JP2006171321A - Organic photorefractive material - Google Patents

Organic photorefractive material Download PDF

Info

Publication number
JP2006171321A
JP2006171321A JP2004363207A JP2004363207A JP2006171321A JP 2006171321 A JP2006171321 A JP 2006171321A JP 2004363207 A JP2004363207 A JP 2004363207A JP 2004363207 A JP2004363207 A JP 2004363207A JP 2006171321 A JP2006171321 A JP 2006171321A
Authority
JP
Japan
Prior art keywords
photorefractive material
organic
electric field
compound
photorefractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363207A
Other languages
Japanese (ja)
Inventor
Takatoshi Sasaki
貴俊 佐々木
Akinori Nishio
昭徳 西尾
Shu Mochizuki
周 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004363207A priority Critical patent/JP2006171321A/en
Publication of JP2006171321A publication Critical patent/JP2006171321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photorefractive material which can form a diffraction grating, without external electric field and which has a small light absorption coefficient. <P>SOLUTION: The organic photorefractive material includes the components (A) an organic photoconductive compound; (B) a sensitizer; (C) a plasticizer; and (D) at least one kind of compounds selected from among cyanobiphenyls, azomethines, and cyanophenylbenzoates, as an field responsive optical functional compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は有機フォトリフラクティブ材料に関する。本発明のフォトリフラクティブ材料は、電圧印加なしに優れたフォトリフラクティブ特性が得られ、光通信、光記録などの応用分野に用いることができる。   The present invention relates to organic photorefractive materials. The photorefractive material of the present invention provides excellent photorefractive characteristics without voltage application, and can be used in application fields such as optical communication and optical recording.

(フォトリフラクティブ材料)
フォトリフラクティブ材料は、光を照射すると空間電界が生じ、これに対応して屈折率が変化する材料である。フォトリフラクティブ材料に干渉光を照射すると、干渉光明部でのみキャリアが生成するため干渉光の光強度の分布に対応する空間電界が生じ、これに対応した屈折率変調が生じ回折格子が形成される。このようにして形成される回折格子は、干渉光の強度分布(干渉縞)との間で位相がずれる(π/2)ため、材料に入射した一方の光束と、他の光束との間にエネルギー移動が生じる。
(Photorefractive material)
A photorefractive material is a material in which a spatial electric field is generated when irradiated with light, and the refractive index changes correspondingly. When the photorefractive material is irradiated with interference light, carriers are generated only in the bright part of the interference light, so that a spatial electric field corresponding to the light intensity distribution of the interference light is generated, and a corresponding refractive index modulation is generated to form a diffraction grating. . The diffraction grating formed in this way is out of phase (π / 2) with the intensity distribution (interference fringes) of the interference light, and therefore between one light beam incident on the material and the other light beam. Energy transfer occurs.

したがって、このような特性を利用することにより信号光に対し非線形な信号処理を行う光変調素子への応用が可能である。すなわち、回折格子の形成を利用したホログラム記録材料、エネルギー移動を利用した光スイッチング素子、また回折格子から発生する回折光は位相共役となっていることから位相共役鏡としても用いることができる。   Therefore, application to an optical modulation element that performs nonlinear signal processing on signal light is possible by utilizing such characteristics. That is, the hologram recording material using the formation of the diffraction grating, the optical switching element using the energy transfer, and the diffracted light generated from the diffraction grating are phase conjugate, and therefore can be used as a phase conjugate mirror.

このようなフォトリフラクティブ材料としては、古くから知られた無機フォトリフラクティブ材料に替えて、非晶質の有機化合物を用い低コストで成形加工性に優れたフォトリフラクティブ材料(以下、有機フォトリフラクティブ材料という)が求められている。このような有機フォトリフラクティブ材料には、空間電界形成のための有機光導電性化合物と、空間電界に対応して屈折率変化を生ずる電界応答光学機能化合物(非線形光学色素など)が必須である。さらに、必要に応じて照射光の吸収効率向上のため増感剤や成形加工性向上のために可塑剤などを加えることも行われている。   As such a photorefractive material, a photorefractive material (hereinafter referred to as an organic photorefractive material) that uses an amorphous organic compound and has excellent molding processability instead of an inorganic photorefractive material that has been known for a long time. ) Is required. For such organic photorefractive materials, an organic photoconductive compound for forming a spatial electric field and an electric field response optical functional compound (such as a nonlinear optical dye) that causes a change in refractive index corresponding to the spatial electric field are essential. Further, as necessary, a sensitizer for improving the absorption efficiency of irradiation light and a plasticizer for improving molding processability are also added.

これまでの研究では主に光導電性機能を有する高分子化合物に非線形光学色素化合物などの電界応答光学機能化合物を配合したもの、逆に非線形光学色素含有高分子に光導電性機能を低分子化合物として配合したもの、あるいはポリメチルメタクリレートやポリスチレンなどフォトリフラクティブ特性について不活性な高分子をバインダ材料として用い、これに光導電性機能ならび非線形光学色素を低分子で配合したものなど種々提案がある。
特開2003-322886号公報 特開2004-210693号公報
In the past research, mainly high-molecular compounds having photoconductive function were compounded with electric field response optical functional compounds such as nonlinear optical dye compounds, and conversely, low-molecular compounds having photoconductive function in polymers containing nonlinear optical dyes. Various proposals have been made, such as those blended as a polymer, or a polymer inert to photorefractive properties such as polymethylmethacrylate and polystyrene as a binder material, and a compound containing a photoconductive function and a non-linear optical dye as a low molecule.
JP2003-322886 Japanese Patent Laid-Open No. 2004-210693

しかしながら従来のフォトリフラクティブ材料は光透過率が低く、例えば体積ホログラム記録材料に用いた場合に充分な材料の厚みを確保できない。本発明の目的は外部電場なしで回折格子が形成でき、しかも光吸収係数の充分に小さな有機フォトリフラクティブ材料を提供することにある。
本発明者らはこのような課題について鋭意検討を行なった結果、フォトリフラクティブ材料に配合する電界応答光学機能化合物として特定の化合物を配合することにより材料の光透過率を改善し得るとの知見を得て本発明を完成するに至った。
However, the conventional photorefractive material has a low light transmittance and, for example, when used for a volume hologram recording material, a sufficient thickness of the material cannot be ensured. An object of the present invention is to provide an organic photorefractive material which can form a diffraction grating without an external electric field and has a sufficiently small light absorption coefficient.
As a result of intensive studies on such problems, the present inventors have found that the light transmittance of a material can be improved by blending a specific compound as an electric field response optical functional compound to be blended with a photorefractive material. As a result, the present invention has been completed.

本発明は下記の成分A、B、C及びDを含んでなる有機フォトリフラクティブ材料:
A:有機光導電性化合物
B:増感剤
C:可塑剤
D:電界応答光学機能化合物としてのシアノビフェニル類、アゾメチン類及びシアノフェニルベンゾエート類から選ばれた少なくとも1種の化合物
を提供するものである。本発明の有機フォトリフラクティブ材料の好ましい態様では、有機光導電性化合物がポリ(N-ビニルカルバゾール)、増感剤が2,4,7−トリニトロ−9−フルオレノンであり、かつ可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートである。また、前記の有機フォトリフラクティブ材料中、成分Aの配合量が10〜50重量%、成分Bの配合量が0.01〜20重量%、成分Cの配合量が5〜50重量%であり、かつ成分Dの配合量が1〜60重量%であるのが好ましい。
The present invention provides an organic photorefractive material comprising the following components A, B, C and D:
A: Organic photoconductive compound B: Sensitizer C: Plasticizer D: At least one compound selected from cyanobiphenyls, azomethines and cyanophenylbenzoates as an electric field responsive optical functional compound is provided. is there. In a preferred embodiment of the organic photorefractive material of the present invention, the organic photoconductive compound is poly (N-vinylcarbazole), the sensitizer is 2,4,7-trinitro-9-fluorenone, and the plasticizer is 2- (1,2-cyclohexanedicarboximido) ethyl propionate. In the organic photorefractive material, the blending amount of component A is 10 to 50% by weight, the blending amount of component B is 0.01 to 20% by weight, and the blending amount of component C is 5 to 50% by weight. And it is preferable that the compounding quantity of the component D is 1 to 60 weight%.

本発明によれば、棒状分子、すなわちシアノビフェニル類、アゾメチン類及びシアノフェニルベンゾエート類から選ばれた少なくとも1種の化合物を電界応答光学機能化合物として用いることにより光吸収係数の小さい有機フォトリフラクティブ材料を得ることができる。   According to the present invention, an organic photorefractive material having a small light absorption coefficient is obtained by using at least one compound selected from rod-shaped molecules, that is, cyanobiphenyls, azomethines and cyanophenylbenzoates as an electric field response optical functional compound. Obtainable.

発明の詳細な記述Detailed description of the invention

A:有機光導電性材料
ビニルポリマーおよび付加縮合ポリマー等が挙げられ、例えばポリ(N−ビニルカルバゾール)、ポリビニルキシレン、ポリビニルナフタレン類、ポリビニルピレン類、ポリビニルキノリンやポリアセナフチレンなど芳香環を有するビニル化合物が挙げられる。この他にトリフェニルアミン誘導体を用いたビニル化合物の単独および共重合体等が挙げられる。
A: Organic photoconductive material Examples include vinyl polymers and addition condensation polymers. For example, poly (N-vinylcarbazole), polyvinylxylene, polyvinylnaphthalenes, polyvinylpyrenes, polyvinylquinoline, polyacenaphthylene, and other aromatic rings. A vinyl compound is mentioned. In addition, homopolymers and copolymers of vinyl compounds using triphenylamine derivatives may be mentioned.

特にポリ(N−ビニルカルバゾール)は他の機能性材料との相溶性が高い点で好ましい。成分Aの配合量は全組成に対して10〜50重量%が好ましい。有機光導電性化合物の配合量がこれより少ないと光電荷生成効率が低下したり、電荷輸送能低下などの不具合が生じる得る。一方、前記の範囲より多いと、フォトリフラクティブ特性の発現に必要な他の成分の濃度が低下してフォトリフラクティブ特性が低下する。   In particular, poly (N-vinylcarbazole) is preferable in terms of high compatibility with other functional materials. The blending amount of Component A is preferably 10 to 50% by weight based on the total composition. If the amount of the organic photoconductive compound is less than this, the photocharge generation efficiency may be reduced, and problems such as a decrease in charge transport ability may occur. On the other hand, when the amount is larger than the above range, the concentration of other components necessary for the expression of the photorefractive characteristic is lowered, and the photorefractive characteristic is lowered.

B:増感剤
本発明の有機フォトリフラクティブ材料は光を吸収するため増感剤が必要である。増感剤は光導電性化合物と共に電荷移動錯体を形成することが知られており、光を吸収してキャリアを生成し、生成したキャリアは有機光導電性材料によって輸送される。
増感剤としては電子吸引性基を有する増感剤が好ましく、例えば電子吸引性のニトロ基を有するフルオレノン類がある。具体的には2,4,7−トリニトロ−9−フルオレノン(TNF)、2,4,7−トリニトロ−9−フルオレニリデンマロニトリル、2,4−ジニトロフルオレンなどのフルオレン誘導体が挙げられる。そのほか、9−オキソ−9H−チオキサンテン−3−カルボン酸−10,10−ジオキシド、9−オキソ−9H−チオキサンテン−3−カルボキシアミド−10,10ジオキシドなどのチオキサンテン類、テトラシアノエチレンや7,7,8,8−テトラシアノキノジメタンなどのシアノエチレン類、C60、C70などフラーレン類も好ましい。これらのうち、2,4,7−トリニトロ−9−フルオレノンは他の機能性化合物と相溶性が良好であり、強い電子吸引性を有しており特に好ましい。
B: Sensitizer The organic photorefractive material of the present invention needs a sensitizer to absorb light. It is known that a sensitizer forms a charge transfer complex with a photoconductive compound, absorbs light to generate a carrier, and the generated carrier is transported by an organic photoconductive material.
As the sensitizer, a sensitizer having an electron-withdrawing group is preferable, and examples thereof include fluorenones having an electron-withdrawing nitro group. Specific examples include fluorene derivatives such as 2,4,7-trinitro-9-fluorenone (TNF), 2,4,7-trinitro-9-fluorenylidene malonitrile, and 2,4-dinitrofluorene. In addition, thioxanthenes such as 9-oxo-9H-thioxanthene-3-carboxylic acid-10,10-dioxide, 9-oxo-9H-thioxanthene-3-carboxamide-10,10 dioxide, tetracyanoethylene, Cyanoethylenes such as 7,7,8,8-tetracyanoquinodimethane and fullerenes such as C 60 and C 70 are also preferred. Of these, 2,4,7-trinitro-9-fluorenone is particularly preferable because it has good compatibility with other functional compounds and has strong electron withdrawing properties.

かかる増感剤の配合量は有機フォトリフラクティブ材料中0.01〜20重量%が好ましく、より好ましくは0.1〜20重量%である。増感剤の配合量が、この範囲より少ないとキャリアの生成効率が低い。一方、この範囲より多いと電荷発生量は増大するが、増感剤と有機光導電性化合物から生成する電荷移動錯体の光吸収が強くなり過ぎ、フォトリフラクディブ材料を光変調素子とした場合に信号光強度低下の原因となる。   The blending amount of such a sensitizer is preferably 0.01 to 20% by weight, more preferably 0.1 to 20% by weight in the organic photorefractive material. When the amount of the sensitizer is less than this range, the carrier generation efficiency is low. On the other hand, if the amount exceeds this range, the amount of charge generation increases, but the light absorption of the charge transfer complex generated from the sensitizer and the organic photoconductive compound becomes too strong, and the photorefractive material is used as a light modulation element. This causes a decrease in signal light intensity.

C:可塑剤
本発明において可塑剤は前記各成分を均一に混合する溶媒または相溶化剤としての役割を果たし、材料の成形加工性を向上させる。このような可塑剤としては、2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート、2−(1,2−シクロヘキサンジカルボキシイミド)エチルブチレート、2−(1,2−シクロヘキサンジカルボキシイミド)エチルベンゾエート、2−(1,2−シクロヘキサンジカルボキシイミド)エチルアクリレート、2−(フタルイミド)エチルプロピオネートなどのほか、リン酸トリクレジル、フタル酸ジオクチルエステル、フタル酸ブチルベンジルエステル、ジブチルスズジラウリン酸エステルなどの一般的な可塑剤が挙げられる。これらのうち、他の機能成分との相溶性がよいことから、2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート(AX22)が好ましい。
C: Plasticizer In the present invention, the plasticizer serves as a solvent or compatibilizer for uniformly mixing the above-described components, and improves the moldability of the material. Examples of such plasticizers include 2- (1,2-cyclohexanedicarboximido) ethyl propionate, 2- (1,2-cyclohexanedicarboximido) ethyl butyrate, 2- (1,2-cyclohexanedioxylate). Carboximido) ethyl benzoate, 2- (1,2-cyclohexanedicarboximido) ethyl acrylate, 2- (phthalimido) ethyl propionate, tricresyl phosphate, dioctyl phthalate, butyl benzyl phthalate, dibutyltin Common plasticizers such as dilauric acid esters can be mentioned. Of these, 2- (1,2-cyclohexanedicarboximido) ethyl propionate (AX22) is preferred because of its good compatibility with other functional components.

かかる可塑剤の配合量は、フォトリフラクティブ材料中、5〜50重量%が好ましい。可塑剤の配合量がこの範囲より少ないと結晶析出などの相分離を生ずる。一方、この範囲より多いと他の機能性化合物の配合量が低下し必然的にフォトリフラクティブ材料の特性の低下を招く。   The blending amount of the plasticizer is preferably 5 to 50% by weight in the photorefractive material. When the amount of the plasticizer is less than this range, phase separation such as crystal precipitation occurs. On the other hand, when it exceeds this range, the compounding quantity of another functional compound will fall and the characteristic of a photorefractive material will fall inevitably.

D:電界応答光学機能化合物
従来のフォトリフラクティブ材料では、増感剤及び光導電性材料により電荷移動錯体を形成し、外部電場の印加なしでフォトリフラクティブ効果を引き起こすのに必要な空間電場が形成され、これに非線形光学色素などの電界応答光学機能化合物が応答することにより屈折率変調が誘起されて回折格子が形成される。本発明のフォトリフラクティブ材料では、電界応答光学機能化合物としてシアノビフェニル類、アゾメチン類、シアノフェニルベンゾエート類から選ばれた少なくとも1種の化合物が使用される。具体的にシアノビフェニル類(式D1)としては4−シアノ−4'−n−ヘプチルオキシビフェニルなど;フェニルベンゾエート類(式D2、式D3)としてはシアノフェニルベンゾエート、4−ニトロフェニルサリチレートなど;アゾメチン類(式D4)としては4−[(4−メトキシベンジリデン)アミノ]ベンゾニトリルなどが挙げられる。
これらの化合物は棒状分子であるので光吸収係数が小さく、かつ複屈折率が大きく、配向時に大きな屈折率変化が得られるので、外部電場なしで回折格子を形成することができる。
D: Field-responsive optical functional compound In the conventional photorefractive material, a charge transfer complex is formed by a sensitizer and a photoconductive material, and a spatial electric field necessary to cause a photorefractive effect without applying an external electric field is formed. Then, an electric field response optical functional compound such as a nonlinear optical dye responds to this to induce refractive index modulation, thereby forming a diffraction grating. In the photorefractive material of the present invention, at least one compound selected from cyanobiphenyls, azomethines, and cyanophenylbenzoates is used as the electric field response optical functional compound. Specifically, as cyanobiphenyls (formula D1), 4-cyano-4′-n-heptyloxybiphenyl and the like; phenylbenzoates (formula D2, formula D3) as cyanophenylbenzoate, 4-nitrophenyl salicylate, etc. Azomethines (formula D4) include 4-[(4-methoxybenzylidene) amino] benzonitrile and the like.
Since these compounds are rod-like molecules, they have a small light absorption coefficient, a large birefringence, and a large change in refractive index during orientation, so that a diffraction grating can be formed without an external electric field.

Figure 2006171321
(式中、Rは炭素数1〜13のアルキル基)
Figure 2006171321
(式中、Xはニトロ基又シアノ基であり、nは0〜3の整数である。)
Figure 2006171321
(式中、Rは水素原子又は炭素数1〜6のアルキル基であり、Xはニトロ基又はシアノ基である。)
Figure 2006171321
(式中、Rは水素原子又は炭素数1〜6のアルキル基であり、Xはニトロ基又シアノ基である。)
Figure 2006171321
(Wherein R is an alkyl group having 1 to 13 carbon atoms)
Figure 2006171321
(In the formula, X is a nitro group or a cyano group, and n is an integer of 0 to 3.)
Figure 2006171321
(In the formula, R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X is a nitro group or a cyano group.)
Figure 2006171321
(In the formula, R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X is a nitro group or a cyano group.)

前記電界応答光学機能化合物の配合量は、フォトリフラクティブ材料全体に対して1〜60重量%が好ましく、10〜30重量%であるのがより好ましい。配合量が前記範囲より少ないと屈折率変調が起こらず回折格子が形成されない。一方、配合量が前記の範囲より多いと結晶化あるいは相分離が起こり、光散乱により記録が不可能になる。
さらに必要によって他の電界応答光学機能化合物を追加してもよい。そのような電界応答光学機能化合物としては分子内にアミノ基、ヒドロキシ基、エーテル基などの電子供与性基とシアノ基やニトロ基などの電子吸引性基を有する化合物、また、ベンゼン骨格などの剛直骨格を介して極性の大きな官能基が結合した化合物などが挙げられる。
The blending amount of the electric field response optical functional compound is preferably 1 to 60% by weight, more preferably 10 to 30% by weight, based on the entire photorefractive material. If the blending amount is less than the above range, refractive index modulation does not occur and a diffraction grating is not formed. On the other hand, if the blending amount is larger than the above range, crystallization or phase separation occurs and recording becomes impossible due to light scattering.
Furthermore, other electric field response optical functional compounds may be added if necessary. Such electric field responsive optical functional compounds include compounds having an electron-donating group such as an amino group, a hydroxy group or an ether group and an electron-withdrawing group such as a cyano group or a nitro group in the molecule, or a rigid group such as a benzene skeleton. Examples thereof include compounds having a large polar functional group bonded through a skeleton.

(フォトリフラクティブ成形体の調製)
前記の各成分を用いてフォトリフラクティブ成形体を製造する方法について説明する。フォトリフラクティブ成形体中の固形分は均一に混合する必要がある。したがって、固形分を高極性溶媒に溶解し、均一になるまで充分に攪拌、混合する。溶媒中の固形分濃度は均一な溶解が可能な濃度であればよいが、混合時における溶液粘度やフィルム作成時に必要な乾燥などの操作が容易なよう固形分濃度1〜20重量%となるよう溶解するのが好ましい。
(Preparation of photorefractive molding)
A method for producing a photorefractive molded article using each of the above components will be described. The solid content in the photorefractive molded body needs to be mixed uniformly. Therefore, the solid content is dissolved in a highly polar solvent and sufficiently stirred and mixed until uniform. The solid content concentration in the solvent may be a concentration that allows uniform dissolution, but the solid content concentration should be 1 to 20% by weight so that operations such as solution viscosity at the time of mixing and drying necessary for film formation are easy. It is preferred to dissolve.

このようにして得られた混合溶液を用いてキャスト法などによりフィルムを作成し実用可能なフォトリフラクティブ材料を製造する。なお、本発明のフォトリフラクティブ材料の形態はフィルムに限定されず、使用目的に応じて適宜の形態に成形することができる。
例えば、キャスト法によりフィルムを作成するには、ガラス板などの基材上にスピンコート、滴下などにより直接塗布して、目的の膜厚、形状に応じて溶液を流延し、平滑なフィルム表面を得る。ついで、減圧下、加温などによりキャストされた溶液から溶媒を除去しフィルムを作成する。
Using the mixed solution thus obtained, a film is produced by a casting method or the like to produce a practical photorefractive material. In addition, the form of the photorefractive material of this invention is not limited to a film, It can shape | mold into a suitable form according to the intended purpose.
For example, in order to create a film by a casting method, a smooth film surface is obtained by directly applying a film on a substrate such as a glass plate by spin coating or dripping, and casting a solution according to a desired film thickness and shape. Get. Next, the solvent is removed from the cast solution by heating or the like under reduced pressure to form a film.

つぎに、本発明を実施例および比較例によりさらに具体的に説明する。
[実施例1〜4、比較例1]
(試料の準備)
A:有機光導電性子化合物
ポリ(N−ビニルカルバゾール)はアルドリッチ社製のものを購入し、再沈殿精製して用いた。

Figure 2006171321
Next, the present invention will be described more specifically with reference to examples and comparative examples.
[Examples 1 to 4, Comparative Example 1]
(Sample preparation)
A: Organic photoconductive child compound Poly (N-vinylcarbazole) manufactured by Aldrich was purchased and used after reprecipitation and purification.
Figure 2006171321

B:増感剤
2,4,7−トリニトロ−9−フルオレノンは東京化成工業社製のものを購入しそのまま使用した。

Figure 2006171321
B: Sensitizer 2,4,7-trinitro-9-fluorenone manufactured by Tokyo Chemical Industry Co., Ltd. was purchased and used as it was.
Figure 2006171321

C:可塑剤
2−(1,2−シクロヘキサンジカルボキシイミド)エチルピロピオネート(AX22)は下記方法に従い合成したものを用いた。

Figure 2006171321
フタル酸無水物149g(967mmol)にトルエン200mlとエタノールアミン62g(1000mmol)を加えて80℃で2時間攪拌した後、チタンブタネートを15g(44mmol)を加えて還流を19時間行った。冷却後反応溶液に水100mlを加えることで析出する白色沈殿物を濾別して有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製してN−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミドを得た(200g)。
N−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミド52g(272mmol)にピリジン57ml、トルエン200ml、プロピオン酸クロライド30ml(347mmol)を加えて90℃で19時間攪拌した。反応混合物を希塩酸水、炭酸水素ナトリウム水溶液、食塩水の順で洗浄し有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製し目的物を得た。収量45g、収率65% C: Plasticizer 2- (1,2-cyclohexanedicarboximido) ethyl pyropionate (AX22) was synthesized according to the following method.
Figure 2006171321
To 149 g (967 mmol) of phthalic anhydride, 200 ml of toluene and 62 g (1000 mmol) of ethanolamine were added and stirred at 80 ° C. for 2 hours, and then 15 g (44 mmol) of titanium butanate was added and refluxed for 19 hours. After cooling, 100 ml of water was added to the reaction solution, and the white precipitate that precipitated was collected by filtration to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain N- (2-hydroxyethyl) cyclohexanedicarboximide. Obtained (200 g).
To 52 g (272 mmol) of N- (2-hydroxyethyl) cyclohexanedicarboximide, 57 ml of pyridine, 200 ml of toluene and 30 ml (347 mmol) of propionic acid chloride were added and stirred at 90 ° C. for 19 hours. The reaction mixture was washed with diluted hydrochloric acid, sodium bicarbonate aqueous solution, and brine in this order to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain the desired product. Yield 45g, Yield 65%

D:電界応答光学機能化合物

Figure 2006171321
4−シアノ−4'−n−ヘプチルオキシビフェニル
Figure 2006171321
シアノフェニルベンゾエート
Figure 2006171321
4−ニトロフェニルサリチレート;
Figure 2006171321
4−[(4−メトキシベンジリデン)アミノ]ベンゾニトリル
Figure 2006171321
7DCST D: Electric field response optical functional compound
Figure 2006171321
4-cyano-4'-n-heptyloxybiphenyl
Figure 2006171321
Cyanophenyl benzoate
Figure 2006171321
4-nitrophenyl salicylate;
Figure 2006171321
4-[(4-Methoxybenzylidene) amino] benzonitrile
Figure 2006171321
7DCST

(フォトリフラクティブ材料の調製及びその評価方法)
上記の成分A〜Dを表1に示す配合にてテトラヒドロフランに加え溶解した。この溶液をポリテトラフルオロエチレン膜でろ過しゴミなどの不純物を除去した後、70℃にて一晩加熱乾燥を行い、テトラヒドロフランを完全に留去して均一混合された固形分を得た。この固形分をガラス板にスペーサーであるガラスビーズとともに挟み込んで膜厚が100μmのフィルムにして特性評価用試料を得た。
得られた試料についてヘリウムネオンレーザーを光源とした干渉露光を行ったところ外部からの電場なしで回折格子が形成されることが確認された。吸収係数の測定はJASCO紫外可視分光光度計(V−560)を用いて633nmの吸光度を測定することにより行った。測定結果を表1にまとめた。
(Preparation of photorefractive material and evaluation method thereof)
The above components A to D were added to tetrahydrofuran in the formulation shown in Table 1 and dissolved. This solution was filtered through a polytetrafluoroethylene membrane to remove impurities such as dust, and then heated and dried at 70 ° C. overnight, and tetrahydrofuran was completely distilled off to obtain a uniformly mixed solid. This solid content was sandwiched between glass beads as spacers on a glass plate to obtain a film having a thickness of 100 μm, and a sample for characteristic evaluation was obtained.
When the obtained sample was subjected to interference exposure using a helium neon laser as a light source, it was confirmed that a diffraction grating was formed without an external electric field. The absorption coefficient was measured by measuring the absorbance at 633 nm using a JASCO UV-visible spectrophotometer (V-560). The measurement results are summarized in Table 1.

(結果)
電界応答光学機能化合物を含む実施例の有機フォトリフラクティブ材料は、比較例のものに比べて光吸収係数が小さい。
(result)
The organic photorefractive material of the example containing the field response optical functional compound has a smaller light absorption coefficient than that of the comparative example.

Figure 2006171321
Figure 2006171321

Claims (3)

下記の成分A、B、C及びDを含んでなる有機フォトリフラクティブ材料。
A:有機光導電性化合物
B:増感剤
C:可塑剤
D:電界応答光学機能化合物としてのシアノビフェニル類、アゾメチン類及びシアノフェニルベンゾエート類から選ばれた少なくとも1種の化合物
An organic photorefractive material comprising the following components A, B, C and D.
A: Organic photoconductive compound B: Sensitizer C: Plasticizer D: At least one compound selected from cyanobiphenyls, azomethines and cyanophenylbenzoates as electric field responsive optical functional compounds
有機光導電性化合物がポリ(N-ビニルカルバゾール)、増感剤が2,4,7−トリニトロ−9−フルオレノンであり、かつ可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートである請求項1の有機フォトリフラクティブ材料。 The organic photoconductive compound is poly (N-vinylcarbazole), the sensitizer is 2,4,7-trinitro-9-fluorenone, and the plasticizer is 2- (1,2-cyclohexanedicarboximido) ethyl pro The organic photorefractive material of claim 1 which is a pioneate. 有機フォトリフラクティブ材料中、成分Aの配合量が10〜50重量%、成分Bの配合量が0.01〜20重量%、成分Cの配合量が5〜50重量%であり、かつ成分Dの配合量が1〜60重量%である請求項1の有機フォトリフラクティブ材料。 In the organic photorefractive material, the blending amount of component A is 10 to 50% by weight, the blending amount of component B is 0.01 to 20% by weight, the blending amount of component C is 5 to 50% by weight, and The organic photorefractive material according to claim 1, wherein the blending amount is 1 to 60% by weight.
JP2004363207A 2004-12-15 2004-12-15 Organic photorefractive material Pending JP2006171321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363207A JP2006171321A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363207A JP2006171321A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Publications (1)

Publication Number Publication Date
JP2006171321A true JP2006171321A (en) 2006-06-29

Family

ID=36672163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363207A Pending JP2006171321A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Country Status (1)

Country Link
JP (1) JP2006171321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047904A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Method for modulating light of photore-fractive composition without external bias voltage
WO2010047903A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Optical devices for modulating light of photorefractive compositions with thermal control
US7985356B2 (en) 2006-07-25 2011-07-26 Nitto Denko Corporation Non-linear optical device sensitive to green laser
US8203780B2 (en) 2007-01-26 2012-06-19 Nitto Denko Corporation Systems and methods for improving the performance of a photorefractive device
US20130128339A1 (en) * 2010-08-05 2013-05-23 Nitto Denko Corporation Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985356B2 (en) 2006-07-25 2011-07-26 Nitto Denko Corporation Non-linear optical device sensitive to green laser
US8203780B2 (en) 2007-01-26 2012-06-19 Nitto Denko Corporation Systems and methods for improving the performance of a photorefractive device
WO2010047904A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Method for modulating light of photore-fractive composition without external bias voltage
WO2010047903A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Optical devices for modulating light of photorefractive compositions with thermal control
US20110262845A1 (en) * 2008-10-20 2011-10-27 Nitto Denko Corporation Method for modulating light of photorefractive composition without external bias voltage
US20130128339A1 (en) * 2010-08-05 2013-05-23 Nitto Denko Corporation Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum

Similar Documents

Publication Publication Date Title
US5114621A (en) Indolino-spiro-oxazine photochromic compounds with five-membered rings, method for their preparation, photochromic compositions and articles containing such compounds
Chae et al. Photoreaction and molecular reorientation in a nanoscaled film of poly (methyl 4-(methacryloyloxy) cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy
JP2684573B2 (en) Matrix material for electro-optical device made of non-linear optically active organic compound and electro-optical device including the same
JP2003064354A (en) Photochromic material
CN1263540A (en) Homopolymers with high photoinduceable double refraction
JP3491704B2 (en) Dithienylethene compound and photochromic material comprising the compound
JP2006171321A (en) Organic photorefractive material
Zarins et al. Triphenyl group containing molecular glasses of azobenzene for photonic applications
JPH05506872A (en) Side-chain copolymers exhibiting nonlinear optical response
CA2461570C (en) Rewriteable optical recording material having good solubility
Qu et al. Synthesis and properties of helical polyacetylenes carrying cholesteryl moieties
JP2007041324A (en) Organic photorefractive material
Ortíz-Palacios et al. Incorporation of novel azobenzene dyes bearing oligo (ethylene glycol) spacers into first generation dendrimers
JP2006018113A (en) Organic photorefractive material and optical recording material using same
JP2006171320A (en) Organic photorefractive material
Suh et al. Polymethacrylates with benzylidenephthalimidine side chains, 1. Photochemical characteristics of model compounds and polymers
JP2000256320A (en) Photorefractive material composition, compound and polymer used for the composition
JP2000344693A (en) Diarylethene compound and organic photochromic film
JP2005258377A (en) Organic photorefractive material
JPS6176490A (en) Photochromic compound
JP2992424B2 (en) Benzothiophene / indole-substituted maleimide derivative, photochromic material and optical recording material using the same
JP3260471B2 (en) Anthracene derivative
Angiolini et al. Synthesis and Photoresponsive Properties of Optically Active Methacrylic Polymers Bearing Side‐Chain Azocarbazole Moieties
WO2015147126A1 (en) Pentaarylbiimidazole compound and production method for said compound
Ohtani et al. Reversible light-driven structural changes between the mono-and bilayer stacking alignments in 4-octadecyloxystilbazolium arylcarboxylate films