172900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527306A (en) * 2018-06-08 2021-10-11 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Metal oxide-based electrode composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527306A (en) * 2018-06-08 2021-10-11 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Metal oxide-based electrode composition
JP7284194B2 (en) 2018-06-08 2023-05-30 ケンブリッジ・エンタープライズ・リミテッド Metal oxide-based electrode composition

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
EP2905831B1 (en) Cathode additive for high-capacity lithium secondary battery
CN110998959B (en) Lithium secondary battery having improved high-temperature storage characteristics
CN109075387B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP5070731B2 (en) Method for producing non-aqueous electrolyte battery
CN111052488A (en) Lithium secondary battery with improved high-temperature storage characteristics
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JP2009129721A (en) Non-aqueous secondary battery
JP2009230914A (en) Non-aqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
US7226703B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
KR20180086141A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
KR20240017067A (en) Battery cathode material, manufacturing method thereof, and application thereof
CN111886744A (en) Electrolyte composition for lithium-ion electrochemical cells
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR20150131509A (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN114631214A (en) Nonaqueous electrolyte electricity storage element, method for producing same, and electricity storage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304