JP2006169584A - Thermal-sprayed film of iron nitride and manufacturing method therefor - Google Patents

Thermal-sprayed film of iron nitride and manufacturing method therefor Download PDF

Info

Publication number
JP2006169584A
JP2006169584A JP2004363847A JP2004363847A JP2006169584A JP 2006169584 A JP2006169584 A JP 2006169584A JP 2004363847 A JP2004363847 A JP 2004363847A JP 2004363847 A JP2004363847 A JP 2004363847A JP 2006169584 A JP2006169584 A JP 2006169584A
Authority
JP
Japan
Prior art keywords
iron
film
thermal
iron nitride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363847A
Other languages
Japanese (ja)
Inventor
Masahiro Fukumoto
昌宏 福本
Motohiro Yamada
基宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2004363847A priority Critical patent/JP2006169584A/en
Publication of JP2006169584A publication Critical patent/JP2006169584A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron nitride film formed through a thermal spraying process, and to provide a manufacturing method therefor. <P>SOLUTION: The thermal-sprayed film mainly containing iron nitride is formed on a substrate, by charging iron in thermal plasma while contacting a strongly luminant part of the thermal plasma containing nitrogen with the substrate, in the thermal spraying process. In the above step, it is recommended to form the thermal-sprayed film while keeping the temperature at the part to be film-formed to the decomposition temperature of iron nitride or lower, by controlling the temperature of the substrate. Furthermore, it is possible to form a dense thermal-sprayed film with a high content ratio of iron nitride even when iron remains in a gap between iron nitride particles in the thermal-sprayed film, by proceeding nitriding of iron through irradiating the substrate with thermal plasma without charging iron while contacting the strongly luminant part of the thermal plasma containing nitrogen with the substrate, and keeping the temperature at the part to be film-formed to the decomposition temperature of iron nitride or lower. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐食性および耐摩耗性などの機械的特性が要求される構造材料としての切削工具、また機械的特性が要求される部品などの被覆に好適な窒化鉄溶射膜、それを被覆した部材及びそれらの製造方法にかかわるものである。 The present invention relates to a cutting tool as a structural material that requires mechanical properties such as corrosion resistance and wear resistance, and an iron nitride sprayed film that is suitable for coating parts that require mechanical properties, and a member coated therewith And a manufacturing method thereof.

窒化鉄は耐食性および耐摩耗性に優れる物性を持つため、従来から耐食性を必要とする装置や部品の表面改質や、工具鋼等における表面硬化に多く用いられている。窒化鉄はこのように優れた物性を有する材料であることから、より幅広く利用するために、金属や酸化物またはセラミックスの基材の上に、窒化鉄の厚膜を形成する技術への要望が高まっている。 Since iron nitride has physical properties excellent in corrosion resistance and wear resistance, it has been conventionally used for surface modification of devices and parts that require corrosion resistance and surface hardening in tool steel and the like. Since iron nitride is a material having such excellent physical properties, there is a demand for a technique for forming a thick film of iron nitride on a metal, oxide, or ceramic base material for wider use. It is growing.

これまで報告されている窒化鉄が成膜できた例としては、スパッタ法、CVD法による薄膜の場合だけである(たとえば特許文献1、非特許文献1参照)。またスパッタ法やCVD法では高純度な膜は得られているが、これらの方法で得られる膜は薄い膜であり、耐食性や耐摩耗性が必ずしも十分なものではなかった。 Examples of iron nitride films that have been reported so far are only thin films by sputtering or CVD (see, for example, Patent Document 1 and Non-Patent Document 1). Further, high-purity films are obtained by sputtering or CVD, but the films obtained by these methods are thin films, and the corrosion resistance and wear resistance are not always sufficient.

一方、金属やセラミックスの厚い膜を高速で成膜する方法としては一般には溶射法が知られている。溶射法は主に溶射原料を融解し、当該融解溶射原料を高速で基材にぶつけて堆積させる方法である。溶射法を用いれば一般に数μm〜数mmの厚膜作製が可能である。しかし、窒化物、炭化物等の非酸化物を溶射法で成膜しようとした場合、それらの多くが融解する前に分解してしまうため、成膜できないという問題があった。 On the other hand, a thermal spraying method is generally known as a method for forming a thick film of metal or ceramic at high speed. The thermal spraying method is mainly a method in which a thermal spray raw material is melted and the molten thermal spray raw material is deposited on a substrate at high speed. If the thermal spraying method is used, it is generally possible to produce a thick film of several μm to several mm. However, when non-oxides such as nitrides and carbides are formed by thermal spraying, many of them are decomposed before being melted, so that there is a problem that film formation cannot be performed.

しかし、窒化鉄膜を溶射法で形成しようとする試みが全くなされていなかったわけではない。例えば、鉄粉末を原料として、窒素をプラズマガスとして用いた大気圧ガストンネル型プラズマ溶射により窒化鉄を成膜することが試みられている(たとえば非特許文献2参照)。しかし、当該報告には、酸化鉄が形成され、窒化鉄の生成は見られなかったと報告されている。 However, no attempt has been made to form an iron nitride film by thermal spraying. For example, it has been attempted to form iron nitride by atmospheric pressure tunneling plasma spraying using iron powder as a raw material and nitrogen as a plasma gas (see, for example, Non-Patent Document 2). However, the report reports that iron oxide was formed and no formation of iron nitride was observed.

特開平09−69461号公報JP 09-69461 A S.Yu.Grachev,D.M.Borsa and D.O.Boerma, Surface Science ,Vol.516,159−168(2002)S. Yu. Grachev, D.C. M.M. Borsa and D.C. O. Boerma, Surface Science, Vol. 516, 159-168 (2002) 新妻、移川、小林、プラズマ応用科学、Vol9,136−138(2001)Niizuma, Mikawa, Kobayashi, Plasma Applied Science, Vol 9, 136-138 (2001)

従来、厚膜を得るために用いられる溶射法では、窒化鉄のみからなる、あるいは窒化鉄の比率の高い厚膜を得ることは困難であったため、窒化鉄特有の耐食性、耐摩耗性、高硬度等を発揮しうる厚膜、あるいはそのような厚膜を被覆した部材を得ることができなかった。 Conventionally, in the thermal spraying method used to obtain a thick film, it has been difficult to obtain a thick film made only of iron nitride or having a high ratio of iron nitride. It was not possible to obtain a thick film capable of exhibiting the above or the like, or a member coated with such a thick film.

本発明の目的は、鉄の反応性プラズマ溶射において新規な方法を提案することにより、窒化鉄のみからなる、あるいは窒化鉄比率が高く窒化鉄と鉄のみからなる緻密な溶射膜及び溶射膜を被覆した部材を提供することと同時に、その簡便な製造方法を提供することにある。 The object of the present invention is to provide a novel method for reactive plasma spraying of iron, and to cover a dense sprayed film consisting of only iron nitride, or a dense sprayed film consisting of only iron nitride and iron with a high iron nitride ratio. It is to provide a simple manufacturing method at the same time of providing the member.

本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、窒素を含む熱プラズマを用い、基材が熱プラズマ中に十分に接触する距離、即ち基材が熱プラズマの高輝な部分に触れる条件において、鉄を熱プラズマ中に投入しながら鉄の融点以上でプラズマ溶射をし、かつ皮膜形成部位の温度を窒化鉄の分解温度以下に保つことにより、基材上に窒化鉄の含有率が高く、なおかつ緻密な溶射膜が得られることを見出した。また本発明の方法で得られた溶射膜において、当該溶射膜中の窒化鉄粒子の隙間に鉄が残存しても、窒素を含む熱プラズマの高輝な部分を基材に接触させながら鉄を投入せずに熱プラズマを照射し、かつ皮膜形成部位の温度を窒化鉄の分解温度以下に保つ事によって、鉄の窒化を進行させ、窒化鉄の比率の高い緻密な溶射膜とすることができることを見出した。また本発明の方法においては、プラズマガスとして必須である窒素に水素を添加することによって窒化が促進されることを見出した。さらに本発明の方法で得られた窒化鉄の溶射膜を基材上に被覆した部材は、硬度、耐摩耗性、耐食性等に優れることを見出し、本発明を完成するに至ったものである。 As a result of intensive studies in view of the above situation, the present inventors have used a thermal plasma containing nitrogen, and the distance at which the base material is sufficiently in contact with the thermal plasma, that is, the high brightness of the thermal plasma. Under conditions that allow contact with various parts, plasma spraying is performed at a temperature equal to or higher than the melting point of iron while iron is put into the thermal plasma, and the temperature of the film forming site is kept below the decomposition temperature of iron nitride, thereby providing iron nitride on the substrate. It has been found that a high thermal spray content and a dense sprayed film can be obtained. In addition, in the sprayed film obtained by the method of the present invention, even if iron remains in the gaps between the iron nitride particles in the sprayed film, iron is introduced while bringing the bright part of the thermal plasma containing nitrogen into contact with the substrate. Without irradiating it, and keeping the temperature of the film formation site below the decomposition temperature of iron nitride, the nitriding of iron can be advanced and a dense thermal sprayed film with a high ratio of iron nitride can be obtained. I found it. Moreover, in the method of this invention, it discovered that nitriding was accelerated | stimulated by adding hydrogen to nitrogen essential as plasma gas. Furthermore, the member which coat | covered the base material with the thermal spray film of the iron nitride obtained by the method of this invention discovered that it was excellent in hardness, abrasion resistance, corrosion resistance, etc., and came to complete this invention.

本発明の窒化鉄溶射膜、窒素化鉄溶射膜を被覆した部材及びその製造方法は、以下に示す効果を有する。
本発明の溶射膜は、窒化鉄の比率が高く、窒化鉄と鉄のみからなる緻密な膜であるため、高硬度を有し、部材に被覆した場合、高い耐摩耗性及び耐食性を発揮できる。
本発明の溶射膜の製造方法は、溶射法だけで窒化鉄を主体とする緻密な溶射膜が製造可能であるため、製造工程が簡便である。
The iron nitride sprayed film, the member coated with the iron nitride sprayed film, and the manufacturing method thereof have the following effects.
The sprayed coating of the present invention has a high ratio of iron nitride and is a dense film made only of iron nitride and iron. Therefore, the sprayed coating has high hardness and can exhibit high wear resistance and corrosion resistance when coated on a member.
The manufacturing method of the thermal spray film of the present invention is simple because the dense thermal spray film mainly composed of iron nitride can be manufactured only by the thermal spraying method.

本発明の窒化鉄溶射膜について説明する。 The iron nitride sprayed film of the present invention will be described.

本発明の窒化鉄溶射膜は溶射法によって成膜してなる厚膜であり、従来のスパッタ法やCVD法で得られる薄膜とは異なるものである。その膜厚は1μm以上3mm以下が好ましく、さらに、100μm以上1mm以下であることが好ましい。1μmより薄い膜では摩耗等による耐久性に問題があり、一方3mmを超えてつけることは、本発明の膜を用いる技術領域では一般的に要求されない上に、経済的でない。 The iron nitride sprayed film of the present invention is a thick film formed by a spraying method, and is different from a thin film obtained by a conventional sputtering method or CVD method. The film thickness is preferably 1 μm or more and 3 mm or less, and more preferably 100 μm or more and 1 mm or less. When the film is thinner than 1 μm, there is a problem in durability due to wear or the like. On the other hand, a thickness exceeding 3 mm is not generally required in the technical field using the film of the present invention and is not economical.

本発明の窒化鉄溶射膜は窒化鉄と鉄からなる膜であり、その窒化鉄の含有量は高いことが望ましい。理由としては、窒化鉄含有量が高いほど耐食性、耐摩耗性および硬度の向上効果が高いため、それらの特性を必要とする応用分野、たとえば切削工具等に使用した際に高い性能が発揮されるからである。 The iron nitride sprayed film of the present invention is a film made of iron nitride and iron, and the iron nitride content is preferably high. The reason is that the higher the iron nitride content, the higher the effect of improving corrosion resistance, wear resistance and hardness, so that high performance is exhibited when used in application fields that require those characteristics, such as cutting tools. Because.

窒化鉄の含有量は25モル%以上、100モル%以下、好ましくは40モル%以上できるだけ高いことが好ましい。
窒化鉄の含有量が25モル%に満たない場合、膜中の鉄の存在量が多くなるため、本発明の目的の性能を発揮する上で好ましくない。一方溶射膜が窒化鉄のみから形成されていれば含有量は100モル%になる。
The iron nitride content is preferably 25 mol% or more and 100 mol% or less, preferably 40 mol% or more.
When the content of iron nitride is less than 25 mol%, the amount of iron present in the film increases, which is not preferable for achieving the target performance of the present invention. On the other hand, if the sprayed film is formed only from iron nitride, the content is 100 mol%.

また本発明の溶射膜は、窒化鉄を主体とする膜であり、窒化鉄以外の成分としては鉄からなる膜である。
ただし、これらの原料中に不純物が存在し、その不純物に起因して本発明の窒化鉄皮膜と同等の性能を有するものは、本発明から除外されるものではない。
The thermal sprayed film of the present invention is a film mainly composed of iron nitride, and is a film made of iron as a component other than iron nitride.
However, those having impurities in these raw materials and having the same performance as the iron nitride film of the present invention due to the impurities are not excluded from the present invention.

さらに本発明の膜は空気中の酸化によって形成される酸化鉄を含むものを除外するものではなく、通常考えられる範囲で自然に生成する酸化鉄を含む膜も本発明の範囲である。 Furthermore, the film of the present invention does not exclude the film containing iron oxide formed by oxidation in the air, and the film containing iron oxide that is naturally generated within the range normally considered is also within the scope of the present invention.

本発明の溶射膜の組織構造は特に限定されず、緻密な膜から多孔質の膜まであらゆるモルホロジーをとり得る。しかし本発明の目的、即ち耐食性、耐摩耗性等を必要とする用途においては特に空孔を有しない緻密な膜であることが好ましい。 The structure of the thermal sprayed film of the present invention is not particularly limited, and can take any morphology from a dense film to a porous film. However, for the purpose of the present invention, that is, applications requiring corrosion resistance, wear resistance, etc., a dense film having no pores is particularly preferable.

さらに本発明は、上述の窒化鉄溶射膜を基材の上に形成した部材を提供するものである。部材は特に限定されず、ガラス、セラミックス、金属等が利用できる。 Furthermore, this invention provides the member which formed the above-mentioned iron nitride sprayed film on the base material. A member is not specifically limited, Glass, ceramics, a metal, etc. can be utilized.

次に本発明の溶射膜の製造方法を説明する。 Next, the manufacturing method of the sprayed film of this invention is demonstrated.

図1、図2に示す装置の一例により本発明の窒化鉄を主体とする溶射膜の製造方法を説明する。 A method for producing a sprayed film mainly composed of iron nitride according to the present invention will be described with reference to an example of the apparatus shown in FIGS.

本発明の方法は、熱プラズマを発生させる部位と基材を保持する部位を有する装置に基材を装着して成膜する。 In the method of the present invention, a substrate is attached to a device having a portion for generating thermal plasma and a portion for holding the substrate to form a film.

本発明の溶射の条件における圧力は特に限定されず、加圧、常圧、減圧で行うことができる。常圧の場合は、大気圧で行えばよいが、減圧で行う場合には、例えば図1における溶射容器をロータリーポンプ107により0.5Torr以下まで真空引きをした後、熱プラズマ源の石英管113保護のためのアルゴン等のシースガス108および窒素とアルゴン等のプラズマガス109を導入して20〜150Torrの圧力として成膜することが例示できる。 The pressure in the thermal spraying conditions of the present invention is not particularly limited, and can be performed under pressure, normal pressure, or reduced pressure. In the case of normal pressure, it may be performed at atmospheric pressure. However, in the case of reducing pressure, for example, after the thermal spraying container in FIG. 1 is evacuated to 0.5 Torr or less by the rotary pump 107, the quartz tube 113 of the thermal plasma source is used. For example, a film can be formed at a pressure of 20 to 150 Torr by introducing a sheath gas 108 such as argon and a plasma gas 109 such as nitrogen and argon for protection.

図2に大気圧で溶射する装置の例を示す。大気圧で熱プラズマを発生させる部位と基材25を保持する部位を有する装置において、プラズマガスライン22より窒素と水素等のプラズマガスを導入し、カソード20とアノード21間に電圧をかけることにより直流アークで熱プラズマ28を発生させることができる。 FIG. 2 shows an example of an apparatus for spraying at atmospheric pressure. In an apparatus having a part for generating thermal plasma at atmospheric pressure and a part for holding the substrate 25, a plasma gas such as nitrogen and hydrogen is introduced from the plasma gas line 22 and a voltage is applied between the cathode 20 and the anode 21. The thermal plasma 28 can be generated by a direct current arc.

本発明で用いる溶射膜を形成する基材は特に限定しないが、例えばステンレスや炭素鋼等の金属基材、グラファイト、石英、セラミックス等を図1の基材101として用いることができる。用いる基材は溶射膜との密着性を向上するために、表面をブラスト法等により粗くした後、真空槽103内の基材ホルダー102に装着することが好ましい。 Although the base material which forms the sprayed film used by this invention is not specifically limited, For example, metal base materials, such as stainless steel and carbon steel, graphite, quartz, ceramics, etc. can be used as the base material 101 of FIG. In order to improve the adhesion to the sprayed film, the substrate used is preferably mounted on the substrate holder 102 in the vacuum chamber 103 after the surface is roughened by a blast method or the like.

次に本発明の溶射法は熱プラズマを利用するものである。熱プラズマの発生方法は限定しないが、例えば高周波、直流アーク、又は交流アーク等によって生成することが可能である。図1には、高周波コイル110に高周波を印加して熱プラズマ104を発生させる方法を例示している。 Next, the thermal spraying method of the present invention uses thermal plasma. Although the generation method of thermal plasma is not limited, for example, it can be generated by high frequency, direct current arc, alternating current arc, or the like. FIG. 1 illustrates a method of generating a thermal plasma 104 by applying a high frequency to the high frequency coil 110.

本発明の方法は、窒素を含む熱プラズマの高輝な部分を基材に接触させながら溶射を行うことを特徴とする。熱プラズマは中心部の高輝な部分とその周辺の低輝な部分で構成されており、本発明では熱プラズマの高輝な部分が基材に接触する条件で溶射することにより、基材上の溶射膜の窒化を促進することができる。ここで言う熱プラズマの高輝な部分とは、上述の手段による気体放電で生成され、少なくとも部分的に電離した数千〜数万度の高温となったガス気流の部分である。熱プラズマの高輝な部分を基材に接触させるには、例えばサングラスを用いて目視によって熱プラズマの状態を観察しながら、プラズマ発生部位と基材保持部位の間隔を調整することで実現できる。
例えば図1の場合、熱プラズマ104の出口と基材101の距離(溶射距離)106を、基材ホルダー102の下部にあるスペーサ105により調整し、熱プラズマの高輝な部分が基材に触れる状態で溶射する。このような状態を発現するためには図1の装置の場合では溶射距離106を10〜100mm程度とすることが好ましく、特に20mmから60mmとすることが好ましい。溶射距離を短くすることにより、熱プラズマの高輝な部分を十分に基材に触れさせて鉄成分の窒化を進めることができ、尚かつ緻密な膜を得ることができる。
The method of the present invention is characterized by performing thermal spraying while bringing a bright portion of thermal plasma containing nitrogen into contact with a substrate. The thermal plasma is composed of a bright portion at the center and a low brightness portion around it. In the present invention, thermal spraying is performed on the substrate by spraying under the condition that the bright portion of the thermal plasma is in contact with the substrate. Nitriding of the film can be promoted. The bright portion of the thermal plasma referred to here is a portion of the gas stream that is generated by gas discharge by the above-described means and is at least partially ionized and has a high temperature of several thousand to tens of thousands of degrees. In order to bring the bright part of the thermal plasma into contact with the base material, for example, by visually observing the state of the thermal plasma using sunglasses, the distance between the plasma generation part and the base material holding part can be adjusted.
For example, in the case of FIG. 1, the distance (spraying distance) 106 between the outlet of the thermal plasma 104 and the base material 101 is adjusted by the spacer 105 at the bottom of the base material holder 102, and the bright part of the thermal plasma touches the base material. Thermal spray with. In order to develop such a state, in the case of the apparatus shown in FIG. 1, it is preferable to set the spraying distance 106 to about 10 to 100 mm, particularly 20 mm to 60 mm. By shortening the spraying distance, the bright part of the thermal plasma can be sufficiently brought into contact with the base material and the nitriding of the iron component can be advanced, and a dense film can be obtained.

図2に示した大気圧で熱プラズマを基材へ照射する場合も、熱プラズマの出口と基材25の距離(溶射距離)24を基材の移動により調整し、本発明の方法の特徴である基材へ熱プラズマの高輝な部分が接触する状態で溶射すればよい。この場合は、溶射距離24を10〜50mm程度とすることが好ましく、特に20〜40mmとすることが好ましい。溶射距離を短くすることにより、熱プラズマの高輝な部分を十分に基材に触れさせることができ、鉄成分の窒化を進めることができ、尚かつ緻密な膜が得られる。 In the case of irradiating the substrate with thermal plasma at atmospheric pressure shown in FIG. 2, the distance (spraying distance) 24 between the outlet of the thermal plasma and the substrate 25 (spraying distance) is adjusted by the movement of the substrate. Thermal spraying may be performed in a state where a bright portion of thermal plasma is in contact with a certain substrate. In this case, the spray distance 24 is preferably about 10 to 50 mm, particularly preferably 20 to 40 mm. By shortening the spraying distance, the bright part of the thermal plasma can be sufficiently brought into contact with the substrate, the nitriding of the iron component can be promoted, and a dense film can be obtained.

本発明の溶射における基材の位置は、熱プラズマが照射される位置、すなわち溶射膜を形成する部分が熱プラズマの高輝な部分に接触する位置であれば良い。基材は固定されていても良いが、基材101または25を前後左右に移動させて、基材全体に熱プラズマを照射し、均一に成膜することが好ましい。この基材の移動は、基材への成膜時に本発明の条件、すなわち溶射部位に熱プラズマの高輝な部分が接触する条件であれば良く、例えば図1の溶射距離106で10〜100mmが維持できる範囲が例示できる。 The position of the base material in the thermal spraying of the present invention may be a position where the thermal plasma is irradiated, that is, a position where a portion where the thermal spray film is formed contacts a bright portion of the thermal plasma. Although the base material may be fixed, it is preferable that the base material 101 or 25 is moved back and forth and left and right, and the whole base material is irradiated with thermal plasma to form a uniform film. This movement of the base material may be performed under the conditions of the present invention at the time of film formation on the base material, that is, a condition in which a bright portion of the thermal plasma is in contact with the sprayed portion, for example, 10 to 100 mm at the spraying distance 106 in FIG. The range which can be maintained can be illustrated.

上述のように、熱プラズマの高輝な部分が基材に接触する熱プラズマ発生源と基材の距離は、熱プラズマの発生方法等によって異なる。本発明では熱プラズマの高輝な部分が基材に接触していれば良く、熱プラズマ発生源と基材の距離を限定するものではない。 As described above, the distance between the thermal plasma generation source where the bright portion of the thermal plasma contacts the substrate and the substrate differs depending on the method of generating the thermal plasma. In the present invention, it is only necessary that the bright portion of the thermal plasma is in contact with the substrate, and the distance between the thermal plasma generation source and the substrate is not limited.

更に本発明では、窒素を含む熱プラズマの高輝な部分を基材に接触させながら、例えば図1の方法では熱プラズマ104中に鉄粉末を投入することにより基材上に窒化鉄を主体とする溶射膜を形成させるが、このとき成膜中の皮膜表面で、熱プラズマの高輝な部分が接触した部位の温度は窒化鉄の分解温度以上となっていても、皮膜形成部位の温度を窒化鉄の分解温度以下、即ち670℃以下になるように基材温度を制御することが本発明の特徴である。皮膜形成部位の温度を窒化鉄の分解温度以下に制御するためには、直接的には皮膜形成部位の温度を計測する事が必要であるが、皮膜形成はプラズマが照射されている皮膜表面ではなく、更にその基材側の直下においてなされていると考えられ、この部分の温度を計測する事は事実上困難であるが、実験的には溶射皮膜内部および皮膜と基材の界面を窒化鉄の分解温度以下に制御することで、略実現できることが例示される。 Furthermore, in the present invention, while bringing a bright portion of the thermal plasma containing nitrogen into contact with the substrate, for example, in the method of FIG. A thermal sprayed film is formed. At this time, even if the temperature of the part where the bright part of the thermal plasma is in contact with the surface of the film being formed is higher than the decomposition temperature of iron nitride, the temperature of the film forming part is set to iron nitride. It is a feature of the present invention that the base material temperature is controlled to be equal to or lower than the decomposition temperature of 670 ° C. In order to control the temperature of the film formation site below the decomposition temperature of iron nitride, it is necessary to directly measure the temperature of the film formation site. It is considered that the temperature is measured directly under the substrate side, and it is practically difficult to measure the temperature of this part. It is exemplified that it can be substantially realized by controlling the decomposition temperature to be equal to or lower than the decomposition temperature.

例えば図1の方法において、基材ホルダー102を水冷することで基材ホルダーに接して配置された基材101を冷却し、皮膜中および皮膜と基材の界面が窒化鉄の分解温度以下になるように制御する。このように皮膜中および皮膜と基材の界面が窒化鉄の分解温度以下になるように基材の温度を制御することで、基材上の鉄の窒化反応が促進され、また皮膜中の皮膜形成部位で形成された窒化鉄膜が分解せずに、緻密な窒化鉄の溶射膜が堆積される。 For example, in the method of FIG. 1, the substrate 101 placed in contact with the substrate holder is cooled by water cooling the substrate holder 102, and the interface between the coating and the substrate becomes below the decomposition temperature of iron nitride. To control. Thus, by controlling the temperature of the substrate so that the interface between the coating and the substrate becomes lower than the decomposition temperature of iron nitride, the nitriding reaction of iron on the substrate is promoted, and the coating in the coating A dense thermal sprayed film of iron nitride is deposited without decomposition of the iron nitride film formed at the formation site.

本発明では、鉄を窒化するため、熱プラズマ中には窒素を含むことが必須である。前記熱プラズマを形成するガスとしては窒素にアルゴンなどのプラズマの安定性を高めるガスを加えても良いが、特に水素を含むと、膜中の鉄表面の酸化膜が取れて窒化しやすくなるため、好ましい。また、この窒素と水素の混合ガスの代替としてアンモニアガスを用いても良い。 In the present invention, in order to nitride iron, it is essential that the thermal plasma contains nitrogen. As the gas for forming the thermal plasma, a gas that improves the stability of the plasma, such as argon, may be added to nitrogen. However, when hydrogen is included, an oxide film on the iron surface in the film is removed and it is easy to nitride. ,preferable. Further, ammonia gas may be used as an alternative to the mixed gas of nitrogen and hydrogen.

本発明の方法は、窒素を含む熱プラズマ中に鉄を投入することによって溶射膜を形成する。投入する鉄の形状としては、粉末、ペレット、ワイヤー等が例示できるが、特に粉末であることが好ましい。図1は、鉄を粉末の形で供給する方法を例示している。粉末供給器111にキャリアガス112を導入し、鉄粉末を供給し、窒素を含む熱プラズマ中に投入するが、この時の鉄の供給速度は均一であることが好ましい。 The method of the present invention forms a sprayed film by introducing iron into a thermal plasma containing nitrogen. Examples of the shape of the iron to be charged include powder, pellets, and wires, but powder is particularly preferable. FIG. 1 illustrates a method for supplying iron in powder form. The carrier gas 112 is introduced into the powder supplier 111, iron powder is supplied, and the powder is supplied into a thermal plasma containing nitrogen. It is preferable that the supply rate of iron at this time is uniform.

本発明で原料鉄に粉末を用いる場合、粉末の粒径は小さいほうが窒素を含む熱プラズマとの反応性が高いために好ましい。一方、あまり粒径が小さいと流動性が悪くなり、一定速度での供給が困難となるため、原料鉄粉末の粒径としては平均粒径が1μm以上70μm以下であることが好ましい。鉄粉末の平均粒径の測定方法は、一般的な粒度測定装置、例えば光透過型の粒度分布測定装置等で測定することができる。 When powder is used for the raw material iron in the present invention, it is preferable that the particle size of the powder is small because of high reactivity with thermal plasma containing nitrogen. On the other hand, if the particle size is too small, the fluidity is deteriorated and it is difficult to supply at a constant speed. Therefore, the average particle size of the raw iron powder is preferably 1 μm or more and 70 μm or less. The method for measuring the average particle size of the iron powder can be measured with a general particle size measuring device such as a light transmission type particle size distribution measuring device.

本発明では上述の溶射で得られた溶射膜に、引き続き窒素、あるいは窒素と水素を含む熱プラズマを、熱プラズマの高輝な部分を基材に接触させる条件で照射することにより、膜中の残存鉄を窒化させ、特に窒化鉄含有率の高い溶射膜を得ることができる。この場合、熱プラズマの照射の目的が、膜中に残存した鉄の窒化であるため、熱プラズマ中に原料鉄を新たに投入しないで照射する。ここで熱プラズマの照射された基材部分における皮膜中および皮膜と基材の界面の温度は上述と同様に窒化鉄の分解温度以下、即ち670℃以下であることが好ましい。 In the present invention, the thermal spray film obtained by the above-described thermal spraying is subsequently irradiated with thermal plasma containing nitrogen or nitrogen and hydrogen under conditions that bring the bright part of the thermal plasma into contact with the substrate, thereby remaining in the film. Iron can be nitrided to obtain a sprayed film having a particularly high iron nitride content. In this case, since the purpose of the thermal plasma irradiation is nitridation of iron remaining in the film, irradiation is performed without newly introducing raw material iron into the thermal plasma. Here, it is preferable that the temperature in the film and the interface between the film and the substrate in the substrate portion irradiated with the thermal plasma is not more than the decomposition temperature of iron nitride, that is, not more than 670 ° C., as described above.

本発明の溶射膜は、何層も繰り返し堆積することによって厚い膜を成膜することができるが、例えば図1の方法では基材101を前後左右に振りながら基材全体に均一に成膜する際に、基材にまず本発明の条件で一層の溶射層を堆積し、次の層の溶射層を堆積する前に原料鉄を供給しない窒素を含む熱プラズマの照射工程を施し、一層目の膜中に残存する鉄の窒化をさらに促進することができる。後は同様の操作を繰り返し、即ち原料鉄を供給した熱プラズマと原料鉄を供給しない熱プラズマの照射を交互に繰り返すことにより、窒化鉄の含有率の極めて高い溶射膜を得ることができる。ここで、本発明の方法によって複数の溶射層を堆積した後に、鉄を供給しない熱プラズマで仕上げの照射工程を施しても良い。 The thermal spray film of the present invention can be formed into a thick film by repeatedly depositing many layers. For example, in the method of FIG. In this case, a single thermal spray layer is first deposited on the substrate under the conditions of the present invention, and before the next thermal spray layer is deposited, a thermal plasma irradiation process including nitrogen that does not supply raw material iron is performed. The nitridation of iron remaining in the film can be further promoted. Thereafter, the same operation is repeated, that is, by alternately repeating the thermal plasma supplied with the raw iron and the thermal plasma without supplying the raw iron, a sprayed film having a very high content of iron nitride can be obtained. Here, after depositing a plurality of sprayed layers by the method of the present invention, a finishing irradiation step may be performed by thermal plasma without supplying iron.

本発明を実施例にもとづきさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.

実施例1
図1に示す装置を用い、炭素鋼基材上に窒化鉄溶射膜を成膜した。ブラスト処理し表面を粗面化した15mm角の炭素鋼基材101を、真空槽103内の水冷式基材ホルダー102に装着した。溶射距離106は60mmに予め調整した後、ロータリーポンプ107により0.5Torr以下まで真空引きした。次にシースガス108をアルゴン10L/分とし、プラズマガス109としてアルゴン10L/分、窒素2L/分を導入して60Torrの圧力とし、高周波コイル110に5kWの電力の高周波を印加して熱プラズマを発生させた。
この条件で発生した熱プラズマの高輝な部分は、炭素鋼基材に十分に接触していた。
基材は基材ホルダーに接して配置し、基材ホルダーを水冷により冷却し、これにより基材を冷却した。このように基材を裏面から冷却しているため、特に予熱は行わない。
Example 1
An iron nitride sprayed film was formed on a carbon steel base using the apparatus shown in FIG. A 15 mm square carbon steel substrate 101 having a roughened surface by blasting was mounted on a water-cooled substrate holder 102 in a vacuum chamber 103. The spraying distance 106 was adjusted in advance to 60 mm and then evacuated to 0.5 Torr or less by the rotary pump 107. Next, the sheath gas 108 is argon 10 L / min, the plasma gas 109 is argon 10 L / min, nitrogen 2 L / min is introduced to a pressure of 60 Torr, and a high frequency of 5 kW is applied to the high frequency coil 110 to generate thermal plasma. I let you.
The bright part of the thermal plasma generated under these conditions was in sufficient contact with the carbon steel substrate.
The substrate was placed in contact with the substrate holder, and the substrate holder was cooled by water cooling, thereby cooling the substrate. Thus, since the base material is cooled from the back surface, no preheating is performed.

次に、粉末供給器111にテクノサーブ社製微粉末供給器を用い、アルゴンを1L/分の流量でキャリアガス112として導入し、平均粒径40μmの鉄原料粉末を約1g/分で熱プラズマ中に供給した。15mm角の基材101を40mm/秒の速度で前後左右に移動させながら溶射を繰り返し、均一に10層の溶射層を堆積させた。成膜中のプラズマが照射された部分の温度は放射温度計で測定して1500℃から1700℃の範囲であった。基材裏面に接触させた熱電対114で測定した基材裏面温度は200℃であった。 Next, a fine powder feeder manufactured by Technoserve Co., Ltd. is used as the powder feeder 111, argon is introduced as a carrier gas 112 at a flow rate of 1 L / min, and an iron raw material powder having an average particle size of 40 μm is thermal plasma at about 1 g / min. Supplied in. Thermal spraying was repeated while moving the 15 mm square base material 101 back and forth and left and right at a speed of 40 mm / sec, and 10 thermal spray layers were uniformly deposited. The temperature of the portion irradiated with plasma during film formation was in the range of 1500 ° C. to 1700 ° C. as measured with a radiation thermometer. The substrate back surface temperature measured with the thermocouple 114 brought into contact with the substrate back surface was 200 ° C.

得られた溶射膜は厚み約300μmで、X線回折により結晶構造を分析したところFeNと鉄のピーク強度が観察された。蛍光X線法により組成を分析したところ窒化鉄が41モル%、鉄が59モル%であった。また溶射膜の断面のSEM観察を行った結果、膜組織は緻密であった。 The obtained sprayed film had a thickness of about 300 μm. When the crystal structure was analyzed by X-ray diffraction, the peak intensities of Fe 4 N and iron were observed. When the composition was analyzed by the fluorescent X-ray method, iron nitride was 41 mol% and iron was 59 mol%. Further, as a result of SEM observation of the cross section of the sprayed film, the film structure was dense.

実施例2
窒素流量を0.5L/分とし、高周波コイル110に3kWの電力の高周波を印加して熱プラズマを発生させた他は実施例1の同様の条件で窒化鉄溶射膜を形成した。
溶射中の基材温度は実施例1と同範囲であった。
Example 2
An iron nitride sprayed film was formed under the same conditions as in Example 1 except that the flow rate of nitrogen was 0.5 L / min and a high frequency of 3 kW was applied to the high frequency coil 110 to generate thermal plasma.
The substrate temperature during thermal spraying was in the same range as in Example 1.

得られた溶射膜は厚み約300μmで、X線回折により結晶構造を分析したところFeNと鉄のピーク強度が観察された。蛍光X線法により組成を分析したところ窒化鉄が29モル%、鉄が71モル%であった。また溶射膜の断面のSEM観察を行った結果、実施例1と同様に緻密な膜となっていた。 The obtained sprayed film had a thickness of about 300 μm. When the crystal structure was analyzed by X-ray diffraction, the peak intensities of Fe 4 N and iron were observed. Analysis of the composition by fluorescent X-ray analysis revealed that iron nitride was 29 mol% and iron was 71 mol%. Further, as a result of SEM observation of the cross section of the sprayed film, it was a dense film as in Example 1.

実施例3
プラズマガスとしてさらに0.5L/分の流量の水素を添加した以外は、実施例1と同様の方法で溶射膜を作製した。
Example 3
A sprayed coating was produced in the same manner as in Example 1 except that hydrogen at a flow rate of 0.5 L / min was further added as the plasma gas.

得られた溶射膜は厚み約200μmで、X線回折により結晶構造を分析したところFeNと鉄のピーク強度が観察された。蛍光X線法により組成を分析したところ窒化鉄が53モル%、鉄が47モル%であった。また溶射膜の断面のSEM観察を行った結果、実施例1と同様に緻密な膜となっていた。 The obtained sprayed film had a thickness of about 200 μm. When the crystal structure was analyzed by X-ray diffraction, the peak intensities of Fe 4 N and iron were observed. Analysis of the composition by fluorescent X-ray analysis revealed that iron nitride was 53 mol% and iron was 47 mol%. Further, as a result of SEM observation of the cross section of the sprayed film, it was a dense film as in Example 1.

比較例1
冷却機能を持たない基材ホルダー102を装着した以外は実施例1と同様の条件で窒化鉄溶射膜を形成した。成膜中のプラズマが照射された部分の温度は放射温度計で測定して1500℃から1700℃の範囲であった。基材裏面に接触させた熱電対114で測定した基材裏面温度は900℃であった。
Comparative Example 1
An iron nitride sprayed film was formed under the same conditions as in Example 1 except that the base material holder 102 having no cooling function was mounted. The temperature of the portion irradiated with plasma during film formation was in the range of 1500 ° C. to 1700 ° C. as measured with a radiation thermometer. The substrate back surface temperature measured with the thermocouple 114 brought into contact with the substrate back surface was 900 ° C.

得られた溶射膜は厚み約300μmで、X線回折により結晶構造を分析したところ鉄のピーク強度のみが観察され、窒化鉄は生成されていなかった。 The obtained sprayed film had a thickness of about 300 μm. When the crystal structure was analyzed by X-ray diffraction, only the peak intensity of iron was observed, and no iron nitride was produced.

比較例2
溶射距離を190mmとした以外は実施例1と同様の方法で溶射膜を作製した。窒素を含む熱プラズマの高輝な部分は基材に接触しておらず、成膜中のプラズマが照射された部分の温度は放射温度計で測定して400℃から700℃の範囲であった。基材裏面に接触させた熱電対114で測定した基材裏面温度は150℃であった。
Comparative Example 2
A sprayed coating was prepared in the same manner as in Example 1 except that the spraying distance was 190 mm. The bright portion of the thermal plasma containing nitrogen was not in contact with the substrate, and the temperature of the portion irradiated with the plasma during film formation was in the range of 400 ° C. to 700 ° C. as measured with a radiation thermometer. The substrate back surface temperature measured with the thermocouple 114 brought into contact with the substrate back surface was 150 ° C.

得られた溶射膜は厚み約200μmで、X線回折により結晶構造を分析したところFeNと鉄のピーク強度が観察された。蛍光X線法により組成を分析したところ窒化鉄が11モル%、鉄が89モル%であった。 The obtained sprayed film had a thickness of about 200 μm. When the crystal structure was analyzed by X-ray diffraction, the peak intensities of Fe 4 N and iron were observed. Analysis of the composition by fluorescent X-ray analysis revealed that iron nitride was 11 mol% and iron was 89 mol%.

実施例4
図2に示す装置により窒化鉄溶射膜を作製した。炭素鋼を基材25として表面をブラスト法により粗した後、基材を装置に装着し、溶射距離24を30mmとした。次に窒素40L/分と水素10L/分のプラズマガスを導入して35kWの電力を供給して熱プラズマを発生させた。
この条件で発生した窒素および水素を含む熱プラズマ28の高輝な部分は基材に十分に接触していた。
基材裏面に窒素ガスを吹き付けてこれにより基材を冷却した。このように基材を裏面から冷却しているため、特に予熱は行わない。
Example 4
An iron nitride sprayed film was produced by the apparatus shown in FIG. After roughening the surface by blasting using carbon steel as a base material 25, the base material was attached to the apparatus, and the spraying distance 24 was set to 30 mm. Next, plasma gas was introduced by introducing 40 L / min of nitrogen and 10 L / min of hydrogen and supplying power of 35 kW to generate thermal plasma.
The bright part of the thermal plasma 28 containing nitrogen and hydrogen generated under these conditions was in sufficient contact with the substrate.
Nitrogen gas was sprayed on the back surface of the base material to cool the base material. Thus, since the base material is cooled from the back surface, no preheating is performed.

次に、テクノサーブ社製微粉末供給器により鉄の粉末(平均粒径40μm)を約3g/分で供給し、窒素および水素を含む熱プラズマ中に投入した。100mm角の基材25を150mm/秒の速度で左右に動かし、4mm/秒の速度で上下の往復運動を繰り返して移動させながら溶射を繰り返し、均一に10層の溶射層を堆積させた。成膜中のプラズマが照射された部分の温度は放射温度計で測定して1500℃から1700℃の範囲であった。基材裏面に接触させた熱電対29で測定した基材裏面温度は200℃であった。 Next, iron powder (average particle size of 40 μm) was supplied at about 3 g / min by a fine powder supplier manufactured by Technoserve, and was put into a thermal plasma containing nitrogen and hydrogen. The 100 mm square substrate 25 was moved left and right at a speed of 150 mm / second, and spraying was repeated while repeatedly moving up and down at a speed of 4 mm / second to deposit 10 thermal spray layers uniformly. The temperature of the portion irradiated with plasma during film formation was in the range of 1500 ° C. to 1700 ° C. as measured with a radiation thermometer. The substrate back surface temperature measured with a thermocouple 29 brought into contact with the substrate back surface was 200 ° C.

得られた溶射膜は厚み約200μmで、X線回折により結晶構造を分析したところFeNと鉄のピーク強度が観察された。蛍光X線法により組成を分析したところ窒化鉄が33モル%、鉄が67モル%であった。また溶射膜の断面のSEM観察を行った結果、緻密な膜となっていた。 The obtained sprayed film had a thickness of about 200 μm. When the crystal structure was analyzed by X-ray diffraction, the peak intensities of Fe 4 N and iron were observed. Analysis of the composition by fluorescent X-ray analysis revealed that iron nitride was 33 mol% and iron was 67 mol%. As a result of SEM observation of the cross section of the sprayed film, the film was dense.

実施例5
実施例1〜4、比較例1、2の溶射膜の硬度を加重100gでビッカース硬度計を用いて測定した。硬度は実施例1から実施例4まで各々250Hv、150Hv、370Hv、110Hvであり、比較例1で75Hv、比較例2で80Hvであった。窒化鉄含有量の高い本発明の実施例では高い硬度が得られ、特に窒化鉄含有比率の高いものほど相対的に硬度が高くなった。
Example 5
The hardness of the sprayed films of Examples 1 to 4 and Comparative Examples 1 and 2 was measured using a Vickers hardness meter at a load of 100 g. The hardnesses were 250 Hv, 150 Hv, 370 Hv, and 110 Hv from Example 1 to Example 4, respectively, 75 Hv in Comparative Example 1, and 80 Hv in Comparative Example 2. In the examples of the present invention having a high iron nitride content, high hardness was obtained, and in particular, the higher the iron nitride content ratio, the higher the hardness.

実施例6
実施例1〜4、比較例1、2の溶射皮膜が形成された試料を温度60度の王水に浸漬した。10時間後に目視で確認したところすべての例で基材である炭素鋼は溶解していた。一方溶射膜については、実施例1から4まではそのまま変化無く残っていたが、比較例1、2は残存鉄と見られる部分が選択的に溶解し、表面が粗面化していた。本発明の溶射膜は耐酸化性に優れていることが認められた。
Example 6
The samples on which the thermal spray coatings of Examples 1 to 4 and Comparative Examples 1 and 2 were formed were immersed in aqua regia at a temperature of 60 degrees. When visually confirmed after 10 hours, the carbon steel as the base material was dissolved in all examples. On the other hand, the sprayed film remained unchanged from Examples 1 to 4, but in Comparative Examples 1 and 2, the portion considered to be residual iron was selectively dissolved and the surface was roughened. It was confirmed that the thermal spray film of the present invention was excellent in oxidation resistance.

かかる特徴を有する本発明の窒化鉄溶射膜およびその製造方法は、耐食性および耐摩耗性などの特性が要求される構造材料や部品などの被覆に好適な皮膜として利用できる。 The iron nitride sprayed coating of the present invention having such characteristics and the method for producing the same can be used as a coating suitable for coating structural materials and parts that require characteristics such as corrosion resistance and wear resistance.

本発明における溶射膜を減圧で製造するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for manufacturing the sprayed film in this invention by pressure reduction. 本発明における溶射膜を常圧で製造するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for manufacturing the sprayed film in this invention by a normal pressure.

符号の説明Explanation of symbols

101: 基材
102: 基材ホルダー
103: 真空槽
104: 熱プラズマ
105: スペーサ
106: 溶射距離
107: ロータリーポンプ
108: シースガス
109: プラズマガス
110: 高周波コイル
111: 粉末供給器
112: キャリアガス
113: 熱プラズマ源の石英管
114: 熱電対
20: カソード
21: アノード
22: プラズマガスライン
23: 粉末供給ライン
24: 溶射距離
25: 基材
26: 溶射膜
27: 直流電源
28: 熱プラズマ
29: 熱電対





101: Substrate 102: Substrate holder 103: Vacuum chamber 104: Thermal plasma 105: Spacer 106: Thermal spray distance 107: Rotary pump 108: Sheath gas 109: Plasma gas 110: High-frequency coil 111: Powder feeder 112: Carrier gas 113: Quartz tube 114 of thermal plasma source: Thermocouple 20: Cathode 21: Anode 22: Plasma gas line 23: Powder supply line 24: Spraying distance 25: Substrate 26: Sprayed film 27: DC power supply 28: Thermal plasma 29: Thermocouple





Claims (6)

溶射法で成膜してなり、膜厚が1μm以上3mm以下、膜中の窒化鉄が25モル%以上100モル%以下で残部が鉄のみからなる窒化鉄溶射膜。 An iron nitride sprayed film formed by a thermal spraying method, having a film thickness of 1 μm or more and 3 mm or less, iron nitride in the film of 25 mol% or more and 100 mol% or less, and the balance being made of only iron. 基材に請求項1の窒化鉄溶射膜を被覆した部材。 The member which coat | covered the iron nitride sprayed film of Claim 1 to the base material. 熱プラズマを発生させる部位と基材を保持する部位を有する装置において、窒素を含む熱プラズマの高輝な部分を基材に接触させながら、該熱プラズマ中に鉄を投入することにより基材上に窒化鉄を主体とする溶射膜を形成する方法であって、基材の温度を制御することにより皮膜形成部位の温度を窒化鉄の分解温度以下とすることを特徴とする窒化鉄溶射膜の製造方法。 In an apparatus having a part for generating a thermal plasma and a part for holding the base material, iron is introduced into the thermal plasma while bringing the bright part of the thermal plasma containing nitrogen into contact with the base material. A method of forming a sprayed coating mainly composed of iron nitride, wherein the temperature of the coating formation site is controlled to be equal to or lower than the decomposition temperature of iron nitride by controlling the temperature of the substrate. Method. 減圧容器内で高周波または直流アークにより熱プラズマを発生させる部位と基材を保持する部位を有する装置を用いることを特徴とする請求項3の製造方法。 4. The manufacturing method according to claim 3, wherein an apparatus having a part for generating thermal plasma by high-frequency or direct-current arc in a decompression vessel and a part for holding the substrate is used. 請求項3又は請求項4の方法で得られた溶射膜に、窒素を含む熱プラズマの高輝な部分を接触しながら鉄を投入せずに熱プラズマを照射し、かつ皮膜形成部位の温度を窒化鉄の分解温度以下に保つ事によって鉄の窒化を進行させ、溶射膜中の鉄を窒化させることを特徴とする請求項3又は請求項4に記載の窒化鉄溶射膜の製造方法。 The thermal spraying film obtained by the method of claim 3 or claim 4 is irradiated with thermal plasma without introducing iron while contacting the bright part of the thermal plasma containing nitrogen, and the temperature of the coating formation site is nitrided The method for producing an iron nitride sprayed film according to claim 3 or 4, wherein the nitriding of iron is advanced by keeping the iron decomposition temperature or lower to nitride the iron in the sprayed film. 熱プラズマが窒素および水素を含むことを特徴とする請求項3〜5のいずれかに記載の窒化鉄溶射膜の製造方法。


























The method of manufacturing an iron nitride sprayed film according to any one of claims 3 to 5, wherein the thermal plasma contains nitrogen and hydrogen.


























JP2004363847A 2004-12-16 2004-12-16 Thermal-sprayed film of iron nitride and manufacturing method therefor Pending JP2006169584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363847A JP2006169584A (en) 2004-12-16 2004-12-16 Thermal-sprayed film of iron nitride and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363847A JP2006169584A (en) 2004-12-16 2004-12-16 Thermal-sprayed film of iron nitride and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006169584A true JP2006169584A (en) 2006-06-29

Family

ID=36670641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363847A Pending JP2006169584A (en) 2004-12-16 2004-12-16 Thermal-sprayed film of iron nitride and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006169584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358716B2 (en) * 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358716B2 (en) * 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy

Similar Documents

Publication Publication Date Title
JP3894313B2 (en) Fluoride-containing film, coating member, and method for forming fluoride-containing film
US6372303B1 (en) Method and device for vacuum-coating a substrate
US20120196139A1 (en) Thermal spray composite coatings for semiconductor applications
US20120177908A1 (en) Thermal spray coatings for semiconductor applications
Lindfors et al. Cathodic arc deposition technology
JP4740932B2 (en) Method for forming black yttrium oxide sprayed coating and black yttrium oxide sprayed coating member
Sein et al. Enhancing nucleation density and adhesion of polycrystalline diamond films deposited by HFCVD using surface treaments on Co cemented tungsten carbide
JP6005314B1 (en) Film-coated substrate, plasma etching apparatus component, and manufacturing method thereof
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
KR101849997B1 (en) Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
Zheng et al. Influence of nitridation on the microstructure and corrosion behavior of reactive plasma sprayed TiCN coatings
JP3915628B2 (en) Aluminum nitride sprayed film and manufacturing method thereof
US7972653B2 (en) Method for removing amorphous carbon coatings with oxidizing molten salts and coated member regeneration method
JP2628601B2 (en) Diamond coated cemented carbide and method of diamond coating of cemented carbide
JP2006307298A (en) Nitride film and film-forming method therefor
JP2006169584A (en) Thermal-sprayed film of iron nitride and manufacturing method therefor
JP4032178B2 (en) Method for manufacturing silicon nitride sprayed film
Bystrov et al. Plasmachemical synthesis of titanium carbide on copper substrates
JPH05117087A (en) Article having diamond-like thin film as protection film
Nastasi et al. The use of plasma immersion ion processing in the synthesis of protective coatings for Al die casting
Mahmood et al. Development and Characterization of Oxidation Resistant TiC Coating on Graphite
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
Fathi et al. Plasma spray deposition enhancement of titanium nitride layer using nitrogen-contained plasma irradiation of titanium substrate as a pre-spraying method
JP2016510089A (en) Method for depositing a corrosion resistant coating
Sidelev et al. Stripping of carbon coatings in radio-frequency inductively coupled plasma of H2/Ar