JP2006171429A - Zoom lens and imaging apparatus having same - Google Patents

Zoom lens and imaging apparatus having same Download PDF

Info

Publication number
JP2006171429A
JP2006171429A JP2004364526A JP2004364526A JP2006171429A JP 2006171429 A JP2006171429 A JP 2006171429A JP 2004364526 A JP2004364526 A JP 2004364526A JP 2004364526 A JP2004364526 A JP 2004364526A JP 2006171429 A JP2006171429 A JP 2006171429A
Authority
JP
Japan
Prior art keywords
lens
object side
refractive power
optical axis
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004364526A
Other languages
Japanese (ja)
Other versions
JP4717429B2 (en
JP2006171429A5 (en
Inventor
Yoshiaki Ito
良紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004364526A priority Critical patent/JP4717429B2/en
Publication of JP2006171429A publication Critical patent/JP2006171429A/en
Publication of JP2006171429A5 publication Critical patent/JP2006171429A5/ja
Application granted granted Critical
Publication of JP4717429B2 publication Critical patent/JP4717429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a compact zoom lens with which excellent optical performance can be obtained even if there are minor manufacturing variations in a first lens group. <P>SOLUTION: A zoom lens has the first lens group of negative refractive power and a second lens group of positive refractive power, in this order starting from the object side to an image side, and its spacing of both of the lens groups changes in zooming. The first lens group consists of an eleventh lens of negative refracting power having an aspheric shape on the faces on the object side and the image side and a twelfth lens of a positive refracting power. When the thickness on the optical axis of the eleventh lens 11 is defined as D, the optical axis direction as an X coordinate, a direction orthogonal to the optical axis as a Y coordinate, and when Y=2D and YB=3D are set, and when the X-coordinates at a height Y from the optical axis of the aspheric face on the object side and image side of the eleventh lens 11 are defined respectively as X1, X2, and the X coordinate at a height YB from the optical axis of the paraxial curvature on the object side of the eleventh lens 11 as R1B and the X coordinate at a height YB from the optical axis of the aspheric face on the object side of the eleventh lens 11 as X1B, the aspheric amount is appropriately set. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はズームレンズに関し、例えば、デジタルスチルカメラ、ビデオカメラ、或いは監視カメラ等のように固体撮像素子を用いた撮像装置に好適なものである。   The present invention relates to a zoom lens, and is suitable for an imaging apparatus using a solid-state imaging device such as a digital still camera, a video camera, or a surveillance camera.

近年、デジタルスチルカメラ、ビデオカメラなどの撮像装置では、それに用いられるCCDなどの固体撮像素子の著しい技術進歩や、撮像装置の小型化に伴い、より高い光学性能を持ち、しかも小型化、薄型化、軽量化を果たした撮影レンズが要望されている。   In recent years, imaging devices such as digital still cameras and video cameras have higher optical performance, and have become smaller and thinner due to remarkable technological progress of solid-state imaging devices such as CCDs used therein and downsizing of imaging devices. Therefore, there is a demand for a photographic lens that has been reduced in weight.

比較的高い光学性能が得られ、しかもレンズ系全体が小型のズームレンズとして、物体側より像側へ順に、負の屈折力を持つ第1レンズ群L1と正の屈折力の第2レンズ群よりなり、それら2つのレンズ群の空気間隔を変化させてズーミングを行う2群ズームレンズがある。   Relatively high optical performance is obtained, and the entire lens system is a small zoom lens, and in order from the object side to the image side, the first lens unit L1 having a negative refractive power and the second lens unit having a positive refractive power. Thus, there is a two-group zoom lens that performs zooming by changing the air gap between the two lens groups.

この2群ズームレンズは比較的少ないレンズ枚数でレンズ系が構成出来るため、小型化を狙うズームタイプのレンズ系によく利用されている。   Since this two-group zoom lens can be configured with a relatively small number of lenses, it is often used for a zoom type lens system aiming at miniaturization.

2群ズームレンズとして、第1レンズ群が負レンズと正レンズから成り、第2レンズ群が正レンズと負レンズから成る小型の2群ズームレンズが知られている(特許文献1〜3)。   As a two-group zoom lens, a small two-group zoom lens is known in which a first lens group includes a negative lens and a positive lens, and a second lens group includes a positive lens and a negative lens (Patent Documents 1 to 3).

又、このような2群ズームレンズにおいて、第1レンズ群中の物体側の負レンズの両面を非球面形状とし、収差補正を良好に行った2群ズームレンズが知られている(特許文献4〜6)。   Further, in such a two-group zoom lens, there is known a two-group zoom lens in which both surfaces of the negative lens on the object side in the first lens group are aspherical and aberrations are corrected well (Patent Document 4). ~ 6).

又、高画質化が進み高解像度の撮像素子を搭載した小型の撮像装置に対応したズームレンズとして、負、正、正の屈折力のレンズ群より成る3群ズームレンズが知られている(特許文献7、8)。   Further, as a zoom lens compatible with a small image pickup apparatus equipped with a high-resolution image pickup device with higher image quality, a three-group zoom lens made up of lens groups having negative, positive, and positive refractive powers is known (patent). References 7 and 8).

3群ズームレンズにおいて、第2レンズ群を正レンズと負レンズで構成した小型の3群ズームレンズが知られている(特許文献9)。
特開平5−281470号公報 特開平6−273670号公報 特開平11−052235号公報 特開平9−33809号公報 特開平9−33810号公報 特開2002−365545公報 特開2000−147381公報 特開2000−284177公報 特開2000−9999公報
In the three-group zoom lens, there is known a small three-group zoom lens in which the second lens group includes a positive lens and a negative lens (Patent Document 9).
JP-A-5-281470 JP-A-6-273670 Japanese Patent Laid-Open No. 11-052235 JP-A-9-33809 JP 9-33810 A JP 2002-365545 A JP 2000-147381 A JP 2000-284177 A JP 2000-9999 A

ビデオカメラやデジタルカメラ等に用いるズームレンズには、小型でかつ高い光学性能を有するレンズ系が要望されている。   A zoom lens used for a video camera, a digital camera, or the like is required to have a small lens system having high optical performance.

前述した2群ズームレンズや3群ズームレンズは、広画角用のズームレンズに好適であるが、第1レンズ群内の第1レンズ(最も物体側のレンズ)がレンズ両面で相対軸ずれが発生したとき(偏心が生じたとき)像性能が著しく劣化してしまい、製造による光学性能のばらつきが大きくなる傾向があった。   The above-described two-group zoom lens and three-group zoom lens are suitable as a zoom lens for a wide angle of view, but the first lens in the first lens group (the lens closest to the object side) has a relative axis shift on both lens surfaces. When this occurs (when decentration occurs), the image performance tends to deteriorate significantly, and the variation in optical performance due to manufacturing tends to increase.

特に第1レンズ群中の物体側の負レンズの両面を非球面形状とし、諸収差を良好に補正しようとした場合には、この傾向が顕著であった。   In particular, this tendency was conspicuous when both surfaces of the negative lens on the object side in the first lens group are aspherical and various aberrations are to be corrected well.

本発明は、製造上のばらつきが多少あっても、優れた光学性能が得られるコンパクトなズームレンズ及びそれを有する撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a compact zoom lens capable of obtaining excellent optical performance even if there is some manufacturing variation, and an imaging apparatus having the same.

本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群を有し、ズーミングに際し、双方のレンズ群の間隔が変わるズームレンズにおいて、該第1レンズ群は、物体側と像側の面が共に非球面形状の負の屈折力の第11レンズと、正の屈折力の第12レンズより成り、該第11レンズの光軸上の厚さをD、光軸方向をX座標、光軸と直交する方向をY座標、
Y=2D
YB=3D
とし、該第11レンズの物体側と像側の近軸曲率面の光軸からの高さYにおけるX座標を各々R1、R2、該第11レンズの物体側と像側の非球面の光軸からの高さYにおけるX座標を各々X1、X2、該第11レンズの物体側の近軸曲率面の光軸からの高さYBにおけるX座標をR1B、該第11レンズの物体側の非球面の光軸からの高さYBにおけるX座標をX1Bとするとき、
0 < |X1−R1|/Y < 2×10−3
1×10−2<|X2−R2|/Y < 9×10−2
1×10−4<(X1B−R1B)/YB < 5×10−3なる条件を満足することを特徴としている。
The zoom lens of the present invention includes a first lens unit having a negative refractive power and a second lens group having a positive refractive power in order from the object side to the image side, and the distance between both lens groups changes during zooming. In the zoom lens, the first lens group includes an eleventh lens having a negative refractive power in which both the object-side surface and the image-side surface are aspheric, and a twelfth lens having a positive refractive power. The thickness on the optical axis is D, the optical axis direction is the X coordinate, the direction orthogonal to the optical axis is the Y coordinate,
Y = 2D
YB = 3D
X coordinates at height Y from the optical axis of the paraxial curvature surface on the object side and the image side of the eleventh lens are R1 and R2, respectively, and the aspherical optical axis on the object side and the image side of the eleventh lens X coordinates at the height Y from the X axis are X1 and X2, respectively, the X coordinate at the height YB from the optical axis of the paraxial curvature surface on the object side of the eleventh lens is R1B, and the aspheric surface on the object side of the eleventh lens When the X coordinate at the height YB from the optical axis is X1B,
0 <| X1-R1 | / Y <2 × 10 −3
1 × 10 −2 <| X2-R2 | / Y <9 × 10 −2
1 × 10 −4 <(X1B−R1B) / YB <5 × 10 −3 is satisfied.

本発明によれば、製造上のばらつきが多少あっても、優れた光学性能が得られるコンパクトなズームレンズが得られる。   According to the present invention, it is possible to obtain a compact zoom lens capable of obtaining excellent optical performance even if there is some manufacturing variation.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1(A)、(B)、(C)は、それぞれ本発明の実施例1のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図2(A)、(B)、(C)は、それぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例1はズーム比2.25、開口比3.28〜5.37程度のズームレンズである。   FIGS. 1A, 1B, and 1C show lens cross sections at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length) of the zoom lens according to Embodiment 1 of the present invention, respectively. FIG. 2A, 2B, and 2C are aberration diagrams of the zoom lens of Embodiment 1 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. Example 1 is a zoom lens having a zoom ratio of 2.25 and an aperture ratio of about 3.28 to 5.37.

図3(A)、(B)、(C)は、それぞれ本発明の実施例2のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図4(A)、(B)、(C)は、それぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例2はズーム比2.26、開口比3.28〜5.37程度のズームレンズである。   3A, 3B, and 3C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 2 of the present invention, respectively. 4A, 4B, and 4C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the second embodiment. The second embodiment is a zoom lens having a zoom ratio of 2.26 and an aperture ratio of about 3.28 to 5.37.

図5(A)、(B)、(C)は、それぞれ本発明の実施例3のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図6(A)、(B)、(C)は、それぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例3はズーム比2.87、開口比3.18〜5.60程度のズームレンズである。   FIGS. 5A, 5B, and 5C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 3 of the present invention, respectively. 6A, 6B, and 6C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the third exemplary embodiment. Example 3 is a zoom lens having a zoom ratio of 2.87 and an aperture ratio of about 3.18 to 5.60.

図7(A)、(B)、(C)は、それぞれ本発明の実施例4のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図8(A)、(B)、(C)は、それぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例4はズーム比1.91、開口比2.88〜4.04程度のズームレンズである。   FIGS. 7A, 7B, and 7C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the fourth exemplary embodiment of the present invention. 8A, 8B, and 8C are aberration diagrams of the zoom lens of Example 4 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The fourth exemplary embodiment is a zoom lens having a zoom ratio of 1.91 and an aperture ratio of about 2.88 to 4.04.

図9は、本発明に係る非球面形状の説明図である。   FIG. 9 is an explanatory diagram of an aspheric shape according to the present invention.

図10は本発明のズームレンズを備えるデジタルスチルカメラ(撮像装置)の要部概略図
である。
FIG. 10 is a schematic diagram of a main part of a digital still camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは、撮像装置に用いられる撮影レンズ系であり、レンズ断面図
において、左方が物体側で、右方が像側である。
The zoom lens of each embodiment is a photographic lens system used in the imaging apparatus, and in the lens cross-sectional view, the left side is the object side and the right side is the image side.

図1、図3、図5、図7のレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群である。SPは開口絞りであり、実施例1〜3は第2レンズ群L2の像側に、実施例4では物体側に位置している。   In the lens cross-sectional views of FIGS. 1, 3, 5, and 7, L1 is a first lens group having negative refractive power (optical power = reciprocal of focal length), and L2 is a second lens group having positive refractive power. , L3 is a third lens unit having a positive refractive power. SP is an aperture stop. Examples 1 to 3 are located on the image side of the second lens unit L2, and Example 4 is located on the object side.

Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に対応して光学設計上設けられた光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれている。   G is an optical block provided for optical design corresponding to an optical filter, a face plate, a crystal low-pass filter, an infrared cut filter, and the like. IP is an image plane, and when used as a photographing optical system for a video camera or a digital still camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed. Yes.

収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表わしている。   In the aberration diagrams, d and g are represented by d-line and g-line, respectively, ΔM and ΔS are represented by meridional image surface, sagittal image surface, and lateral chromatic aberration are represented by g-line.

EFnoは有効Fナンバーである。ωは半画角である。   EFno is an effective F number. ω is a half angle of view.

尚、以下の各実施例において広角端と望遠端のズーム位置は変倍用レンズ群(第2レンズ群)が機構上、光軸上移動な範囲の両端に位置したときのズーム位置をいう。   In the following embodiments, the zoom positions at the wide-angle end and the telephoto end are zoom positions when the zoom lens unit (second lens unit) is positioned at both ends of a range that moves on the optical axis due to the mechanism.

図1、図3、図5の実施例1〜3のズームレンズでは、広角端から望遠端のズーム位置へのズーミングに際して、第1レンズ群L1は像側に凸状の軌跡の一部を描くように移動し、第2レンズ群L2は物体側に移動している。   In the zoom lenses of Embodiments 1 to 3 in FIGS. 1, 3, and 5, the first lens unit L1 draws a part of a convex locus on the image side during zooming from the wide-angle end to the telephoto end zoom position. The second lens unit L2 is moved to the object side.

図7の実施例4のズームレンズでは、広角端から望遠端へのズーミングに際して、第1レンズ群L1は、像側に凸状の軌跡の一部を描くように移動し、第2レンズ群L2は第1レンズ群L1との間隔が小さくなるように物体側へ移動し、第3レンズ群L3は第2レンズ群L2との間隔が大きくなるように物体側へ移動している。   In the zoom lens of Example 4 in FIG. 7, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves so as to draw a part of a convex locus on the image side, and the second lens unit L2 Is moved to the object side so that the distance from the first lens group L1 is small, and the third lens group L3 is moved to the object side so that the distance from the second lens group L2 is large.

開口絞りSPは、いずれの実施例においても、ズーミングに際して第2レンズ群L2と共に移動している。   In any of the embodiments, the aperture stop SP moves together with the second lens unit L2 during zooming.

各実施例のズームレンズでは、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の移動によって変倍に伴う像点の移動を補正している。   In the zoom lens of each embodiment, main zooming is performed by moving the second lens unit L2, and movement of the image point accompanying zooming is corrected by moving the first lens unit L1.

実施例1〜3では、第1レンズ群L1でフォーカスを行っている。実施例4では、第3レンズ群L3でフォーカスを行っている。   In Examples 1 to 3, focusing is performed by the first lens unit L1. In Example 4, focusing is performed by the third lens unit L3.

第1レンズ群L1でフォーカスを行うときは、ズーミング用のカム軌跡を階段状に形成し、ズーミング用の延長軌跡を用いても良い。   When focusing is performed with the first lens unit L1, a zooming cam locus may be formed in a step shape, and an extended locus for zooming may be used.

一般に、図1、図3、図5に示す2群ズームレンズや図7に示す3群ズームレンズにおいて、全ズーム範囲にわたり、良好な光学性能を有し、かつレンズ枚数を削減して、レンズ系の薄型化を図るには、非球面をレンズ系中の適切な箇所に適切な非球面量で用いることが有効である。   In general, the two-group zoom lens shown in FIGS. 1, 3, and 5 and the three-group zoom lens shown in FIG. 7 have good optical performance over the entire zoom range, and the number of lenses is reduced. In order to reduce the thickness, it is effective to use an aspheric surface at an appropriate location in the lens system with an appropriate aspheric amount.

特に変倍による像面変動を補正する第1レンズ群のレンズ構成を適切に設定して、ズーミングにおける収差変動を極力抑えるのが有効である。   In particular, it is effective to appropriately set the lens configuration of the first lens group that corrects image plane variation due to zooming, and suppresses aberration variation during zooming as much as possible.

そこで各実施例では、第1レンズ群L1を物体側と像側の面が非球面形状で、屈折力の絶対値が物体側の面に比べ像側の面が大きく、物体側が凸面のメニスカス形状の負の屈折力の第11レンズG11と、物体側が凸面のメニスカス形状の正の屈折力の第12レンズG12とで構成している。   Therefore, in each embodiment, the first lens unit L1 has a meniscus shape in which the object side surface and the image side surface are aspherical, the absolute value of refractive power is larger than the object side surface, and the object side is convex. The eleventh lens G11 having a negative refractive power and the meniscus twelfth lens G12 having a meniscus shape having a convex surface on the object side.

実施例1、2、4では、第2レンズ群L2を、屈折力の絶対値が像側の面に比べ、物体側の面が大きく、物体側の面が非球面形状でかつ両レンズ面が凸形状の正の屈折力の第21レンズG21、屈折力の絶対値が物体側の面に比べ像側の面が大きく、像側の面が非球面形状でかつメニスカス形状の負の屈折力の第22レンズG22とで構成している。   In Examples 1, 2, and 4, the second lens unit L2 is configured such that the absolute value of refractive power is larger than the image-side surface, the object-side surface is aspherical, and both lens surfaces are A convex 21st lens G21 having a positive refractive power, the absolute value of the refractive power is larger than the surface on the object side, the surface on the image side is aspheric, and the negative refractive power of the meniscus shape is negative. It consists of a 22nd lens G22.

このように第2レンズ群L2を構成する2つのレンズが共に非球面を有するようにして変倍に伴う収差変動が少なくなるようにしている。   In this way, the two lenses constituting the second lens unit L2 have both aspherical surfaces so that aberration fluctuations associated with zooming are reduced.

実施例3では、第2レンズ群L2を物体側の面が非球面形状で、かつ凸でメニスカス形状の正の屈折力の第21レンズと、像側の面が凹形状の負の第21レンズとを接合した接合レンズ、両レンズ面が凸形状の正の屈折力の第23レンズより構成している。   In the third exemplary embodiment, the second lens unit L2 includes a positive 21st lens having an aspherical object-side surface, a convex meniscus shape, and a negative 21st lens having a concave surface on the image side. And a 23rd lens having a positive refractive power whose both lens surfaces are convex.

これによって、変倍に伴う収差変動を良好に補正している。   As a result, aberration fluctuations accompanying zooming are corrected satisfactorily.

実施例4では、第3レンズ群L3を、1つの正の屈折力の第31レンズより構成している。   In Example 4, the third lens unit L3 includes one 31st lens having a positive refractive power.

各レンズ群においては、正の屈折力のレンズに、低分散の材料を用い、負の屈折力のレンズに高屈折率、高分散の材料を用いている。   In each lens group, a low-dispersion material is used for a lens having a positive refractive power, and a high-refractive index, high-dispersion material is used for a lens having a negative refractive power.

これによって全ズーム範囲にわたり軸上色収差を良好に補正している。   This corrects axial chromatic aberration well over the entire zoom range.

又、各実施例では、全体として、レンズ枚数を4〜5枚程度まで究極的に少なくしたときに、収差補正の効果の最も大きい物体側の負レンズの両面を非球目形状とし、かつ非球面量を条件式(1)〜(3)を満足するように適切に設定して、両面を非球面形状としたときの製造時の誤差に対する光学性能の劣化を軽減させている。   Further, in each embodiment, when the number of lenses is ultimately reduced to about 4 to 5 as a whole, both surfaces of the negative lens on the object side having the greatest effect of aberration correction are made non-spherical and non-spherical. The spherical amount is appropriately set so as to satisfy the conditional expressions (1) to (3), and the deterioration of the optical performance due to the manufacturing error when both surfaces are aspherical is reduced.

次に各実施例において、第1レンズ群L1の第11レンズG11の物体側と像側の面に設けた非球面形状について説明する。   Next, in each embodiment, an aspheric shape provided on the object side and image side surfaces of the eleventh lens G11 of the first lens unit L1 will be described.

図9は、第11レンズG11の非球面形状を示す概略図である。   FIG. 9 is a schematic diagram showing the aspherical shape of the eleventh lens G11.

図9においてRa,Rbは各々第11レンズG11の物体側と像側の面(非球面)である。   In FIG. 9, Ra and Rb are the object side and image side surfaces (aspheric surfaces) of the eleventh lens G11, respectively.

Raa,Rbbは各々第11レンズG11の近軸曲率面(非球面形状としなかったときの球面)である。   Raa and Rbb are the paraxial curvature surfaces of the eleventh lens G11 (spherical surfaces when not aspherical).

Dは第11レンズG11の光軸上の厚さ(肉厚)である。   D is the thickness (thickness) on the optical axis of the eleventh lens G11.

図9において、光軸方向をX座標、光軸と直交する方向をY座標とし、
Y=2D
YB=3D
とおき、第11レンズG11の物体側と像側の近軸曲率面Raa,Rbbの光軸からの高さYにおけるX座標を各々R1、R2、第11レンズG11の物体側と像側の非球面Ra,Rbの光軸からの高さYにおけるX座標を各々X1、X2、該11レンズG11の物体側の近軸曲率面Raaの光軸からの高さYBにおけるX座標をR1B、第11レンズG11の物体側の非球面Raaの光軸からの高さYBにおけるX座標をX1Bとするとき、
0 < |X1−R1|/Y < 2×10−3 ・・(1)
1×10−2<|X2−R2|/Y < 9×10−2 ・・(2)
1×10−4<(X1B−R1B)/YB < 5×10−3 ・・(3)
なる条件を満足している。
In FIG. 9, the optical axis direction is the X coordinate, the direction orthogonal to the optical axis is the Y coordinate,
Y = 2D
YB = 3D
The X coordinates at the height Y from the optical axis of the paraxial curvature surfaces Raa and Rbb on the object side and the image side of the eleventh lens G11 are R1 and R2, respectively, The X coordinates at the height Y from the optical axis of the spherical surfaces Ra and Rb are X1 and X2, respectively, and the X coordinate at the height YB from the optical axis of the paraxial curvature surface Raa on the object side of the eleventh lens G11 is R1B. When the X coordinate at the height YB from the optical axis of the aspheric surface Raa on the object side of the lens G11 is X1B,
0 <| X1-R1 | / Y <2 × 10 −3 (1)
1 × 10 −2 <| X2-R2 | / Y <9 × 10 −2 (2)
1 × 10 −4 <(X1B-R1B) / YB <5 × 10 −3 (3)
Is satisfied.

第11レンズG11の像側の面を非球面形状として、コマフレアーの補正に効果的に行い、又、物体側の面も非球面形状として歪曲収差を効果的に補正している。   The image side surface of the eleventh lens G11 is made aspherical to effectively correct coma flare, and the object side surface is also made aspherical to effectively correct distortion.

一般に両面を非球面形状とした場合、片面を球面とした場合に比較して像側の面と物体側の面で偏芯が起こったときに、偏芯収差が多く発生し、製造誤差による光学性能の劣化が起こりやすくなる。   In general, when both surfaces are aspherical, more decentration aberrations occur when the image side surface and the object side surface are decentered than when one surface is a spherical surface. Performance degradation is likely to occur.

そこで各実施例においては、両面を非球面形状としながら、製造誤差による光学性能の劣化を少なくする為に、主に歪曲収差の補正を行う物体側の面の非球面形状を、光軸近傍では、非球面量(deviation)が極めて小さく、光軸から離れた周辺部で、適度の非球面量を有する構成としている。   Therefore, in each embodiment, in order to reduce the deterioration of optical performance due to manufacturing errors while both surfaces are aspherical, the aspherical shape of the object side surface that mainly corrects distortion is set near the optical axis. The aspherical amount (deviation) is extremely small, and the peripheral part away from the optical axis has an appropriate aspherical amount.

条件式(1)〜(3)は、第11レンズG11の両面を非球面形状としてコマフレアーと歪曲収差を良好に補正しつつ、製造誤差による光学性能の劣化を少なくするためのものである。   Conditional expressions (1) to (3) are for reducing deterioration in optical performance due to manufacturing errors while favorably correcting coma flare and distortion by making both surfaces of the eleventh lens G11 aspherical.

次に各条件式の技術的な意味について説明する。   Next, the technical meaning of each conditional expression will be described.

条件式(1)は、第11レンズG11の物体側の面の非球面形状の中間部の非球面量に関する。   Conditional expression (1) relates to the aspherical amount of the aspherical intermediate portion of the object-side surface of the eleventh lens G11.

条件式(1)の上限値を超えると、製造上、像側の面との偏芯が発生したときに、光学性能の劣化が大きくなるので良くない。   Exceeding the upper limit value of conditional expression (1) is not good because, in terms of manufacturing, when the eccentricity with the image side surface occurs, the optical performance deteriorates greatly.

条件式(1)の下限値は、高さYにおける面形状が球面でなく非球面であることの条件である。   The lower limit value of conditional expression (1) is a condition that the surface shape at height Y is not a spherical surface but an aspherical surface.

条件式(2)は、第11レンズG11の像側の面の中間部の非球面量に関する。   Conditional expression (2) relates to the aspherical amount of the intermediate portion of the image side surface of the eleventh lens G11.

条件式(2)の上限値又は下限値を超えて非球面量が大きすぎたり、小さすぎたりすると、広角域におけるコマフレアーを良好に補正する事が困難になってくる。   If the aspherical amount is too large or too small beyond the upper limit value or lower limit value of conditional expression (2), it will be difficult to satisfactorily correct coma flare in the wide angle region.

条件式(3)は、第11レンズG11の物体側の面の周辺部の非球面量に関する。   Conditional expression (3) relates to the aspherical amount of the peripheral portion of the object-side surface of the eleventh lens G11.

条件式(3)の下限値を超えて非球面量が小さすぎると、広角端で、樽型の歪曲収差が増大するので良くない。   If the lower limit of conditional expression (3) is exceeded and the amount of aspheric surface is too small, barrel distortion increases at the wide-angle end, which is not good.

条件式(3)の上限値を超えて非球面量が大きくなり過ぎると、広角域における像面湾曲のバランスを良好に補正する事が困難となってくる。   If the amount of aspherical surface becomes too large beyond the upper limit value of conditional expression (3), it will be difficult to satisfactorily correct the balance of field curvature in the wide angle region.

各実施例において、更に好ましくは、条件式(1)〜(3)の数値範囲を次の如く設定するのが良い。   In each embodiment, it is more preferable to set the numerical ranges of conditional expressions (1) to (3) as follows.

0 < |X1−R1|/Y < 1×10−3 ・・(1a)
2×10−2<|X2−R2|/Y < 6×10−2 ・・(2a)
5×10−4<(X1B−R1B)/YB < 3×10−3 ・・(3a)
尚、以上の各実施例においては、第1レンズ群L1の物体側にフィルター、コンバーターレンズを又は/及び第2レンズ群L2又は第3レンズ群L3の像側にフィールドレンズ等の屈折力の小さなレンズ群を付加してもよい。
0 <| X1-R1 | / Y <1 × 10 −3 (1a)
2 × 10 −2 <| X2-R2 | / Y <6 × 10 −2 (2a)
5 × 10 −4 <(X1B-R1B) / YB <3 × 10 −3 (3a)
In each of the above embodiments, a filter and a converter lens are provided on the object side of the first lens unit L1, and / or a field lens or the like having a small refractive power is provided on the image side of the second lens unit L2 or the third lens unit L3. A lens group may be added.

以上のように各実施例によれば、物体側より像側へ順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群を有し、ズーミングに際し双方のレンズ群の間隔が変わるズームレンズにおいて、前述の如く各レンズ群のレンズ構成、第11レンズG11の非球面の位置、及び非球面量等を最適に設定し、これにより、レンズ枚数の削減を図り、レンズ全長の短縮化を達成したにもかかわらず、2〜3倍程度のズーム比を有しつつ、明るく、広画角で高い光学性能を有した、デジタルスチルカメラに適したズームレンズを達成している。   As described above, according to each embodiment, in order from the object side to the image side, the first lens unit having a negative refractive power and the second lens group having a positive refractive power are provided. In the zoom lens in which the lens changes, as described above, the lens configuration of each lens group, the position of the aspherical surface of the eleventh lens G11, the amount of the aspherical surface, etc. are optimally set, thereby reducing the number of lenses and In spite of achieving the shortening, a zoom lens suitable for a digital still camera has been achieved that has a zoom ratio of about 2 to 3 times, a bright, wide field angle, and high optical performance.

次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図10を用いて説明する。   Next, an embodiment of a digital still camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図10において、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22は撮影光学系21によって被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は撮像素子22が受光した被写体像を記録するメモリ、24は不図示の表示素子に表示された被写体像を観察するためのファインダーである。   In FIG. 10, reference numeral 20 denotes a camera body, 21 denotes a photographing optical system constituted by the zoom lens of the present invention, 22 denotes a solid-state imaging device (photoelectric conversion element) such as a CCD sensor or a CMOS sensor that receives a subject image by the photographing optical system 21. ), 23 is a memory for recording a subject image received by the image sensor 22, and 24 is a viewfinder for observing the subject image displayed on a display element (not shown).

上記表示素子は液晶パネル等によって構成され、撮像素子22上に形成された被写体像が表示される。   The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 22 is displayed.

このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital still camera, a small image pickup apparatus having high optical performance is realized.

次に本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riは第i番目の面(第i面)の曲率半径、Diは第i面と第(i+1)面の間隔、Ni、νiはそれぞれ第i番目の部材のd線を基準とした屈折率、アッベ数を示す。   Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the i-th surface (i-th surface), Di is the distance between the i-th surface and the (i + 1) -th surface, Ni, ν i represents a refractive index and an Abbe number based on the d-line of the i-th member, respectively.

また、最も像側の2つの面はガラスブロックGを構成する面である。   The two surfaces closest to the image side are surfaces constituting the glass block G.

間隔D=0.0は、前後の面が接合面であることを示している。   The interval D = 0.0 indicates that the front and rear surfaces are joint surfaces.

非球面形状は光軸からの高さhの位置での光軸方向の変位を、面頂点を基準にしてxとするとき
x=(h/R)/[1+{1−(1+k)(h/R)1/2
+Ah+Bh+Ch+Dh+Eh10
で表わされる。但し、kは円錐定数、A,B,C,D,Eは非球面係数、Rは近軸曲率半径である。
In the aspherical shape, when the displacement in the optical axis direction at the position of the height h from the optical axis is x with respect to the surface vertex, x = (h 2 / R) / [1+ {1- (1 + k) ( h / R) 2 } 1/2 ]
+ Ah 2 + Bh 4 + Ch 6 + Dh 8 + Eh 10
It is represented by However, k is a conic constant, A, B, C, D, and E are aspherical coefficients, and R is a paraxial curvature radius.

又「e−0x」は「×10−x」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。 “E-0x” means “× 10 −x ”. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view.

又、前述の各条件式と各実施例との関係を表1に示す。

数値実施例 1

f= 6.47〜 14.58 Fno= 3.28 〜 5.37 2ω=54.8 〜 25.9

* R 1 = 71.623 D 1 = 1.20 N 1 = 1.859610 ν 1 = 40.3
* R 2 = 3.999 D 2 = 1.27
R 3 = 6.899 D 3 = 1.60 N 2 = 2.003300 ν 2 = 28.3
R 4 = 17.314 D 4 = 可変
* R 5 = 3.339 D 5 = 2.40 N 3 = 1.519480 ν 3 = 61.8
R 6 = -12.318 D 6 = 0.05
R 7 = 18.653 D 7 = 0.90 N 4 = 1.839740 ν 4 = 23.8
* R 8 = 5.610 D 8 = 1.30
R 9 = 絞り D 9 = 可変
R10 = ∞ D10 = 1.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞


\焦点距離 6.47 10.52 14.58
可変間隔\
D 4 8.94 3.84 1.58
D 9 6.97 9.97 12.98


非球面係数

1面 : k=0.00000e+00 A=0 B=0.00000e+00 C=0.00000e+00 D=0.00000e+00
E=1.06649e-08

2面 : k=-1.42147e+00 A=0 B=1.61232e-03 C=5.75188e-05 D=-8.72454e-06 E=5.21268e-07

5面 : k=-7.19582e-01 A=0 B=1.35016e-03 C=1.25052e-04 D=-6.92345e-06 E=0.00000e+00

8面 : k=0.00000e+00 A=0 B=5.05835e-03 C=5.18532e-04 D=1.69479e-04
E=-1.74682e-05


数値実施例 2

f= 6.46〜 14.59 Fno= 3.28 〜 5.37 2ω=54.9 〜 25.9

* R 1 = 173.454 D 1 = 1.20 N 1 = 1.859610 ν 1 = 40.3
* R 2 = 4.050 D 2 = 1.14
R 3 = 6.868 D 3 = 1.60 N 2 = 2.003300 ν 2 = 28.3
R 4 = 18.825 D 4 = 可変
* R 5 = 3.322 D 5 = 2.30 N 3 = 1.505160 ν 3 = 69.4
R 6 = -13.986 D 6 = 0.03
R 7 = 10.108 D 7 = 0.90 N 4 = 1.816130 ν 4 = 24.0
* R 8 = 4.540 D 8 = 1.30
R 9 = 絞り D 9 = 可変
R10 = ∞ D10 = 1.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞


\焦点距離 6.46 10.52 14.59
可変間隔\
D 4 9.06 3.96 1.71
D 9 6.73 9.75 12.77


非球面係数

1面 : k=0.00000e+00 A=0 B=0.00000e+00 C=0.00000e+00 D=0.00000e+00
E=1.47913e-08

2面 : k=-2.82412e+00 A=0 B=4.11976e-03 C=-1.18332e-04 D=1.15515e-06 E=2.54162e-07

5面 : k=-1.00365e+00 A=0 B=2.20900e-03 C=1.07689e-04 D=-4.37671e-06 E=0.00000e+00

8面 : k=0.00000e+00 A=0 B=4.64642e-03 C=8.09817e-04 D=-6.85101e-06 E=2.44230e-05


数値実施例 3

f= 6.45〜 18.53 Fno= 3.18 〜 5.60 2ω=54.9 〜 20.5

* R 1 = 102.561 D 1 = 1.30 N 1 = 1.859610 ν 1 = 40.0
* R 2 = 5.279 D 2 = 1.30
R 3 = 7.038 D 3 = 1.70 N 2 = 1.808095 ν 2 = 22.8
R 4 = 14.336 D 4 = 可変
* R 5 = 4.150 D 5 = 1.90 N 3 = 1.768020 ν 3 = 49.2
R 6 = 14.106 D 6 = 0.00
R 7 = 14.106 D 7 = 0.80 N 4 = 2.003300 ν 4 = 28.3
R 8 = 3.765 D 8 = 0.50
R 9 = 7.542 D 9 = 1.40 N 5 = 1.696797 ν 5 = 55.5
R10 = -13.338 D10 = 0.80
R11 = 絞り D11 = 可変
R12 = ∞ D12 = 1.30 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞


\焦点距離 6.45 12.49 18.53
可変間隔\
D 4 12.31 4.02 1.13
D11 8.62 13.40 18.18


非球面係数

1面 : k=0.00000e+00 A=0 B=0.00000e+00 C=0.00000e+00 D=0.00000e+00
E=4.97787e-09

2面 : k=-2.05352e+00 A=0 B=1.48967e-03 C=1.07476e-05 D=-2.34434e-06 E=1.51972e-07

5面 : k=2.78578e-01 A=0 B=-1.16603e-

数値実施例 4

f= 5.94〜 11.34 Fno= 2.88 〜 4.04 2ω=58.8 〜 32.9

* R 1 = 88.391 D 1 = 1.20 N 1 = 1.850000 ν 1 = 40.1
* R 2 = 4.543 D 2 = 1.51
R 3 = 8.669 D 3 = 1.40 N 2 = 2.003300 ν 2 = 28.3
R 4 = 30.878 D 4 = 可変
R 5 = 絞り D 5 = 0.70
* R 6 = 3.657 D 6 = 1.90 N 3 = 1.743300 ν 3 = 49.2
R 7 = -26.805 D 7 = 0.20
R 8 = 43.517 D 8 = 0.90 N 4 = 1.833100 ν 4 = 23.9
* R 9 = 3.727 D 9 = 可変
R10 = 13.570 D10 = 1.30 N 5 = 1.487490 ν 5 = 70.2
R11 = -39.367 D11 = 可変
R12 = ∞ D12 = 1.20 N 6 = 1.544270 ν 6 = 70.6
R13 = ∞


\焦点距離 5.94 8.64 11.34
可変間隔\
D 4 10.40 4.91 1.87
D 9 2.23 3.79 5.07
D11 4.63 5.42 6.48


非球面係数

1面 : k=0.00000e+00 A=0 B=0.00000e+00 C=0.00000e+00 D=0.00000e+00
E=1.19382e-09

2面 : k=-4.51143e+00 A=0 B=4.71670e-03 C=-2.57575e-04 D=1.16233e-05 E=-2.35528e-07

6面 : k=3.00171e-01 A=0 B=-1.47239e-03 C=-7.32427e-05 D=-1.16959e-05 E=-1.70612e-06

9面 : k=0.00000e+00 A=0 B=5.19878e-03 C=8.86768e-04 D=-1.39374e-05 E=9.54031e-06
Table 1 shows the relationship between the above-described conditional expressions and the respective examples.

Numerical example 1

f = 6.47-14.58 Fno = 3.28-5.37 2ω = 54.8-25.9

* R 1 = 71.623 D 1 = 1.20 N 1 = 1.859610 ν 1 = 40.3
* R 2 = 3.999 D 2 = 1.27
R 3 = 6.899 D 3 = 1.60 N 2 = 2.003300 ν 2 = 28.3
R 4 = 17.314 D 4 = Variable
* R 5 = 3.339 D 5 = 2.40 N 3 = 1.519480 ν 3 = 61.8
R 6 = -12.318 D 6 = 0.05
R 7 = 18.653 D 7 = 0.90 N 4 = 1.839740 ν 4 = 23.8
* R 8 = 5.610 D 8 = 1.30
R 9 = Aperture D 9 = Variable
R10 = ∞ D10 = 1.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞


\ Focal length 6.47 10.52 14.58
Variable interval \
D 4 8.94 3.84 1.58
D 9 6.97 9.97 12.98


Aspheric coefficient

1 side: k = 0.00000e + 00 A = 0 B = 0.00000e + 00 C = 0.00000e + 00 D = 0.00000e + 00
E = 1.06649e-08

2 side: k = -1.42147e + 00 A = 0 B = 1.61232e-03 C = 5.75188e-05 D = -8.72454e-06 E = 5.21268e-07

5th: k = -7.19582e-01 A = 0 B = 1.35016e-03 C = 1.25052e-04 D = -6.92345e-06 E = 0.00000e + 00

Eight: k = 0.00000e + 00 A = 0 B = 5.05835e-03 C = 5.18532e-04 D = 1.69479e-04
E = -1.74682e-05


Numerical example 2

f = 6.46 to 14.59 Fno = 3.28 to 5.37 2ω = 54.9 to 25.9

* R 1 = 173.454 D 1 = 1.20 N 1 = 1.859610 ν 1 = 40.3
* R 2 = 4.050 D 2 = 1.14
R 3 = 6.868 D 3 = 1.60 N 2 = 2.003300 ν 2 = 28.3
R 4 = 18.825 D 4 = variable
* R 5 = 3.322 D 5 = 2.30 N 3 = 1.505160 ν 3 = 69.4
R 6 = -13.986 D 6 = 0.03
R 7 = 10.108 D 7 = 0.90 N 4 = 1.816130 ν 4 = 24.0
* R 8 = 4.540 D 8 = 1.30
R 9 = Aperture D 9 = Variable
R10 = ∞ D10 = 1.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞


\ Focal length 6.46 10.52 14.59
Variable interval \
D 4 9.06 3.96 1.71
D 9 6.73 9.75 12.77


Aspheric coefficient

1 side: k = 0.00000e + 00 A = 0 B = 0.00000e + 00 C = 0.00000e + 00 D = 0.00000e + 00
E = 1.47913e-08

2 side: k = -2.82412e + 00 A = 0 B = 4.11976e-03 C = -1.18332e-04 D = 1.15515e-06 E = 2.54162e-07

5th: k = -1.00365e + 00 A = 0 B = 2.20900e-03 C = 1.07689e-04 D = -4.37671e-06 E = 0.00000e + 00

8 sides: k = 0.00000e + 00 A = 0 B = 4.64642e-03 C = 8.09817e-04 D = -6.85101e-06 E = 2.44230e-05


Numerical example 3

f = 6.45 to 18.53 Fno = 3.18 to 5.60 2ω = 54.9 to 20.5

* R 1 = 102.561 D 1 = 1.30 N 1 = 1.859610 ν 1 = 40.0
* R 2 = 5.279 D 2 = 1.30
R 3 = 7.038 D 3 = 1.70 N 2 = 1.808095 ν 2 = 22.8
R 4 = 14.336 D 4 = Variable
* R 5 = 4.150 D 5 = 1.90 N 3 = 1.768020 ν 3 = 49.2
R 6 = 14.106 D 6 = 0.00
R 7 = 14.106 D 7 = 0.80 N 4 = 2.003300 ν 4 = 28.3
R 8 = 3.765 D 8 = 0.50
R 9 = 7.542 D 9 = 1.40 N 5 = 1.696797 ν 5 = 55.5
R10 = -13.338 D10 = 0.80
R11 = Aperture D11 = Variable
R12 = ∞ D12 = 1.30 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞


\ Focal length 6.45 12.49 18.53
Variable interval \
D 4 12.31 4.02 1.13
D11 8.62 13.40 18.18


Aspheric coefficient

1 side: k = 0.00000e + 00 A = 0 B = 0.00000e + 00 C = 0.00000e + 00 D = 0.00000e + 00
E = 4.97787e-09

2 side: k = -2.05352e + 00 A = 0 B = 1.48967e-03 C = 1.07476e-05 D = -2.34434e-06 E = 1.51972e-07

5th: k = 2.78578e-01 A = 0 B = -1.16603e-

Numerical example 4

f = 5.94 to 11.34 Fno = 2.88 to 4.04 2ω = 58.8 to 32.9

* R 1 = 88.391 D 1 = 1.20 N 1 = 1.850000 ν 1 = 40.1
* R 2 = 4.543 D 2 = 1.51
R 3 = 8.669 D 3 = 1.40 N 2 = 2.003300 ν 2 = 28.3
R 4 = 30.878 D 4 = variable
R 5 = Aperture D 5 = 0.70
* R 6 = 3.657 D 6 = 1.90 N 3 = 1.743300 ν 3 = 49.2
R 7 = -26.805 D 7 = 0.20
R 8 = 43.517 D 8 = 0.90 N 4 = 1.833100 ν 4 = 23.9
* R 9 = 3.727 D 9 = Variable
R10 = 13.570 D10 = 1.30 N 5 = 1.487490 ν 5 = 70.2
R11 = -39.367 D11 = variable
R12 = ∞ D12 = 1.20 N 6 = 1.544270 ν 6 = 70.6
R13 = ∞


\ Focal length 5.94 8.64 11.34
Variable interval \
D 4 10.40 4.91 1.87
D 9 2.23 3.79 5.07
D11 4.63 5.42 6.48


Aspheric coefficient

1 side: k = 0.00000e + 00 A = 0 B = 0.00000e + 00 C = 0.00000e + 00 D = 0.00000e + 00
E = 1.19382e-09

2 side: k = -4.51143e + 00 A = 0 B = 4.71670e-03 C = -2.57575e-04 D = 1.16233e-05 E = -2.35528e-07

6th: k = 3.00171e-01 A = 0 B = -1.47239e-03 C = -7.32427e-05 D = -1.16959e-05 E = -1.70612e-06

9th: k = 0.00000e + 00 A = 0 B = 5.19878e-03 C = 8.86768e-04 D = -1.39374e-05 E = 9.54031e-06

実施例1のズームレンズのレンズ断面図Lens cross-sectional view of the zoom lens of Example 1 実施例1のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間の焦点位置における収差図Aberration diagram at the intermediate focal position of the zoom lens of Example 1 実施例1のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 2 実施例2のズームレンズの広角端における収差図Aberration diagrams at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間の焦点位置における収差図Aberration diagram at the intermediate focal position of the zoom lens of Example 2 実施例2のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 3 実施例3のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens in Example 3 実施例3のズームレンズの中間の焦点位置における収差図Aberration diagrams at the intermediate focal position of the zoom lens of Example 3 実施例3のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens of Example 3 実施例4のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 4 実施例4のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens in Example 4 実施例4のズームレンズの中間の焦点位置における収差図Aberration diagrams at the intermediate focal position of the zoom lens of Example 4 実施例4のズームレンズの望遠端における収差図Aberration diagrams at the telephoto end of the zoom lens of Example 4 本発明に係る非球面形状の説明図Explanatory drawing of the aspheric shape according to the present invention デジタルスチルカメラの要部概略図Schematic diagram of the main part of a digital still camera

符号の説明Explanation of symbols

L1:第1レンズ群
L2:第2レンズ群
L3:第3レンズ群
SP:絞り
IP:像面
G:ガラスブロック
d:d線
g:g線
ΔS:サジタル像面
ΔM:メリディオナル像面
L1: First lens group L2: Second lens group L3: Third lens group SP: Aperture IP: Image plane G: Glass block d: d line g: g line ΔS: Sagittal image plane ΔM: Meridional image plane

Claims (9)

物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群を有し、ズーミングに際し、双方のレンズ群の間隔が変わるズームレンズにおいて、該第1レンズ群は、物体側と像側の面が共に非球面形状の負の屈折力の第11レンズと、正の屈折力の第12レンズより成り、該第11レンズの光軸上の厚さをD、光軸方向をX座標、光軸と直交する方向をY座標、
Y=2D
YB=3D
とし、該第11レンズの物体側と像側の近軸曲率面の光軸からの高さYにおけるX座標を各々R1、R2、該第11レンズの物体側と像側の非球面の光軸からの高さYにおけるX座標を各々X1、X2、該第11レンズの物体側の近軸曲率面の光軸からの高さYBにおけるX座標をR1B、該第11レンズの物体側の非球面の光軸からの高さYBにおけるX座標をX1Bとするとき、
0 < |X1−R1|/Y < 2×10−3
1×10−2<|X2−R2|/Y < 9×10−2
1×10−4<(X1B−R1B)/YB < 5×10−3
なる条件を満足することを特徴とするズームレンズ。
In the zoom lens having a first lens unit having a negative refractive power and a second lens unit having a positive refractive power in order from the object side to the image side, the distance between the two lens units changes during zooming. The lens group is composed of an eleventh lens having negative refractive power and a twelfth lens having positive refractive power in which both the object side surface and the image side surface are aspherical, and the thickness of the eleventh lens on the optical axis is determined. D, the optical axis direction is the X coordinate, the direction orthogonal to the optical axis is the Y coordinate,
Y = 2D
YB = 3D
X coordinates at height Y from the optical axis of the paraxial curvature surface on the object side and the image side of the eleventh lens are R1 and R2, respectively, and the aspherical optical axis on the object side and the image side of the eleventh lens X coordinates at the height Y from the X axis are X1 and X2, respectively, the X coordinate at the height YB from the optical axis of the paraxial curvature surface on the object side of the eleventh lens is R1B, and the aspheric surface on the object side of the eleventh lens When the X coordinate at the height YB from the optical axis is X1B,
0 <| X1-R1 | / Y <2 × 10 −3
1 × 10 −2 <| X2-R2 | / Y <9 × 10 −2
1 × 10 −4 <(X1B-R1B) / YB <5 × 10 −3
A zoom lens characterized by satisfying the following conditions:
前記第2レンズ群は、物体側から像側へ順に、正の屈折力の第21レンズと負の屈折力
の第22レンズより成ること又は、正の屈折力の第21レンズと負の屈折力の第22レンズと正の屈折力の第23レンズより成ることを特徴とする請求項1のズームレンズ。
The second lens group includes, in order from the object side to the image side, a 21st lens having a positive refractive power and a 22nd lens having a negative refractive power, or a 21st lens having a positive refractive power and a negative refractive power. The zoom lens according to claim 1, comprising a twenty-second lens and a twenty-third lens having a positive refractive power.
前記第11レンズは、屈折力の絶対値が物体側の面に比べ像側の面が大きい形状より成
り、前記第12レンズは、物体側が凸面のメニスカス形状より成ることを特徴とする請求
項1又は2のズームレンズ。
2. The eleventh lens has a shape in which an absolute value of refractive power is larger on an image side than an object side surface, and the twelfth lens has a meniscus shape having a convex surface on the object side. Or 2 zoom lenses.
前記第2レンズ群の物体側又は像側に開口絞りを有することを特徴とする請求項1、2又は3のズームレンズ。   4. The zoom lens according to claim 1, further comprising an aperture stop on the object side or the image side of the second lens group. 前記第2レンズ群は、非球面形状の面を含む2つのレンズを有することを特徴とする請求項1から4のいずれか1項のズームレンズ。   5. The zoom lens according to claim 1, wherein the second lens group includes two lenses including an aspherical surface. 前記第1レンズ群は、フォーカシング用のレンズ群であることを特徴とする請求項1から5のいずれか1項のズームレンズ。   The zoom lens according to claim 1, wherein the first lens group is a focusing lens group. 前記第2レンズ群の像側に、ズーミングに際して移動する正の屈折力のレンズ群を有することを特徴とする請求項1から6のいずれか1項のズームレンズ。   7. The zoom lens according to claim 1, further comprising a lens unit having a positive refractive power that moves during zooming on an image side of the second lens unit. 8. 固体撮像素子に像を形成することを特徴とする請求項1から7のいずれか1項のズームレンズ。   The zoom lens according to claim 1, wherein an image is formed on a solid-state imaging device. 請求項1〜8のいずれか1項のズームレンズと、該ズームレンズによって形成された
像を受光する固体撮像素子とを有していることを特徴とする撮像装置。
An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image sensor that receives an image formed by the zoom lens.
JP2004364526A 2004-12-16 2004-12-16 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4717429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364526A JP4717429B2 (en) 2004-12-16 2004-12-16 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364526A JP4717429B2 (en) 2004-12-16 2004-12-16 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006171429A true JP2006171429A (en) 2006-06-29
JP2006171429A5 JP2006171429A5 (en) 2008-01-31
JP4717429B2 JP4717429B2 (en) 2011-07-06

Family

ID=36672260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364526A Expired - Fee Related JP4717429B2 (en) 2004-12-16 2004-12-16 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4717429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921482A1 (en) * 2006-11-08 2008-05-14 Nikon Corporation Compact zoom lens of the retrofocus type having two lens groups
EP1959287A3 (en) * 2007-02-16 2008-08-27 Nikon Corporation Zoom lens of the retrofocus type having two lens groups
EP1959288A3 (en) * 2007-02-16 2008-08-27 Nikon Corporation Zoom lens of the retrofocus type, having two lens groups and an image shake correction function
JP2008216667A (en) * 2007-03-05 2008-09-18 Nikon Corp Zoom lens, optical apparatus, and imaging method
JP2010231190A (en) * 2009-03-06 2010-10-14 Fujifilm Corp Imaging lens and imaging apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446308A (en) * 1990-06-14 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0446309A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0456814A (en) * 1990-06-22 1992-02-24 Minolta Camera Co Ltd Compact zoom lens
JPH0933810A (en) * 1995-07-20 1997-02-07 Sony Corp Zoom lens
JP2002365545A (en) * 2001-04-04 2002-12-18 Olympus Optical Co Ltd Electronic imaging device
JP2003177316A (en) * 2001-12-11 2003-06-27 Olympus Optical Co Ltd Image pickup device
JP2004053633A (en) * 2002-07-16 2004-02-19 Olympus Corp Imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446309A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0446308A (en) * 1990-06-14 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH0456814A (en) * 1990-06-22 1992-02-24 Minolta Camera Co Ltd Compact zoom lens
JPH0933810A (en) * 1995-07-20 1997-02-07 Sony Corp Zoom lens
JP2002365545A (en) * 2001-04-04 2002-12-18 Olympus Optical Co Ltd Electronic imaging device
JP2003177316A (en) * 2001-12-11 2003-06-27 Olympus Optical Co Ltd Image pickup device
JP2004053633A (en) * 2002-07-16 2004-02-19 Olympus Corp Imaging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921482A1 (en) * 2006-11-08 2008-05-14 Nikon Corporation Compact zoom lens of the retrofocus type having two lens groups
US7542215B2 (en) 2006-11-08 2009-06-02 Nikon Corporation Zoom lens system and optical apparatus using the same
EP1959287A3 (en) * 2007-02-16 2008-08-27 Nikon Corporation Zoom lens of the retrofocus type having two lens groups
EP1959288A3 (en) * 2007-02-16 2008-08-27 Nikon Corporation Zoom lens of the retrofocus type, having two lens groups and an image shake correction function
US7667900B2 (en) 2007-02-16 2010-02-23 Nikon Corporation Zoom lens system and optical apparatus using the same
US8125712B2 (en) 2007-02-16 2012-02-28 Nikon Corporation Zoom lens system and optical apparatus using the same
JP2008216667A (en) * 2007-03-05 2008-09-18 Nikon Corp Zoom lens, optical apparatus, and imaging method
JP2010231190A (en) * 2009-03-06 2010-10-14 Fujifilm Corp Imaging lens and imaging apparatus

Also Published As

Publication number Publication date
JP4717429B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP3862520B2 (en) Zoom lens and optical apparatus using the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JP2006208890A (en) Zoom lens and imaging apparatus having the same
JP2006084829A (en) Zoom lens and imaging apparatus having the same
JP4551669B2 (en) Zoom lens and imaging apparatus having the same
JP2005234460A (en) Zoom lens and imaging apparatus provided with the same
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
JP4829629B2 (en) Zoom lens and imaging apparatus having the same
JP2006119193A (en) Zoom lens and imaging apparatus equipped with the same
JP2010160242A (en) Zoom lens, and imaging device having the same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP2009251343A (en) Zoom lens and image pickup apparatus including the same
JP5038028B2 (en) Zoom lens and imaging apparatus having the same
JP2010160243A (en) Zoom lens, and imaging device having the same
JP2015232664A (en) Zoom lens and imaging apparatus including the same
JP2006337793A (en) Zoom lens and imaging apparatus using same
JP2001296476A (en) Zoom lens and optical equipment using the same
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP2011017848A (en) Zoom lens and image pickup apparatus using the same
JP4617108B2 (en) Zoom lens and imaging apparatus having the same
JP2011065185A (en) Zoom lens and imaging apparatus having the same
JP4617107B2 (en) Zoom lens and imaging apparatus having the same
JP4717429B2 (en) Zoom lens and imaging apparatus having the same
JP4865212B2 (en) Zoom lens and imaging apparatus having the same
JP2008185783A (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees