JP2006172772A - Light distribution control member, and irradiation device - Google Patents

Light distribution control member, and irradiation device Download PDF

Info

Publication number
JP2006172772A
JP2006172772A JP2004360593A JP2004360593A JP2006172772A JP 2006172772 A JP2006172772 A JP 2006172772A JP 2004360593 A JP2004360593 A JP 2004360593A JP 2004360593 A JP2004360593 A JP 2004360593A JP 2006172772 A JP2006172772 A JP 2006172772A
Authority
JP
Japan
Prior art keywords
light
control member
distribution control
light distribution
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360593A
Other languages
Japanese (ja)
Inventor
Toru Matsumoto
透 松本
Hiroshi Fukuda
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kasei Co Ltd
Original Assignee
Yoshikawa Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kasei Co Ltd filed Critical Yoshikawa Kasei Co Ltd
Priority to JP2004360593A priority Critical patent/JP2006172772A/en
Publication of JP2006172772A publication Critical patent/JP2006172772A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light distribution control member and an irradiation device, wherein utilization efficiency of light is further improved. <P>SOLUTION: The light distribution control member 2 emits an incident light flux, having a prescribed dispersion angle in the cross-section including an optical axis O as an emitting light flux, having a smaller irradiation angle than the dispersion angle in the prescribed cross-section. The light distribution control member 2 is provided with a plurality of projected line parts 23 of a cross-sectional square shape, at the incident side of the incident light flux in a region R3. The respective projected line parts 23 have a face 23a rising from the base part of the projected line parts in a closer side to the optical axis O, a face 23b rising from the base part of the projected line parts 23 at a side far from the optical axis O, and a face 23c of the tip side to be connected between the faces 23a, 23b. The incident light of the face 23c of the projected line parts 23 proceeds into the projected line parts and is emitted from the emitting face 21, after being reflected at the face 23b. In order to improve the utilization efficiency of the light, the optical axis O direction position of a corner part 23d between the faces 23b, 23c of the projected line parts 23 in the region R3 is changed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射光束を異なる配光の出射光束として出射する透光材料からなる配光制御部材、及びこれを用いた照射装置に関するものである。   The present invention relates to a light distribution control member made of a translucent material that emits an incident light beam as an output light beam of different light distribution, and an irradiation apparatus using the same.

従来から、入射光束を異なる配光の出射光束として出射する透光材料からなる種々の配光制御部材が提供されている。   Conventionally, various light distribution control members made of a translucent material that emits an incident light beam as an output light beam of different light distribution have been provided.

このような配光制御部材の1つとして、下記の特許文献1に開示された車両用灯具のインナーレンズが提供されている。このインナーレンズは、光源バルブからの入射光を平行光として出射させるフレネルレンズから構成された車両用灯具のインナーレンズにおいて、前記フレネルレンズの反射系プリズムの中心側の面を、先端側の有効面と基側の肉厚成形面とになし、これにより、反射系プリズムの断面形状を四角形状にしたものである。また、このインナーレンズでは、前記反射系プリズムが外周側に配置され、反射系プリズムに対する中心側に断面三角形状の屈折系プリズムが配置されている。さらに、このインナーレンズでは、反射系プリズムの先端の高さ(すなわち、反射系プリズムの有効面と外周側の面との間の角部の光軸方向の位置)は、全ての反射系プリズムについて同一であった。   As one of such light distribution control members, an inner lens of a vehicular lamp disclosed in Patent Document 1 below is provided. This inner lens is an inner lens of a vehicular lamp that is configured by a Fresnel lens that emits incident light from a light source bulb as parallel light. And a thick-walled molding surface on the base side, whereby the cross-sectional shape of the reflective prism is made quadrangular. In the inner lens, the reflection prism is disposed on the outer peripheral side, and a refractive prism having a triangular cross section is disposed on the center side with respect to the reflection prism. Further, in this inner lens, the height of the tip of the reflection system prism (that is, the position of the corner between the effective surface of the reflection system prism and the outer peripheral surface in the optical axis direction) is the same for all reflection system prisms. It was the same.

このインナーレンズでは、反射系プリズムの基部が肉厚となるので、成形時間を長くしたり、圧力を加えたりしないで、反射系プリズムの先端まで樹脂を行き渡らせることができる。この結果、反射系プリズムの先端が丸くならずに鋭角となる。このために、前記インナーレンズによれば、プリズムの先端に入射した光は平行光として出射され、光のロスが少なくなり、光の利用効率が上がる。さらに、前記インナーレンズでは、反射系プリズムを断面三角形状とした場合に比べて、反射系プリズムの中心とは反対側の面(光全反射側の面)が増すため、その分、光のロスが少なくなり、光の利用効率が上がる。   In this inner lens, since the base portion of the reflective prism is thick, the resin can be distributed to the tip of the reflective prism without extending the molding time or applying pressure. As a result, the tip of the reflecting prism is not rounded but has an acute angle. For this reason, according to the inner lens, light incident on the tip of the prism is emitted as parallel light, light loss is reduced, and light use efficiency is increased. Further, in the inner lens, the surface opposite to the center of the reflection system prism (surface on the total light reflection side) is increased as compared with the case where the reflection system prism has a triangular cross section. And use efficiency of light increases.

また、下記の特許文献1には、配光制御部材と光源とを有する照射装置として、前記インナーレンズと光源バルブとを有する車両用灯具が開示されている。この車両用灯具では、上側が開口したカップ状の筐体内に光源バルブを配置し、インナーレンズが、カップ状の筐体の上部開口を閉塞するようにカップ状の筐体の上縁部によって保持されることで、光源バルブ上に間隔をあけて配置されている。
特開平10−3803号公報
Patent Document 1 listed below discloses a vehicular lamp having the inner lens and a light source bulb as an irradiation device having a light distribution control member and a light source. In this vehicular lamp, the light source bulb is disposed in a cup-shaped housing that is open on the upper side, and the inner lens is held by the upper edge of the cup-shaped housing so as to close the upper opening of the cup-shaped housing. As a result, the light source bulbs are arranged at intervals.
Japanese Patent Laid-Open No. 10-3803

前記従来のインナーレンズでは、前述したように光の利用効率が高いが、より一層光の利用効率を高めることが要請されていることは、言うまでもない。このような要請は、インナーレンズ以外の他の配光制御部材についても、同様である。   As described above, the conventional inner lens has high light use efficiency, but it is needless to say that the light use efficiency is required to be further increased. Such a request applies to other light distribution control members other than the inner lens.

また、前記従来の車両用灯具では、光源上に配光制御部材を保持する構造として前述したような構造を採用しているが、このような保持構造を、光源が例えば表面実装型発光デバイスなどのように直方体状の外形を有する場合にも適用すると、当該照射装置の大型化を招くことになる。   Further, in the conventional vehicle lamp, the structure as described above is adopted as the structure for holding the light distribution control member on the light source. However, the light source is, for example, a surface-mounted light emitting device or the like. If the present invention is applied to a rectangular parallelepiped shape like this, the size of the irradiation device will be increased.

本発明は、このような事情に鑑みてなされたもので、より一層光の利用効率を高めることができる配光制御部材、及び、これを用いることでより一層効率良く照射光量を高めることができる照射装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a light distribution control member that can further increase the light use efficiency, and can increase the amount of irradiation light more efficiently by using the light distribution control member. An object is to provide an irradiation apparatus.

また、本発明は、より一層効率良く照射光量を高めることができるとともに、光源上への配光制御部材の保持構造を改善することで小型化を図ることができる照射装置を提供することを目的とする。   Another object of the present invention is to provide an irradiation apparatus that can increase the amount of irradiation light more efficiently and can be miniaturized by improving the holding structure of the light distribution control member on the light source. And

さらに、本発明は、光源上への配光制御部材の保持構造を改善することで小型化を図ることができる照射装置を提供することを目的とする。   Furthermore, an object of the present invention is to provide an irradiation apparatus that can be reduced in size by improving the holding structure of the light distribution control member on the light source.

本発明者の研究の結果、前記従来のインナーレンズでは全ての反射系プリズムの先端の高さが同一であるのに対し、この高さを異ならせることで、より一層光の利用効率を高めることができることが判明した。また、光源が直方体状の外形を有する場合、配光制御部材を保持するホルダに筒状内面を持たせ、この筒状内面を光源の4つの辺部のみにそれぞれ略々線状に接触させて嵌合させることで、光源に対する接触面積を低減して光源の放熱性を高めつつその構造を小型化することができることが、判明した。   As a result of the inventor's research, the height of the tip of all the reflection prisms is the same in the conventional inner lens, but by making this height different, the light utilization efficiency is further improved. Turned out to be possible. Further, when the light source has a rectangular parallelepiped outer shape, the holder that holds the light distribution control member has a cylindrical inner surface, and the cylindrical inner surface is brought into contact with only the four sides of the light source in a substantially linear manner. It has been found that, by fitting, the structure can be reduced in size while reducing the contact area with the light source and improving the heat dissipation of the light source.

本発明のこのような知見に基づいてなされたもので、前記課題を解決するため、本発明の第1の態様による配光制御部材は、光軸を含む所定断面内において所定の発散角度を持つ入射光束を前記所定断面内において前記発散角度より小さい照射角度を持つ出射光束として出射する透光材料からなる配光制御部材であって、前記入射光束の入射側に複数の第1の凸条部を備え、前記複数の第1の凸条部は、前記光軸方向から見た平面視で互いに並列し、前記各第1の凸条部は、前記光軸に近い側において当該第1の凸条部の基部から立ち上がる第1の面と、前記光軸から遠い側において当該第1の凸条部の基部から立ち上がる第2の面と、前記第1及び第2の面間を接続する先端側の第3の面と、を有し、前記入射光束のうちの前記各第1の凸条部の前記第3の面に到達した部分光束の大部分又は全部が、当該第1の凸条部の前記第3の面から当該第1の凸条部内へ進入した後に当該第1の凸条部の前記第2の面で反射された後に、前記出射光束の一部をなす部分光束となるように、当該第1の凸条部の前記第2及び第3の面の前記所定断面内における角度が設定され、前記所定断面内における前記複数の第1の凸条部の前記第2及び第3の面間の角部の前記光軸方向の位置が全て同一である場合に比べて、前記出射光束に対する前記入射光束の利用効率が高まるように、前記複数の第1の凸条部のうちの少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置が、前記複数の第1の凸条部のうちの他の少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置と異なるように設定されたものである。   In order to solve the above problems, the light distribution control member according to the first aspect of the present invention has a predetermined divergence angle in a predetermined cross section including the optical axis. A light distribution control member made of a translucent material that emits an incident light beam as an output light beam having an irradiation angle smaller than the divergence angle in the predetermined cross section, and a plurality of first protrusions on the incident side of the incident light beam The plurality of first ridges are arranged in parallel with each other in a plan view as viewed from the optical axis direction, and each of the first ridges is on the side close to the optical axis. A first surface rising from the base of the strip, a second surface rising from the base of the first convex strip on the side far from the optical axis, and a tip side connecting the first and second surfaces A third surface of the incident light flux, and the first projections of the incident light flux. After most or all of the partial light fluxes that have reached the third surface of the portion have entered the first ridge portion from the third surface of the first ridge portion, the first ridge portion. In the predetermined cross section of the second and third surfaces of the first ridge portion so as to become a partial light beam that forms a part of the emitted light beam after being reflected by the second surface of the part Compared to the case where the angle is set, and the positions in the optical axis direction of the corners between the second and third surfaces of the plurality of first ridges in the predetermined cross section are all the same, The position of the corner portion in the optical axis direction in the predetermined cross section of at least one of the plurality of first ridge portions of the plurality of first ridge portions is increased so that the utilization efficiency of the incident light beam with respect to the emitted light beam is increased. The front in the predetermined cross section of at least one other ridge of the plurality of first ridges Wherein the optical axis direction position of the corner portions and in which is set differently.

この第1の態様における前記第1乃至第3の面が、前記従来のインナーレンズにおける、反射系プリズムの基側の肉厚成形面、先端側の有効面及び中心とは反対側の面に、それぞれ対応している。したがって、この第1の態様によれば、前記従来のインナーレンズと同様の理由で、光の利用効率が上がる。   In the first aspect, the first to third surfaces in the conventional inner lens, on the surface opposite to the thick molding surface on the base side of the reflection prism, the effective surface on the tip side, and the center, Each corresponds. Therefore, according to the first aspect, the light use efficiency is increased for the same reason as in the conventional inner lens.

そして、前記第1の態様では、前記従来のインナーレンズとは異なり、前述した本発明者による新たな知見に従って、前記所定断面内における前記複数の第1の凸条部の前記第2及び第3の面間の角部の前記光軸方向の位置が全て同一である場合に比べて、前記出射光束に対する前記入射光束の利用効率が高まるように、前記複数の第1の凸条部のうちの少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置が、前記複数の第1の凸条部のうちの他の少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置と異なるように設定されている。したがって、前記第1の態様によれば、前記従来のインナーレンズと同様に前記所定断面内における前記複数の第1の凸条部の前記第2及び第3の面間の角部の前記光軸方向の位置を全て同一にする場合に比べて、より一層光の利用効率が高まる。   And in the said 1st aspect, unlike the said conventional inner lens, according to the new knowledge by this inventor mentioned above, the said 2nd and 3rd of these 1st convex-line part in the said predetermined cross section Compared with the case where the positions of the corners between the surfaces in the optical axis direction are all the same, the use efficiency of the incident light flux with respect to the outgoing light flux is increased in the plurality of first ridges. The position in the optical axis direction of the corner in the predetermined cross section of at least one ridge is within the predetermined cross section of at least one other ridge of the plurality of first ridges. It is set to be different from the position of the corner in the optical axis direction. Therefore, according to the first aspect, similarly to the conventional inner lens, the optical axis at the corner between the second and third surfaces of the plurality of first protrusions in the predetermined cross section. Compared with the case where the direction positions are all the same, the light use efficiency is further increased.

本発明の第2の態様による配光制御部材は、前記第1の態様において、前記複数の第1の凸条部は、前記光軸方向から見た平面視で前記光軸を中心として同心円状に配列されたものである。   The light distribution control member according to a second aspect of the present invention is the light distribution control member according to the first aspect, wherein the plurality of first protrusions are concentric with the optical axis as a center in a plan view as viewed from the optical axis direction. Are arranged.

この第2の態様は、2次元方向の配光を制御する配光制御部材の例を挙げたものである。   This 2nd aspect gives the example of the light distribution control member which controls the light distribution of a two-dimensional direction.

本発明の第3の態様による配光制御部材は、前記第1の態様において、前記複数の第1の凸条部は、前記光軸方向から見た平面視で前記所定断面と直交する方向に直線状に延びるように配列されたものである。   The light distribution control member according to a third aspect of the present invention is the light distribution control member according to the first aspect, wherein the plurality of first protrusions are in a direction orthogonal to the predetermined cross section in a plan view as viewed from the optical axis direction. They are arranged so as to extend linearly.

この第3の態様は、1次元方向の配光を制御するいわゆるリニアタイプの配光制御部材の例である。この第3の態様による配光制御部材は、例えば、線状光源と組み合わせて用いられる。   The third aspect is an example of a so-called linear type light distribution control member that controls light distribution in a one-dimensional direction. The light distribution control member according to the third aspect is used in combination with, for example, a linear light source.

本発明の第4の態様による配光制御部材は、前記第1乃至第3のいずれかの態様において、前記入射光束の入射側に、前記断面内において三角形状をなす第2の凸条部を備え、前記第2の凸条部は、前記光軸方向から見た平面視で前記複数の第1の凸条部と並ぶようにかつ前記前記複数の第1の凸条部より前記光軸に近い側に位置するように、配列されたものである。   The light distribution control member according to a fourth aspect of the present invention is the light distribution control member according to any one of the first to third aspects, wherein a second ridge portion having a triangular shape in the cross section is provided on the incident side of the incident light beam. The second ridges are aligned with the plurality of first ridges in a plan view as viewed from the optical axis direction, and are arranged on the optical axis from the plurality of first ridges. They are arranged so that they are located on the near side.

この第4の態様によれば、前記第2の凸条部を前記従来のインナーレンズにおける屈折系プリズムとして利用することで、光軸側の光の利用効率をより高めることができる。また、この第4の態様によれば、前記第2の凸条部を利用することで、前記第2の凸条部の代わりに前記第1の凸条部を前記光軸付近にまで形成する場合に比べて、当該配光制御部材の光軸方向の厚さを薄くすることができる。   According to this 4th aspect, the utilization efficiency of the light by the side of an optical axis can be improved more by using said 2nd convex strip part as a refractive system prism in the said conventional inner lens. Further, according to the fourth aspect, by using the second ridge portion, the first ridge portion is formed up to the vicinity of the optical axis instead of the second ridge portion. Compared to the case, the thickness of the light distribution control member in the optical axis direction can be reduced.

本発明の第5の態様による配光制御部材は、前記第1乃至第4のいずれかの態様において、前記出射光束の出射側の面における少なくとも前記出射光束の出射領域が、平面をなすものである。   The light distribution control member according to a fifth aspect of the present invention is the light distribution control member according to any one of the first to fourth aspects, wherein at least the exit region of the exit beam on the exit side surface of the exit beam forms a plane. is there.

本発明の第6の態様による配光制御部材は、前記第1乃至第4のいずれかの態様において、前記出光束の出射側の面における少なくとも前記出射光束の出射領域が、凸曲面又は凹曲面をなすものである。   The light distribution control member according to a sixth aspect of the present invention is the light distribution control member according to any one of the first to fourth aspects, wherein at least the exit region of the exit beam on the exit side surface of the exit beam is a convex curved surface or a concave curved surface. It is what makes.

前記第4乃至第6の態様は、配光制御部材の出射側の面形状の例を挙げたものであるが、前記第1乃至第3の態様はこれらの例に限定されるものではない。前記第5及び第6の態様の場合、当該曲面によっても、出射光の照射角度を調整することができる。   In the fourth to sixth aspects, examples of the surface shape on the emission side of the light distribution control member are given. However, the first to third aspects are not limited to these examples. In the case of the fifth and sixth aspects, the irradiation angle of the emitted light can be adjusted also by the curved surface.

本発明の第7の態様による照射装置は、前記第1乃至第6のいずれかの態様による配光制御部材と、前記入射光束となる光を発する光源と、を備えたものである。   An irradiation apparatus according to a seventh aspect of the present invention includes the light distribution control member according to any one of the first to sixth aspects, and a light source that emits light that becomes the incident light flux.

この第7の態様によれば、前記第1乃至第6の態様による配光制御部材が用いられているので、従来に比べてより一層効率良く照射光量を高めることができる。   According to the seventh aspect, since the light distribution control member according to the first to sixth aspects is used, it is possible to increase the irradiation light amount more efficiently than in the past.

本発明の第8の態様による照射装置は、前記第7の態様において、前記光源は、直方体状の外形を有しかつ1つの面側から光を発し、前記配光制御部材を前記光源の前記1つの面上に間隔をあけて保持するホルダを更に備え、前記ホルダが筒状内面を有し、前記筒状内面が、前記光源における前記1つの面を上面としたときの4つの側面間の4つの辺部のみにそれぞれ略々線状に接触して嵌合したものである。   The irradiation device according to an eighth aspect of the present invention is the irradiation device according to the seventh aspect, wherein the light source has a rectangular parallelepiped outer shape and emits light from one surface side, and the light distribution control member is connected to the light source of the light source. The holder further includes a holder that holds an interval on one surface, the holder having a cylindrical inner surface, and the cylindrical inner surface is between four side surfaces when the one surface of the light source is the upper surface. Only the four sides are fitted in contact with each other in a substantially linear manner.

この第8の態様によれば、前記第7の態様と同じくより一層効率良く照射光量を高めることができるだけでなく、ホルダの筒状内面が、光源の4つの辺部のみにそれぞれ略々線状に接触して嵌合しているので、ホルダが光源に接触する面積が抑えられることから光源の放熱性を高めることができるとともに、配光制御部材の保持構造を小型化することができ、ひいては、照射装置全体の小型化を図ることができる。   According to the eighth aspect, not only can the amount of irradiation light be increased more efficiently as in the seventh aspect, but the cylindrical inner surface of the holder is substantially linear only on the four sides of the light source. Since the area where the holder contacts the light source can be suppressed, the heat dissipation of the light source can be increased, and the holding structure of the light distribution control member can be reduced in size. Therefore, it is possible to reduce the size of the entire irradiation apparatus.

なお、前記筒状内面の形状は、前記光源の前記1つの面の形状に応じて適宜定めればよく、例えば、前記1つの面が正方形状である場合は円筒状にすればよいし、前記1つの面が正方形以外の場合は楕円筒状にすればよい。この点は、下記の第9の態様についても同様である。   The shape of the cylindrical inner surface may be appropriately determined according to the shape of the one surface of the light source. For example, if the one surface is square, the shape may be cylindrical, If one surface is other than a square, it may be an elliptical cylinder. This also applies to the following ninth aspect.

本発明の第9の態様による照射装置は、入射光束を配光の異なる出射光束として出射する、透光材料からなる配光制御部材と、直方体状の外形を有しかつ1つの面側から前記入射光束となる光を発する光源と、前記配光制御部材を前記光源の前記1つの面上に間隔をあけて保持するホルダと、を備え、前記ホルダが筒状内面を有し、前記筒状内面が、前記光源における前記1つの面を上面としたときの4つの側面間の4つの辺部のみにそれぞれ略々線状に接触して嵌合したものである。   An irradiation apparatus according to a ninth aspect of the present invention has a light distribution control member made of a translucent material that emits an incident light beam as an output light beam having a different light distribution, a rectangular parallelepiped outer shape, and the above-mentioned from one surface side. A light source that emits light that becomes an incident light beam, and a holder that holds the light distribution control member on the one surface of the light source with a space therebetween, the holder having a cylindrical inner surface, and the cylindrical shape The inner surface is fitted in substantially linear contact with only four sides between the four side surfaces when the one surface of the light source is the upper surface.

この第9の態様によれば、ホルダの筒状内面が、光源の4つの辺部のみにそれぞれ略々線状に接触して嵌合しているので、ホルダが光源に接触する面積が抑えられることから光源の放熱性を高めることができるとともに、配光制御部材の保持構造を小型化することができ、ひいては、照射装置全体の小型化を図ることができる。   According to the ninth aspect, since the cylindrical inner surface of the holder is fitted in substantially linear contact with only the four sides of the light source, the area where the holder contacts the light source can be suppressed. As a result, the heat dissipation of the light source can be increased, the holding structure of the light distribution control member can be reduced in size, and as a result, the overall irradiation apparatus can be reduced in size.

本発明の第10の態様による照射装置は、前記第8又は第9の態様において、前記ホルダに、前記4つの側面付近の空間を側方外部へ連通させる連通路が形成されたものである。   The irradiation apparatus according to a tenth aspect of the present invention is the irradiation apparatus according to the eighth or ninth aspect, wherein the holder is formed with a communication path that communicates the space in the vicinity of the four side surfaces to the outside of the side.

この第10の態様によれば、前記連通路により光源の4つの側面付近の空間が側方外部へ連通するので、光源の放熱性を格段に高めることができる。   According to the tenth aspect, the spaces near the four side surfaces of the light source communicate with the lateral outside through the communication path, so that the heat dissipation of the light source can be significantly improved.

本発明の第11の態様による照射装置は、前記第8乃至第10のいずれかの態様において、前記光源が、回路基板上に実装される表面実装型発光デバイスであるものである。   An irradiation apparatus according to an eleventh aspect of the present invention is the irradiation apparatus according to any one of the eighth to tenth aspects, wherein the light source is a surface-mounted light-emitting device mounted on a circuit board.

本発明の第12の態様による照射装置は、前記第8乃至第11のいずれかの態様において、前記光源がLEDであるものである。   An irradiation apparatus according to a twelfth aspect of the present invention is the irradiation apparatus according to any one of the eighth to eleventh aspects, wherein the light source is an LED.

前記第11及び第12の態様は、光源の例を挙げたものであるが、前記第8乃至第10の態様では、これらに限定されるものではない。   The eleventh and twelfth aspects are examples of the light source, but the eighth to tenth aspects are not limited to these.

なお、前記第7乃至第12の態様による照射装置は、例えば、カメラの閃光装置や、携帯電話機に内蔵されたカメラ用閃光装置や、スポットライトやダウンライトなどの各種の照明装置などとして用いることができる他、種々の装置を構成するために用いられる発光ユニットなどでもよい。   The irradiation devices according to the seventh to twelfth aspects are used as, for example, a camera flash device, a camera flash device built in a mobile phone, and various illumination devices such as a spotlight and a downlight. In addition, the light emitting unit used to constitute various devices may be used.

本発明によれば、より一層光の利用効率を高めることができる配光制御部材、及び、これを用いることでより一層効率良く照射光量を高めることができる照射装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light distribution control member which can raise the utilization efficiency of light further, and the irradiation apparatus which can raise irradiation light quantity more efficiently by using this can be provided.

また、本発明によれば、より一層効率良く照射光量を高めることができるとともに、光源上への配光制御部材の保持構造を改善することで小型化を図ることができる照射装置を提供することができる。   In addition, according to the present invention, it is possible to provide an irradiation apparatus that can increase the amount of irradiation light more efficiently and can be downsized by improving the holding structure of the light distribution control member on the light source. Can do.

さらに、本発明によれば、光源上への配光制御部材の保持構造を改善することで小型化を図ることができる照射装置を提供することができる。   Furthermore, according to the present invention, it is possible to provide an irradiation apparatus that can be reduced in size by improving the holding structure of the light distribution control member on the light source.

以下、本発明による配光制御部材及び照射装置について、図面を参照して説明する。   Hereinafter, a light distribution control member and an irradiation apparatus according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態による照射装置を示す断面図である。図2は、この照射装置の分解斜視図である。図3は、図1及び図2中のホルダ本体3aを下側から見た斜視図である。図4は、図1中のLED1とホルダ本体3aとの嵌合状態を示す斜視図である。   FIG. 1 is a cross-sectional view showing an irradiation apparatus according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the irradiation apparatus. FIG. 3 is a perspective view of the holder main body 3a in FIGS. 1 and 2 as viewed from below. FIG. 4 is a perspective view showing a fitting state between the LED 1 and the holder body 3a in FIG.

本実施の形態による照射装置は、種々の装置を構成するために用いられる発光ユニットとして構成され、図1及び図2に示すように、光源としての表面実装型発光デバイスの一種であるハイパワーLED1と、LED1からの入射光束を配光の異なる出射光束として出射する配光制御部材2と、配光制御部材2をLEDから間隔をあけて保持するホルダ3とを備えている。   The irradiation apparatus according to the present embodiment is configured as a light-emitting unit used to configure various apparatuses, and as shown in FIGS. 1 and 2, a high-power LED 1 that is a kind of surface-mounted light-emitting device as a light source. And a light distribution control member 2 that emits an incident light beam from the LED 1 as an output light beam having a different light distribution, and a holder 3 that holds the light distribution control member 2 at a distance from the LED.

LED1は、直方体状の外形を有し、図中の上面側から光を発する。また、LED1は、光軸Oを含むいずれの断面内においても、ほぼ同一の発散角度(照射角度)θin(例えば、110゜〜120゜程度)の光束を発する。LED1から配光制御部材2へ入射される入射光束の様子を、図5に示している。   The LED 1 has a rectangular parallelepiped outer shape and emits light from the upper surface side in the drawing. Further, the LED 1 emits a light beam having substantially the same divergence angle (irradiation angle) θin (for example, about 110 ° to 120 °) in any cross section including the optical axis O. FIG. 5 shows a state of an incident light beam incident on the light distribution control member 2 from the LED 1.

配光制御部材2は、透光材料で構成され、発散角度θinの入射光束を発散角度θinより小さい照射角度θoutを持つ出射光束として出射する。配光制御部材2の材料としては、例えば、アクリル等の透光樹脂や、COP(シクロオレフィンポリマー)、COC(シクロオレフィンコポリマー)等の透光性を有する耐熱樹脂などを用いることができる。本実施の形態では、配光制御部材2は、円板状に構成され、光軸Oを含むいずれの断面形状も同一とされており、いずれの断面内においても同一の配光制御特性を有している。配光制御部材2については、後に詳述する。   The light distribution control member 2 is made of a translucent material, and emits an incident light beam having a divergence angle θin as an output light beam having an irradiation angle θout smaller than the divergence angle θin. As a material for the light distribution control member 2, for example, a light-transmitting resin such as acrylic or a heat-resistant resin having light-transmitting properties such as COP (cycloolefin polymer) or COC (cycloolefin copolymer) can be used. In the present embodiment, the light distribution control member 2 is configured in a disc shape, and all cross-sectional shapes including the optical axis O are the same, and the same light distribution control characteristics are present in any cross-section. is doing. The light distribution control member 2 will be described in detail later.

ホルダ3は、図1乃至図4に示すように、ホルダ本体3aと、リング状部材3bとから構成されている。ホルダ本体3a及びリング状部材3は、例えば、PPA(ポリフタルアミド)などの耐熱樹脂で構成される。   The holder 3 is comprised from the holder main body 3a and the ring-shaped member 3b, as shown in FIG. 1 thru | or FIG. The holder body 3a and the ring-shaped member 3 are made of a heat resistant resin such as PPA (polyphthalamide), for example.

ホルダ本体3aは、上下に開口した孔部11を有している。孔部11の上側部分は配光制御部材2の径に応じて比較的大径となっているのに対し、孔部11の下側部分はLED1の大きさに合わせて比較的小径となっている。孔部11の下側部分の周壁が、円筒状内面12となっている。図1及び図4に示すように、円筒状内面12は、LED1の4つの側面間の4つの辺部のみに接触して嵌合している。この嵌合により、ホルダ本体3aがLED1に対して固定されている。   The holder main body 3a has a hole 11 that is open up and down. The upper part of the hole 11 has a relatively large diameter according to the diameter of the light distribution control member 2, whereas the lower part of the hole 11 has a relatively small diameter according to the size of the LED 1. Yes. The peripheral wall of the lower portion of the hole 11 is a cylindrical inner surface 12. As shown in FIGS. 1 and 4, the cylindrical inner surface 12 is fitted in contact with only four sides between the four side surfaces of the LED 1. By this fitting, the holder main body 3 a is fixed to the LED 1.

そして、ホルダ本体3aの上部の内側段差部13に配光制御部材2の外周部が係合され、配光制御部材2の外周部は、更に、ホルダ本体3aの上部の外側段差部14に嵌合されたリング状部材3bによって押さえられている。これにより、配光制御部材2がホルダ本体3aの上部に保持されて、配光制御部材2がLED1の発光側の面上に間隔をあけて保持されている。   The outer peripheral portion of the light distribution control member 2 is engaged with the inner step portion 13 on the upper portion of the holder main body 3a, and the outer peripheral portion of the light distribution control member 2 is further fitted on the outer step portion 14 on the upper portion of the holder main body 3a. It is pressed by the combined ring-shaped member 3b. Thereby, the light distribution control member 2 is hold | maintained at the upper part of the holder main body 3a, and the light distribution control member 2 is hold | maintained at intervals on the light emission side surface of LED1.

ホルダ本体3aには、LED1の4つの側面付近の空間を側方外部へ連通させる連通路15が形成されている。本実施の形態では、連通路15は、下側に開口して溝状に形成されているが、必ずしも下側に開口する必要はない。   The holder body 3a is formed with a communication passage 15 that communicates the spaces near the four side surfaces of the LED 1 to the outside of the side. In the present embodiment, the communication path 15 is formed in a groove shape that opens downward, but it does not necessarily have to be open downward.

本実施の形態によれば、ホルダ3の円筒状内面12がLED1の4つの辺部のみにそれぞれ略々線状に嵌合しているので、ホルダ3がLED1に接触する面積が抑えられることからLED1の放熱性を高めることができるとともに、配光制御部材2の保持構造を小型化することができ、ひいては、照射装置全体の小型化を図ることができる。特に、本実施の形態では、連通路15によってLED1の4つの側面付近の空間が側方外部へ連通しているので、LED1の放熱性を格段に高めることができる。   According to the present embodiment, since the cylindrical inner surface 12 of the holder 3 is fitted substantially linearly only to the four sides of the LED 1, the area where the holder 3 contacts the LED 1 is suppressed. While being able to improve the heat dissipation of LED1, the holding structure of the light distribution control member 2 can be reduced in size, and by extension, the whole irradiation apparatus can be reduced in size. In particular, in the present embodiment, since the spaces near the four side surfaces of the LED 1 communicate with the outside of the side by the communication path 15, the heat dissipation of the LED 1 can be significantly improved.

次に、配光制御部材2について、図5及び図6を参照して説明する。図5は、配光制御部材2を示す断面図であり、前述したようにLED1からの入射光束も示している。図6は配光制御部材2の一部を拡大した図であり、図6(a)は配光制御部材2の半断面図、図6(b)は図6(a)中の領域R2の一部の領域R2’の拡大図、図6(c)は図6(a)中の領域R3の一部の領域R3’の拡大図である。   Next, the light distribution control member 2 will be described with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional view showing the light distribution control member 2 and also shows an incident light beam from the LED 1 as described above. 6 is an enlarged view of a part of the light distribution control member 2, FIG. 6 (a) is a half sectional view of the light distribution control member 2, and FIG. 6 (b) is a region R2 in FIG. 6 (a). FIG. 6C is an enlarged view of a partial region R2 ′, and FIG. 6C is an enlarged view of a partial region R3 ′ of the region R3 in FIG.

説明の便宜上、図5及び図6に示すように、互いに直交するX軸、Y軸及びZ軸を定義する(後述する図についても同様である。)。なお、Z軸方向の+側を上側、Z軸方向の−側を下側という場合がある。Z軸は、光軸Oと平行となっている。−Z側が光の入射側、+Zが光の出射側である。   For convenience of explanation, as shown in FIGS. 5 and 6, an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined (the same applies to the drawings described later). The + side in the Z-axis direction may be referred to as the upper side, and the − side in the Z-axis direction may be referred to as the lower side. The Z axis is parallel to the optical axis O. The −Z side is the light incident side, and + Z is the light output side.

本実施の形態による配光制御部材2は、LED1からの発散角度θinの入射光束を、照射角度θout(ただし、θout<θin)を持つ出射光束として出射するように設計されている。   The light distribution control member 2 according to the present embodiment is designed to emit an incident light beam having a divergence angle θin from the LED 1 as an outgoing light beam having an irradiation angle θout (where θout <θin).

本実施の形態では、配光制御部材2は、図6(a)に示す半断面を光軸O回りに回転させた回転体として構成されている。配光制御部材2の+Z側の面は、出射面21であり、XY平面と平行な平面となっている。   In the present embodiment, the light distribution control member 2 is configured as a rotating body obtained by rotating the half cross section shown in FIG. The surface on the + Z side of the light distribution control member 2 is an emission surface 21 and is a plane parallel to the XY plane.

配光制御部材2の−Z側における光軸O付近の領域R1は、XY平面と平行な平面とされている。配光制御部材2の−Z側における領域R1の外周側の領域R2には、複数の断面三角形状の凸条部(第2の凸条部)22がZ軸方向(光軸O方向)から見たときに同心円状に並列されている。図6(b)に示すように、各凸条部22は、光軸Oに近い側の面22aと光軸Oから遠い側の面22bとを有し、面22bに入射した光が面22bで屈折した後にそのまま出射面21が出射するように、面22bの角度が、当該面22bへの入射光束の各光線の入射角度と、当該光束に対して設定した所望の出射角度とに応じて、設定されている。領域R1,R2に入射する光線の様子を図7に示している。   A region R1 in the vicinity of the optical axis O on the −Z side of the light distribution control member 2 is a plane parallel to the XY plane. In the region R2 on the outer peripheral side of the region R1 on the −Z side of the light distribution control member 2, a plurality of triangular protrusions (second protrusions) 22 from the Z-axis direction (optical axis O direction). When viewed, they are arranged concentrically. As shown in FIG. 6B, each protrusion 22 has a surface 22a on the side close to the optical axis O and a surface 22b on the side far from the optical axis O, and the light incident on the surface 22b is the surface 22b. The angle of the surface 22b depends on the incident angle of each ray of the incident light beam on the surface 22b and the desired emission angle set for the light beam so that the exit surface 21 exits as it is after being refracted at Is set. The state of light rays incident on the regions R1 and R2 is shown in FIG.

図5及び図6に示すように、配光制御部材2の−Z側における領域R2の外周側の領域R3には、複数の断面四角形状の凸条部(第1の凸条部)23がZ軸方向(光軸O方向)から見たときに同心円状に並列されている。各凸条部23は、光軸Oに近い側において当該凸条部23の基部から立ち上がる第1の面23aと、前記光軸から遠い側において当該凸条部23の基部から立ち上がる第2の面23bと、前記第1及び第2の面23a,23b間を接続する先端側の第3の面23cと、を有している。本実施の形態では、第1の面23aは、光軸Oを含む断面において、直線をなしているが、光学的に有効な面ではないので、曲線をなすようにしてもよい。   As shown in FIGS. 5 and 6, in the region R3 on the outer peripheral side of the region R2 on the −Z side of the light distribution control member 2, a plurality of quadrangular ridges (first ridges) 23 are formed. When viewed from the Z-axis direction (optical axis O direction), they are arranged concentrically in parallel. Each ridge portion 23 rises from the base portion of the ridge portion 23 on the side close to the optical axis O, and second surface rises from the base portion of the ridge portion 23 on the side far from the optical axis. 23b and a third surface 23c on the distal end side that connects between the first and second surfaces 23a, 23b. In the present embodiment, the first surface 23a is a straight line in the cross section including the optical axis O. However, since the first surface 23a is not an optically effective surface, the first surface 23a may be curved.

発散角度θinの入射光束のうちの各凸条部23の第3の面23cに到達した部分光束の大部分又は全部が、当該凸条部23の第3の面23cから当該凸条部23内へ進入した後に当該凸条部23の第2の面23bで反射された後に、照射角度θoutの出射光束の一部をなす部分光束となるように、第2及び第3の面23b,23cの、光軸Oを含む断面内における角度が設定されている。   Most or all of the partial light beams that have reached the third surface 23c of each ridge portion 23 out of the incident light beam having the divergence angle θin are within the ridge portion 23 from the third surface 23c of the ridge portion 23. Of the second and third surfaces 23b and 23c so as to become a partial light beam that forms a part of the emitted light beam at the irradiation angle θout after being reflected by the second surface 23b of the ridge 23 after entering The angle in the cross section including the optical axis O is set.

このような角度設定について、図8を参照して説明する。今、図8に示すように、1つの凸条部23において、LED1からZ軸方向に対して角度θで面23cから入射して、当該凸条部23内へ進入した後に面23bで反射された後に、出射面21から出射する光線について、考える。ここで、図8に示すように、面23cがZ軸方向に対してなす角度をA、面23bがZ軸方向に対してなす角度をB、面23aがZ軸方向に対してなす角度をC、出射面21から出射した光線がZ軸方向に対してなす角度をθ、配光制御部材2の材料の屈折率をn、空気中から配光制御部材2へ光が進行する場合の臨界角をθ、面23cから凸条部23内へ進入した後に面23bに到達するまでの光線の進行方向がZ軸方向に対してなす角度をθ、面23bで全反射された後に出射面21に到達するまでの光線の進行方向がZ軸方向に対してなす角度をθとする。 Such angle setting will be described with reference to FIG. Now, as shown in FIG. 8, in one ridge 23, the light enters from the surface 23 c at an angle θ 1 from the LED 1 with respect to the Z-axis direction, and enters the ridge 23 and then reflects on the surface 23 b. Then, consider the light beam emitted from the emission surface 21. Here, as shown in FIG. 8, the angle that the surface 23c makes with the Z-axis direction is A, the angle that the surface 23b makes with the Z-axis direction is B, and the angle that the surface 23a makes with the Z-axis direction. C, the angle formed by the light emitted from the emission surface 21 with respect to the Z-axis direction is θ 2 , the refractive index of the material of the light distribution control member 2 is n, and the light travels from the air to the light distribution control member 2 After the critical angle is θ 3 , the angle formed by the light traveling direction from the surface 23c to the surface 23b after reaching the surface 23b with respect to the Z-axis direction is θ 4 , and after being totally reflected by the surface 23b An angle formed by the traveling direction of the light beam reaching the emission surface 21 with respect to the Z-axis direction is θ 5 .

すると、光線がZ軸方向に対して角度θで面23cから入射して凸条部23内へ進入するためには、角度Aが、下記の数1を満たさなければならない。 Then, in order beam enters incident from the surface 23c at an angle theta 1 with respect to the Z-axis direction to the convex portion 23, the angle A, must satisfy Equation 1 below.

Figure 2006172772
Figure 2006172772

また、光線が面23bで反射した後に出射面21から角度θで出射するためには、角度Bが下記の数2かあるいは下記の数3を満たさなければならない。なお、数2及び数3も実際は同じ条件である。 In addition, in order for the light beam to be emitted from the emission surface 21 at an angle θ 3 after being reflected by the surface 23b, the angle B must satisfy the following formula 2 or the following formula 3. Note that Equations 2 and 3 are actually the same conditions.

Figure 2006172772
Figure 2006172772

Figure 2006172772
Figure 2006172772

ここで、臨界角θは下記の数4で表され、角度θは下記の数5で表され、角度θは下記の数6で表される。 Here, the critical angle θ 3 is expressed by the following formula 4, the angle θ 4 is expressed by the following formula 5, and the angle θ 5 is expressed by the following formula 6.

Figure 2006172772
Figure 2006172772

Figure 2006172772
Figure 2006172772

Figure 2006172772
Figure 2006172772

したがって、各凸条部23について、当該凸条部23の面23cに入射する入射部分光束のうちの全部又は大部分の光線について、数1と数2又は数3を満たすように、角度A,Bを設定すればよい。このとき、角度θ2については、予め角度θ1に対応づけた角度を用いればよい。例えば、角度θ=θ・θout/θinとする。また、配光制御部材2を樹脂成形により製造する場合は、樹脂成形の容易性等も考慮して角度A,Bを定める。なお、角度Cは、樹脂成形の容易性等を考慮して定めればよい。 Therefore, with respect to each ridge 23, the angle A, the number A, the number A, the number A, and the number A of the incident partial light beams incident on the surface 23c of the ridge 23 are such that B may be set. At this time, the angle θ2 may be an angle previously associated with the angle θ1. For example, the angle θ 2 = θ 1 · θout / θin. Further, when the light distribution control member 2 is manufactured by resin molding, the angles A and B are determined in consideration of ease of resin molding and the like. The angle C may be determined in consideration of ease of resin molding.

そして、本実施の形態では、配光制御部材2は、光軸Oを含む断面内における領域R3内の凸条部23の面23b,23c間の角部(稜線)23dのZ軸方向(光軸O方向)の位置が全て同一である場合に比べて、照射角度θoutの出射光束に対する発散角度θinの入射光束の利用効率が高まるように、領域R3内の凸条部23のうちの少なくとも1つの凸条部23の角部23dのZ軸方向の位置が、領域R3内の凸条部23のうちの他の少なくとも1つの凸条部23の角部23dのZ軸方向の位置と異なるように設定されている。   And in this Embodiment, the light distribution control member 2 is the Z-axis direction (light) of the corner | angular part (ridgeline) 23d between the surfaces 23b and 23c of the convex part 23 in area | region R3 in the cross section containing the optical axis O. Compared with the case where all the positions in the direction of the axis O) are the same, at least one of the ridges 23 in the region R3 so that the utilization efficiency of the incident light beam with the divergence angle θin with respect to the outgoing light beam with the irradiation angle θout is increased. The positions in the Z-axis direction of the corners 23d of the two ridges 23 are different from the positions in the Z-axis direction of the corners 23d of the other at least one of the ridges 23 in the region R3. Is set to

ここで、凸条部23の角部23dのZ軸方向位置を異ならせることにより、迷光が少なくなり入射光束の利用効率が高まる様子の例を、図9に示す。図9(a)は、4つの凸条部23の角部23dのZ軸方向位置が互いに異なりこれらの角部23dを結ぶラインL1がX軸方向に対して傾いている場合の、光線を示す。図9(b)は、4つの凸条部23の角部23dのZ軸方向位置が互いに同一でありこれらの角部23dを結ぶラインL2がX軸方向と平行である場合の、光線を示す。図9(a)と図9(b)とでは、最も右側の凸条部23の角部23dのXZ座標位置を同一とし、この位置を基準とした各入射光線の位置及び方向を同一とし、対応する凸条部23同士の角度A,B,Cをそれぞれ同一とし、左側の3つの凸条部23の角部23dのX軸方向位置を同一とし、左側の3つの凸条部23の角部のZ軸方向位置を変えた。   Here, FIG. 9 shows an example in which stray light is reduced and the utilization efficiency of the incident light flux is increased by changing the Z-axis direction position of the corner 23d of the ridge 23. FIG. 9A shows light rays when the positions of the corners 23d of the four ridges 23 are different from each other in the Z-axis direction and the line L1 connecting these corners 23d is inclined with respect to the X-axis direction. . FIG. 9B shows light rays when the positions of the corners 23d of the four ridges 23 are the same in the Z-axis direction and the line L2 connecting these corners 23d is parallel to the X-axis direction. . 9 (a) and 9 (b), the XZ coordinate position of the corner 23d of the rightmost ridge 23 is the same, and the position and direction of each incident light beam with this position as the reference are the same, Corresponding ridges 23 have the same angles A, B and C, the left three ridges 23 have the same corners 23d in the X-axis direction, and the left three ridges 23 have corners. The position of the Z-axis direction of the part was changed.

図9(a)では、4本の入射光線は迷光とならずに有効な出射光束となり、入射光束の利用効率が高い。これに対し、図9(b)では、2本の入射光線が迷光となって有効な出射光束とならず、入射光束の利用効率が低い。   In FIG. 9A, the four incident light beams do not become stray light but become an effective outgoing light beam, and the utilization efficiency of the incident light beam is high. On the other hand, in FIG. 9B, two incident light beams become stray light and do not become an effective outgoing light beam, and the utilization efficiency of the incident light beam is low.

図9から、領域R3内の凸条部23の角部23dのZ軸方向位置を適宜異ならせることで、入射光束の利用効率を向上させることができることがわかる。このことは、後述するシミュレーション結果によっても裏付けられた。   From FIG. 9, it can be seen that the utilization efficiency of the incident light beam can be improved by appropriately changing the Z-axis direction position of the corner 23d of the ridge 23 in the region R3. This was supported by simulation results described later.

具体的には、例えば、入射光束の発散角度θinなどに応じて凸条部23等の数をほぼ決め、当該凸条部23が受け持つ入射部分光束の角度や出射部分光束の角度に従ってシミュレーションによる光線追跡等を行いながら、迷光が少なくなるように、光軸から遠い側の凸条部23から順に角度A,B,C及び角部23dのZ軸方向位置を決めていけばよい。なお、領域R2内の凸条部24の設計手法については、凸条部23を適切に利用できなくなった(すなわち、凸条部23を用いると角度A,Bを変更しても迷光が増大してしまう)場所に、凸条部22を配置し、その面22a,22bの角度をシミュレーションによる光線追跡等を行いながら、迷光が少なくなるように、決めればよい。領域R1内の凸条部22の   Specifically, for example, the number of ridges 23 and the like is substantially determined according to the divergence angle θin of the incident light beam, and the light rays obtained by the simulation according to the angle of the incident partial light beam and the angle of the output partial light beam that the ridge part 23 takes care of. While performing tracking or the like, the Z-axis direction positions of the angles A, B, C and the corner portion 23d may be determined in order from the protruding strip portion 23 on the side farther from the optical axis so as to reduce stray light. In addition, about the design method of the protruding item | line part 24 in area | region R2, it became impossible to use the protruding item | line part 23 appropriately (that is, if the protruding item | line part 23 is used, even if it changes angle A and B, stray light will increase. It is only necessary to determine the stray light so as to reduce the angle of the surfaces 22a and 22b while performing ray tracing by simulation and the like. Of the ridge 22 in the region R1

図1、図5及び図6には、入射光束の発散角度θinを120゜とし出射光束の照射角度θoutを5゜とした場合において前述した手法により設計した第1の設計例による配光制御部材2を示している。図5及び図6からわかるように、この第1の設計例による配光制御部材2では、領域R3内の凸条部23の角部23dのZ軸方向位置は同一ではない。この第1の設計例による配光制御部材2は、本発明の一実施例による配光制御板である。   1, 5 and 6 show the light distribution control member according to the first design example designed by the above-described method when the divergence angle θin of the incident light beam is 120 ° and the irradiation angle θout of the emitted light beam is 5 °. 2 is shown. As can be seen from FIGS. 5 and 6, in the light distribution control member 2 according to the first design example, the positions in the Z-axis direction of the corners 23d of the ridges 23 in the region R3 are not the same. The light distribution control member 2 according to the first design example is a light distribution control plate according to an embodiment of the present invention.

この第1の設計例による配光制御部材2に対して、領域R3内の凸条部23の角部23dのZ軸方向位置を全て同一にするように変え、それ以外の点については第1の設計例による配光制御部材2と同一にした配光制御部材を、比較例として設計した。この配光制御部材を、第1の比較設計例による配光制御部材と呼ぶ。   With respect to the light distribution control member 2 according to the first design example, the Z-axis direction positions of the corner portions 23d of the ridge portions 23 in the region R3 are all made the same, and the other points are the first. A light distribution control member identical to the light distribution control member 2 according to the design example was designed as a comparative example. This light distribution control member is referred to as a light distribution control member according to the first comparative design example.

また、図10及び図11には、入射光束の発散角度θinを120゜とし出射光束の照射角度θoutを70゜とした場合において前述した手法により設計した第2の設計例による配光制御部材2を示している。図10は、この第2の設計例による配光制御部材2を示す断面図である。図11は、図10に示す配光制御部材2の半断面図である。図10及び図11において、図5及び図6中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。図10及び図11からわかるように、この第2の設計例による配光制御部材2では、領域R3内の凸条部23の角部23dのZ軸方向位置は同一ではない。この第2の設計例による配光制御部材2は、本発明の他の実施例による配光制御板である。   10 and 11 show the light distribution control member 2 according to the second design example designed by the above-described method when the divergence angle θin of the incident light beam is 120 ° and the irradiation angle θout of the emitted light beam is 70 °. Is shown. FIG. 10 is a cross-sectional view showing the light distribution control member 2 according to the second design example. FIG. 11 is a half sectional view of the light distribution control member 2 shown in FIG. 10 and 11, elements that are the same as or correspond to those in FIGS. 5 and 6 are given the same reference numerals, and redundant descriptions thereof are omitted. As can be seen from FIGS. 10 and 11, in the light distribution control member 2 according to the second design example, the positions in the Z-axis direction of the corners 23d of the ridges 23 in the region R3 are not the same. The light distribution control member 2 according to the second design example is a light distribution control plate according to another embodiment of the present invention.

さらに、この第2の設計例による配光制御部材2に対して領域R3内の凸条部23の角部23dのZ軸方向位置を全て同一にするように変え、それ以外の点については第2の設計例による配光制御部材2と同一にした配光制御部材を、比較例として設計した。この配光制御部材を、第2の比較設計例による配光制御部材と呼ぶ。   Furthermore, with respect to the light distribution control member 2 according to the second design example, all the positions in the Z-axis direction of the corners 23d of the ridges 23 in the region R3 are changed to be the same. A light distribution control member identical to the light distribution control member 2 according to the design example 2 was designed as a comparative example. This light distribution control member is referred to as a light distribution control member according to the second comparative design example.

前記第1及び第2の設計例、並びに、第1及び第2の比較設計例について、シミュレーションにより、光線追跡を行うとともに、配光制御部材から+Z軸方向に50cm離れX軸と平行な直線上の照度分布を得た。このとき、LED1は、図12に示す指向特性を有するとともに、配光制御部材を設けない場合にLED1から同一距離だけ+Z軸方向に離れたX軸と平行な直線上の照度分布が図13に示す通りとなる特性を有しているものとした。これらのシミュレーション結果を図14乃至図21に示す。   With respect to the first and second design examples and the first and second comparative design examples, ray tracing is performed by simulation, and on a straight line 50 cm away from the light distribution control member in the + Z axis direction and parallel to the X axis. The illuminance distribution was obtained. At this time, the LED 1 has the directivity characteristics shown in FIG. 12, and the illuminance distribution on a straight line parallel to the X axis that is the same distance from the LED 1 in the + Z axis direction when the light distribution control member is not provided is shown in FIG. It was assumed to have the characteristics as shown. The simulation results are shown in FIGS.

図14乃至図16は、前記第1の設計例(θout=5゜、凸条部23の角部23dのZ軸方向位置の変化あり。)による配光制御部材2のシミュレーション結果を示す。図14は光線追跡結果、図15は図14中のE部付近の拡大図、図16は照度分布を示す。   14 to 16 show simulation results of the light distribution control member 2 according to the first design example (θout = 5 °, the position of the corner portion 23d of the ridge 23 has a change in the Z-axis direction). FIG. 14 shows the result of ray tracing, FIG. 15 is an enlarged view around the portion E in FIG. 14, and FIG. 16 shows the illuminance distribution.

図17及び図18は、前記第1の比較設計例(θout=5゜、凸条部23の角部23dのZ軸方向位置の変化なし。)による配光制御部材のシミュレーション結果を示す。図17は図14に対応する光線追跡結果、図18は照度分布を示す。   FIGS. 17 and 18 show the simulation results of the light distribution control member according to the first comparative design example (θout = 5 °, no change in the Z-axis direction position of the corner 23d of the ridge 23). FIG. 17 shows the ray tracing result corresponding to FIG. 14, and FIG. 18 shows the illuminance distribution.

図14乃至図16と図17及び図18とを比較すると、凸条部23の角部23dのZ軸方向位置が変化している第1の設計例による配光制御部材2では、凸条部23の角部23dのZ軸方向位置が変化していない第1の比較設計例による配光制御部材に比べて、迷光が少なくなって有効な出射光量が増大していることがわかる。   Comparing FIG. 14 to FIG. 16 with FIG. 17 and FIG. 18, in the light distribution control member 2 according to the first design example in which the position in the Z-axis direction of the corner portion 23 d of the ridge portion 23 is changed, the ridge portion As compared with the light distribution control member according to the first comparative design example in which the position of the corner 23d of the 23 is not changed, it can be seen that the stray light is reduced and the effective emitted light quantity is increased.

図19及び図20は、前記第2の設計例(θout=70゜、凸条部23の角部23dのZ軸方向位置の変化あり。)による配光制御部材2のシミュレーション結果を示す。図19は光線追跡結果、図20は照度分布を示す。   19 and 20 show simulation results of the light distribution control member 2 according to the second design example (θout = 70 °, the position of the corner 23d of the ridge 23 has a change in the Z-axis direction). FIG. 19 shows the result of ray tracing, and FIG. 20 shows the illuminance distribution.

図21は、前記第2の比較設計例(θout=70゜、凸条部23の角部23dのZ軸方向位置の変化なし。)による配光制御部材のシミュレーション結果を示す。図21は照度分布を示す。   FIG. 21 shows a simulation result of the light distribution control member according to the second comparative design example (θout = 70 °, no change in the Z-axis direction position of the corner 23d of the ridge 23). FIG. 21 shows the illuminance distribution.

図19乃至図20と図21とを比較すると、凸条部23の角部23dのZ軸方向位置が変化している第2の設計例による配光制御部材2では、凸条部23の角部23dのZ軸方向位置が変化していない第2の比較設計例による配光制御部材に比べて、迷光が少なくなって有効な出射光量が増大していることがわかる。   Comparing FIG. 19 to FIG. 20 with FIG. 21, in the light distribution control member 2 according to the second design example in which the position in the Z-axis direction of the corner 23 d of the ridge 23 changes, the corner of the ridge 23 It can be seen that the stray light is reduced and the effective amount of emitted light is increased as compared with the light distribution control member according to the second comparative design example in which the position of the portion 23d in the Z-axis direction is not changed.

本実施の形態によれば、凸条部23を有していることに伴い、前記特許文献1に開示されているインナーレンズと同様の理由で、光の利用効率が上がる。そして、本実施の形態によれば、前記特許文献1に開示されているインナーレンズとは異なり、凸条部23の角部23dのZ軸方向位置を変えているので、凸条部23の角部23dのZ軸方向位置を全て同一にする場合に比べて、より一層光の利用効率が高まる。   According to the present embodiment, the use efficiency of light is increased for the same reason as the inner lens disclosed in Patent Document 1 due to the provision of the ridges 23. And according to this Embodiment, unlike the inner lens currently disclosed by the said patent document 1, since the Z-axis direction position of the corner | angular part 23d of the protruding item | line part 23 is changed, the corner | angular part of the protruding item | line part 23 is changed. Compared with the case where all the positions in the Z-axis direction of the portion 23d are the same, the light use efficiency is further increased.

以上、本発明の実施の形態及び実施例について説明したが、本発明はこれらの実施の形態や実施例に限定されるものではない。   While the embodiments and examples of the present invention have been described above, the present invention is not limited to these embodiments and examples.

例えば、本発明では、ホルダ3の構造は前述した構造に限定されないし、また、光源もパワーLEDに限定されるものではなく、任意の光源を用いてもよい。   For example, in the present invention, the structure of the holder 3 is not limited to the structure described above, and the light source is not limited to the power LED, and an arbitrary light source may be used.

また、本発明による配光制御部材は、図5や図10に示す断面形状をY軸方向に移動して得られる立体形状を有するいわゆるリニアタイプの配光制御部材としてもよい。このようなリニアタイプの配光制御部材に対しては、Y軸方向に延びた直線状光源を用いてもよい。   The light distribution control member according to the present invention may be a so-called linear type light distribution control member having a three-dimensional shape obtained by moving the cross-sectional shape shown in FIGS. 5 and 10 in the Y-axis direction. For such a linear light distribution control member, a linear light source extending in the Y-axis direction may be used.

また、前記実施の形態では、配光制御部材2の出射面21がXY平面と平行な平面となっていたが、本発明ではこの出射面21を球面などの凸曲面や凹曲面としてもよい。   Moreover, in the said embodiment, although the output surface 21 of the light distribution control member 2 became a plane parallel to XY plane, in this invention, this output surface 21 is good also as convex surfaces and concave surfaces, such as a spherical surface.

本発明の一実施の形態による照射装置を示す断面図である。It is sectional drawing which shows the irradiation apparatus by one embodiment of this invention. 図1に示す照射装置の分解斜視図である。It is a disassembled perspective view of the irradiation apparatus shown in FIG. 図1及び図2中のホルダ本体を下側から見た斜視図である。It is the perspective view which looked at the holder main body in FIG.1 and FIG.2 from the lower side. 図1中のLEDとホルダ本体との嵌合状態を示す斜視図である。It is a perspective view which shows the fitting state of LED in FIG. 1, and a holder main body. 図1中の配光制御部材の設計例を示す断面図である。It is sectional drawing which shows the example of a design of the light distribution control member in FIG. 図5に示す配光制御部材の一部を拡大した図である。It is the figure which expanded a part of light distribution control member shown in FIG. 配光制御部材の所定領域に入射する光線の様子を示す図である。It is a figure which shows the mode of the light ray which injects into the predetermined area | region of a light distribution control member. 角度の設定方法を説明するための説明図である。It is explanatory drawing for demonstrating the setting method of an angle. 凸条部23の角部の光軸方向位置を変えることにより光の利用効率が高まる様子の例を示す図である。It is a figure which shows the example of a mode that the utilization efficiency of light increases by changing the optical axis direction position of the corner | angular part of the protruding item | line part. 配光制御部材の他の設計例を示す断面図である。It is sectional drawing which shows the other example of a design of a light distribution control member. 図10に示す配光制御部材の半断面図である。FIG. 11 is a half sectional view of the light distribution control member shown in FIG. 10. LEDの指向特性図である。It is a directivity characteristic figure of LED. 配光制御部材を用いない場合のLEDによる照度分布を示す図である。It is a figure which shows the illumination intensity distribution by LED when not using a light distribution control member. 第1の設計例による配光制御部材の光線追跡結果を示す図である。It is a figure which shows the ray tracing result of the light distribution control member by a 1st design example. 図14中のE部付近の拡大図である。It is an enlarged view of the E part vicinity in FIG. 第1の設計例による配光制御部材の照度分布を示す図である。It is a figure which shows the illumination intensity distribution of the light distribution control member by a 1st design example. 第1の比較設計例による配光制御部材の光線追跡結果を示す図である。It is a figure which shows the ray tracing result of the light distribution control member by a 1st comparative design example. 第1の比較設計例による配光制御部材の照度分布を示す図である。It is a figure which shows the illumination intensity distribution of the light distribution control member by the 1st comparative design example. 第2の設計例による配光制御部材の光線追跡結果を示す図である。It is a figure which shows the light trace result of the light distribution control member by a 2nd design example. 第2の設計例による配光制御部材の照度分布を示す図である。It is a figure which shows the illumination intensity distribution of the light distribution control member by a 2nd design example. 第2の比較設計例による配光制御部材の照度分布を示す図である。It is a figure which shows the illumination intensity distribution of the light distribution control member by the 2nd comparative design example.

符号の説明Explanation of symbols

1 パワーLED(光源)
2 配光制御部材
3 ホルダ
15 連通路
21 出射面
22 第2の凸条部
23 第1の凸条部
23a 第1の面
23b 第2の面
23c 第3の面
1 Power LED (light source)
2 Light distribution control member 3 Holder 15 Communication path 21 Outgoing surface 22 2nd convex strip part 23 1st convex strip part 23a 1st surface 23b 2nd surface 23c 3rd surface

Claims (12)

光軸を含む所定断面内において所定の発散角度を持つ入射光束を前記所定断面内において前記発散角度より小さい照射角度を持つ出射光束として出射する透光材料からなる配光制御部材であって、
前記入射光束の入射側に複数の第1の凸条部を備え、
前記複数の第1の凸条部は、前記光軸方向から見た平面視で互いに並列し、
前記各第1の凸条部は、前記光軸に近い側において当該第1の凸条部の基部から立ち上がる第1の面と、前記光軸から遠い側において当該第1の凸条部の基部から立ち上がる第2の面と、前記第1及び第2の面間を接続する先端側の第3の面と、を有し、
前記入射光束のうちの前記各第1の凸条部の前記第3の面に到達した部分光束の大部分又は全部が、当該第1の凸条部の前記第3の面から当該第1の凸条部内へ進入した後に当該第1の凸条部の前記第2の面で反射された後に、前記出射光束の一部をなす部分光束となるように、当該第1の凸条部の前記第2及び第3の面の前記所定断面内における角度が設定され、
前記所定断面内における前記複数の第1の凸条部の前記第2及び第3の面間の角部の前記光軸方向の位置が全て同一である場合に比べて、前記出射光束に対する前記入射光束の利用効率が高まるように、前記複数の第1の凸条部のうちの少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置が、前記複数の第1の凸条部のうちの他の少なくとも1つの凸条部の前記所定断面内における前記角部の前記光軸方向の位置と異なるように設定されたことを特徴とする配光制御部材。
A light distribution control member made of a translucent material that emits an incident light beam having a predetermined divergence angle in a predetermined cross section including an optical axis as an output light beam having an irradiation angle smaller than the divergence angle in the predetermined cross section;
Provided with a plurality of first ridges on the incident side of the incident light flux,
The plurality of first ridges are parallel to each other in a plan view as viewed from the optical axis direction,
Each of the first ridges includes a first surface rising from the base of the first ridge on the side close to the optical axis, and a base of the first ridge on the side far from the optical axis. A second surface rising from the first surface and a third surface on the front end side connecting between the first and second surfaces;
Most or all of the partial light fluxes that have reached the third surface of each of the first ridges of the incident light flux are transferred from the third surface of the first ridges to the first surface. After entering the ridge portion, after being reflected by the second surface of the first ridge portion, the first ridge portion of the first ridge portion so as to be a partial light beam that forms a part of the emitted light beam. An angle in the predetermined cross section of the second and third surfaces is set,
Compared with the case where the positions in the optical axis direction of the corners between the second and third surfaces of the plurality of first ridges in the predetermined cross section are all the same, the incidence on the emitted light flux The position in the optical axis direction of the corner in the predetermined cross section of at least one of the plurality of first ridges is set to the plurality of first ridges so that the use efficiency of the light flux is increased. A light distribution control member, which is set to be different from a position in the optical axis direction of the corner in the predetermined cross section of at least one other ridge of the ridge.
前記複数の第1の凸条部は、前記光軸方向から見た平面視で前記光軸を中心として同心円状に配列されたことを特徴とする請求項1記載の配光制御部材。   2. The light distribution control member according to claim 1, wherein the plurality of first protrusions are arranged concentrically around the optical axis in a plan view as viewed from the optical axis direction. 前記複数の第1の凸条部は、前記光軸方向から見た平面視で前記所定断面と直交する方向に直線状に延びるように配列されたことを特徴とする請求項1記載の配光制御部材。   2. The light distribution according to claim 1, wherein the plurality of first protrusions are arranged so as to extend linearly in a direction orthogonal to the predetermined cross section in a plan view as viewed from the optical axis direction. Control member. 前記入射光束の入射側に、前記断面内において三角形状をなす第2の凸条部を備え、
前記第2の凸条部は、前記光軸方向から見た平面視で前記複数の第1の凸条部と並ぶようにかつ前記前記複数の第1の凸条部より前記光軸に近い側に位置するように、配列されたことを特徴とする請求項1乃至3のいずれかに記載の配光制御部材。
On the incident side of the incident light beam, a second ridge portion having a triangular shape in the cross section is provided,
The second ridges are aligned with the plurality of first ridges in a plan view as viewed from the optical axis direction, and closer to the optical axis than the plurality of first ridges. The light distribution control member according to any one of claims 1 to 3, wherein the light distribution control member is arranged so as to be positioned at a position.
前記出射光束の出射側の面における少なくとも前記出射光束の出射領域が、平面をなすことを特徴とする請求項1乃至4のいずれかに記載の配光制御部材。   The light distribution control member according to any one of claims 1 to 4, wherein at least an emission region of the emitted light beam on a surface on an emission side of the emitted light beam forms a flat surface.
前記出光束の出射側の面における少なくとも前記出射光束の出射領域が、凸曲面又は凹曲面をなすことを特徴とする請求項1乃至4のいずれかに記載の配光制御部材。
(
5. The light distribution control member according to claim 1, wherein at least an exit region of the outgoing light beam on a surface on the outgoing side of the outgoing light beam has a convex curved surface or a concave curved surface.
請求項1乃至6のいずれかに記載の配光制御部材と、前記入射光束となる光を発する光源と、を備えたことを特徴とする照射装置。   An irradiation apparatus comprising: the light distribution control member according to claim 1; and a light source that emits light that becomes the incident light beam. 前記光源は、直方体状の外形を有しかつ1つの面側から光を発し、
前記配光制御部材を前記光源の前記1つの面上に間隔をあけて保持するホルダを更に備え、
前記ホルダが筒状内面を有し、
前記筒状内面が、前記光源における前記1つの面を上面としたときの4つの側面間の4つの辺部のみにそれぞれ略々線状に接触して嵌合したことを特徴とする請求項7記載の照射装置。
The light source has a rectangular parallelepiped outer shape and emits light from one surface side,
A holder for holding the light distribution control member on the one surface of the light source with a gap;
The holder has a cylindrical inner surface;
8. The cylindrical inner surface is fitted in substantially linear contact with only four sides between four side surfaces when the one surface of the light source is the upper surface. The irradiation apparatus as described.
入射光束を配光の異なる出射光束として出射する、透光材料からなる配光制御部材と、
直方体状の外形を有しかつ1つの面側から前記入射光束となる光を発する光源と、
前記配光制御部材を前記光源の前記1つの面上に間隔をあけて保持するホルダと、
を備え、
前記ホルダが筒状内面を有し、
前記筒状内面が、前記光源における前記1つの面を上面としたときの4つの側面間の4つの辺部のみにそれぞれ略々線状に接触して嵌合したことを特徴とする照射装置。
A light distribution control member made of a translucent material that emits an incident light flux as an outgoing light flux having a different light distribution;
A light source having a rectangular parallelepiped shape and emitting light that becomes the incident light beam from one surface side;
A holder for holding the light distribution control member at an interval on the one surface of the light source;
With
The holder has a cylindrical inner surface;
The irradiation apparatus characterized in that the cylindrical inner surface is fitted in substantially linear contact with only four sides between four side surfaces when the one surface of the light source is the upper surface.
前記ホルダに、前記4つの側面付近の空間を側方外部へ連通させる連通路が形成されたことを特徴とする請求項8又は9記載の照射装置。   The irradiation apparatus according to claim 8 or 9, wherein a communication path is formed in the holder for communicating a space near the four side surfaces to the outside of the side. 前記光源が、回路基板上に実装される表面実装型発光デバイスであることを特徴とする請求項8乃至10のいずれかに記載の照射装置。   The irradiation apparatus according to claim 8, wherein the light source is a surface-mounted light-emitting device mounted on a circuit board. 前記光源がLEDであることを特徴とする請求項8乃至11のいずれかに記載の照射装置。   The irradiation apparatus according to claim 8, wherein the light source is an LED.
JP2004360593A 2004-12-13 2004-12-13 Light distribution control member, and irradiation device Pending JP2006172772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360593A JP2006172772A (en) 2004-12-13 2004-12-13 Light distribution control member, and irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360593A JP2006172772A (en) 2004-12-13 2004-12-13 Light distribution control member, and irradiation device

Publications (1)

Publication Number Publication Date
JP2006172772A true JP2006172772A (en) 2006-06-29

Family

ID=36673303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360593A Pending JP2006172772A (en) 2004-12-13 2004-12-13 Light distribution control member, and irradiation device

Country Status (1)

Country Link
JP (1) JP2006172772A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063736A (en) * 2010-08-20 2012-03-29 Enplas Corp Luminous flux control member and optical device having the same
JP2012168501A (en) * 2011-01-28 2012-09-06 Enplas Corp Luminous flux control member, optical device equipped therewith, and luminous flux shaping method
US10371353B2 (en) 2015-10-13 2019-08-06 Enplas Corporation Light-emitting device
JP2019135468A (en) * 2018-02-05 2019-08-15 株式会社タムロン Disturbance light discrimination device, disturbance light separation device, disturbance light discrimination method and disturbance light separation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063736A (en) * 2010-08-20 2012-03-29 Enplas Corp Luminous flux control member and optical device having the same
JP2012168501A (en) * 2011-01-28 2012-09-06 Enplas Corp Luminous flux control member, optical device equipped therewith, and luminous flux shaping method
US10371353B2 (en) 2015-10-13 2019-08-06 Enplas Corporation Light-emitting device
JP2019135468A (en) * 2018-02-05 2019-08-15 株式会社タムロン Disturbance light discrimination device, disturbance light separation device, disturbance light discrimination method and disturbance light separation method
US11353564B2 (en) 2018-02-05 2022-06-07 Tamron Co., Ltd. Disturbance light identifying apparatus, disturbance light separating apparatus, disturbance light identifying method, and disturbance light separating method

Similar Documents

Publication Publication Date Title
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
US9234641B2 (en) Optical lens and light source device
US9557035B2 (en) Light flux controlling member, light emitting device and illumination apparatus
JP2009135080A (en) Light source device
CN107614964B (en) Light flux controlling member, light emitting device, and lighting device
TW201702521A (en) Lens for light emitting device
US10770632B2 (en) Light source device
JP2018061024A (en) Light beam control member, light-emitting device and illuminating device
JP6089107B2 (en) Lighting device and wide light distribution lens
US8956015B2 (en) Light-emitting apparatus and lighting system
WO2018066418A1 (en) Light bundle control member, light emitting device, and illuminating device
CN107797335A (en) Planar light source device and liquid crystal display device
KR20180048910A (en) LED modules and lighting modules
US9903992B2 (en) Lamp
CN109681793A (en) Lens, light-guiding shade and double-side device
JP2006172772A (en) Light distribution control member, and irradiation device
WO2017002723A1 (en) Light flux control member, light-emitting device and illumination device
JP2012169507A (en) Led light-emitting device and electronic apparatus
JP2015053189A (en) Lighting fixture
JPWO2016194798A1 (en) Surface light source device and liquid crystal display device
CN108227296A (en) The manufacturing method of planar light source device, display device and planar light source device
JP7320430B2 (en) Surface light source device and display device
CN112393198B (en) Miniaturized light projection device
WO2019160137A1 (en) Luminous flux control member, light emission device, and illumination device
JP2012174445A (en) Light guide member and light emitting device with the same