JP2006170063A - Savonius-type windmill - Google Patents

Savonius-type windmill Download PDF

Info

Publication number
JP2006170063A
JP2006170063A JP2004363212A JP2004363212A JP2006170063A JP 2006170063 A JP2006170063 A JP 2006170063A JP 2004363212 A JP2004363212 A JP 2004363212A JP 2004363212 A JP2004363212 A JP 2004363212A JP 2006170063 A JP2006170063 A JP 2006170063A
Authority
JP
Japan
Prior art keywords
plate
savonius
type windmill
plates
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004363212A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2004363212A priority Critical patent/JP2006170063A/en
Publication of JP2006170063A publication Critical patent/JP2006170063A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight savonius-type windmill having high strength without increasing in weight even when the surface area is increased which can be rotated easily even with a small wind pressure. <P>SOLUTION: The savonius-type windmill 1 includes a pair of blade bodies W1, W2 having substantially arc-shaped cross sections, end plates 11, 12 fixed to both upper and lower ends of the the pair of blade bodies W1 and W2, and rotary shafts 7, 7 fixed to the end plates 11, 12. The pair of blade bodies W1 and W2 comprises: a pair of surface plates 20a and 20b which are parallel to each other having substantially arc-shaped cross sections; a honeycomb core material 17 having a certain thickness, adhered between the surface plates 20a and 20b; and a honeycomb sandwich panel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、風力発電などに適用され軽量で高強度のサボニウス型風車に関する。   The present invention relates to a lightweight and high-strength Savonius type windmill that is applied to wind power generation and the like.

サボニウス型風車は、2枚または3枚以上の断面円弧形を呈する回転翼を回転軸に対して対称に配置し、径方向などからの風圧により回転することで、発電などに活用されている。上記複数枚の回転翼には、一般に、金属板を曲げ加工した形態のものが用いられている(例えば、特許文献1参照)。   Savonius-type wind turbines are used for power generation, etc. by arranging two or three or more rotor blades having an arcuate cross section symmetrically with respect to the rotation axis and rotating by wind pressure from the radial direction, etc. . In general, the plurality of rotor blades are formed by bending a metal plate (see, for example, Patent Document 1).

特開平9−250444号公報(第1〜5頁、図1)JP-A-9-250444 (pages 1-5, FIG. 1)

また、金属製の厚板を断面円弧形で且つ翼形に切削したり、係る断面形状のキャビティに鋳造して回転翼を形成する方法も検討されている。
しかしながら、金属板を曲げ加工した前記回転翼や、切削あるいは鋳造により成形した上記回転翼は、表面積が大きくなるに連れて重量が過大となるため、小さな風圧では回転しにくくなる、という問題点があった。
In addition, a method of forming a rotor blade by cutting a thick metal plate into an airfoil shape with a circular arc cross section or casting into a cavity having such a cross sectional shape has been studied.
However, the rotating blade formed by bending a metal plate or the rotating blade formed by cutting or casting has a problem that it becomes difficult to rotate with a small wind pressure because the weight increases as the surface area increases. there were.

本発明は、前述した背景技術における問題点を解決し、表面積が大きくなっても重量が過大にならず、小さな風圧でも容易に回転できる軽量で且つ高強度のサボニウス型風車を提供する、ことを課題とする。   The present invention solves the problems in the background art described above, and provides a lightweight and high-strength Savonius-type windmill that can be easily rotated even with a small wind pressure without being excessively heavy even when the surface area is increased. Let it be an issue.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、回転翼を一対の表面板とこれら間に接合された芯材とからなるサンドイッチパネルにより形成する、ことに着想して成されたものである。
即ち、本発明のサボニウス型風車(請求項1)は、翼体をハニカムサンドイッチパネルにより形成した、ことを特徴とする。
また、本発明のサボニウス型風車(請求項2)は、断面ほぼ円弧形である複数の翼体と、係る複数の翼体の一端または両端に固定される端部板と、複数の翼体における一端または両端の端部板に固定される回転軸と、を含み、上記複数の翼体は、互いに平行で断面ほぼ円弧形である一対の表面板と、これらの間に接合される一定厚さの芯材と、を備えたハニカムサンドイッチパネルからなる、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention has been conceived in that the rotor blade is formed by a sandwich panel composed of a pair of surface plates and a core member joined between them.
That is, the Savonius type wind turbine of the present invention (Claim 1) is characterized in that the wing body is formed of a honeycomb sandwich panel.
The Savonius type wind turbine according to the present invention (Claim 2) includes a plurality of wing bodies having a substantially arc-shaped cross section, an end plate fixed to one or both ends of the plurality of wing bodies, and a plurality of wing bodies. A plurality of blades, and a plurality of blades parallel to each other and having a substantially arcuate cross-section, and a fixed joint joined therebetween And a honeycomb sandwich panel having a thickness of a core material.

これらによれば、複数の翼体がハニカムサンドイッチパネルからなるため、これらと端部板を含む回転体を軽量化できる。また、心材の厚さが一定のため、製作も容易となる。このため、翼体の表面積が大きくなっても重量が過大にならず、小さな風圧でも容易に回転できるため、風力発電などを効果的に行えると共に、耐久性にも優れ且つ設置コストの回収も容易とすることができる。例えば、従来の翼体は、半径500mm×軸方向の長さ700mm位であったが、本発明によれば、半径1000〜1800mm×軸方向の長さ1300〜2500mmの翼体とすることも可能である。   According to these, since the plurality of blade bodies are formed of the honeycomb sandwich panel, the rotating body including these and the end plate can be reduced in weight. Moreover, since the thickness of the core material is constant, the manufacture is also easy. Therefore, even if the surface area of the wing body increases, the weight does not become excessive, and it can be rotated easily even with a small wind pressure. Therefore, wind power generation can be effectively performed, and durability is excellent and installation cost can be easily recovered. It can be. For example, a conventional wing body has a radius of about 500 mm × an axial length of about 700 mm, but according to the present invention, a wing body with a radius of 1000 to 1800 mm × an axial length of 1300 to 2500 mm can be used. It is.

尚、前記翼体の断面ほぼ円弧形には、断面ほぼ半円形、断面ほぼ弓形、断面への字形などの形態が含まれる。また、複数の翼体は、一対(2枚)を対点称に配置する形態のほか、3枚以上を同様に配置する形態も含むと共に、これら複数の翼体は、地面に対し軸方向が垂直に配置するほか、地面に対し軸方向が平行に配置する形態も含まれる。更に、前記ハニカムサンドイッチパネルに用いる一対の表面板は、アルミニウム合金板、鋼板、ステンレス鋼板、あるいはチタン合金板が用いられる。上記アルミニウム合金板の場合、比較的高融点の基板の両面または片面に比較的低融点のロウ材層を被覆したクラッド材を用いても良く、同様のクラッド材からなるハニカムコア材とロウ付けして接合しても良い。加えて、前記芯材は、後述する薄板をカールさせるなどした円筒状の単位セル群からなる形態のほか、六角筒体のセル群からなる形態のハニカムコア材としても良い。これらのハニカムコア材と表面板との結合は、ロウ付け方法によるほか、接着剤を用いる接着方法によることも可能である。   Note that the substantially arc-shaped cross section of the wing body includes forms such as a substantially semicircular cross section, a substantially arcuate cross section, and a cross-sectional shape. Further, the plurality of wing bodies include a form in which a pair (two sheets) are arranged in a counterpoint manner, and a form in which three or more wing bodies are similarly arranged, and the plurality of wing bodies have an axial direction with respect to the ground. In addition to the vertical arrangement, a configuration in which the axial direction is parallel to the ground is also included. Further, the pair of surface plates used for the honeycomb sandwich panel is an aluminum alloy plate, a steel plate, a stainless steel plate, or a titanium alloy plate. In the case of the aluminum alloy plate, a clad material in which a brazing material layer having a relatively low melting point is coated on both sides or one side of a substrate having a relatively high melting point may be used, and brazed with a honeycomb core material made of the same clad material. May be joined. In addition, the core material may be a honeycomb core material formed of a hexagonal cylindrical cell group in addition to a cylindrical unit cell group obtained by curling a thin plate to be described later. The bonding between the honeycomb core material and the surface plate can be performed not only by a brazing method but also by an adhesive method using an adhesive.

また、本発明には、前記端部板は、サンドイッチパネルからなる、サボニウス型風車(請求項3)も含まれる。
これによれば、複数の回転翼と共に端部板も前記同様のサンドイッチパネルから形成されるため、サボニウス型風車の回転体を一層軽量化することができる。
The present invention also includes a Savonius type windmill (Claim 3) in which the end plate is a sandwich panel.
According to this, since the end plate is formed of the same sandwich panel as the plurality of rotor blades, the rotating body of the Savonius type windmill can be further reduced in weight.

更に、本発明には、前記芯材は、円筒状のアルミニウム合金の薄板からなり直径が縮径可能である多数の単位セルを敷き並べた形態である、サボニウス型風車(請求項4)も含まれる。
これによれば、上記芯材は、内部に円柱形の中空部を有する多数の円筒状を呈する多数の単位セルを平面方向に沿って連続して有すると共に、各単位セルが縮径可能であるため、これを一対の表面板間に接合し且つ断面ほぼ円弧形に曲げ加工した複数の翼体を、軽量且つ高強度とすることができる。
尚、上記単位セルのほか、本発明の芯材には、六角筒を平面方向に沿って連続して有する、例えばアルミニウム箔製または紙製の形態が含まれる。
Furthermore, the present invention includes a Savonius type windmill (Claim 4) in which the core member is formed of a thin plate made of a cylindrical aluminum alloy and has a large number of unit cells that can be reduced in diameter. It is.
According to this, the said core material has many unit cells which exhibit many cylindrical shapes which have a column-shaped hollow part inside along a plane direction, and each unit cell can be diameter-reduced. Therefore, a plurality of wing bodies that are joined between a pair of surface plates and bent into a substantially arc shape in cross section can be made lightweight and high in strength.
In addition to the unit cells, the core material of the present invention includes, for example, an aluminum foil or paper form having a hexagonal cylinder continuously along the plane direction.

また、本発明には、前記翼体における前記一対の表面板のうち、風圧を受け入れる凹面板の外側面は、平面方向に沿って多数のディンプルが形成されている、サボニウス型風車(請求項5)も含まれる。
これによれば、前記翼体の表面板のうち、風圧を受ける上記凹面板では、上記ディンプルによって風との接触(摩擦)面積が増えるため、僅かな風圧でも容易に回転翼を回転させることが可能となる。このため、風力発電などを一層効果的に行うことが可能となる。
Further, according to the present invention, a Savonius type windmill in which a large number of dimples are formed along the plane direction on the outer surface of the concave plate that receives wind pressure among the pair of surface plates in the wing body. ) Is also included.
According to this, among the surface plates of the blade body, the concave plate that receives wind pressure increases the contact (friction) area with the wind due to the dimples, so that the rotor blade can be easily rotated even with a slight wind pressure. It becomes possible. For this reason, it becomes possible to perform wind power generation etc. more effectively.

更に、本発明には、前記翼体の表面板に形成されるディンプルは、ロウ付け方法によりハニカムサンドイッチパネルを形成するに際して、加熱により軟化する表面板を弾性部材にて押圧することにより前記各単位セルの内側に変形することで形成されている、サボニウス型風車(請求項6)も含まれる。
これによれば、一対の表面板と芯材とをロウ付けすると同時に、少なくとも一方の表面体の外側面に前記ディンプルを同時に形成できるため、低コストで風受性に優れた翼体を得ることが可能となる。
また、本発明には、前記端部板は、一対のほぼ半円形部を点対称に連設した形状である、サボニウス型風車(請求項7)も含まれる。
これによれば、端部板を最小限の面積で形成できるため、係る端部板および前記翼体からなる回転体を一層軽量化することが可能となる。
Furthermore, in the present invention, the dimples formed on the surface plate of the wing body are formed by pressing the surface plate softened by heating with an elastic member when forming a honeycomb sandwich panel by a brazing method. A Savonius type wind turbine (Claim 6) formed by deforming inside the cell is also included.
According to this, since the dimples can be simultaneously formed on the outer surface of at least one surface body at the same time as the pair of surface plates and the core material are brazed, a low-cost and excellent wind-receiving body can be obtained. Is possible.
The present invention also includes a Savonius-type windmill (Claim 7) in which the end plate has a shape in which a pair of substantially semicircular portions are connected in a point-symmetric manner.
According to this, since the end plate can be formed with a minimum area, it is possible to further reduce the weight of the rotating body including the end plate and the wing body.

加えて、本発明には、前記複数の翼体と前記端部板とからなる回転体は、円盤状を呈する一対の上・下板、これらの間に配設される複数の棒状の柱、および上・下板の中間で且つ隣接する柱間に連結されるリングからなるケーシングの内側に配置されると共に、上・下板の中心部に設けられる軸受により、上記端部板が回転可能に支持される、サボニウス型風車(請求項8)も含まれる。
これによれば、前記翼体および端部板からなる回転体をケーシングの内側で回転可能に支持するため、当該サボニウス型風車の周囲における安全性を確保することができる。
尚、本発明のサボニウス型風車は、回転軸の出力を発電に用いるほか、エアや液体などの攪拌羽根の動力源や、摩擦源としても活用するなど、適宜な方法にてエネルギを取り出して利用することが可能である。
In addition, in the present invention, the rotating body composed of the plurality of wing bodies and the end plate includes a pair of upper and lower plates having a disk shape, a plurality of rod-like columns disposed therebetween, In addition, the end plate can be rotated by a bearing provided at the center of the upper and lower plates, and disposed inside the casing formed of a ring connected between adjacent columns between the upper and lower plates. A supported Savonius-type windmill (Claim 8) is also included.
According to this, since the rotating body composed of the wing body and the end plate is rotatably supported inside the casing, safety around the Savonius type windmill can be ensured.
The Savonius-type windmill of the present invention uses the output of the rotating shaft for power generation, takes out energy by an appropriate method, such as using it as a power source for stirring blades such as air or liquid, or as a friction source. Is possible.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明のサボニウス型風車1を示す正面図、図2は、図1中のX−X線の矢視に沿った水平断面図である。
サボニウス型風車1は、図1,図2に示すように、全体がほぼ円筒形のケーシング2と、その内側で回転可能に支持される回転体10と、を含んでいる。
上記ケーシング2は、図示のように、一対の対向する円盤状の上・下板3,4、係る上・下板3,4間の外周縁に沿って立設する6本の棒状の支柱5、および係る支柱5,5間に水平に固定されたリング6からなり水平方向に通風可能な籠体である。係るケーシング2は、図1に示すように、地表に設置した架台8上に下側の下板4を固定されることで、垂直に立設している。尚、上記架台8の中には、発電機9が内蔵されている。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a front view showing a Savonius-type windmill 1 of the present invention, and FIG. 2 is a horizontal sectional view taken along the line XX in FIG.
As shown in FIGS. 1 and 2, the Savonius type windmill 1 includes a substantially cylindrical casing 2 and a rotating body 10 that is rotatably supported inside the casing 2.
As shown in the figure, the casing 2 includes a pair of opposed disc-shaped upper and lower plates 3, 4, and six rod-shaped support columns 5 erected along the outer peripheral edge between the upper and lower plates 3, 4. , And a ring 6 that is horizontally fixed between the support columns 5 and 5, and is a housing that can be ventilated in the horizontal direction. As shown in FIG. 1, the casing 2 is erected vertically by fixing a lower lower plate 4 on a gantry 8 installed on the ground surface. A generator 9 is built in the gantry 8.

回転体10は、図1乃至図4に示すように、ケーシング2の上・下板3,4に軸支された上下一対の回転軸7,7に個別に連結される上・下端部板11,12と、これらの間に上下端を固定される一対(複数)の翼体W1,W2とからなる。尚、図3は、回転体10の斜視図、図4は、その分解斜視図である。
図2乃至図4に示すように、上・下端部板11,12は、平面視で軸固定部16を中心に点対称で位置するほぼ半円形の一対の半円形部14,14を連設した形状を呈し、各半円形部14は、直線部15を有する。係る上・下端部板11,12は、後述するように、一対の表面板と、これらの間に接合した一定の厚みのハニカムコア材(芯材)とからなるハニカムサンドイッチパネルにより形成されている。
尚、図3に示すように、上記軸固定部16には、回転軸7の太径部7aが挿入され且つ固定されると共に、下側の回転軸7は、前記発電機9に連結されている。
As shown in FIGS. 1 to 4, the rotating body 10 includes upper and lower end plates 11 individually connected to a pair of upper and lower rotating shafts 7 and 7 pivotally supported on the upper and lower plates 3 and 4 of the casing 2. , 12 and a pair (a plurality) of wing bodies W1, W2 having upper and lower ends fixed between them. 3 is a perspective view of the rotating body 10, and FIG. 4 is an exploded perspective view thereof.
As shown in FIGS. 2 to 4, the upper and lower end plates 11, 12 are provided with a pair of semicircular portions 14, 14 that are substantially semicircular and are located symmetrically about the shaft fixing portion 16 in plan view. Each semicircular portion 14 has a straight portion 15. As will be described later, the upper and lower end plates 11 and 12 are formed of a honeycomb sandwich panel including a pair of surface plates and a honeycomb core material (core material) having a certain thickness bonded therebetween. .
As shown in FIG. 3, the shaft fixing portion 16 is inserted and fixed with the large-diameter portion 7 a of the rotating shaft 7, and the lower rotating shaft 7 is connected to the generator 9. Yes.

翼体W1,W2は、図2乃至図4に示すように、仮想回転軸(回転軸)cに対して点対称に配置され且つ断面ほぼ半円形(円弧形)を呈すると共に、上下端で前記上・下端部板11,12に固定されている。図2,図4に示すように、翼体W1,W2の間には、風が吹き抜ける通路sが介在している。
係る翼体W1,W2は、図3,4に示すように、一対の表面板20a,20bと、こらの間に接合されたハニカムコア材(芯材)17とからなるサンドイッチパネルからなる。また、一対の表面板20a,20bのうち、風圧を受ける凹面板20aの全面には、平面方向に沿って連続する多数の凹部からなるディンプル23が形成されている。尚、図3,図4では、一部のディンプル23を例示して図示する。
As shown in FIGS. 2 to 4, the wing bodies W1 and W2 are arranged point-symmetrically with respect to the virtual rotation axis (rotation axis) c and have a substantially semicircular cross section (arc shape). The upper and lower end plates 11 and 12 are fixed. As shown in FIGS. 2 and 4, a passage s through which wind blows is interposed between the wing bodies W1 and W2.
As shown in FIGS. 3 and 4, the wing bodies W1 and W2 are formed of a sandwich panel including a pair of surface plates 20a and 20b and a honeycomb core material (core material) 17 bonded therebetween. Of the pair of surface plates 20a and 20b, dimples 23 formed of a large number of recesses that are continuous in the plane direction are formed on the entire surface of the concave plate 20a that receives wind pressure. 3 and 4, a part of the dimples 23 is illustrated as an example.

翼体W1,W2は、次のようにして形成される。
先ず、図5に示すように、厚み1mmのアルミニウム合金のクラッド板からなる一対の平坦な表面板20a,20b間に、厚みが約0.1mmで円筒形を呈する多数の単位セル17aからなり且つ一定厚さのるハニカムコア材17を、各位セル17aの中空部が厚さ方向に沿うように敷き並べると共に、四辺にアルミニウム合金の縁材24を配置して、平坦なサンドイッチパネルp1を形成する。
上記ハニカムコア材17は、図5中の上方に示すように、アルミニウム合金製薄板材の両面にロウ材をクラッドしたクラッド材、またはロウ材をクラッドしていない薄板材からなる薄板またはアルミ箔を、高さ8mm×直径30mmの円柱形にカール(巻き付け)し、その端部同士の重合部kにて縮径可能とされた多数の単位セル17aからなる。尚、各単位セル17aには、内外に連通する少なくとも1つの通し孔17bが開設されている。
Wings W1 and W2 are formed as follows.
First, as shown in FIG. 5, a plurality of unit cells 17 a having a thickness of about 0.1 mm and having a cylindrical shape are interposed between a pair of flat surface plates 20 a and 20 b made of a 1 mm thick aluminum alloy clad plate, and The honeycomb core material 17 having a certain thickness is laid out so that the hollow portions of the cells 17a are along the thickness direction, and the aluminum alloy edge material 24 is disposed on the four sides to form a flat sandwich panel p1. .
As shown in the upper part of FIG. 5, the honeycomb core material 17 is made of a clad material in which a brazing material is clad on both surfaces of an aluminum alloy thin plate material, or a thin plate or aluminum foil made of a thin plate material not clad with a brazing material. It is composed of a large number of unit cells 17a that are curled (wrapped) into a cylindrical shape having a height of 8 mm and a diameter of 30 mm and can be reduced in diameter at the overlapping portion k between the ends. Each unit cell 17a has at least one through hole 17b communicating with the inside and outside.

次に、図6に示すように、断面ほぼ半円形の成形型25の表面に、前記サンドイッチパネルp1をその表面板20aを接触させて載置した後、図示しない複数の抑え治具により上方の表面板20bを成形型25の中心部に向けて押圧する。
その結果、図6に示すように、前記サンドイッチパネルp1は、成形型25の表面形状に倣って、断面ほぼ半円形(円弧形)のサンドイッチパネルp2に成形される。尚、この際、ハニカムコア材17における各単位セル17aは、成形型25寄りの表面板20aに隣接する部分が径方向にそれぞれ縮径される。
以上により、サンドイッチパネルp2が組み立てられる。
Next, as shown in FIG. 6, after the sandwich panel p <b> 1 is placed on the surface of the mold 25 having a substantially semicircular cross-section, the surface plate 20 a is brought into contact therewith, and then a plurality of holding jigs (not shown) are used to The front plate 20 b is pressed toward the center of the mold 25.
As a result, as shown in FIG. 6, the sandwich panel p <b> 1 is formed into a sandwich panel p <b> 2 having a substantially semicircular cross section (arc shape) following the surface shape of the mold 25. At this time, in each unit cell 17a in the honeycomb core material 17, a portion adjacent to the surface plate 20a near the forming die 25 is reduced in diameter in the radial direction.
Thus, the sandwich panel p2 is assembled.

係る状態で、サンドイッチパネルp2を、ロウ付け温度(本例では約605℃)に加熱し且つ所定時間保持してロウ付けする。図6中の一点鎖線部分Yの拡大断面図である図7で示すように、表面板20a,20bは、例えばJIS:A3003(融点約647℃)からなる基板21と、少なくともその内側の表面にクラッドしたJIS:A4045(融点約600℃)からなるロウ材層22とからなるクラッド材である。即ち、図7中の一点鎖線部分Vの部分図で例示するように、表面板20bの内面側のみにロウ材層22をクラッドした形態としても良い。
また、各単位セル17aも、上記同様の基板18と、その両面にクラッドした上記同様のロウ材層19とからなるクラッド材である。
In such a state, the sandwich panel p2 is heated to a brazing temperature (about 605 ° C. in this example) and held for a predetermined time to be brazed. As shown in FIG. 7 which is an enlarged cross-sectional view of the one-dot chain line portion Y in FIG. 6, the surface plates 20a and 20b are, for example, a substrate 21 made of JIS: A3003 (melting point: about 647 ° C.) It is a clad material comprising a brazing material layer 22 made of clad JIS: A4045 (melting point: about 600 ° C.). That is, as illustrated in the partial view of the one-dot chain line portion V in FIG. 7, the brazing material layer 22 may be clad only on the inner surface side of the surface plate 20b.
Each unit cell 17a is also a clad material comprising the same substrate 18 as above and the same brazing material layer 19 clad on both surfaces thereof.

このため、図7の拡大断面図で示すように、表面板20a,20bと、ハニカムコア材17を形成する単位セル17aとは、それぞれのロウ材層22とロウ材層19とにより互いにロウ付けされるので、表面板20a,20b間にハニカムコア材17を一体にして接合することができる。この結果、断面全体がほぼ半円形(円弧形)をした前記翼体W1,W2を得ることができる。
この場合、ハニカムコア材17として表面にロウ材層19を有する多数の単位セル17aを用いると、係る単位セル17a同士は、各々のロウ材層19を介して確実にロウ付けされると共に、各単位セル17a自体も確実に円筒状に形成されるため、ハニカムコア材17の強度も増強される。尚、ロウ材層を表面にクラッドした材料で表面板20a,20bや単位セル17a形成せず、少なくとも一方の表面にペースト状のロウ材層を塗布して、上記と同様に組み立てた後、ロウ付けすることも可能である。
Therefore, as shown in the enlarged sectional view of FIG. 7, the surface plates 20a and 20b and the unit cells 17a forming the honeycomb core material 17 are brazed to each other by the brazing material layer 22 and the brazing material layer 19, respectively. Therefore, the honeycomb core material 17 can be integrally joined between the surface plates 20a and 20b. As a result, the wing bodies W1 and W2 having a substantially semicircular (circular arc) cross section can be obtained.
In this case, when a large number of unit cells 17 a having the brazing material layer 19 on the surface are used as the honeycomb core material 17, the unit cells 17 a are reliably brazed through the brazing material layers 19. Since the unit cell 17a itself is surely formed in a cylindrical shape, the strength of the honeycomb core material 17 is also enhanced. The surface plate 20a, 20b and the unit cell 17a are not formed with the material clad on the surface of the brazing material layer, and a paste-like brazing material layer is applied to at least one surface and assembled in the same manner as described above. It is also possible to attach.

図8は、前記図1中のA−A線の矢視に沿ったケーシング2の下部と図2中のB−B線の矢視に沿った回転体10の概略とを示す垂直断面図である。
上・下端部板11,12は、前記図3,4に示したように、平面視で一対の半円形部14を点対称に連接した形状を呈するが、図8に示すように、これらも一対の表面板20,20とこれらの間にハニカムコア材(芯材)17を形成する単位セル17aとをロウ付けしたハニカムサンドイッチパネルからなる。
図8に示すように、翼体W1(W2)の上・下端と上・下端部板11,12とは、互いに接する前者の表面板20a,20bと後者の表面板20,20とを、TIG溶接wまたはMIG溶接wを施すことにより接合される。この結果、前記図3,図4に示した回転体10が得られる。
FIG. 8 is a vertical cross-sectional view showing the lower part of the casing 2 along the line AA in FIG. 1 and the outline of the rotating body 10 along the line BB in FIG. is there.
As shown in FIGS. 3 and 4, the upper and lower end plates 11 and 12 have a shape in which a pair of semicircular portions 14 are connected point-symmetrically in a plan view. However, as shown in FIG. It consists of a honeycomb sandwich panel in which a pair of surface plates 20 and 20 and unit cells 17a forming a honeycomb core material (core material) 17 between them are brazed.
As shown in FIG. 8, the upper and lower ends and the upper and lower end plates 11 and 12 of the wing body W1 (W2) are connected to the former surface plates 20a and 20b and the latter surface plates 20 and 20, respectively. Joining is performed by applying welding w or MIG welding w. As a result, the rotating body 10 shown in FIGS. 3 and 4 is obtained.

尚、図8中の翼体W1(W2)では、凹面板の表面板20aの全面にディンプル23が形成され、凸面板の表面板20bには形成されない。また、上・下端部板11,12の中心部に設けられた軸固定部16には、回転軸7の太径部7aが挿入され且つ固定されている。これら翼体W1(W2)と上・下端部板11,12とを形成するハニカムサンドイッチパネルの全厚さは10mm、ハニカムコア材17の高さは8mm、表面板20a,20bの板厚はそれぞれ1mmである。
図8の下側に位置する下板4で例示するように、ケーシング2の上・下板3,4も、平坦な一対の表面板20,20と、これらの間にロウ付けした多数の単位セル17aからなるハニカムコア材(芯材)17と、からなるハニカムサンドイッチパネルにて形成されている。係るケーシング2における上・下板3,4の厚さは35.0mm、ハニカムコア材17の高さは31.8mm、表面板20の板厚は1.6mmである。
In the wing body W1 (W2) in FIG. 8, the dimples 23 are formed on the entire surface of the concave surface plate 20a, and are not formed on the convex surface plate 20b. In addition, the large-diameter portion 7a of the rotating shaft 7 is inserted and fixed to the shaft fixing portion 16 provided at the center of the upper and lower end plates 11 and 12. The total thickness of the honeycomb sandwich panel forming the wing body W1 (W2) and the upper and lower end plates 11 and 12 is 10 mm, the height of the honeycomb core material 17 is 8 mm, and the thicknesses of the surface plates 20a and 20b are respectively 1 mm.
As illustrated by the lower plate 4 located on the lower side of FIG. 8, the upper and lower plates 3 and 4 of the casing 2 are also a pair of flat surface plates 20 and 20 and a number of units brazed between them. It is formed of a honeycomb sandwich panel composed of a honeycomb core material (core material) 17 composed of cells 17a. In the casing 2, the upper and lower plates 3 and 4 have a thickness of 35.0 mm, the honeycomb core material 17 has a height of 31.8 mm, and the surface plate 20 has a thickness of 1.6 mm.

図8に示すように、下板4の中心部には、軸受孔26が貫通して形成され、係る軸受孔26の中心部には回転体10の端部板12から垂下する回転軸7が垂直に貫通すると共に、その下端で前記発電機9に連結されている。軸受孔26の内側には、概略図で示した軸受部28が形成され且つ回転軸7に支持される。係る軸受部28は、軸受孔26に固定される筒体27と、回転軸7側に固定される筒体7bと、ベアリング部28aとにより形成される。
尚、前記上板3の中心部にも軸受孔26が形成され、その内側に固定された筒体27と、上側の回転軸7の太径部7bと、ベアリング部28とから形成される上記同様の軸受部28が介在している。
As shown in FIG. 8, a bearing hole 26 is formed through the center portion of the lower plate 4, and a rotating shaft 7 depending from the end plate 12 of the rotating body 10 is formed in the center portion of the bearing hole 26. It penetrates vertically and is connected to the generator 9 at its lower end. Inside the bearing hole 26, a bearing portion 28 shown in a schematic view is formed and supported by the rotating shaft 7. The bearing portion 28 is formed by a cylindrical body 27 fixed to the bearing hole 26, a cylindrical body 7b fixed to the rotating shaft 7 side, and a bearing portion 28a.
A bearing hole 26 is also formed in the central portion of the upper plate 3, and is formed of a cylindrical body 27 fixed inside thereof, a large diameter portion 7b of the upper rotary shaft 7, and a bearing portion 28. A similar bearing 28 is interposed.

このため、前記図1,2で示したように、一対の翼体W1,W2および上・下端部板11,12からなる回転体10は、ケーシング2の上・下板3,4に、回転軸7および軸受28を介して回転可能に支持される。これにより、前記図2中の矢印で示すように、翼体W1,W2は、凹面板である表面板20aに風圧を受けると、水平方向に自在に回転することができると共に、下側の回転軸7を介して前記発電機9を稼働させ、所要の発電を起こすことができる。   For this reason, as shown in FIGS. 1 and 2, the rotating body 10 including the pair of wing bodies W 1 and W 2 and the upper and lower end plates 11 and 12 rotates on the upper and lower plates 3 and 4 of the casing 2. The shaft 7 and the bearing 28 are rotatably supported. Accordingly, as indicated by the arrows in FIG. 2, the wing bodies W1 and W2 can rotate freely in the horizontal direction and receive a lower rotation when receiving wind pressure on the surface plate 20a which is a concave plate. The generator 9 can be operated via the shaft 7 to generate the required power generation.

図9乃至図11は、前記ロウ付けに際して、前記翼体W1,W2の表面板20aにディンプル23を形成するための工程を示す。
図9に示すように、一対の表面板20a,20bと、これらの間に敷き並べたた多数の単位セル17aからなるハニカムコア材17と、を備える平坦なハニカムサンドイッチパネルp1を用意し、その表面板20aを上側にして受板31の上に固定する。係る状態で、表面板20aの上に弾性部材30を載置する。係る弾性部材30は、所要の厚みを有する耐熱性の弾性材、例えばグラファイト繊維板などからなる。この弾性部材30の上に上板32を載せる。
尚、ディンプル23を形成する原理を説明するため、図9乃至図11では省略したが、受板31と上板32は、前記図6で示した成形型25のように予定される円弧形状に形成されている。
9 to 11 show steps for forming the dimples 23 on the surface plates 20a of the wing bodies W1 and W2 during the brazing.
As shown in FIG. 9, a flat honeycomb sandwich panel p1 including a pair of surface plates 20a and 20b and a honeycomb core material 17 composed of a large number of unit cells 17a laid between them is prepared. It is fixed on the receiving plate 31 with the front plate 20a facing upward. In this state, the elastic member 30 is placed on the surface plate 20a. The elastic member 30 is made of a heat-resistant elastic material having a required thickness, such as a graphite fiber board. An upper plate 32 is placed on the elastic member 30.
Although not shown in FIGS. 9 to 11 in order to explain the principle of forming the dimple 23, the receiving plate 31 and the upper plate 32 have a predetermined arc shape like the mold 25 shown in FIG. Is formed.

次に、図10中の矢印で示すように、上板32を介して、弾性部材30をハニカムサンドイッチパネルp1に向けて押圧Pする。係る状態で、図示しないロウ付け炉に挿入し、ロウ付け温度:605℃に昇温してロウ付けを行う。この際、表面板20aは、上記ロウ付け温度に加熱されて軟化し、当該表面板20aと上板32との間に弾性部材30が介在しているため、各単位セル17aの中空部内に表面板20aの一部が進入する。
このため、前記ロウ付けが完了して冷却されると、図11に示すように、弾性部材30の下側面は、表面板20aと共に多数の単位セル17aごとの中空部(内側)に進入するため、多数の浅い凸面を形成しつつ変形する。その結果、各単位セル17aの中空部ごとに表面板20aに浅い凹面が多数形成されるので、前記ディンプル23を形成することができる。このため、翼体W1,W2における凹面板となる表面板20aは、係るディンプル23により、吹き付ける風との接触面積を拡大できるため、少ない風量でも前記回転体10を回転されることが可能となる。
Next, as shown by an arrow in FIG. 10, the elastic member 30 is pressed P toward the honeycomb sandwich panel p1 through the upper plate 32. In this state, it is inserted into a brazing furnace (not shown), and brazing is performed by raising the temperature to a brazing temperature: 605 ° C. At this time, the surface plate 20a is heated to the brazing temperature and softened, and the elastic member 30 is interposed between the surface plate 20a and the upper plate 32. Therefore, the surface plate 20a is exposed in the hollow portion of each unit cell 17a. Part of the face plate 20a enters.
Therefore, when the brazing is completed and cooled, as shown in FIG. 11, the lower surface of the elastic member 30 enters the hollow portion (inner side) of each of the unit cells 17a together with the surface plate 20a. Deformation while forming a large number of shallow convex surfaces. As a result, a large number of shallow concave surfaces are formed in the surface plate 20a for each hollow portion of each unit cell 17a, so that the dimple 23 can be formed. For this reason, the surface plate 20a, which is a concave plate in the wing bodies W1 and W2, can expand the contact area with the blowing wind by the dimple 23, so that the rotating body 10 can be rotated even with a small air volume. .

本発明は、以上のような実施の形態に限定されるものではない。
前記翼体の形状は種々研究されているが、本発明のサボニウス型風車は、例えば、図12,図13に示すように、円形の上・下端部板41,42間において、回転中心c付近が平坦面44とし且つ外側がカーブした曲面46とした断面略し字形を呈する一対の翼体W3,W4を点対称に配置した回転体40としても良い。あるいは、個々の翼体が3次元にて曲面を形成するスパイラル形状であるサボニウス型風車とすることもできる。
また、前記翼体は、3枚またはそれ以上を点対称にして配置しても良い。この場合、枚数が増えるに連れて各翼体の半径を大きくし且つ凹面板を浅くする。
更に、前記上・下端部板11,12は、翼体W1,W2の端面をカバーできる円形板としても良い。
The present invention is not limited to the embodiment as described above.
Various studies have been made on the shape of the wing body, but the Savonius-type windmill according to the present invention is, for example, in the vicinity of the rotation center c between the circular upper and lower end plates 41 and 42 as shown in FIGS. A pair of wing bodies W3 and W4 having an abbreviated cross-section having a flat surface 44 and a curved surface 46 curved outside may be used as the rotating body 40 arranged point-symmetrically. Or it can also be set as the Savonius type windmill which is the spiral shape in which each wing body forms a curved surface in three dimensions.
Further, three or more of the wing bodies may be arranged with point symmetry. In this case, as the number of sheets increases, the radius of each wing body is increased and the concave plate is made shallower.
Further, the upper and lower end plates 11 and 12 may be circular plates that can cover the end faces of the wing bodies W1 and W2.

また、翼体W1,W2や上・下端部板11,12等には、六角柱形の単位セルを多数敷き並べた紙製またはアルミニウム箔製のハニカムコア材を用いても良い。
更に、翼体W1,W2等に利用されるハニカムサンドイッチパネルは、前記実施の形態のように、ロウ付けによるもののほか、表面板とハニカムコア材とを接着剤により接合しても良い。
また、翼体W1,W2等の一端(下端)にのみ端部板12等を固定した回転体としても良い。
更に、回転軸は、回転体における上・下端部板の間を貫通する1本の長尺な形態としても良い。
尚、翼体W1,W2等の軸方向を水平とすることにより、一対の端部板をこれらの左右に固定する形態も可能である。
Further, for the wing bodies W1, W2 and the upper and lower end plates 11, 12, etc., a honeycomb core material made of paper or aluminum foil in which a large number of hexagonal columnar unit cells are arranged may be used.
Further, the honeycomb sandwich panel used for the wing bodies W1, W2, etc. may be joined by bonding the surface plate and the honeycomb core material in addition to the brazing as in the above-described embodiment.
Moreover, it is good also as a rotary body which fixed the edge part board 12 grade | etc., Only to one end (lower end) of wing | blade bodies W1, W2.
Furthermore, the rotating shaft may have a single long shape that penetrates between the upper and lower end plates of the rotating body.
It is also possible to fix the pair of end plates to the left and right by making the axial direction of the wing bodies W1, W2, etc. horizontal.

本発明のサボニウス型風車の一形態を示す正面図。The front view which shows one form of the Savonius type | mold windmill of this invention. 図1中のX−X線の矢視に沿った水平断面図。The horizontal sectional view in alignment with the arrow of the XX in FIG. 上記サボニウス型風車の回転体を示す斜視図。The perspective view which shows the rotary body of the said Savonius type | mold windmill. 上記回転体を示す分解斜視図。The disassembled perspective view which shows the said rotary body. 翼体を得るための製造工程を示す概略図。Schematic which shows the manufacturing process for obtaining a wing | blade body. 図5に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図6中の一点鎖線部分Yの拡大断面図。The expanded sectional view of the dashed-dotted line part Y in FIG. 図1中のA−A線と図2中のB−B線との矢視に沿った垂直断面図。FIG. 3 is a vertical cross-sectional view taken along the line AA in FIG. 1 and the line BB in FIG. 2. 翼体の表面板にディンプルを形成する工程を示す概略図。Schematic which shows the process of forming a dimple in the surface board of a wing | blade body. 図9に続く工程を示す概略図。Schematic which shows the process following FIG. 表面板にディンプルが形成された翼体を示す概略図。Schematic which shows the wing | blade body in which the dimple was formed in the surface board. 異なる形態の回転体を示す側面図。The side view which shows the rotary body of a different form. 図12中のZ−Z線の矢視に沿った断面図。Sectional drawing along the arrow of the ZZ line in FIG.

符号の説明Explanation of symbols

1…………………サボニウス型風車
2…………………ケーシング
3…………………上板
4…………………下板
5…………………支柱
6…………………リング
7…………………回転軸
10,40………回転体
11,41………上端部板
12,42………下端部板
14………………半円形部
17………………ハニカムコア材(芯材)
17a……………単位セル
20a,20b…表面板
23………………ディンプル
30………………弾性部材
W1〜W4………翼体
1 ………………… Savonius type windmill 2 ………………… Case 3 ………………… Upper plate 4 ………………… Lower plate 5 ………………… Post 6 ………………… Ring 7 ………………… Rotating shaft 10, 40 ……… Rotating body 11, 41 ……… Upper end plate 12, 42 ……… Lower end plate 14 …………… ... Semicircular part 17 ……………… Honeycomb core material (core material)
17a ......... Unit cell 20a, 20b ... Surface plate 23 ......... Dimple 30 .................. Elastic member W1-W4 ......... Wing body

Claims (8)

翼体をハニカムサンドイッチパネルにより形成した、
ことを特徴とするサボニウス型風車。
The wing body was formed by a honeycomb sandwich panel,
Savonius type windmill characterized by that.
断面ほぼ円弧形である複数の翼体と、
上記複数の翼体の一端または両端に固定される端部板と、
上記複数の翼体における一端または両端の端部板に固定される回転軸と、を含み、
上記複数の翼体は、互いに平行で断面ほぼ円弧形である一対の表面板と、これらの間に接合される一定厚さの芯材と、を備えたハニカムサンドイッチパネルからなる、
ことを特徴とするサボニウス型風車。
A plurality of wing bodies having a substantially arc-shaped cross section;
End plates fixed to one or both ends of the plurality of wing bodies;
A rotating shaft fixed to one or both end plates of the plurality of wing bodies,
The plurality of wing bodies are composed of a honeycomb sandwich panel including a pair of surface plates parallel to each other and having a substantially arc-shaped cross section, and a core material having a constant thickness joined between them.
Savonius type windmill characterized by that.
前記端部板は、サンドイッチパネルからなる、
ことを特徴とする請求項2に記載のサボニウス型風車。
The end plate comprises a sandwich panel;
The Savonius type windmill according to claim 2 characterized by things.
前記芯材は、円筒状のアルミニウム合金の薄板からなり直径が縮径可能である多数の単位セルを敷き並べた形態である、
ことを特徴とする請求項2または3に記載のサボニウス型風車。
The core material is formed by laying a large number of unit cells that are made of a thin plate of a cylindrical aluminum alloy and can be reduced in diameter.
The Savonius type windmill according to claim 2 or 3, characterized in that.
前記翼体における前記一対の表面板のうち、風圧を受け入れる凹面板の外側面は、平面方向に沿って多数のディンプルが形成されている、
ことを特徴とする請求項2乃至4の何れか一項に記載のサボニウス型風車。
Of the pair of surface plates in the wing body, the outer surface of the concave plate that receives the wind pressure has a large number of dimples formed along the plane direction.
The Savonius type windmill according to any one of claims 2 to 4, wherein
前記翼体の表面板に形成されるディンプルは、ロウ付け方法によりハニカムサンドイッチパネルを形成するに際して、加熱により軟化する表面板を弾性部材にて押圧することにより前記各単位セル材の内側に変形することで形成されている、
ことを特徴とする請求項5に記載のサボニウス型風車。
The dimples formed on the surface plate of the wing body are deformed to the inside of each unit cell material by pressing the surface plate softened by heating with an elastic member when forming a honeycomb sandwich panel by a brazing method. Formed by
The Savonius-type windmill according to claim 5.
前記端部板は、一対のほぼ半円形部を点対称に連設した形状である、
ことを特徴とする請求項2乃至6の何れか一項に記載のサボニウス型風車。
The end plate has a shape in which a pair of substantially semicircular portions are connected in a point-symmetric manner.
A Savonius-type windmill according to any one of claims 2 to 6, wherein
前記複数の翼体と前記端部板とからなる回転体は、円盤状を呈する一対の上・下板、これらの間に配設される複数の棒状の柱、および上・下板の中間で且つ隣接する柱間に連結されるリングからなるケーシングの内側に配置されると共に、上・下板の中心部に設けられる軸受により、上記端部板が回転可能に支持される、
ことを特徴とする請求項2乃至7の何れか一項に記載のサボニウス型風車。
The rotating body composed of the plurality of wing bodies and the end plate is formed between a pair of upper and lower plates having a disk shape, a plurality of rod-shaped columns disposed between them, and an intermediate between the upper and lower plates. In addition, the end plate is rotatably supported by a bearing provided in the center of the upper and lower plates while being arranged inside a casing formed of a ring connected between adjacent columns.
The Savonius type windmill according to any one of claims 2 to 7, wherein
JP2004363212A 2004-12-15 2004-12-15 Savonius-type windmill Withdrawn JP2006170063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363212A JP2006170063A (en) 2004-12-15 2004-12-15 Savonius-type windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363212A JP2006170063A (en) 2004-12-15 2004-12-15 Savonius-type windmill

Publications (1)

Publication Number Publication Date
JP2006170063A true JP2006170063A (en) 2006-06-29

Family

ID=36671087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363212A Withdrawn JP2006170063A (en) 2004-12-15 2004-12-15 Savonius-type windmill

Country Status (1)

Country Link
JP (1) JP2006170063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352796A (en) * 2013-07-26 2013-10-16 张东生 Honeycomb flap resistance type vertical-axis wind generator
KR101768116B1 (en) * 2016-11-14 2017-08-30 한국에너지기술연구원 Rotor system having automatic opening and closing part
KR101807718B1 (en) * 2016-11-02 2017-12-13 한국에너지기술연구원 Variable rotor system for a wind turbine
CN108138744A (en) * 2016-05-04 2018-06-08 图博萨姆公司 Savonius rotor, rotor module, its device and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352796A (en) * 2013-07-26 2013-10-16 张东生 Honeycomb flap resistance type vertical-axis wind generator
CN108138744A (en) * 2016-05-04 2018-06-08 图博萨姆公司 Savonius rotor, rotor module, its device and application
KR101807718B1 (en) * 2016-11-02 2017-12-13 한국에너지기술연구원 Variable rotor system for a wind turbine
KR101768116B1 (en) * 2016-11-14 2017-08-30 한국에너지기술연구원 Rotor system having automatic opening and closing part

Similar Documents

Publication Publication Date Title
US20100236759A1 (en) Heat-Managing Composite Structures
EP2456618B1 (en) Formed core sandwich structures
JP2006170063A (en) Savonius-type windmill
JP2010518300A5 (en)
CN104578909B (en) Axial-tension-energized rotary wind driven generator
JP2017529471A (en) Honeycomb for lightweight components, in particular deformable honeycomb, corresponding production method, and sandwich component
JP4647573B2 (en) Wind generator blade
CN107076108A (en) Rotor blade for wind turbine
US2008234A (en) Impeller
CN201433860Y (en) Square movable body compression wind-power generation device
KR20100086557A (en) Configuration of wing plate for windmill
JP2006526100A (en) Windmill rotor
JP2007130663A (en) Press die and method for manufacturing blade for wind power generator using the same
JPH11343959A (en) Wind power generating device
KR100519943B1 (en) Honeycomb core , mold for honeycomb core and manufacturing method of honeycomb core
CN202394612U (en) Steel plate type resistor element having pins with protruded shoulders
CN112443451A (en) Novel wind power generation blade
CN207178119U (en) A kind of split blade type Cylinder wall structure of thin-wall steel pipe concrete tower
JP2882099B2 (en) Composite honeycomb structural material
CN209980776U (en) Wedge array type silencer with metal shell
JP2000167632A (en) Sandwich structure plate and manufacture of the same
CN209908302U (en) High-strength hollow glass
CN214092127U (en) Novel wind power generation blade
CN108735316B (en) Stainless steel boron aluminum composite board for storage cells of VVER fuel assembly and manufacturing method
CN210419767U (en) Low-radiation vacuum glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304