JP2006169208A - Supported ultrafine silver particle having excellent antibacterial property - Google Patents

Supported ultrafine silver particle having excellent antibacterial property Download PDF

Info

Publication number
JP2006169208A
JP2006169208A JP2004367074A JP2004367074A JP2006169208A JP 2006169208 A JP2006169208 A JP 2006169208A JP 2004367074 A JP2004367074 A JP 2004367074A JP 2004367074 A JP2004367074 A JP 2004367074A JP 2006169208 A JP2006169208 A JP 2006169208A
Authority
JP
Japan
Prior art keywords
silver
antibacterial
carrier
washing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004367074A
Other languages
Japanese (ja)
Inventor
Tadashi Kubota
規 窪田
Noriaki Kubota
宜昭 窪田
Masaaki Kubota
正昭 窪田
Katsuo Inoue
克夫 井上
Shigeru Kurihara
茂 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETS KK
Kk Ets
NIPPON KOGYO GIJUTSU KAIHATSU
NIPPON KOGYO GIJUTSU KAIHATSU KENKYUSHO KK
Original Assignee
ETS KK
Kk Ets
NIPPON KOGYO GIJUTSU KAIHATSU
NIPPON KOGYO GIJUTSU KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETS KK, Kk Ets, NIPPON KOGYO GIJUTSU KAIHATSU, NIPPON KOGYO GIJUTSU KAIHATSU KENKYUSHO KK filed Critical ETS KK
Priority to JP2004367074A priority Critical patent/JP2006169208A/en
Publication of JP2006169208A publication Critical patent/JP2006169208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a material for the production of a safe, strong and quick-acting supported antibacterial silver. <P>SOLUTION: A silver salt solution is applied to the surface of a carrier such as natural or synthetic fiber, glass, ceramic, metal oxide and sintered metal oxide and the solution is reduced with an active hydrogen reducing agent or by the irradiation with ultraviolet rays having a wavelength of ≤400 nm to form ultrafine silver particles having excellent antibacterial property and supported on the surface of the carrier. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銀の微細粒子を担体の表面に於いて還元生成担持させることにより、銀の微粉末物性に起因する強力かつ迅速及び人畜に無害な抗菌性銀担持体を提供するものであり、より詳細には、担体分子の表面に分布する電気陰性度の作用により定量的に吸着される銀イオン結晶粒をその場で還元し、生成する銀の超微細一次粒子をその発揚に最適となる条件を、酸化銀粒子における酸素原子の非化学量論的配位現象の制御から求め、担体の表面に於いてピコメートル乃至ナノメートル規模の粒子径制御に成功した。抗菌とは何かは非特許文献7を引用した。 The present invention provides a strong and rapid antibacterial silver carrier that is harmless to humans and animals due to the physical properties of fine silver powder, by reducing and supporting silver fine particles on the surface of the carrier, More specifically, the silver ion crystal grains that are quantitatively adsorbed by the action of electronegativity distributed on the surface of the carrier molecule are reduced in situ, and the resulting ultrafine primary particles of silver are optimal for their launch. The conditions were determined from the control of the non-stoichiometric coordination phenomenon of oxygen atoms in the silver oxide particles, and the particle size control on the picometer to nanometer scale on the surface of the support was successful. Non-patent document 7 is cited as to what is antibacterial.

さらに、当該微細銀粒子を担持させる原理として、担体分子の表面に分布する電気陰性度と、酸化銀粒子の脱酸素時における酸素原子の核外電子との瞬時の共鳴破壊現象を利用して生成する銀微粒子と、担体表面の陰性電荷の帯電部分とが、その場で強く吸引担持されることが判明した。 Furthermore, as a principle of supporting the fine silver particles, it is generated using the instantaneous electron-nuclearity breakdown phenomenon between the electronegativity distributed on the surface of the carrier molecule and the extranuclear electrons of oxygen atoms during deoxidation of the silver oxide particles. It was found that the silver fine particles and the negatively charged charged portion on the surface of the carrier were strongly attracted and supported in situ.

以上の作用から定量的に吸着される銀イオン結晶粒をその場で化学還元し、生成する銀の超微細一次粒子をその場に吸着担持させることにより、持続性に優れた銀の抗菌性機能とともに、銀微粒子の量子サイズ効果に準拠する物性により一層強化した極めて優れた抗菌性担持体を提供することが可能になった。 Silver ion grains that are quantitatively adsorbed from the above actions are chemically reduced in situ, and the ultrafine primary particles of silver that are produced are adsorbed and supported on the spot, thereby providing a highly durable silver antibacterial function. At the same time, it has become possible to provide an extremely excellent antibacterial carrier that is further enhanced by physical properties that conform to the quantum size effect of the silver fine particles.

従来から、銀、銅、亜鉛等の金属イオンが細菌等の微生物に対して抗菌作用を有することが広く知られており、これらを利用する抗菌剤、抗菌処理技術等も多数開発されているが銀は他の貴金属と異なり、古来より高級洋食器をはじめ歯科用充填材等として、人類の食生活と密接に関わり、その生体に対する安全性(無毒性)も実証されている。 Conventionally, it is widely known that metal ions such as silver, copper and zinc have an antibacterial action against microorganisms such as bacteria, and many antibacterial agents and antibacterial treatment techniques utilizing these have been developed. Unlike other precious metals, silver has been closely related to the human diet as a high-grade western tableware and dental filler, and its safety (non-toxicity) has been demonstrated.

特に銀の優れた抗菌作用とともに、安全性を裏づける保証としては、世界的権威の学術書として名高い非特許文献1を引用するが米国等の文明先進国では上水の滅菌処理に使用されている。銀の安全性と優れた抗菌性は、銀を抗菌剤、あるいは抗菌処理技術とする実例もあり、銀は他の金属抗菌剤及び薬物抗菌剤の追随を許さないものがある。 In addition to the excellent antibacterial action of silver, as a guarantee to support safety, Non-Patent Document 1, which is well-known as a world-renowned academic book, is cited, but it is used for sterilization of drinking water in civilized advanced countries such as the United States. . The safety and excellent antibacterial properties of silver include examples in which silver is an antibacterial agent or antibacterial treatment technology, and silver does not allow other metal antibacterial agents and drug antibacterial agents to follow.

銀の抗菌性機能成分を提案する直近10年から約600件の特許文献を検証してみると態様に大別2分類の特徴を窺い知ることができる。特許文献分類1として、銀のみを金属の状態で使用する方法、及び、銀イオンを不溶性無機塩結晶の陽イオンと交換することにより該無機塩結晶に銀イオンを担持する方法があり、特許文献分類2として銀、銅、亜鉛等その他の金属あるいは金属イオンを含む抗菌防黴剤を用いる方法がある。
特許文献分類1
特開2003−212707号公報 特開2004−161632号公報 特開2002−293705号公報 特開2000−198708号公報 特開平11−5744号公報 特開平11−57729号公報 特開平11−222494号公報、 特開平11−292534号公報 特開平11−322525号公報 特開平9−175819号公報 特開平10−45410号公報 特開平6−166514号公報 特開平5−294808号公報 特開平11−26304号公報 特開平7−247111号公報 特開2000−198708号公報 特開平11−222494号公報 特開平9−175819号公報 特開平6−166514号公報 特開平5−294808号公報 特開平11−26304号公報 特開平7−247111号公報特許文献分類2 特開2003−206210号公報 特開平11−347537号公報 特開平9−100116号公報 特開平7−53319号公報 特開平5−155725号公報 特開平11−192492号公報 特開平10−139609号公報 特開平7−97302号公報 特開平6−87715号公報 特開平5−229911号公報 特開平5−345703号公報 特開平7−97302号公報 特開平6−87715号公報 CRC Handbook of Chemistry and Physics:68th Edition(1987−1988,CRC PRESS,Inc.Boca Raton Frorida) International Society for 1969 Hybrid Microelectronics Symposium 窪田 規 Electronic Materials Research Laboratories(1969年9月29日、30日と10月1日の3日間に及ぶSTATLER HILTON DALLAS.TEXAS) 応用物理 第39巻 第9号(1970年5月25日)「沈殿法による銀粉の粒子径制御について」窪田 規 窪田 規:Pd−Ag厚膜回路とその素子に関する研究(博士学位論文、昭和47年3月24日、大阪大学) 電子材料2001年7月号「導電性接着剤」窪田 規 理科年表平成15年版 丸善(株)生59(859頁)神経、筋肉の電解質濃度と静止電位 広辞苑(岩波書店版1998年)「抗菌とは何か」 国民生活センター「たしかな目」No.131,June1997年
If we examine about 600 patent documents from the last 10 years that propose silver antibacterial functional ingredients, we can find out the characteristics of two broad categories in the form. Patent document classification 1 includes a method of using only silver in a metal state and a method of supporting silver ions on the inorganic salt crystals by exchanging silver ions with cations of insoluble inorganic salt crystals. As a classification 2, there is a method using an antibacterial / antifungal agent containing other metals or metal ions such as silver, copper and zinc.
Patent literature classification 1
JP 2003-212707 A JP 2004-161632 A JP 2002-293705 A JP 2000-198708 A Japanese Patent Laid-Open No. 11-5744 JP-A-11-57729 JP-A-11-222494, JP 11-292534 A JP-A-11-322525 Japanese Patent Laid-Open No. 9-175819 JP-A-10-45410 JP-A-6-166514 JP-A-5-294808 JP-A-11-26304 JP 7-247111 A JP 2000-198708 A JP-A-11-222494 Japanese Patent Laid-Open No. 9-175819 JP-A-6-166514 JP-A-5-294808 JP-A-11-26304 Japanese Patent Laid-Open No. 7-247111 Patent Document Classification 2 JP 2003-206210 A JP-A-11-347537 Japanese Patent Laid-Open No. 9-100116 JP-A-7-53319 JP-A-5-155725 JP-A-11-192492 JP-A-10-139609 JP-A-7-97302 JP-A-6-87715 JP-A-5-229911 JP-A-5-345703 JP-A-7-97302 JP-A-6-87715 CRC Handbook of Chemistry and Physics: 68th Edition (1987-1988, CRC PRESS, Inc. Boca Raton Florida) International Society for 1969 Hybrid Microelectronics Symposium Noboru Kubota Electronic Materials Research Laboratories (STANDER HLA for three days, September 29th, 30th and October 1st) Applied Physics Vol. 39, No. 9 (May 25, 1970) “Regarding the control of particle size of silver powder by precipitation method” Kubota Nori Noboru Kubota: Research on Pd-Ag thick film circuits and their devices (Doctoral dissertation, March 24, 1972, Osaka University) Electronic Materials July 2001 issue "Conductive Adhesive" Kubota Nori Science chronology 2003 edition Maruzen Co., Ltd. Student 59 (page 859) Nerve and muscle electrolyte concentration and resting potential Kojien (Iwanami Shoten version 1998) “What is antibacterial?” National Life Center “Takashi Eye” 131, June 1997

前述の如く銀の抗菌性を利用した多数の提案があるも、大部分の提案は従来の経験則的抗菌作用を評価の基準に用いており、抗菌性の強度並びに作用時間の効率等に具体的な評価を成す例は見当たらず、抗菌剤の作用機能、作用効率、衛生上の安全性等の設計に不可欠となる抗菌剤の用途の選定とか、抗菌装置又は設備等に対して、従来の提案は全般的に諸特性を明らかに出来ていない点に問題がある。 As mentioned above, there are many proposals that use the antibacterial properties of silver, but most proposals use the conventional rule of thumb antibacterial action as a criterion for evaluation. There are no examples that make an effective evaluation. For the selection of antibacterial agents that are indispensable for the design of antibacterial agents, such as the function, efficiency, and hygiene safety, The proposal has a problem in that various characteristics cannot be clarified in general.

本発明の眼目は抗菌機能の効率を追求する試験研究を推進するために、銀の抗菌作用が強力かつ迅速であることを実験的に確認すること、地球環境の保全に貢献しうる利点性も視野に入れ、高い安全性の確保から金属銀のみを単独で使用することを課題とした。引用文献として非特許文献1。 The eye of the present invention has the advantage that it can contribute to the conservation of the global environment by experimentally confirming that the antibacterial action of silver is powerful and quick in order to promote the research and research pursuing the efficiency of the antibacterial function. In view of this, the issue was to use only metallic silver alone to ensure high safety. Non-patent document 1 as cited document.

従来の提案全体に共通する問題点は、抗菌作用の速度及び抗菌作用の強弱等に関して明確に定めるものがなく、抗菌効率を定性定量的に表現する際の用語についても明確な定義がないため、これら本発明が意図する社会生活への導入と活用に伴う用語の定義は予め用意しておく必要があり、非特許文献8の「たしかな目」を参考とし次のような解釈のもとで抗菌とは何かを定義し本明細書の記述に用いることとした。 The problems common to all previous proposals are not clearly defined regarding the speed of antibacterial action and the strength and weakness of the antibacterial action, and there is no clear definition of terms used to express the antibacterial efficiency qualitatively and quantitatively. Definitions of terms associated with the introduction and utilization of the social life intended by the present invention must be prepared in advance. What is antibacterial is defined and used in the description of this specification.

抗菌の意味は「菌に対抗する」という広い範囲の使用があるため、抗菌作用の用語には具体的内容を伴う意味が必要で以下の用語を定義した。『殺菌』とは微生物を殺すこと、『滅菌』とはその物に存在するすべての微生物を殺すか取除くこと『除菌』とは洗浄等の方法でその物から微生物を取除くこと『静菌』とは微生物の繁殖を抑えること。例えば殺菌的抗菌作用、滅菌的抗菌作用、あるいは静菌的抗菌効果等の表現により記述を進めるが抗菌性の時間効率は、試験による実測時間の直接表示か、瞬時あるいは即時等の修飾語を用いて状況が具体的に把握できるよう努める。 Since the meaning of antibacterial has a wide range of use of “against bacteria”, the term of antibacterial action needs to have a specific meaning and the following terms are defined. "Sterilization" means killing microorganisms, "Sterilization" means killing or removing all microorganisms present in the object. "Sterilization" means removing microorganisms from the object by means such as washing. “Bacteria” refers to suppressing the growth of microorganisms. For example, the description is made with expressions such as bactericidal antibacterial action, bactericidal antibacterial action, or bacteriostatic antibacterial action. To make sure that the situation is clear.

先に例示した特許文献分類1と特許文献分類2から改善を要すると思料される問題点を整理し課題とする必要もあり、前述した特許文献分類1に属する提案の中から全体を通じての問題点を一括して採り挙げる。該提案の特許文献1の提案から本発明の見解を具体的に述べる。該提案の評価点は金属銀の粉末粒子を固体の表面に担持して抗菌剤とする着想であるが、金属銀の微粒子を生成させる化学還元過程と酸化チタンの粒子表面に該銀粒子を担持させる条件に問題がある。 It is also necessary to sort out the problems considered to require improvement from Patent Document Category 1 and Patent Document Category 2 exemplified above, and to make them problems. Are taken together. The opinion of the present invention will be specifically described based on the proposal of Patent Document 1. The evaluation point of the proposal is the idea that metal silver powder particles are supported on a solid surface as an antibacterial agent, but the chemical reduction process for forming metal silver fine particles and the surface of titanium oxide particles support the silver particles. There is a problem with the conditions

即ち抗菌活性を最大限度発揮可能な本発明による銀微粒子は、別項に記載のように量子サイズ効果による励起から該銀粒子表面に定在的高速電界パルスの発生が考えられ、この活性微粒子は単に粒径が微細であるのみならず、高速電界パルスにより秒速で菌体が破壊される最も迅速な瞬時殺菌効果を発揮することが顕微鏡下の観察実験により証明されており、本発明の微細銀粒子と比較すると粒子生成過程に次の指摘の問題点があり、抗菌性の作用効率も一般的水準に止まり銀の効能は発揮し得ない。 That is, the silver fine particles according to the present invention capable of maximizing the antibacterial activity are considered to generate a standing high-speed electric field pulse on the surface of the silver particles from excitation due to the quantum size effect as described in another section. It is proved by the observation experiment under the microscope that not only the particle size is fine but also the fastest instantaneous bactericidal effect that the cells are destroyed at a high speed by the high-speed electric field pulse. Compared with the above, the particle generation process has the following problems, the antibacterial action efficiency remains at a general level, and the efficacy of silver cannot be exhibited.

該提案は銀錯塩の水溶液を単純に化学還元して得た銀粉末の利用を提案するが、この方法では還元生成する銀粉末粒子の組織構造は、通常得られる還元銀粉末と本質的に変わらず、その抗菌効果も通常の銀粒子が示す静菌的抗菌効果しかなく、特許文献1にも抗菌効果の強度もしくは作用速度の記述がないばかりか、抗菌作用の具体的説明も見られない。推察するところ一般的銀微粒子に発現する抗菌作用と同レベルと思われる。具体的な内容では以下に述べる技術的な問題点が明らかになる。 The proposal proposes the use of silver powder obtained by simply chemically reducing an aqueous solution of a silver complex salt. In this method, however, the structure of the silver powder particles produced by reduction is essentially the same as the obtained reduced silver powder. In addition, the antibacterial effect is only a bacteriostatic antibacterial effect exhibited by ordinary silver particles, and there is no description of the strength or action speed of the antibacterial effect in Patent Document 1, and no specific explanation of the antibacterial effect is found. It is assumed that the level of antibacterial action expressed in general silver fine particles is the same. The specific contents will clarify the technical problems described below.

該提案では水中で銀の錯塩を還元し得られるナノメートルサイズの微細な銀粒子を、該銀錯塩水溶液中に共存する酸化チタン粉末粒子の表面に担持させる方法により、抗菌と防黴性の粉末を製造する方法の提案がある。銀塩及び銀錯塩水溶液から化学還元で金属銀の粒子を析出生成させる際、銀の析出に従い低下する銀イオン濃度の影響により、生成する銀粒子の状態が次第に変化することは一般に良く知られている。銀イオン濃度の変化に伴い還元反応速度が変化し、反応系の熱力学的諸量が一斉に変動するので、生成する銀粒子の諸状態を一定に管理することは到底不可能な状態に陥る。 In this proposal, an antibacterial and antifungal powder is produced by supporting fine silver particles of nanometer size obtained by reducing silver complex salt in water on the surface of titanium oxide powder particles coexisting in the aqueous solution of silver complex salt. There is a proposal for a method of manufacturing. It is generally well known that when metallic silver particles are precipitated from silver salt and silver complex aqueous solution by chemical reduction, the state of the resulting silver particles gradually changes due to the influence of the silver ion concentration that decreases as the silver precipitates. Yes. The reduction reaction rate changes with the change in the silver ion concentration, and the thermodynamic quantities of the reaction system fluctuate all at once, making it impossible to control the various states of the silver particles that are produced to a constant level. .

ナノメートルサイズの微細な銀粉を凝集させることなく均一な分散状態で生成させることは、該提案だと全く不可能に近く、当該提案に記載の方法だけでは不可能に近いと指摘せざるを得ない。次いで微細銀粒子を酸化チタン微粒子表面へ担持する方法の問題点として、銀の微細粒子を還元生成と同時に他の物質表面へ担持させるとき、担持に必要な界面電位の整合と、その安定性の確保が困難な銀の化学還元系では非常に困難な状況にあると考えられる。銀イオンの還元エンタルピーは、還元系のイオン積に支配され一定ではないが、他の亜鉛、銅等と比べて遥かに小さい。そのため酸化チタン粒子が還元系の水に濡れて水和の状態にあると、電気陰性度の比較的小さい酸化チタンの酸素原子の近傍には銀粒子を吸着する力は殆どないと考えられる。ゆえに銀粒子は非常に微細で量子サイズ効果による格子エネルギーの低下が著しい場合以外は、担持の界面強度は期待できないと考えられる。この例として、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15に開示されているものがある。 It must be pointed out that it is almost impossible to produce nanometer-sized fine silver powder in a uniformly dispersed state without agglomeration, and that the method described in the proposal is almost impossible. Absent. Next, as a problem of the method of supporting fine silver particles on the surface of titanium oxide fine particles, when silver fine particles are supported on the surface of another substance at the same time as reduction formation, the matching of the interface potential required for the support and the stability It is thought that the situation is very difficult in the chemical reduction system of silver which is difficult to secure. The enthalpy of reduction of silver ions is not constant because it is controlled by the ionic product of the reducing system, but is much smaller than other zinc, copper and the like. Therefore, when the titanium oxide particles are in a hydrated state by being wet with reducing water, it is considered that there is almost no force for adsorbing silver particles in the vicinity of the oxygen atom of titanium oxide having a relatively low electronegativity. Therefore, it is considered that the interfacial strength of the supported particles cannot be expected unless the silver particles are very fine and the lattice energy is significantly reduced by the quantum size effect. As an example, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, Patent Document 9, Patent Document 10, Patent Document 11, Patent Document 12, Patent Document 13, Patent Document 14, and Patent Document 15 are disclosed.

還元銀粒子の物性、及び担体の表面物性、共に安定な担持の条件に適応する配慮の対策は必須条件で、従来の試行錯誤に依存して偶然達成される結果は危険であり、当該提案に準拠する方法で作成された銀担持酸化チタン粉末では、洗浄工程で銀粉末が担体粒子の表面から脱落する現象が予測され、本提案には改善の余地が多々あると考察される。 It is essential to take measures to adapt to the physical properties of the reduced silver particles and the surface of the support, both of which are stable, and the results achieved by chance depending on conventional trial and error are dangerous. In the silver-supported titanium oxide powder prepared by a compliant method, the phenomenon that the silver powder falls off from the surface of the carrier particles in the washing process is predicted, and it is considered that there is much room for improvement in this proposal.

特許文献2及び特許文献3を検証すると、いずれも金属銀の抗菌性機能を、銀コロイドの状態において利用しようとするものであるが、前者は銀コロイド分散系そのものを、後者は銀コロイドを無機質に担持したものを、それぞれ抗菌剤として用いる提案である。両提案とも、微細銀粒子を安定した状態で得る手段として、銀コロイド(膠質)を選んだものと思料されるが、銀のコロイドは他の金属(例えば金や白金等)のコロイドに比べて、分散系の媒質から被るイオン電荷の変動による影響を受け易く、容易に凝析するので安定なコロイドの状態で、ある程度長時間実用に供することは困難とみられ、銀コロイドを用いて無機質吸着剤に担持させる提案は、吸着系のエネルギー安定化に伴う急速な二重電気層の崩壊で粒子に凝析粗大化が起こり、担持は原理的に困難と判断せざるを得ず以下にその理由を述べるが、それは銀コロイドの物性に関する特性が示唆している。 When Patent Document 2 and Patent Document 3 are verified, both attempt to utilize the antibacterial function of metallic silver in the state of silver colloid. The former is a silver colloid dispersion itself, and the latter is a silver colloid as an inorganic substance. It is a proposal to use what is carried on each as an antibacterial agent. Both proposals seem to have chosen silver colloids as a means of obtaining fine silver particles in a stable state, but silver colloids are compared to colloids of other metals (such as gold and platinum). It is easily affected by fluctuations in ionic charge from the dispersion medium, and easily coagulates, so it seems difficult to put it into practical use for a long time in a stable colloid state. The suggestion to be supported on the particles is that coagulation coarsening occurs in the particles due to the rapid collapse of the double electric layer accompanying the stabilization of the energy of the adsorption system. As mentioned, it is suggested by the properties related to the physical properties of silver colloid.

銀コロイドは、疎液コロイドの一種で、水を分散媒とする親水コロイドで、更に粒子が陰電気を帯びる陰性コロイドでもあり、電荷の原因は、粒子が溶液中から陽イオン又は陰イオンのどちらかを好んで吸着するため、粒子が陽又は陰に帯電し、その反対符号の電荷を持つイオンがそれに引き寄せられて、粒子の回りに電気的二重層ができ、対立する電荷は互いに引き合うので、これを媒介として粒子が水の分子に引かれ、水から離れない状態に保たれ、皆同じ極性の電荷を持つゆえに互いに反発し合って沈降することがない。 Silver colloid is a kind of lyophobic colloid, a hydrocolloid with water as a dispersion medium, and also a negative colloid in which the particles are negatively charged. The cause of the charge is either cation or anion from the solution. Because the particles are positively or negatively charged and ions of opposite sign are attracted to it, creating an electrical double layer around the particles, and the opposing charges attract each other, Through this, the particles are attracted by the water molecules and kept away from the water, and since they all have the same polarity of charge, they do not repel each other and settle.

コロイド粒子の電荷は、溶液中に存在するごく僅かな電解質の作用による影響をうけるので、電解質の濃度、イオン化電圧等の変化により、コロイド溶液はその影響を受けて不安定となり、粒子の凝集、沈殿等コロイドの凝析が起きる。銀コロイドは他と比べて水溶液の安定性が特に低く、凝析し易い性質があるため、抗菌剤として使用する場合は特別にコロイドの安定化対策を講ずる必要が生ずる。またコロイドを用いて担体に担持する際にも、担持の直前にコロイド粒子を凝析させる必要があり、その際の粒子の凝集から、粒子の粗大化が起こり、担持体の抗菌効率を低下させ、折角の銀コロイドを使用する意義が半減する恐れがある。即ち銀をコロイドの状態で無機物に担持させる旨の記述は何かの誤りと思料される。 Since the charge of colloidal particles is affected by the action of a very small amount of electrolyte present in the solution, the colloidal solution becomes unstable due to the influence of changes in the electrolyte concentration, ionization voltage, etc. Aggregation of colloids such as precipitation occurs. Silver colloids have a particularly low aqueous solution stability compared to others and are prone to coagulation. Therefore, when used as an antibacterial agent, it is necessary to take special measures for stabilizing the colloid. Also, when colloid is supported on a carrier, it is necessary to coagulate the colloidal particles immediately before the support, and the particles are agglomerated due to the aggregation of the particles at this time, and the antibacterial efficiency of the support is reduced. There is a risk that the significance of using the colloidal silver colloid will be halved. In other words, the statement that silver is supported on an inorganic material in a colloidal state seems to be an error.

銀の抗菌性を利用する特許文献中の方法に、銀イオンあるいは銀錯イオンを無機複合結晶化合物中の陽イオンとイオン交換し、これを用いて銀の抗菌作用を持続的に利用する種々の提案がある。無機複合結晶化合物としては一般的に水に不溶性の複合イオン結晶を選択するが、各提案にはそれぞれ特徴ある結晶が選択されている。例えば、結晶中に陽イオンとしてカルシウムイオンを含む複合結晶化合物を利用する方法に多数の開示があり、代表的な例示として特許文献16、特許文献17、特許文献18、特許文献19、特許文献20,特許文献21、特許文献22などがある。該提案全般に共通する問題点は、銀イオンあるいは銀錯イオンを、他のイオン結晶の陽イオンと、イオン交換の原理に基づいて置換担持する点で、それぞれの担体結晶内における銀イオンは、これと対をなす陰イオンとの間に、イオン間の静電引力に基づく強大なエネルギーで結合しているため、外部から別の陰イオンが接触しても容易に結晶から離脱することはできず、特に該提案に使用される複合イオン結晶は、ほとんどが水に不溶性であるから、結晶の構成陰イオンも全て解離困難な状況にある。即ち水に不溶性のイオン結晶はイオン解離が不可能な陰イオンで構成されることになる。 Various methods for the continuous use of the antibacterial action of silver using silver ion or silver complex ion exchanged with the cation in the inorganic composite crystal compound in the method in the patent literature using the antibacterial property of silver I have a suggestion. As the inorganic composite crystal compound, a composite ion crystal that is insoluble in water is generally selected, but a characteristic crystal is selected for each proposal. For example, there are a large number of disclosures in a method of using a composite crystal compound containing calcium ions as cations in a crystal. Representative examples include Patent Document 16, Patent Document 17, Patent Document 18, Patent Document 19, and Patent Document 20. Patent Document 21, Patent Document 22, and the like. A problem common to all the proposals is that silver ions or silver complex ions are substituted and supported based on the principle of ion exchange with cations of other ion crystals. Silver ions in each carrier crystal are The anion is paired with a strong energy based on the electrostatic attraction between the ions, so it can be easily detached from the crystal even if another anion comes in contact with the outside. In particular, since most of the complex ion crystals used in the proposal are insoluble in water, all of the constituent anions of the crystals are difficult to dissociate. That is, water-insoluble ionic crystals are composed of anions that cannot be dissociated.

上記の理由から、該提案の銀イオンの溶出量は僅少であるため、抗菌剤の消耗が少なく持続性が長い反面、抗菌作用効果の点では微弱かつ緩慢と思料され、更に前記同様のイオン結晶に、銀および銀以外の抗菌性金属成分、例えば銅、亜鉛等のイオンが同時に置換されている場合は、それら金属のイオン化ポテンシャルの大きいものから順次溶出するので、銀は最後まで結晶中にとどまる結果、銀の抗菌性が利用されにくくなるという問題も発生する。ゆえに該提案の抗菌剤は、静菌的抗菌効果程度の効力しか期待できないと思料され、本発明の目標とする即時殺菌的抗菌効果には程遠い方法と判断できる。 For the above reasons, since the proposed silver ion elution amount is very small, the antibacterial agent consumption is low and the sustainability is long, but the antibacterial effect is considered weak and slow. In addition, when silver and other antibacterial metal components other than silver, such as copper and zinc, are substituted at the same time, since the metals are eluted in descending order of their ionization potential, silver remains in the crystal until the end. As a result, the problem that the antibacterial property of silver becomes difficult to be used also occurs. Therefore, it is considered that the proposed antibacterial agent can only be expected to be as effective as a bacteriostatic antibacterial effect, and can be judged to be far from the immediate bactericidal antibacterial effect targeted by the present invention.

特許文献分類2に採録した特許文献23、特許文献24、特許文献25、特許文献26、特許文献27、特許文献28を検証すると、銀、銅、亜鉛等その他の金属あるいは当該金属のイオンを含む抗菌・防黴剤等に関する提案として、銀の抗菌防黴機能と他の金属の当該機能とを同一視するものと認められるが、本発明の目的とは基本的に異なる。例えば銀、銅、亜鉛、錫、チタン、セレン等からなる群から、少なくとも一種以上の金属成分を選択することを特徴とする抗菌剤あるいは抗菌方法を例示すると、たとえ銀を選択した場合でも、選択肢にある他の金属を個々別々に選択した場合の効果には何等差異を生ぜず、皆同じ結果になり技術的矛盾が生ずる。 Patent Literature 23, Patent Literature 24, Patent Literature 25, Patent Literature 26, Patent Literature 27, and Patent Literature 28 accepted in Patent Literature Classification 2 contain other metals such as silver, copper, zinc, or ions of the metals. As a proposal regarding antibacterial / antifungal agents, etc., it is recognized that the antibacterial / antifungal function of silver and the function of other metals are regarded as the same, but it is basically different from the object of the present invention. For example, an antibacterial agent or antibacterial method characterized by selecting at least one metal component from the group consisting of silver, copper, zinc, tin, titanium, selenium, etc., even if silver is selected There is no difference in the effect of selecting other metals individually in each, and they all have the same result and technical contradiction.

特許文献32は、公害、環境汚染の元凶として厳しく使用が禁止されている金属のクロム、鉛、砒素、コバルト、カドミウム等を抗菌成分として含む抗菌剤が提案されており、公共の用途に供することは論外と言わせざるを得ない。特許文献29は、銀及び銅を硝酸塩として等量混合のうえ粉末に担持する提案をするが、環境の化学的条件次第では銅イオンが流出して周囲を汚染する可能性が高く、また課題点として特に危険を回避する認識が示されていない。 Patent Document 32 proposes an antibacterial agent containing chromium, lead, arsenic, cobalt, cadmium, etc., which is strictly prohibited as a cause of pollution and environmental pollution, as an antibacterial component, and is provided for public use. Must be said to be out of the question. Patent Document 29 proposes that silver and copper are mixed in equal amounts as nitrates and supported on powder, but depending on the chemical conditions of the environment, there is a high possibility that copper ions will flow out and contaminate the surroundings. As such, there is no particular recognition to avoid danger.

銀イオンが結晶内の陽イオンと置換して出来るゼオライトなどのイオン結晶や、銀が錯イオンとして配位する銀錯塩結晶等の場合、結晶内の一員としての銀イオンは周囲の環境から来る陰イオンがあれば、これと対を作って、結晶から急速かつ容易に外部に溶出する可能性がある。銀イオンをイオン交換あるいは置換により結晶内に導入したゼオライトや、銀錯イオンを置換した錯塩結晶等、イオン結晶の一部に存在する銀イオンを抗菌剤として使用する提案もあるが、これらの抗菌剤が様々の化学的成分を含む地球環境に暴露された時それら環境に存在する銀イオンと対をなして結合する可能性を持つ陰イオン、たとえば、硝酸イオン、硫酸イオン、塩素イオン等が該抗菌剤に接触すると、結晶内の銀イオンは極めて容易に溶出する性質を持ち抗菌剤の消耗及び効力低下の原因となり、銀をイオンの形態で抗菌剤に使用する際の最大の問題点が解消されない。 In the case of ion crystals such as zeolite formed by replacing silver ions with cations in the crystal, or silver complex salt crystals in which silver is coordinated as complex ions, silver ions as a member of the crystal are negative ions coming from the surrounding environment. If there is an ion, it can be paired with the ion and eluted out of the crystal quickly and easily. There are also proposals to use silver ions present in a part of ionic crystals as antibacterial agents, such as zeolites in which silver ions are introduced into crystals by ion exchange or substitution, and complex salt crystals in which silver complex ions are substituted. When an agent is exposed to a global environment containing various chemical components, anions having the possibility of pairing with silver ions present in those environments, such as nitrate ions, sulfate ions, chloride ions, etc. When contacted with an antibacterial agent, the silver ions in the crystal elute very easily, causing the antibacterial agent to be consumed and reduced in efficacy, eliminating the biggest problem when using silver as an antibacterial agent in the form of ions. Not.

銀イオンの溶出による損失を緩和する手段として、従来の提案からにしばしば見受けられる抗菌剤の持続性改良対策に、抗菌剤の表面を種々の材料と方法から、適宜被覆する手段が提案されているが、この手段は銀の抗菌作用の効率を低下させることにつながるので問題ある今後の課題が残される。金属銀は古来より日常生活に広く使用され毒性を問題とする記録がないが、銀の化合物には硝酸銀のように劇物指定のものもあり、銀の衛生上の有害性は、無機銀塩では銀と対になる陰イオンの性質で決まる。銀は有機及び無機の化合物を問わず、水溶性の化合物が経口摂取された場合に銀イオンは胃酸と反応して水に不溶性の塩化銀となり排泄されるため、多量の銀イオン溶液を摂取しない限り有害性は殆どないと知られている。また金属銀は、銀の対イオンとなり得る陰イオンと遭遇しても、それと直ちに化合して溶解することはない。硝酸根のような強酸の陰イオンとでさえも最初は硝酸の酸化作用で酸化銀を生成し、次にこれが硝酸根のイオンと反応して初めて硝酸銀の生成となることを見ても銀の安全性は明らかである。 As a means to alleviate the loss due to elution of silver ions, a means for appropriately coating the surface of the antibacterial agent from various materials and methods has been proposed as a measure for improving the durability of the antibacterial agent often found in the conventional proposals. However, this method leads to a decrease in the efficiency of silver antibacterial action, leaving a problem for the future. Metallic silver has been widely used in daily life since ancient times, and there is no record of toxicity problems. However, some silver compounds are designated as deleterious substances, such as silver nitrate. Then, it is determined by the nature of the anion paired with silver. Silver is an organic and inorganic compound, and when water-soluble compounds are taken orally, silver ions react with gastric acid and are excreted as water-insoluble silver chloride, so do not consume a large amount of silver ion solution. It is known that there is almost no harm. Furthermore, metallic silver does not immediately combine and dissolve when it encounters an anion that can be a counter ion of silver. Even with strong acid anions such as nitrate radicals, the oxidation of nitric acid first produces silver oxide, and then it reacts with nitrate radical ions to form silver nitrate for the first time. Safety is clear.

前記の技術全体を俯瞰して、銀の抗菌性に関する研究は一般的公衆衛生の観点からの試行錯誤が先行し、抗菌剤の作用機構等、原理の探索に不十分な点が指摘され殊に銀の抗菌作用については諸説一貫性が見当たらず、科学的根拠に基づく定説は少ない。本発明者らは、銀の抗菌作用を解明するためには、その作用機構に占める銀の金属物性を考慮することが重要であり、また銀の抗菌作用が発現する際の現象の観察及び解析が銀の抗菌作用原理の解明に必須であるとする見解のもとに、以下の抗菌作用実験を実施した。銀の金属物性については非特許文献2、非特許文献3、非特許文献5を引用した。 Taking a bird's-eye view of the entire technology, research on the antibacterial properties of silver was preceded by trial and error from the viewpoint of general public health. There is no consistent theory about the antibacterial action of silver, and there are few established theories based on scientific evidence. In order to elucidate the antibacterial action of silver, it is important for the present inventors to consider the metal physical properties of silver that occupy its mechanism of action, and to observe and analyze the phenomenon when the antibacterial action of silver appears. The following antibacterial action experiment was conducted based on the view that is essential for elucidating the principle of silver antibacterial action. Non-patent document 2, Non-patent document 3, and Non-patent document 5 are cited for the metal physical properties of silver.

先ず本発明の銀微粒子担持体(実施例1―(7)に記載)の微粉末を水に分散して試料とした。この試料一滴を、光学顕微鏡にセットされたスライドグラスの中央部分に滴下し、上部からカバーグラスで軽く覆い、試料が両ガラス板の間隙を自由に濡れながら流動できるよう一定の間隔に固定して試験片とした。細菌培養液としては、モルモットの盲腸に寄生する原虫(Balantidium caviae)の培養液を用いた。培養液には多数の原虫が活発に泳動している状況が顕微鏡(倍率400倍)下で明瞭に確認できた。上記細菌培養液約1滴をスポイドに採り、試験片のカバーグラスの端部に滴下塗布し、該原虫が試料の液相内部に向かい泳動可能な状態に保ちながら、顕微鏡観察ならびに目視の記録映像を撮影した。その結果は次の通りであった。 First, a fine powder of the silver fine particle carrier of the present invention (described in Example 1- (7)) was dispersed in water to prepare a sample. One drop of this sample is dropped on the center part of the slide glass set in the optical microscope, covered lightly with a cover glass from the top, and fixed at a fixed interval so that the sample can flow while freely wetting the gap between both glass plates. A test piece was obtained. As a bacterial culture solution, a culture solution of protozoa (Balantidium caviae) parasitic on the cecum of guinea pigs was used. The state in which a large number of protozoa actively migrated in the culture solution could be clearly confirmed under a microscope (400 times magnification). Take about 1 drop of the above bacterial culture in a spoid and apply it to the edge of the cover glass of the test piece. While keeping the protozoa in a state that allows migration to the inside of the liquid phase of the sample, a microscopic observation and visual recording video Was taken. The results were as follows.

本発明の上記銀微粒子担持体の水分散系試料に泳動侵入した上記原虫は、試料系に侵入接触すると、直ちに数度の回転運動後に繊毛運動が停止し死滅する。その間は数秒で即時殺菌的抗菌効果と表現するほかなく、繊毛運動停止後は菌体の細胞膜が物理的に破壊され、内部の原形質が流出する様子を明瞭に観察でき、その殺菌作用は正に劇的と表現するに相応しい状況といえる。なお本発明者らが、前記抗菌効率試験の対象に上記原虫を選択した主な理由は原虫類の大きさが数マイクロメートルと比較的大きく、400倍程度の光学顕微鏡で容易に観察でき、活発な鞭毛運動に見るその動作や菌体の観察から抗菌剤の作用効果を目視により容易に確認できる利点を有するからだが、原虫類の細胞壁は化学物質の透過性が小さく、塩素に対する抵抗性は大腸菌の約60万倍の強さと知られる。従って上水処理の塩素濃度では全く殺菌効果が期待できないレベルの原虫でも瞬時に殺菌する能力は、今後の抗菌剤に求められる抗菌効率の理想目標の一つと見做すことができる。なお当該実験の記録映像は必要であれば開示の用意も整えてある。 When the protozoa migrates into the aqueous dispersion sample of the silver fine particle carrier of the present invention and enters and contacts the sample system, the ciliary movement stops immediately after several rotational movements and dies. During that time, it can be expressed as an immediate bactericidal antibacterial effect within a few seconds, and after ciliary movement is stopped, the cell membrane of the cells is physically destroyed and the protoplasm inside can be clearly observed, and its bactericidal action is positive. It can be said that the situation is suitable for expressing as dramatic. The main reason why the present inventors selected the protozoa as the target for the antibacterial efficiency test is that the size of the protozoa is relatively large, such as several micrometers, which can be easily observed with an optical microscope of about 400 times, However, the cell wall of the protozoa has low chemical permeability and resistance to chlorine is low in E. coli. It is known to be about 600,000 times stronger. Therefore, the ability to instantly sterilize even protozoa at a level where no sterilizing effect can be expected at the chlorine concentration of water treatment can be regarded as one of the ideal targets for antibacterial efficiency required for future antibacterial agents. The recorded video of the experiment is prepared for disclosure if necessary.

大腸菌(Escherichia coli)に対しては、本発明の上記試料が接触と同時に、ほぼ瞬間的に死滅させる効果を持つことが別の実験でも実証されており、銀微粒子担持体が単細胞微生物を極めて短時間に死滅させる機構は、接触した微生物の細胞膜表面に急激な電位変化(非特許文献6)を与える大きなエネルギーにあると判明した。金属の中でも銀は貴金属として特異な物性を持つ金属だが、上記の抗菌作用の急激な現象から考察して、従来の抗菌効果のように単なる生活反応を阻害する程度の緩慢な作用とは比較すべくもない顕著な効果が得られた。 It has been demonstrated in another experiment that Escherichia coli has the effect of killing the sample of the present invention almost instantaneously at the same time as contact. It has been found that the mechanism of killing in time is the large energy that gives a sudden potential change (Non-patent Document 6) to the cell membrane surface of the microorganism in contact. Among metals, silver has unique physical properties as a noble metal, but considering the above-mentioned rapid phenomenon of antibacterial action, it should be compared with a slow action that inhibits mere daily reactions like the conventional antibacterial effect. A remarkable effect was obtained.

本発明者らは、銀及び銀イオンの持つ抗菌作用の発生機構について、過去に行われた銀の物性研究の成果からの示唆を端緒として、従来銀の抗菌性について知られていない技術領域で研究開発を進めた経験から、本発明を完成させることが出来た。本発明の実験観察から、銀の小さな結晶系が示す量子サイズ効果の影響は、最も強力かつ迅速な抗菌作用があると分かり、本発明を急速に推進させることになった。銀の物性研究の成果とは、非特許文献4に記載した内容の一部で、Pd−Ag厚膜抵抗素子の電気抵抗、抵抗温度係数、電流雑音等の電気物性値が、材料の銀粉末粒子及びパラジウム粉末粒子の結晶粒のサイズ、格子欠陥、欠陥密度等の量子サイズ効果[小さな系では熱力学的諸量(格子エネルギー、融点、イオン化電位等)が通常の物性値から著しくずれる現象]の影響を被り、絶対値が大幅に変化する現象があることを心得ている。量子サイズ効果は、微細な粒子の結晶格子不斉が誘因で起る表面エネルギーの増大効果であるが、抗菌作用機構に物理現象の領域が存在するとすれば、量子サイズ効果は抗菌作用にも当然影響を及ぼすことが予想され、その認識から実験検討が行われた。 The inventors of the present invention have developed an antibacterial action mechanism of silver and silver ions in a technical area that has not been known about the antibacterial properties of silver, starting with suggestions from the results of silver physical properties research conducted in the past. From the experience of research and development, the present invention has been completed. From experimental observations of the present invention, it has been found that the influence of the quantum size effect exhibited by the small crystal system of silver has the strongest and quickest antibacterial action, which has led to the rapid promotion of the present invention. The result of the research on the physical properties of silver is a part of the contents described in Non-Patent Document 4, and the electrical properties of the Pd-Ag thick film resistance element, such as the electrical resistance, resistance temperature coefficient, current noise, etc. Quantum size effects such as grain size, lattice defects, defect density, etc. of particles and palladium powder particles [Phenomenon in which thermodynamic quantities (lattice energy, melting point, ionization potential, etc.) deviate significantly from normal physical properties in small systems] I know that there is a phenomenon that the absolute value changes greatly. The quantum size effect is an effect of increasing the surface energy caused by the crystal lattice asymmetry of fine particles. However, if there is a region of physical phenomena in the antibacterial action mechanism, the quantum size effect is naturally applied to the antibacterial action. It was expected to have an effect, and an experimental study was conducted based on this recognition.

検討の結果、従来の抗菌剤に対する作用機構の解釈において検討不十分であった基礎的事項を整理し誤謬の発見と訂正に努めつつ本発明を進めた。まず単細胞微生物の態様及び代謝活動の機構から検討し、従来の思想に対処すると細菌のような単細胞微生物は一つの細胞で生命維持に必要な代謝活動を行うが、個々の微生物の代謝エネルギーは極めて小さく、多数が集まることで周囲に影響を及ぼすとつきとめた。微生物の細胞を保護するものは細胞膜のみで、半透膜からなるも単なる半透膜ではなく選択的透過性を持ち、細胞内の物質代謝で得られるエネルギーを使い、特定のイオンを濃度勾配に逆らい能動輸送し、生命の基本である恒常性を維持している。それが周囲環境の変化に応じて、イオンの移動を調節し、常に細胞膜内外の電位差(非特許文献6)を一定に保とうとしても、細胞が調節可能な電位を遥かに超えた高い電位が外部から印加されたら、膜の機能が阻害され細胞は死滅この機能の制御は最終的に電気信号と考えるほかないと気づいた。 As a result of the examination, the present invention was advanced while arranging basic matters that were insufficiently examined in the interpretation of the action mechanism for the conventional antibacterial agents and trying to find and correct errors. First of all, from the aspect of single-cell microorganisms and the mechanism of metabolic activity, when dealing with conventional ideas, single-cell microorganisms such as bacteria carry out metabolic activities necessary for life support in one cell, but the metabolic energy of each microorganism is extremely high I found out that it was small and many people gathered to affect the surroundings. The only thing that protects the cells of microorganisms is the cell membrane. Although it consists of a semipermeable membrane, it has selective permeability, not just a semipermeable membrane, and uses specific energy in the intracellular metabolism to make specific ions into a concentration gradient. Actively transports counteracting and maintains the homeostasis that is the basis of life. Even if it regulates the movement of ions according to changes in the surrounding environment and always keeps the potential difference between the inside and outside of the cell membrane (Non-patent Document 6) constant, a high potential far exceeding the potential adjustable by the cell is When applied from the outside, the function of the membrane was inhibited and the cells died, and I realized that the control of this function was ultimately considered as an electrical signal.

一部の運動性を示す微生物の運動形態は前記原虫の実験で見るように鞭毛や繊毛を動かして運動するが、その科学的組成は動物の筋繊維と同種の蛋白質と知られている。通常の動物は層状に重なり合うアクチン(actin)と、ミオシン(myosin)の蛋白2種類が滑り込むことで筋繊維の収縮が起きると考えられている。筋肉の収縮及び弛緩の調節はカルシウムイオンの移動によるが、神経が伝える電気信号によりカルシウムイオンの移動は制御されている。ゆえに原虫などの単細胞微生物の運動機能も、最終的には電気信号の制御があると分かる。以上から単細胞微生物の生命維持に必要な代謝エネルギーは極めて小さく、生命維持活動の秩序維持に必要な指示は、微弱な電気信号に依存する性質を否定できない。従来の抗菌技術思想の誤謬が多く存在する理由と言えまいか。 The movement form of microorganisms showing some motility moves by moving flagella and cilia as seen in the protozoan experiment, but its scientific composition is known to be a protein of the same kind as animal muscle fibers. In normal animals, it is thought that contraction of muscle fibers occurs when two types of proteins, actin and myosin, which overlap each other in layers are slipped. The regulation of muscle contraction and relaxation is based on the movement of calcium ions, but the movement of calcium ions is controlled by electrical signals transmitted by nerves. Therefore, it can be seen that the motor function of single-cell microorganisms such as protozoa is ultimately controlled by electrical signals. From the above, the metabolic energy necessary for maintaining the life of single-cell microorganisms is extremely small, and the instruction necessary for maintaining the order of life-supporting activities cannot be denied the nature of being dependent on weak electrical signals. Can it be said that there are many errors in the conventional antibacterial technical idea?

単細胞微生物の細胞膜の電気的性質を詳細に検討した結果の概要を述べる。生体の細胞はそれぞれ細胞膜に包まれ、膜の内側と外側とで電位に差がある(分極している)という性質をもつ。細胞の非活動時における膜内外の電位差は静止電位(resting potential)といい、細胞膜表面の電位を0とした時の内面の電位で表し常に負の値をとる。外部環境の僅かな変化に対応して膜のイオン透過を調節して静止電位を維持するもある閾値を超えた刺激が細胞に加えられると、膜のイオン透過性が一気に変化し活動電位(action potential)が発生する。膜電位の変化過程は、電位差の消失(脱分極)→極性の反転(オーバーシュート)→再び静止電位に戻る(再分極)から成り、電気的波形は全体として5ミクロン秒以内の棘波となる。静止電位と活動電位との差(振幅)は細胞の種類で異なるが、神経や筋の細胞は特に顕著で細胞膜が持つ電気的性質は、細胞が正常な生命活動を維持するために極めて重要な役割を担うも外部からの無関係な電気的刺激は、細胞膜に少なからず混乱と障害を及ぼし、電気的刺激が過大となれば細胞を即死に至らしめる。これらは従来の抗菌性機構に関する提案に見当たらず、微生物の細胞膜の膜電位に関する秩序破壊を対象にした発明は皆無である。 An outline of the results of detailed examination of the electrical properties of the cell membrane of single-cell microorganisms will be described. Biological cells are each wrapped in a cell membrane, and have the property that there is a difference in potential (polarization) between the inside and outside of the membrane. The potential difference between the inside and outside of the membrane when the cell is inactive is called resting potential, which is expressed by the potential of the inner surface when the cell membrane surface potential is 0, and always takes a negative value. In response to slight changes in the external environment, the ion permeability of the membrane is adjusted to maintain a resting potential, but when a stimulus exceeding a certain threshold is applied to the cell, the ion permeability of the membrane changes rapidly and the action potential (action) potential) occurs. The process of changing the membrane potential consists of the disappearance of the potential difference (depolarization)-> polarity reversal (overshoot)-> return to the resting potential (repolarization) again, and the electrical waveform as a whole becomes a spike wave within 5 microseconds. . The difference (amplitude) between the resting potential and action potential varies depending on the cell type, but nerve and muscle cells are particularly prominent, and the electrical properties of the cell membrane are extremely important for the cells to maintain normal life activity. An unrelated external electrical stimulus that plays a role causes not only a little disruption and damage to the cell membrane, but if the electrical stimulus becomes excessive, it causes the cell to die immediately. These are not found in the proposals related to the conventional antibacterial mechanism, and there is no invention that deals with the order destruction related to the membrane potential of the cell membrane of microorganisms.

参考までに哺乳動物の骨格筋繊維の静止電位は;−70〜−90mV,閾膜電位は;−50〜−60mV、活動電位は;+40〜+50mVであり、その振幅は110〜140mV、程度である。細菌など微生物の細胞膜にも同様の性質があり、外部環境の変化に順応し、栄養活動、危険回避など様々な生命活動に重要な役割を果たす機構が示唆される。また一部の細菌や原虫の持つ鞭毛や繊毛の構成蛋白も、高等動物の筋繊維と同種の蛋白だから、高等動物と同様の機構により運動することが示唆される。 For reference, the resting potential of mammalian skeletal muscle fibers is −70 to −90 mV, the threshold membrane potential is −50 to −60 mV, the action potential is +40 to +50 mV, and the amplitude is about 110 to 140 mV. is there. Cell membranes of microorganisms such as bacteria have similar properties, suggesting a mechanism that plays an important role in various life activities such as nutritional activities and danger avoidance, adapting to changes in the external environment. In addition, the flagellar and cilia constituent proteins possessed by some bacteria and protozoa are proteins of the same type as muscle fibers of higher animals, suggesting that they move by a mechanism similar to that of higher animals.

本発明の銀微粒子担持体の、原虫及び大腸菌に対する前記抗菌実験結果並びに前記単細胞微生物の細胞膜電位に与える外部電圧印加の抗菌効果に関する知見及び示唆を根拠として、本発明の銀微粒子担持体の抗菌作用は、当該銀微粒子の物性に起因する電気的エネルギーによる抗菌効果と断定するに至った。そこで当該銀微粒子担持体の銀微粒子の物性について、該抗菌効果に直接貢献をなすと思料される銀の物性を特定し、当該特性の量子サイズ効果について考察した。 The antibacterial action of the silver fine particle support of the present invention is based on the results of the antibacterial experiment on the protozoa and Escherichia coli and the antibacterial effect of applying an external voltage on the cell membrane potential of the single cell microorganism. Has been determined to be an antibacterial effect due to electrical energy resulting from the physical properties of the silver fine particles. Therefore, regarding the physical properties of the silver fine particles of the silver fine particle carrier, the physical properties of silver considered to directly contribute to the antibacterial effect were identified, and the quantum size effect of the properties was considered.

量子サイズ効果(quantum size effect)については、前述の中でも引用しているが、ここに改めて定義する。固体試料の大きさ(サイズ)が、その物質の中の伝導電子や正孔のド・ブロイ波長程度に小さくなったとき、その物質の熱力学的諸量や輸送係数はサイズに依存する変化が現れることを量子サイズ効果という。本発明者らは、銀の抗菌性に最も直接的影響を及ぼす銀の物性として酸化還元電位に注目した。特に量子サイズ効果による酸化還元電位のパルスエネルギーの極端な増大は、即時殺菌的抗菌効果の最大の要因と確信する。酸化還元電位の定常的測定は可能としても、量子サイズ効果で励起されたパルスを実測したり、理論演繹による計算はその場での測定が技術的に困難であるが概念として理解の範疇に入れられる。 The quantum size effect is quoted in the above description, but is defined here again. When the size (size) of a solid sample becomes as small as the de Broglie wavelength of conduction electrons and holes in the material, the thermodynamic quantities and transport coefficients of the material change depending on the size. Appearing is called the quantum size effect. The present inventors have focused on the redox potential as the physical property of silver that most directly affects the antibacterial properties of silver. It is believed that the extreme increase of the redox potential pulse energy, especially due to the quantum size effect, is the biggest factor in the immediate bactericidal antibacterial effect. Although steady-state measurement of the redox potential is possible, actual measurement of pulses excited by the quantum size effect and theoretical deduction are technically difficult, but they are included in the scope of understanding as a concept. It is done.

単細胞微生物の細胞膜電位を攪乱し、該細胞膜を破壊に至らしめる銀の抗菌効果は、次の機構によるものと思料される。量子サイズ効果で励起された銀微粒子その表面近傍を作用領域とする酸化還元サイクルのパルス電界、これが単細胞微生物の細胞膜に印加することによる細胞膜の破壊効果と見做せる。この際の電気的パルスの伝達は、電解質水溶液中ではイオン伝導によると考えられるので当該抗菌性銀微粒子に直接接触しなくても、細胞膜の破壊閾値電圧以上の電界領域に存在する微生物はすべて殺菌作用を被る。 The antibacterial effect of silver that disrupts the cell membrane potential of unicellular microorganisms and leads to destruction of the cell membrane is thought to be due to the following mechanism. The pulsed electric field of the oxidation-reduction cycle having the active region in the vicinity of the surface of the silver fine particles excited by the quantum size effect can be regarded as a cell membrane destruction effect when applied to the cell membrane of a single cell microorganism. In this case, the transmission of electrical pulses is considered to be due to ionic conduction in the aqueous electrolyte solution. Therefore, even if the antibacterial silver fine particles are not in direct contact, all microorganisms present in the electric field region above the cell membrane breakdown threshold voltage are sterilized. Suffers an effect.

銀は量子サイズ効果による励起状態を考慮しない平常の状態でも他の金属と著しく異なる物性を示す金属である。銀は、金、白金等と共に貴金属の一種として、その大部分が金属元素の状態で産出するが、これは一般に貴金属と呼ばれる元素は化学ポテンシャルが他の金属元素に比べて格段に低く、他の元素と化合したうえで安定する化合物を生成するよりも、金属の状態で存在する方が安定という物性に特色を有している。銀の抗菌作用は、銀本来の物性に起因する特性と考えられるが、その根拠は本発明の成果から帰納的に推理されるもので、銀の物性から演繹されるものではない。通常の銀の金属物性(バルクの物性)の中で、本発明による銀の抗菌性機構に関する知見を通じたとき、感得された銀の電子物性に関わる項目について本発明者の所見を述べ、従来の銀の抗菌性に対する一部の誤謬を排し、同時に該技術の開発と発展のための効果とする。 Silver is a metal that exhibits remarkably different physical properties from other metals even in a normal state that does not consider the excited state due to the quantum size effect. Silver is a kind of noble metal, together with gold, platinum, etc., and most of it is produced in the state of metal elements, but this is because elements called noble metals are generally much lower in chemical potential than other metal elements. Rather than producing a compound that is stable when combined with an element, it is characterized by the physical property of being more stable in the state of a metal. The antibacterial action of silver is considered to be a characteristic attributed to the original physical properties of silver, but the grounds are inferred from the results of the present invention and are not deduced from the physical properties of silver. Among the usual metal physical properties (bulk physical properties) of silver, the findings of the present inventor regarding the items related to the electronic properties of silver obtained through the knowledge about the antibacterial mechanism of silver according to the present invention were described. This eliminates some errors in the antibacterial properties of silver, and at the same time has the effect of developing and developing the technology.

単細胞微生物の細胞膜電位の攪乱を抗菌作用の機構とする銀の量子サイズ効果を含まない物性値としては、イオン化エネルギー(7.58cV)、電子親和力(1.0eV)、酸化還元電位(Ag+ /Ag,0.799V)及び金属面の分光反射率5.5%(315nm)8.9%(320nm)が挙げられる。銀の酸化還元反応の際に電子の出入りに費やされるエネルギーの指標としては、イオン化エネルギー及び電子親和力がある。銀の数値について見ると、銀は電子の授受におけるエネルギーの格差が、銅、亜鉛などの金属に比べて小さく、酸化還元反応が一種の共鳴状態にあってマクロ的平衡が成り立つものと思料されるが、ミクロ的に見ると、光、熱、電解質の解離平衡の移動等環境条件の影響を受けて、繰返し激しく揺らいでいると考えられる。その結果として系の外部から観察すると、銀のみに観測される他の金属には見られない特異な現象が表れる。銀の酸化還元電位は水素電極との電位差を定常状態で測定した上記の数値が常用されているが、微細銀粉の電解質溶液中での表面電界電位の波動振幅は上記の数値の約2倍の1500mV(約1000Hz)のパルス波が発生していると見られる。これは単細胞微生物の細胞膜静止電位90mVの約17倍の電圧に相当する高電圧であり、しかも交番電圧として印加されるので、菌体の受ける衝撃は想像以上である。また近紫外部(315〜320nm)に吸光度90%以上に及ぶ光の吸収があり、微細粒子の場合は励起光としてプラズモンが観測される。殊に強誘電体に担持させた銀の微粒子は量子サイズ効果に匹敵する励起現象により、抗菌効果が強化されることが知られている。これら銀は独特な原子構造に基づく物性により一般の金属と異なる種々な現象を示す。次は本発明における銀の作用効果を理解するために最も重要な銀の挙動について説明する。 Physical property values that do not include the quantum size effect of silver with the disturbance of cell membrane potential of single-cell microorganisms as the mechanism of antibacterial action include ionization energy (7.58 cV), electron affinity (1.0 eV), redox potential (Ag + / Ag, 0.799V) and the spectral reflectance of the metal surface 5.5% (315 nm) 8.9% (320 nm). As an index of energy consumed for the entry / exit of electrons in the oxidation-reduction reaction of silver, there are ionization energy and electron affinity. Looking at the numerical value of silver, it is thought that silver has a smaller energy disparity in the exchange of electrons than metals such as copper and zinc, and that a redox reaction is in a kind of resonance state and a macro equilibrium is established. However, when viewed microscopically, it is thought that it is violently fluctuating repeatedly under the influence of environmental conditions such as light, heat, and movement of the dissociation equilibrium of the electrolyte. As a result, when observed from outside the system, a unique phenomenon that cannot be seen in other metals observed only in silver appears. As for the oxidation-reduction potential of silver, the above value obtained by measuring the potential difference with the hydrogen electrode in a steady state is commonly used, but the wave amplitude of the surface electric field potential in the electrolyte solution of fine silver powder is about twice the above value. It can be seen that a pulse wave of 1500 mV (about 1000 Hz) is generated. This is a high voltage corresponding to a voltage about 17 times the cell membrane static potential of 90 mV of a single-cell microorganism, and since it is applied as an alternating voltage, the impact received by the cells is more than expected. In the near ultraviolet region (315 to 320 nm), there is absorption of light reaching an absorbance of 90% or more, and in the case of fine particles, plasmons are observed as excitation light. In particular, it is known that silver fine particles supported on a ferroelectric substance have an antibacterial effect enhanced by an excitation phenomenon comparable to the quantum size effect. These silvers exhibit various phenomena different from ordinary metals due to the physical properties based on a unique atomic structure. Next, the most important behavior of silver for understanding the effect of silver in the present invention will be described.

本発明の特徴を創出した銀の物性で最も重要な特質は酸素との反応及び銀の酸化物の特異性である。本件は反応機構的には論議の余地が多く残されも現象論としては十分に確認され工業技術の分野では既に専門常識となっている。銀は融点以上で多量の酸素を溶解するが、液相のみの合金だから、冷却凝固の際には溶存酸素が放出され、凝固した固体の銀は著しく発泡した海綿状組織となる。ゆえに銀の溶解は真空中で行われる。銀と酸素の親和力は外殻電子の共有によるものではなく金属結合に近い特異な結合状態にあると考えられる。従って一般的な金属に見られる酸素との電子共有結合は銀には存在しない。化学的に合成された酸化銀は正確には非化学量論的酸化物であって、光照射、加熱、強い衝撃等を加えると直ちに分解して酸素を放出し銀に還元される。これらの性質は一般的な金属の性質と正反対である。銀は電子親和力の物性値が1.0eVで、正の値を持つことから、Ag+ イオンが,電子eを得て金属に還元されるとき、1.0eV(96.490kJ/mol)のエネルギ−を放出することが分かる。以上の事実から次の事柄が推察できる。 The most important attributes of the physical properties of silver that have created the features of the present invention are the reaction with oxygen and the specificity of the silver oxide. Although there is much room for debate in terms of the reaction mechanism, this case has been sufficiently confirmed as a phenomenological theory and has already become a common sense in the field of industrial technology. Silver dissolves a large amount of oxygen at a melting point or higher, but since it is an alloy of only a liquid phase, dissolved oxygen is released during cooling and solidification, and the solidified solid silver has a remarkably foamed spongy structure. Therefore, silver dissolution takes place in a vacuum. It is considered that the affinity between silver and oxygen is not due to the sharing of outer electrons, but is in a unique binding state close to a metal bond. Therefore, the electron covalent bond with oxygen found in general metals does not exist in silver. Chemically synthesized silver oxide is precisely a non-stoichiometric oxide, which decomposes immediately upon application of light irradiation, heating, strong impact, etc., releases oxygen and is reduced to silver. These properties are the opposite of those of general metals. Since silver has a positive electron affinity property value of 1.0 eV, it has an energy value of 1.0 eV (96.490 kJ / mol) when Ag + ions are reduced to metal by obtaining the electron e. It can be seen that-is released. The following can be inferred from the above facts.

銀、銀イオン、銀錯イオン、無機銀塩化合物、無機銀錯塩化合物及び有機銀化合物等の中で、自由エネルギーが最も低く安定している状態は金属の銀である。銀のイオン、錯イオン、化合物はすべて熱力学的自由エネルギーが銀のそれよりも高く系外にエネルギーを放出(熱力学的仕事を)しようとしている(Gibbsの自由エネルギーの概念)。銀が貴金属として殆んど金属の状態で産出する理由はここにあるが、銀の表面には他の貴金属と異なり、大気中の水の作用によるAg+ (陽イオン)がある一定量存在している。この銀イオンは大気の水分との水和現象に類似の機構で生成すると見られているが、イオンの生成は極めて微量で、対イオンの0H- の確認が困難であるため生成機構は未だ明らかでない。また一般の金属では、大気中で表面に酸化物被膜あるいは水酸化物被膜が存在するので水和反応の機構が明白に説明できるが、銀の場合は酸化物被膜がほとんど存在しないので疑問とされている。 Among silver, silver ions, silver complex ions, inorganic silver salt compounds, inorganic silver complex compounds, organic silver compounds, and the like, the state in which free energy is the lowest and stable is metallic silver. Silver ions, complex ions, and compounds all have higher thermodynamic free energy than silver, and are trying to release energy (thermodynamic work) out of the system (Gibbs concept of free energy). This is the reason why silver is almost noble as a noble metal, but unlike other noble metals, there is a certain amount of Ag + (cation) due to the action of water in the atmosphere. ing. This silver ion is thought to be generated by a mechanism similar to the hydration phenomenon with atmospheric moisture, but the generation mechanism is still unclear because the formation of ions is extremely small and it is difficult to confirm 0H- of the counter ion. Not. In general metals, there is an oxide or hydroxide film on the surface in the atmosphere, so the mechanism of the hydration reaction can be explained clearly. However, in the case of silver, there is almost no oxide film, so it is questioned. ing.

次に前記酸化銀の特異性が、本発明の重要な特徴の一つであることを説明する。銀の酸化物には、AgO,Ag ,AgO等は知られているが。化学結合論の立場から見ると、電気化学的系列の末尾を占め反応性に欠けるが、酸素と反応するためには、まず電子が金属から離れ、ついでイオン化する必要がある。銀の場合はイオン化エネルギーが比較的高く(7.58eV),昇華熱が大(融点 962度C)であることは、反応性が低いことになるが、これは銀イオンが水和される時に得られる大きいエネルギーによって部分的に相殺される。そのため銀の酸化反応は反応系の水による水和のエネルギーの影響を著しく受けることになる。銀イオンの水和エネルギーを制御して、銀と酸素の結合エネルギーを一定の範囲内で制御できることが発見された。その結果銀と結合する酸素の配位数を変化させることが可能になり、生成する微細銀粒子の母体となる酸化銀粒子の結晶構造、格子欠陥密度及び酸化還元電位をある程度変化させることが可能になった。上記の制御により得られる酸化銀は、不安定な状態にあるため、中間的に取り出して分析することは困難であるが、大略Ag1.1〜2.00.8〜1.0の範囲にある非化学量論的酸化銀である。最終的に生成する銀微細粒子は、担持体表面の電荷分布及び電気陰性度の制御で、その態様が決まるが、即時殺菌的抗菌性の機能は確実に維持されている。 Next, it will be explained that the specificity of the silver oxide is one of the important features of the present invention. As silver oxides, Ag 2 O, Ag 2 O 3 , AgO and the like are known. From the point of view of chemical bonding theory, it occupies the end of the electrochemical series and lacks reactivity, but in order to react with oxygen, it is first necessary for the electrons to leave the metal and then ionize. In the case of silver, the ionization energy is relatively high (7.58 eV) and the heat of sublimation is large (melting point 962 ° C.), the reactivity is low. Partially offset by the large energy gained. Therefore, the silver oxidation reaction is significantly affected by the energy of hydration by water in the reaction system. It was discovered that the binding energy of silver and oxygen can be controlled within a certain range by controlling the hydration energy of silver ions. As a result, the coordination number of oxygen bonded to silver can be changed, and the crystal structure, lattice defect density, and redox potential of the silver oxide particles that form the base of the fine silver particles that are generated can be changed to some extent. Became. Since the silver oxide obtained by the above control is in an unstable state, it is difficult to take out and analyze it in the middle, but it is generally about Ag 1.1 to 2.0 O 0.8 to 1.0 . Non-stoichiometric silver oxide in range. The silver fine particles that are finally produced have their modes determined by controlling the charge distribution and electronegativity on the surface of the support, but the function of immediate bactericidal antibacterial properties is reliably maintained.

本発明の抗菌性銀微粒子担持体は、担体に担持される銀微粒子の物性を量子サイズ効果により賦活し、抗菌機能を著しく増幅した銀微粒子を安定に担持した担持体が特徴である。 量子サイズ効果を与える具体的方法としては、銀粒子の化学還元方法が重要であり、本発明では次の方法を用いて実現している。また本発明の賦活された抗菌性銀微粒子は、担体の表面電荷(電気陰性度)の影響を利用した位置に還元析出される。従来のように銀粒子のみ単独に製造する方法では、微細粒子を制御して還元生成することは難しい。 The antibacterial silver fine particle carrier of the present invention is characterized by a carrier that stably supports silver fine particles whose physical properties of silver fine particles supported on a carrier are activated by a quantum size effect and whose antibacterial function is remarkably amplified. As a specific method for giving a quantum size effect, a chemical reduction method for silver particles is important, and in the present invention, the following method is used. Further, the activated antibacterial silver fine particles of the present invention are reduced and deposited at a position utilizing the influence of the surface charge (electronegativity) of the carrier. In the conventional method of producing only silver particles alone, it is difficult to control and produce fine particles.

第一の実施形態は担体の選択および表面洗浄処理に関する。本発明の担体としては、高分子樹脂、天然ガーゼあるいは合成繊維、ガラス、セラミックス、金属酸化物および金属酸化物焼結体(陶磁器類を含む)の中から選択される材質が使用可能である。担体の形状に関しても、粉末、繊維、多孔質、棒状、板状、その他のあらゆる形状の部材が使用できる。担体は表面が清浄でなくてはならない。汚れや付着物は洗浄その他の方法により完全に清浄化する必要がある。これは使用される担体の表面が微細銀粒子が還元析出する際の反応容器の役割を果たすため、異物の存在は本発明の効果を損なう危険性がある。 The first embodiment relates to carrier selection and surface cleaning treatment. As the carrier of the present invention, a material selected from polymer resin, natural gauze or synthetic fiber, glass, ceramics, metal oxide and metal oxide sintered body (including ceramics) can be used. Regarding the shape of the carrier, powder, fiber, porous, rod-like, plate-like, or any other shape member can be used. The carrier must have a clean surface. Dirt and deposits must be thoroughly cleaned by washing or other methods. This is because the surface of the carrier used serves as a reaction vessel when fine silver particles are reduced and precipitated, and therefore the presence of foreign substances may impair the effects of the present invention.

担体の表面は形状にもよるが、アルコールによる脱脂洗浄が最も標準的で効果的である。洗剤、界面活性剤等は吸着による単分子膜などの影響が考えられ、銀微粒子の量子サイズ効果の付与にも影響する可能性があるから避けるべきである。脱脂洗浄後は必ず十分な純水洗浄を行う必要がある。担体表面の清浄処理は本発明の効果に重要な影響を与える。 洗浄後の担体は、次の工程まで乾燥空気中もしくは乾燥窒素ガス中に保管する。 Although the surface of the carrier depends on the shape, degreasing cleaning with alcohol is the most standard and effective. Detergents, surfactants, etc. may be affected by monomolecular films due to adsorption and should be avoided because they may affect the quantum size effect of the silver particles. After degreasing and cleaning, it is necessary to perform sufficient pure water cleaning. The cleaning treatment of the carrier surface has an important influence on the effect of the present invention. The washed carrier is stored in dry air or dry nitrogen gas until the next step.

第二の実施形態は担体の表面への銀塩溶液の塗布工程である。銀塩としては、アンモニア性硝酸銀溶液、硫酸銀水溶液および硝酸銀水溶液の中から1種類を選択するが、還元生成する銀微粒子の抗菌効果における顕著な差異は認められない。いずれも本発明の特徴的効果を発現することができるが担持される材質の種類によって、銀の担持形態に若干の差異が考えられるので、担持体の材質、形状により、適切な銀塩を試験して選択することが好ましい。発明者らの知見では、アンモニア性硝酸銀はガラス、セラミックス、陶磁器等の無機質への担持に適しており、硝酸銀及び硫酸銀の水溶液はそれぞれ有機樹脂、天然及び合成繊維への担持に適している。 The second embodiment is a step of applying a silver salt solution to the surface of the carrier. As the silver salt, one kind is selected from an ammoniacal silver nitrate solution, a silver sulfate aqueous solution and a silver nitrate aqueous solution, but no significant difference in the antibacterial effect of the silver fine particles produced by reduction is recognized. Any of them can express the characteristic effects of the present invention, but depending on the type of material to be supported, there is a slight difference in the form of silver supported, so an appropriate silver salt was tested depending on the material and shape of the carrier. It is preferable to select them. According to the knowledge of the inventors, ammoniacal silver nitrate is suitable for supporting inorganic substances such as glass, ceramics, and ceramics, and aqueous solutions of silver nitrate and silver sulfate are suitable for supporting organic resins, natural and synthetic fibers, respectively.

担体に塗布する銀塩のイオン濃度(Ag+ ,mol/l)は0.1〜0.001の範囲が適している。銀の濃度が高過ぎると、粒子が凝集し易く、量子サイズ効果が付与されにくくなり抗菌作用が低下する。銀の濃度が希薄な場合の方が抗菌機能が高い傾向がある。担体への銀塩の塗布は、担体の形状、大きさにより、浸漬、スプレー等適宜の方法で行なわれるが、次の乾燥工程が極めて重要である。もし乾燥工程で不適切な処理を行うと抗菌効果に著しく影響するので特に注意が必要である。 The ion concentration (Ag @ +, mol / l) of the silver salt applied to the carrier is suitably in the range of 0.1 to 0.001. When the concentration of silver is too high, the particles are likely to aggregate and the quantum size effect is hardly imparted, resulting in a decrease in antibacterial action. Antibacterial functions tend to be higher when the concentration of silver is dilute. The silver salt is applied to the carrier by an appropriate method such as dipping or spraying depending on the shape and size of the carrier, but the next drying step is extremely important. Special care should be taken if improper treatment in the drying process significantly affects the antibacterial effect.

担体に塗布された銀塩水溶液は、数分間ないし10分間室温(20+−3度C)に保持して、表面電荷と水和イオンとの平衡状態を構築させる。この間銀塩水溶液の水分が蒸発しないように密閉された容器に保存されなくてはならない。これを銀塩と担体表面の界面電荷平衡エージングと称して本発明の主要な管理項目としている。 The silver salt aqueous solution applied to the carrier is kept at room temperature (20 + −3 ° C.) for several minutes to 10 minutes to establish an equilibrium state between the surface charge and hydrated ions. During this period, the silver salt aqueous solution must be stored in a sealed container so that the water does not evaporate. This is referred to as interfacial charge equilibrium aging between the silver salt and the carrier surface, and is the main control item of the present invention.

上記のエージングが終了すると次に重要な銀塩水溶液の水分の除去を行う。この工程は単なる乾燥ではなく、イオン結晶から水分を除去して水和のエネルギーを除去し、銀塩の微細な結晶が担体の担持ポテンシャルサイトに配向させる働きをさせる。銀塩のようなイオン結晶は、水溶液の状態では水和エネルギーの強大な影響を受けて、イオン対の分極が抑制された状態にあることはよく知られている。そのため担体の表面に存在する原子の種類、密度の違いで出来る担体の表面電荷と、水和状態の銀塩イオンとは完全な配向状態にはないが上記エージング期間に両者は徐々に配向し易い位置を採っていると見られる。そこで銀塩溶液の水分を除去すると、水和が解除された銀塩イオン結晶は、すでにその近傍にある筈の担体の対電荷を持つポテンシャルサイトに強力かつ迅速に吸着固定される。これにより先ず銀塩結晶の担持サイトがエネルギー的に最も安定する場所に設定されることになる。 When the above aging is completed, the moisture of the silver salt aqueous solution, which is important next, is removed. This step is not mere drying, but removes water from the ionic crystals to remove hydration energy, and causes the fine crystals of the silver salt to orient at the support potential sites of the carrier. It is well known that an ionic crystal such as a silver salt is in a state where the polarization of ion pairs is suppressed due to the strong influence of hydration energy in the state of an aqueous solution. Therefore, the surface charge of the carrier formed by the difference in the type and density of atoms present on the surface of the carrier and the hydrated silver salt ions are not in a completely oriented state, but both tend to be gradually oriented during the aging period. It seems to have taken the position. Therefore, when water in the silver salt solution is removed, the dehydrated silver salt ion crystal is strongly and rapidly adsorbed and fixed at the potential site having the counter charge of the soot carrier in the vicinity thereof. As a result, the silver salt crystal supporting site is first set at a place where the energy is most stable.

担体に塗布された銀塩水溶液の水分の除去は次の方法による。温度20〜30度C、相対湿度10〜20%RHの遮光された乾燥器内で担持体を乾燥する。できれば真空乾燥が好ましいが、急速な真空乾燥により銀塩結晶が担持体表面から剥離する危険があるので、乾燥器を使用して緩慢に乾燥し水分をある程度除去した後、残余の水分を真空乾燥で除去することが好ましい。水分の除去が完全であればある程、銀塩結晶の対イオンが水和エネルギーの束縛から解放され担持体への定着が強固になり、後の工程で生成させる微細銀粒子の抗菌機能も向上し担持の寿命も伸びることになる。 Removal of water from the silver salt aqueous solution applied to the carrier is performed by the following method. The carrier is dried in a light-shielded drier at a temperature of 20-30 ° C. and a relative humidity of 10-20% RH. Vacuum drying is preferable if possible, but there is a danger of silver salt crystals peeling off the surface of the support due to rapid vacuum drying. After drying slowly using a dryer to remove some water, the remaining moisture is vacuum dried. It is preferable to remove by. The more completely the moisture is removed, the more the silver salt crystal counterion is released from the binding of hydration energy and the fixation to the carrier becomes stronger, and the antibacterial function of the fine silver particles produced in the subsequent process is also improved. In addition, the service life of the support is extended.

以上の工程で本発明の抗菌性銀微粒子担持体の主要な骨格が完成する。すなわち完全に乾燥した銀塩の微細結晶が、担体表面の比較的電気陰性度の高い部分に静電吸着により強固に担持された状態である。担体の表面に静電吸着された銀イオン結晶の結晶構造は未だ明らかにされていないが、電子線回折像の解析によれば単一のイオン結晶の形態ではなく、担体の表面に配位したイオン結合以外のパターンが認められ、担体の表面の原子と深くかかわっている様子が窺える。ことに硫酸銀は特異な多座配位と解釈される回折パターンが見られ、今後の検討課題である。いずれにしても銀イオン結晶の担体表面における挙動は、銀微粒子担持体の担持機構を解明する上でも重要であると同時に、銀の担持体の耐久性、信頼性等の実用性を推定する上でも重要である。 The main skeleton of the antibacterial silver fine particle carrier of the present invention is completed through the above steps. That is, a completely dried silver salt fine crystal is firmly supported by electrostatic adsorption on a portion having a relatively high electronegativity on the surface of the carrier. Although the crystal structure of the silver ion crystal electrostatically adsorbed on the surface of the carrier has not yet been clarified, it was coordinated on the surface of the carrier, not in the form of a single ion crystal, according to the analysis of the electron diffraction pattern. Patterns other than ionic bonds are observed, and it seems that they are deeply related to the atoms on the surface of the carrier. In particular, silver sulfate has a diffraction pattern that can be interpreted as a peculiar multidentate coordination. In any case, the behavior of the silver ion crystal on the support surface is important for elucidating the support mechanism of the silver fine particle support, and at the same time estimating the practicality such as durability and reliability of the silver support. But it is important.

次の工程は担持体の表面に担持された銀塩の微細結晶を、水酸化アルカリ水溶液で処理し、銀の酸化物粒子に変化させる。ここで使用される水酸化アルカリとして、苛性ソーダ、苛性カリ、水酸化リチウム及び水酸化カルシウムの内いずれか一種の水酸化アルカリを選択することができる。即ちどの水酸化アルカリを選択して上記の処理を行った場合でも、生成するのはすべて非化学量論的酸化物で、次の工程で最終的に還元されて生成する抗菌性銀微粒子担持体の銀粒子は、すべて量子サイズ効果の励起状態にあることが判明しており、本発明の特徴の一つである。 In the next step, fine silver salt crystals supported on the surface of the support are treated with an aqueous alkali hydroxide solution to change into silver oxide particles. As the alkali hydroxide used here, any one kind of alkali hydroxide can be selected from caustic soda, caustic potash, lithium hydroxide and calcium hydroxide. That is, no matter which alkali hydroxide is selected and the above treatment is performed, all the non-stoichiometric oxides are produced, and the antibacterial silver fine particle carrier produced by the final reduction in the next step. These silver particles are all found to be in an excited state of the quantum size effect, which is one of the features of the present invention.

ここで使用可能な水酸化アルカリの選択肢は多く自由度が広いが水酸化カルシウムは炭酸ガスを吸収して炭酸カルシウムの沈殿を生じ易い欠点もある。苛性ソーダ、苛性カリあるいは水酸化リチウムが全く格差なく使用できる。水酸化アルカリによる処理条件は次の通りである。苛性ソーダあるいは苛性カリを選択する場合は、それぞれ1/10〜1/40規定水溶液を使用する。水酸化リチウムあるいは水酸化カルシウムを選択する場合は、それぞれ1/40〜1/50規定水溶液を使用する。処理温度は20+−3度Cで、担持体を処理液中に浸漬する。処理時間は5〜10分間で、処理中は緩やかに撹拌し処理液が満遍なく行き渡るようにする。処理が終了した担持体は純水による洗浄を次のように行う。 There are many choices of alkali hydroxides that can be used here, but the degree of freedom is wide. However, calcium hydroxide also has a drawback that it easily absorbs carbon dioxide and precipitates calcium carbonate. Caustic soda, caustic potash or lithium hydroxide can be used without any difference. The treatment conditions with alkali hydroxide are as follows. When selecting caustic soda or caustic potash, use 1/10 to 1/40 normal aqueous solutions, respectively. When lithium hydroxide or calcium hydroxide is selected, a 1/40 to 1/50 normal aqueous solution is used. The treatment temperature is 20 + -3 degrees C. The carrier is immersed in the treatment liquid. The treatment time is 5 to 10 minutes. During the treatment, the treatment solution is gently agitated so that the treatment liquid is evenly distributed. The carrier after the treatment is washed with pure water as follows.

担持体を純水に浸漬して静かに撹拌して洗浄を行う。洗浄液がフェノールフタレン指示薬で変色しなくなるまで純水を取り換えて繰り返し洗浄を行い、乾燥窒素ガス若しくは清浄な乾燥空気の気流中で乾燥する。乾燥に用いる空気の湿度は10%RH程度かそれ以下が好ましいが、その他の不純成分はすべて排除することが好ましい。特に二酸化炭素、窒素酸化物、硫黄酸化物、硫化水素、ハロゲン化水素は、この処理工程にある担持体の微細銀酸化物粒子の特性に極めて有害な劣化作用を及ぼす恐れがあるので、厳重に排除する対策が必要である。その意味において、本乾燥工程には半導体製造用窒素ガスの使用が好ましく経済的である。 The carrier is immersed in pure water and gently agitated for cleaning. The pure water is changed until the cleaning liquid is not discolored with the phenolphthalene indicator, and the cleaning liquid is repeatedly washed and dried in a stream of dry nitrogen gas or clean dry air. The humidity of the air used for drying is preferably about 10% RH or less, but it is preferable to exclude all other impure components. In particular, carbon dioxide, nitrogen oxides, sulfur oxides, hydrogen sulfide, and hydrogen halides may have a very detrimental effect on the characteristics of the fine silver oxide particles of the support in this processing step. Measures to eliminate are necessary. In that sense, it is preferable and economical to use nitrogen gas for semiconductor production in this drying process.

乾燥が終了した担持体は以下の方法により還元処理を施す。還元処理の方法には大別して2種類あり、その1は化学還元法で、その2は物理的還元法である。化学還元法は還元処理される担持体の数が多い場合に便利であり、処理に要する費用も比較的低廉であり、活性水素系還元剤として、ギ酸、ホルムアルデヒド、アセトアルデヒド、アスコルビン酸及びハイドロキノンの中から、いずれか一種類を選択して使用することができる。いずれの還元剤を選択しても本発明の効果に格差はないが、上記ギ酸、ホルムアルデヒド及びアセトアルデヒドの3種類の還元剤は、銀酸化物との反応の際、一酸化炭素を発生するので、その危険対策が必要になる。また、アスコルビン酸及びハイドロキノンは前者のような危険性は無いが、水溶液が自動酸化され易いので液の保存管理が難しく、コストも比較的高い欠点がある。物理的還元法は化学的方法に比べて装置及び処理能率の点で経費と時間がかかり経済的に不利であるが、還元処理後の洗浄等の処理が不要で抗菌性銀微粒子担持体としての工程における汚染が少ないため若干耐用性に優れている。 The carrier after drying is subjected to a reduction treatment by the following method. There are roughly two types of reduction treatment methods, one of which is a chemical reduction method and the other of which is a physical reduction method. The chemical reduction method is convenient when the number of supports to be reduced is large, and the cost required for the treatment is relatively low. Among active hydrogen-based reducing agents, among formic acid, formaldehyde, acetaldehyde, ascorbic acid and hydroquinone. From the above, any one type can be selected and used. Even if any reducing agent is selected, there is no difference in the effect of the present invention, but the three reducing agents, formic acid, formaldehyde and acetaldehyde, generate carbon monoxide upon reaction with silver oxide. That risk measure is necessary. In addition, ascorbic acid and hydroquinone do not have the same danger as the former, but the aqueous solution is easily oxidized automatically, so that it is difficult to store and manage the liquid and has a relatively high cost. The physical reduction method is costly and time-consuming in terms of equipment and processing efficiency compared to the chemical method, and is economically disadvantageous. However, it does not require a treatment such as washing after the reduction treatment, and as an antibacterial silver fine particle carrier. Slightly excellent in durability because there is little contamination in the process.

化学還元法による処理方法を説明する。担持体に担持されている微細銀酸化物粒子の酸素原子を非化学量論的酸化物の原子配列が変更されないように注意して引き抜く作業を行う。反応熱による銀の原子移動を防止するため、還元剤の濃度は反応必要量の大過剰(1/10 mol/l)を使用し反応温度は20+−3度Cに設定する。上記活性水素系還元剤は全て1/10 mol/l水溶液を調整する。還元剤の活性水素濃度は一般の化学分析の酸化還元滴定法により随時評定して管理する。還元剤の量は、担持体に担持されている微細銀酸化物粒子の持つ酸素量に比べて問題にならない程大過剰であるから、還元処理の際の還元剤の使用量について特別の配慮は必要ない。担持体が十分浸漬できる分量の還元剤溶液を使用する程度の配慮で十分賄える。ただ還元剤溶液の濃度だけは、反応熱との関係があるので正確に評定の必要がある。担持体を還元剤溶液に浸漬する時間は、温度20+−3度Cで3〜5分間である。その間に緩やかに撹拌することは前記のアルカリ溶液による処理の場合と同様である。還元剤処理が終了した担持体は、直ちに純水洗浄を行う。この際に還元処理後担持体の洗浄を直ちに行う必要がある。還元処理後担持体を大気中に放置すると、還元剤の残査が酸化して微細銀粒子の活性表面に吸着するために抗菌作用が低下する危険性がある。ゆえに本発明の実施には還元剤処理に引続き洗浄する設備を設けることが好ましい。 The processing method by the chemical reduction method will be described. An operation of extracting oxygen atoms of fine silver oxide particles supported on the support with care so as not to change the atomic arrangement of the non-stoichiometric oxide is performed. In order to prevent silver atom migration due to reaction heat, the concentration of the reducing agent is a large excess (1/10 mol / l) of the required reaction amount, and the reaction temperature is set to 20 + −3 ° C. All the active hydrogen-based reducing agents are adjusted to 1/10 mol / l aqueous solution. The active hydrogen concentration of the reducing agent is evaluated and managed as needed by the oxidation-reduction titration method of general chemical analysis. Since the amount of the reducing agent is so large that it does not become a problem compared to the amount of oxygen of the fine silver oxide particles supported on the carrier, there is no special consideration for the amount of reducing agent used during the reduction treatment. unnecessary. It can be sufficiently covered with consideration to the extent of using a reducing agent solution in an amount that allows the carrier to be sufficiently immersed. However, since only the concentration of the reducing agent solution is related to the heat of reaction, it needs to be evaluated accurately. The time for immersing the carrier in the reducing agent solution is 3 to 5 minutes at a temperature of 20 + -3 degrees C. In the meantime, the gentle stirring is the same as in the case of the treatment with the alkali solution. The carrier that has been treated with the reducing agent is immediately washed with pure water. At this time, it is necessary to immediately wash the carrier after the reduction treatment. If the carrier after the reduction treatment is left in the atmosphere, the residue of the reducing agent is oxidized and adsorbed on the active surface of the fine silver particles, so that the antibacterial action may be reduced. Therefore, it is preferable to provide equipment for carrying out the present invention after the reducing agent treatment.

次に物理的還元法について述べる。本方法は担持体に担持されている微細銀酸化物粒子を紫外線照射により物理的に還元し抗菌性銀微粒子担持体を製造する方法である。本方法は前記化学還元法に比べて操作が簡単で、薬品等の消耗品をほとんど必要としない点で優れているが、紫外線の放射エネルギーの管理、処理の効率、品質管理等、生産技術面の整備が重要であるが未だ十分整備されていないという問題がある。従って現時点では実験的生産レベルでの方法について述べる。前記のように銀は300nm付近の近紫外部に非常に大きな吸収帯を持っている。この吸収帯は銀微細粒子が量子サイズ効果による励起状態になると、吸収帯が次第に可視光部にシフトし遂には550nm付近に迄到達する。それぞれの吸収帯のピークに相当する波長の光を照射することによっても還元(酸素の放出)されるが、エネルギーの高い紫外部での照射の方がより還元効率が高いので低圧紫外線ランプを用いる。そこで市販の低圧紫外線ランプ(150W/100V:波長400nm以下ピーク:185nm)を用いて、ランプから30cmの距離に、担持体の表面をランプに向けて10分間紫外線を照射する。上記紫外線ランプを使用した場合、抗菌性銀微粒子担持体を製造する際の還元に要する紫外線の照射時間は、担体の種類や微細銀粒子の性状の違いにより多少の調整が必要であるが、参考として大略の目安8分間ないし10分間程である。この物理的還元法を用いて製造された抗菌性銀微粒子担持体は還元作業を終了すれば洗浄その他の必要は無く、直ちに目的とする抗菌剤の用途に供することができる。 Next, the physical reduction method is described. This method is a method for producing an antibacterial silver fine particle support by physically reducing fine silver oxide particles supported on a support by ultraviolet irradiation. This method is superior to the chemical reduction method described above in that it is easy to operate and requires almost no consumables such as chemicals. However, it is difficult to control ultraviolet radiation energy, process efficiency, quality control, etc. However, there is a problem that it is not yet fully developed. Therefore, the method at the experimental production level is now described. As described above, silver has a very large absorption band in the near ultraviolet region near 300 nm. When the silver fine particles are excited by the quantum size effect, this absorption band gradually shifts to the visible light region and finally reaches around 550 nm. Although reduction (oxygen release) is also performed by irradiating light with a wavelength corresponding to the peak of each absorption band, low-pressure ultraviolet lamps are used because irradiation in the high-energy ultraviolet region has higher reduction efficiency. . Therefore, using a commercially available low-pressure ultraviolet lamp (150 W / 100 V: wavelength 400 nm or less peak: 185 nm), the surface of the carrier is irradiated with ultraviolet rays for 10 minutes at a distance of 30 cm from the lamp. When the above UV lamp is used, the UV irradiation time required for the reduction in the production of the antibacterial silver fine particle carrier requires some adjustment depending on the type of carrier and the properties of the fine silver particles. As a rough guide, it is about 8 to 10 minutes. The antibacterial silver fine particle carrier produced by using this physical reduction method can be immediately used for the intended antibacterial agent without being washed or otherwise required after the reduction operation is completed.

実施例1:高分子樹脂を担体とする例、本発明の担体として汎用性の樹脂からポリエチレンテレフタレート樹脂(PET)の透明フイルム(0.1mmx20cmx20cm)を選んで使用した。以下本発明の実施工程内の説明には、該PETフイルム及び加工中のそれを単に「基材」もしくは「担体」と呼ぶことにする。 Example 1: Example using polymer resin as carrier, Transparent film (0.1 mm x 20 cm x 20 cm) of polyethylene terephthalate resin (PET) was selected from general-purpose resins as the carrier of the present invention. In the following description of the implementation process of the present invention, the PET film and that during processing will be simply referred to as “substrate” or “carrier”.

(1)PET基材の洗浄及び乾燥:容量300mlの容器内に、無水エタノール(試薬一級)150mlを収容し、その中に基材を浸漬して、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を3回繰り返し行った。洗浄終了後基材を全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量100ml/min)中で12時間乾燥した。 (1) Cleaning and drying of the PET substrate: 150 ml of absolute ethanol (first grade reagent) is placed in a 300 ml container, the substrate is immersed in it, and the substrate is rocked using tweezers in the liquid. And washed. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated three times. After washing, the substrate was placed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 100 ml / min) for 12 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内に、硝酸銀水溶液(濃度;0.05mol/l)100mlを収容し、液の温度を21度C(設定温度範囲:20+−3度C)に保持した。次に上記乾燥済みの基材を容器内の硝酸銀水溶液に浸漬して、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。浸漬終了後は基材を引上げて表面に液滴が付着した状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500mlで内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しない状態を10分間保持してエージングを行った。 (2) Silver salt coating and aging: 100 ml of silver nitrate aqueous solution (concentration: 0.05 mol / l) is accommodated in a 300 ml capacity container, and the temperature of the liquid is 21 degrees C (set temperature range: 20 + -3 degrees C). Held on. Next, the dried base material was immersed in an aqueous silver nitrate solution in a container and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of the immersion, the substrate is pulled up and the liquid droplets are attached to the surface, and another container (with a capacity of about 500 ml having a dish-like shape inside) is kept at a temperature of 20 + -3 ° C and the humidity is almost saturated. The container was placed in a separate container and filled with pure water, and the substrate surface was kept dry for 10 minutes for aging.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を、温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し、12時間乾燥して水分を除去した。 (3) Water removal (energy control of hydrated ions): A drier (i-BOX Auto, manufactured by Sampla Tech, Inc.) in which the base material after the aging operation has been maintained at a temperature of 25 + -5 degrees C and a humidity of 10% RH or less ) And dried for 12 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に苛性ソーダ水溶液(濃度1/30mol/l)150mlを収容し、温度を21度C(設定温度範囲:20+−3度C)に保持した。これにピンセットで上記基材を浸漬して静かに揺動させながらアルカリ処理を7分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に、約200mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して5回洗浄した。洗浄回数が3回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkaline treatment and washing: 150 ml of aqueous caustic soda (concentration 1/30 mol / l) was placed in a 300 ml container, and the temperature was maintained at 21 ° C. (set temperature range: 20 + −3 ° C.). The substrate was immersed in this with tweezers and subjected to alkali treatment for 7 minutes while gently rocking. The base material pulled up from the alkali treatment liquid was immediately washed with pure water to remove the adhering alkali liquid. In the washing method, about 200 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 5 times. After the third washing, one drop of a 2% alcohol solution of phenolphthalene was added to the washing water after each washing, and the washing was finished after confirming that the washing liquid did not turn reddish purple. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は、直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量300ml/min)中で1時間乾燥した。なお上記乾燥工程は遮光の必要があるので、乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a shading dryer. The shading dryer was dried for 1 hour in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility similar to the fully automatic dehumidifying storage (D-BOX) described in the above section (1). In addition, since the said drying process needs to be light-shielded, the black light-shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内に、ホルムアルデヒド水溶液(ホルマリン)[濃度:1/10mol/l]150mlを収容し、温度を20度C(温度管理範囲+−3度C)にセットした。これにピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら4分間還元処理した。処理後基材を引上げ直ちに次の洗浄及び乾燥を行った。次に容量500mlの容器内に基材を収容し、容器に純水(電気伝導率1マイクロs以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計4回、4分間洗浄を行った。最終の洗浄水の電気伝導率は0.85マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, washing and drying: In a container with a capacity of 300 ml, 150 ml of an aqueous formaldehyde solution (formalin) [concentration: 1/10 mol / l] is stored, and the temperature is 20 degrees C (temperature control range + -3 degrees) C). The dried substrate was dipped in this using tweezers and reduced for 4 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed and dried. Next, the base material was accommodated in a container having a capacity of 500 ml, and 300 ml of pure water (electrical conductivity of 1 microsecond or less) was added to the container to wash the base material for about 1 minute. Similarly, the pure water was changed, and the washing was further repeated 3 times, for a total of 4 times for 4 minutes. The final wash water electrical conductivity was 0.85 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:本発明が解決しようとする課題が比較的少量の銀使用量において、安全でしかも強力かつ迅速な即時殺菌的抗菌作用を長期間発揮可能な抗菌剤を提供することにある。しかる課題に適合する抗菌剤の抗菌機構を検定する試験方法は現時点で見当たらない。そのため本発明者らは衛生学者、獣医師らの意見を基に、本発明の目標を最も端的に検証可能な独自の抗菌検査試験方法を考案し本発明を完成に導いた。以下に当該検査試験方法の概要を説明する。本発明の抗菌性銀微粒子担持体の抗菌機能試験はすべて次の検査試験方法で行った。試験に供試される単細胞微生物は、化学抗菌剤に対する抵抗性の高い原虫類を被試験試料として採用した。実際の試験では、入手、培養の比較的容易で、かつ比較的毒性の低い原虫の一種であるBalantidium caviaeを使用した。実施例1PETを担体とする抗菌性銀微粒子担持体の抗菌作用効率は17.5秒であった。 (7) Antibacterial function test and test result: The problem to be solved by the present invention is to provide an antibacterial agent capable of exerting a safe, powerful and quick immediate bactericidal antibacterial action for a long period of time when a relatively small amount of silver is used. There is to do. At present, there is no test method to test the antibacterial mechanism of antibacterial agents that meet the relevant issues. Therefore, the present inventors have devised a unique antibacterial test method capable of most simply verifying the goal of the present invention based on the opinions of hygienists and veterinarians, and led the present invention to completion. The outline of the inspection test method will be described below. All antibacterial function tests of the antibacterial silver fine particle carrier of the present invention were conducted by the following test methods. The unicellular microorganisms used for the test were protozoa highly resistant to chemical antibacterial agents as test samples. In the actual test, Balantidium caviae, a kind of protozoa that is relatively easy to obtain and culture and relatively low in toxicity, was used. Example 1 The antibacterial action efficiency of an antibacterial silver fine particle support using PET as a carrier was 17.5 seconds.

上記抗菌機能試験の判定評価方法は、試験用顕微鏡の視野において、被試験抗菌剤試料の視野領域に、原虫の侵入を目視で確認する仕掛けを作り菌が死滅するまでの観察を録画した。正常な原虫は常に激しく泳ぎ回り一刻の休みもない状態である。抗菌剤の作用を受けると、動作が鈍るか、あるいは回転など変則的な動作に変わり、次いで運動が停止し、菌体が変形、膨張などして、最終的に細胞膜の破壊が起こり原形質が細胞膜の裂け目から外部に流れ出した。これらの状況変化は400倍の光学顕微鏡で容易に観察することができる。 In the antibacterial function test determination and evaluation method, in the field of view of the test microscope, a mechanism for visually confirming the invasion of protozoa was formed in the field of view of the antibacterial agent sample to be tested, and observations until the bacteria died were recorded. Normal protozoa always swim violently, and there is no break. When the action of the antibacterial agent is applied, the movement becomes dull or changes to an irregular movement such as rotation, and then the movement stops, the bacterial body deforms and expands, eventually destroying the cell membrane and causing the protoplasm It flowed out of the cell membrane tear. These changes in the situation can be easily observed with a 400 × optical microscope.

実施例2:高分子樹脂を担体とした例、本発明の担体として、ポリアミドイミド樹脂(カプトン)の橙色透明フイルム(0.1mmx15cmx15cm)を選んで使用した。 Example 2: Example using polymer resin as carrier, As a carrier of the present invention, a polyamideimide resin (Kapton) orange transparent film (0.1 mm × 15 cm × 15 cm) was selected and used.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)150mlを収容し、その中に基材を浸漬して液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を3回繰り返し行った。洗浄終了後基材を、全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量150ml/min)中で6時間乾燥した。 (1) Cleaning and drying of base material: 150 ml of absolute ethanol (first grade reagent) is contained in a 300 ml capacity container, and the base material is immersed in it and washed while rocking the base material using tweezers in the liquid. did. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated three times. After completion of the cleaning, the base material was housed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 150 ml / min) for 6 hours.

(2)銀塗布及びエージング:容量300mlの容器内に硫酸銀水溶液(濃度;0.05mol/l)100mlを収容し、液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を容器内の硫酸銀水溶液に浸漬して、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。浸漬終了後に基材を引上げて表面に液滴が付着した状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しない状態を10分間保持してエージングを行った。 (2) Silver coating and aging: 100 ml of an aqueous silver sulfate solution (concentration: 0.05 mol / l) is contained in a 300 ml capacity container, and the temperature of the liquid is kept at 20 degrees C (set temperature range + -3 degrees C). did. Next, the dried base material was immersed in an aqueous silver sulfate solution in the container, and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of immersion, the substrate is pulled up and the liquid droplets are attached to the surface, and the temperature is 20 + -3 degrees C. The humidity is kept almost saturated. And was aged with the substrate surface kept dry for 10 minutes.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を、温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し10時間乾燥して水分を除去した。 (3) Water removal (energy control of hydrated ions): A drier (i-BOX Auto, manufactured by Sampla Tech, Inc.) in which the base material after the aging operation has been maintained at a temperature of 25 + -5 degrees C and a humidity of 10% RH or less ) And dried for 10 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に苛性カリ水溶液(濃度1/30mol/l)150mlを収容し、温度を20度C(設定温度範囲+−3度C)に保持した。この中にピンセットを用いて上記基材を浸漬し、静かに揺動させながらアルカリ処理を7分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に、約200mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して5回洗浄した。洗浄回数が3回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkaline treatment and washing: 150 ml of an aqueous caustic potash solution (concentration 1/30 mol / l) was placed in a 300 ml capacity container, and the temperature was maintained at 20 ° C. (set temperature range + −3 ° C.). The substrate was immersed in this using tweezers and subjected to alkali treatment for 7 minutes while gently rocking. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the washing method, about 200 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 5 times. After the third washing, one drop of a 2% alcohol solution of phenolphthalene was added to the washing water after each washing, and the washing was finished after confirming that the washing liquid did not turn reddish purple. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量300ml/min)中で1時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The shading dryer was dried for 1 hour in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility similar to the fully automatic dehumidifying storage (D-BOX) described in the above section (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内にアセトアルデヒド水溶液[濃度:1/10mol/l]200mlを収容し、温度を20度C(温度管理範囲+−3度C)に調整した。次にピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら4分間の還元処理を行った。処理後基材を引上げ直ちに次の洗浄を行った。容量500mlの容器内に基材を収容し、容器に純水(電気伝導率1マイクロS以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計4回,4分間洗浄を行った。最終の洗浄水の電気伝導率は0.65マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, washing and drying: 200 ml of acetaldehyde aqueous solution [concentration: 1/10 mol / l] is accommodated in a 300 ml capacity container, and the temperature is adjusted to 20 degrees C (temperature control range + -3 degrees C). did. Next, the dried substrate was immersed using tweezers and subjected to a reduction treatment for 4 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed as follows. The substrate was housed in a 500 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added to the container, and the substrate was washed for about 1 minute while rocking. Similarly, the pure water was changed, and the washing was further repeated three times, for a total of four times for 4 minutes. The final wash water electrical conductivity was 0.65 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例2カプトンフイルムを担体とする抗菌性銀微粒子担持体の抗菌作用効率は4.3秒であった。 (7) Antibacterial function test and test results: The following is the same as Example 1- (7), but Example 2 The antibacterial action efficiency of the antibacterial silver fine particle carrier using Kapton film as a carrier was 4.3 seconds. It was.

実施例3:天然及び合成繊維に担持した例、本発明の担体として綿布(日本薬局法ガーゼ)(幅30cmx長さ30cm)を使用した。 Example 3: Example of carrying on natural and synthetic fibers, cotton cloth (Japanese pharmacy method gauze) (width 30 cm x length 30 cm) was used as the carrier of the present invention.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)150mlを収容し、その中に基材を四つ折りにして浸漬し、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を4回繰り返し行った。洗浄終了後に基材を全自動除湿保管庫(D−BOX,・サンプラテック製)に収容し、窒素ガス気流(流量150ml/min)中で6時間乾燥した。 (1) Cleaning and drying of the base material: 150 ml of absolute ethanol (first grade reagent) is placed in a 300 ml capacity container, and the base material is folded in four and immersed therein, and the base material is shaken using submerged tweezers. Washed while moving. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated four times. After the completion of washing, the base material was housed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratech) and dried in a nitrogen gas stream (flow rate 150 ml / min) for 6 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内に硝酸銀水溶液(濃度;0.02mol/l)200mlを収容し、液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を容器内の硝酸銀水溶液に浸漬し、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。 浸漬終了後に基材を引上げて余分の液滴を軽く絞り、再び広げた状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しないように密閉された状態で10分間保持してエージングを行った。 (2) Silver salt coating and aging: 200 ml of silver nitrate aqueous solution (concentration: 0.02 mol / l) is contained in a 300 ml capacity container, and the temperature of the liquid is kept at 20 degrees C (set temperature range + -3 degrees C). did. Next, the dried substrate was immersed in an aqueous silver nitrate solution in the container, and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of the immersion, the base material is pulled up, the excess droplets are lightly squeezed and spread again, and another container (with a capacity of about 500 ml in which the temperature is kept at 20 + -3 degrees C and humidity is almost saturated) The container was placed in a separate container and filled with pure water, and kept for 10 minutes in an airtight state so that the surface of the base material was not dried.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し10時間乾燥して水分を除去した。 (3) Moisture removal (energy control of hydrated ions): a drier (i-BOX Auto, manufactured by Sampleratech) in which the base material after the aging operation is maintained at a temperature of 25 + -5 ° C and a humidity of 10% RH or less And dried for 10 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に水酸化リチウム水溶液(濃度1/30mol/l)200mlを収容し、温度を20度C(設定温度範囲+−3度C)に保持した。この中にピンセットを用いて上記基材を浸漬し、静かに揺動させながらアルカリ処理を5分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は、容量300mlの容器内に、約250mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して7回洗浄した。洗浄回数が5回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkali treatment and washing: 200 ml of a lithium hydroxide aqueous solution (concentration 1/30 mol / l) was placed in a 300 ml container, and the temperature was kept at 20 ° C. (set temperature range + −3 ° C.). The substrate was immersed in this using tweezers, and subjected to alkali treatment for 5 minutes while gently rocking. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the cleaning method, about 250 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 7 times. After the fifth wash, one drop of a 2% alcohol solution of phenolphthalene was added to the wash water after each wash to confirm that the wash liquid did not turn reddish purple and the wash was terminated. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量300ml/min)中で4時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The light-shielding dryer was dried for 4 hours in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility similar to the fully automatic dehumidification storage box (D-BOX) described in the above step (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内にギ酸水溶液(濃度:1/10mol/l)200mlを収容し温度を20度C(温度管理範囲+−3度C)に調整した。次にピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら4分間の還元処理行った。処理後基材を引上げ直ちに次の洗浄を行った。容量500mlの容器内に基材を収容し容器に純水(電気伝導率1マイクロS以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計6回、6分間洗浄を行った。最終の洗浄水の電気伝導率は0.8マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, washing and drying: 200 ml of formic acid aqueous solution (concentration: 1/10 mol / l) was placed in a 300 ml capacity container, and the temperature was adjusted to 20 ° C. (temperature control range + −3 ° C.). . Next, the dried substrate was immersed using tweezers and subjected to a reduction treatment for 4 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed as follows. The substrate was housed in a 500 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added to the container, and the substrate was washed for about 1 minute while rocking. Similarly, the pure water was replaced and the washing was repeated three more times, for a total of 6 times for 6 minutes. The final wash water electrical conductivity was 0.8 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例3日本薬局法ガーゼを担体とする抗菌性銀微粒子担持体の抗菌作用効率は3.0秒であった。 (7) Antibacterial function test and test results: The following is the same as in Example 1- (7), but the antibacterial silver microparticle carrying body using Example 3 Japanese Pharmacopoeia gauze carrier has an antibacterial action efficiency of 3.0 seconds. Met.

実施例4:天然及び合成繊維に担持した例、本発明の担体としてテトロン織布(幅30cmx長さ30cm)を使用した。 Example 4: Example supported on natural and synthetic fibers, Tetoron woven fabric (width 30 cm x length 30 cm) was used as the carrier of the present invention.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)250mlを収容し、その中に基材を四つ折りにして浸漬し、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を軽く絞って収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を4回繰り返し行った。洗浄終了後基材を全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量150ml/min)中で6時間乾燥した。 (1) Cleaning and drying of the base material: 250 ml of absolute ethanol (first grade reagent) is placed in a 300 ml capacity container, and the base material is folded in four and immersed in the container, and the base material is shaken using submerged tweezers. Washed while moving. Next, the base material was lightly squeezed and accommodated in another 300 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added thereto and washed. This washing with pure water was repeated four times. After washing, the substrate was stored in a fully automatic dehumidifying storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 150 ml / min) for 6 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内に硫酸銀水溶液(濃度;0.02mol/l)200mlを収容し、液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を容器内の硫酸銀水溶液に浸漬し、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。 浸漬終了後に基材を引上げて余分の液滴を軽く絞り、再び広げた状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しないように密閉された状態で10分間保持してエージングを行った。 (2) Silver salt coating and aging: 200 ml of silver sulfate aqueous solution (concentration: 0.02 mol / l) is contained in a 300 ml capacity container, and the temperature of the liquid is 20 degrees C (set temperature range + -3 degrees C). Retained. Next, the dried substrate was immersed in an aqueous silver sulfate solution in a container, and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of the immersion, the base material is pulled up, the excess droplets are lightly squeezed and spread again, and another container (with a capacity of about 500 ml in which the temperature is kept at 20 + -3 degrees C and humidity is almost saturated) The container was placed in a separate container and filled with pure water, and kept for 10 minutes in an airtight state so that the surface of the base material was not dried.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し10時間乾燥して水分を除去した。 (3) Moisture removal (energy control of hydrated ions): a drier (i-BOX Auto, manufactured by Sampleratech) in which the base material after the aging operation is maintained at a temperature of 25 + -5 ° C and a humidity of 10% RH or less And dried for 10 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に苛性ソーダ水溶液(濃度1/30mol/l)200mlを収容し温度を20度C(設定温度範囲+−3度C)に保持した。この中にピンセットを用いて上記基材を浸漬し、静かに揺動させながらアルカリ処理を5分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に約250mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して7回洗浄した。洗浄回数が5回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkali treatment and washing: 200 ml of an aqueous caustic soda solution (concentration 1/30 mol / l) was placed in a 300 ml capacity container, and the temperature was maintained at 20 ° C. (set temperature range + −3 ° C.). The substrate was immersed in this using tweezers, and subjected to alkali treatment for 5 minutes while gently rocking. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the cleaning method, about 250 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a 300 ml capacity container, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 7 times. After the fifth wash, one drop of a 2% alcohol solution of phenolphthalene was added to the wash water after each wash to confirm that the wash liquid did not turn reddish purple and the wash was terminated. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様に別途の設備を使用し、窒素ガス気流(流量300ml/min)中で4時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The shading dryer was dried for 4 hours in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility in the same manner as the fully automatic dehumidification storage box (D-BOX) described in the above step (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内にアスコルビン酸水溶液(濃度:1/10mol/l)200mlを収容し、温度を20度C(温度管理範囲:20+−3度C)に調整した。次にピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら4分間還元処理した。処理後基材を引上げ直ちに次の洗浄を行った。容量500mlの容器内に基材を収容し、容器に純水(電気伝導率1マイクロS以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計6回、6分間洗浄を行った。最終の洗浄水の電気伝導率は0.7マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, washing and drying: 200 ml of ascorbic acid aqueous solution (concentration: 1/10 mol / l) is contained in a 300 ml capacity container, and the temperature is 20 degrees C (temperature control range: 20 + -3 degrees C). Adjusted. Next, the dried substrate was dipped using tweezers and reduced for 4 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed as follows. The substrate was housed in a 500 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added to the container, and the substrate was washed for about 1 minute while rocking. Similarly, the pure water was replaced and the washing was repeated three more times, for a total of 6 times for 6 minutes. The final wash water had an electrical conductivity of 0.7 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例4テトロン織布を担体とする抗菌性銀微粒子担持体の抗菌作用効率は3.6秒であった。 (7) Antibacterial function test and test results: The following is the same as Example 1- (7), but the antibacterial silver fine particle carrier using Tetron fabric as a carrier in Example 4 has an antibacterial action efficiency of 3.6 seconds. there were.

実施例5:セラミックス及びガラスを担体とした例、本発明の担体として金属酸化物焼結体であるセラミックス類からチタニア(酸化チタン)セラミックスの板(0.5mmx30cmx30cm)を選んで使用した。 Example 5: An example using ceramics and glass as a carrier, and a titania (titanium oxide) ceramic plate (0.5 mm × 30 cm × 30 cm) selected from ceramics which are metal oxide sintered bodies as a carrier of the present invention.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)150mlを収容し、その中に基材を浸漬して、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を3回繰り返し行った。洗浄終了後に基材を全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量100ml/min)中で5時間乾燥した。 (1) Cleaning and drying of the substrate: 150 ml of absolute ethanol (first grade reagent) is placed in a 300 ml container, and the substrate is immersed in it, while the substrate is rocked using tweezers in the liquid. Washed. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated three times. After the completion of washing, the base material was housed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 100 ml / min) for 5 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内に硫酸銀水溶液(濃度;0.02mol/l)100mlを収容し、液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を容器内の硫酸銀水溶液に浸漬して、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。浸漬終了後に基材を引上げて表面に液滴が付着した状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しない状態を10分間保持してエージングを行った。 (2) Silver salt coating and aging: 100 ml of silver sulfate aqueous solution (concentration: 0.02 mol / l) is contained in a 300 ml capacity container, and the temperature of the liquid is 20 degrees C (set temperature range + -3 degrees C). Retained. Next, the dried base material was immersed in an aqueous silver sulfate solution in the container, and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of immersion, the substrate is pulled up and the liquid droplets are attached to the surface, and the temperature is 20 + -3 degrees C. The humidity is kept almost saturated. And was aged with the substrate surface kept dry for 10 minutes.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し、10時間乾燥して水分を除去した。 (3) Moisture removal (energy control of hydrated ions): a drier (i-BOX Auto, manufactured by Sampleratech) in which the base material after the aging operation is maintained at a temperature of 25 + -5 ° C and a humidity of 10% RH or less And dried for 10 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に水酸化リチウム水溶液(濃度1/40mol/l)150mlを収容し、温度を20度C(設定温度範囲+−3度C)に保持した。これにピンセットで上記基材を浸漬して静かに揺動させながらアルカリ処理を5分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に、約200mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して5回洗浄した。洗浄回数が3回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkali treatment and washing: 150 ml of a lithium hydroxide aqueous solution (concentration: 1/40 mol / l) was placed in a 300 ml capacity container, and the temperature was maintained at 20 ° C. (set temperature range + −3 ° C.). An alkali treatment was performed for 5 minutes while the substrate was immersed in this with tweezers and gently rocked. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the washing method, about 200 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 5 times. After the third washing, one drop of a 2% alcohol solution of phenolphthalene was added to the washing water after each washing, and the washing was finished after confirming that the washing liquid did not turn reddish purple. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量300ml/min)中で1時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The shading dryer was dried for 1 hour in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility similar to the fully automatic dehumidifying storage (D-BOX) described in the above section (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内にホルムアルデヒド水溶液(ホルマリン濃度:1/10mol/l)150mlを収容し温度を20度C(温度管理範囲+−3度C)にセットした。次にピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら4分間還元処理した。処理後基材を引上げ直ちに次の洗浄及び乾燥を行った。容量500mlの容器内に基材を収容し、容器に純水(電気伝導率1マイクロS以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計4回、4分間の洗浄を行った。最終の洗浄水の電気伝導率は0.4マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, cleaning and drying: 150 ml of formaldehyde aqueous solution (formalin concentration: 1/10 mol / l) is contained in a 300 ml capacity container, and the temperature is set to 20 ° C. (temperature control range + −3 ° C.) did. Next, the dried substrate was dipped using tweezers and reduced for 4 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed and dried. The substrate was housed in a 500 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added to the container, and the substrate was washed for about 1 minute while rocking. Similarly, the pure water was changed and the washing was repeated three more times, for a total of four times for 4 minutes. The final wash water had an electrical conductivity of 0.4 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例5チタニアを担体とする抗菌性銀微粒子担持体の抗菌作用効率は2.7秒であった。 (7) Antibacterial function test and test results: The following is the same as Example 1- (7), but the antibacterial silver microparticle carrying body using Example 5 titania as a carrier had an antibacterial action efficiency of 2.7 seconds. .

実施例6:セラミック及びガラスを担体とした例、本発明の担体として耐熱性ガラスであるパイレックス(登録商標)の板(0.5mmx30cmx30cm)を選んで使用した。 Example 6: Example using ceramic and glass as carrier, Pyrex (registered trademark) plate (0.5 mm × 30 cm × 30 cm), which is heat-resistant glass, was selected and used as the carrier of the present invention.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)150mlを収容し、その中に基材を浸漬して、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を3回繰り返し行った。洗浄終了後基材を、全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量100ml/min)中で5時間乾燥した。 (1) Cleaning and drying of the substrate: 150 ml of absolute ethanol (first grade reagent) is placed in a 300 ml container, and the substrate is immersed in it, while the substrate is rocked using tweezers in the liquid. Washed. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated three times. After washing, the base material was housed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 100 ml / min) for 5 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内にアンモニア性硝酸銀溶液(濃度:0.03mol/l)100mlを収容し液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を、容器内のアンモニア性硝酸銀溶液に浸漬して、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。浸漬終了後に基材を引上げて表面に液滴が付着した状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しない状態を10分間保持してエージングを行った。 (2) Silver salt coating and aging: Ammonia silver nitrate solution (concentration: 0.03 mol / l) 100 ml is contained in a 300 ml capacity container, and the temperature of the liquid is 20 degrees C (set temperature range + -3 degrees C). Retained. Next, the dried substrate was immersed in an ammoniacal silver nitrate solution in a container and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of immersion, the substrate is pulled up and the liquid droplets are attached to the surface, and the temperature is 20 + -3 degrees C. The humidity is kept almost saturated. And was aged with the substrate surface kept dry for 10 minutes.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し、5時間乾燥して水分を除去した。 (3) Moisture removal (energy control of hydrated ions): a drier (i-BOX Auto, manufactured by Sampleratech) in which the base material after the aging operation is maintained at a temperature of 25 + -5 ° C and a humidity of 10% RH or less And dried for 5 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に苛性カリ水溶液(濃度1/40mol/l)150mlを収容し温度を20度C(設定温度範囲+−3度C)に保持した。これにピンセットで上記基材を浸漬して静かに揺動させながらアルカリ処理を5分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に、約200mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して5回洗浄した。洗浄回数が3回目以降は毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkali treatment and washing: 150 ml of an aqueous caustic potash solution (concentration: 1/40 mol / l) was placed in a 300 ml container, and the temperature was maintained at 20 ° C. (set temperature range + −3 ° C.). An alkali treatment was performed for 5 minutes while the substrate was immersed in this with tweezers and gently rocked. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the washing method, about 200 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 5 times. After the third washing, one drop of a 2% alcohol solution of phenolphthalene was added to the washing water after each washing, and the washing was finished after confirming that the washing liquid did not turn reddish purple. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量300ml/min)中で1時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The shading dryer was dried for 1 hour in a nitrogen gas stream (flow rate 300 ml / min) using a separate facility similar to the fully automatic dehumidifying storage (D-BOX) described in the above section (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)紫外線照射による還元処理:紫外線源として東芝製水銀ランプ(150W/100VAC、λ=185nm)及び電源装置を用意した。基材面からの距離を20cmに保ち基材面に紫外線が直角に照射されるようにランプの位置を固定した。基材は両面に担持されたので、紫外線照射は片面づつ2回行われた。照射時間は片面10分間で合計20分間行った。以上でバイレックスを担持体とする本発明の抗菌性銀微粒子担持体を紫外線照射による還元法により製作した。 (6) Reduction treatment by ultraviolet irradiation: A mercury lamp (150 W / 100 VAC, λ = 185 nm) and a power supply device manufactured by Toshiba were prepared as ultraviolet sources. The distance from the substrate surface was kept at 20 cm, and the position of the lamp was fixed so that the substrate surface was irradiated with ultraviolet rays at a right angle. Since the substrate was supported on both sides, UV irradiation was performed twice on each side. The irradiation time was 10 minutes on each side for a total of 20 minutes. Thus, the antibacterial silver fine particle carrier of the present invention having Vyrex as a carrier was produced by a reduction method by ultraviolet irradiation.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例6パイレックス(登録商標)ガラスを担体とする抗菌性銀微粒子担持体の抗菌作用効率は、3.0秒であった。 (7) Antibacterial function test and test results: The following is the same as Example 1- (7), but Example 6 has an antibacterial silver fine particle support using Pyrex (registered trademark) glass as the carrier, and the antibacterial action efficiency is 3 0.0 seconds.

実施例7:磁器を担体とする例、本発明の担体として汎用性の磁器からアルミナセラミックス(0.5mmx50cmx50cm)を選んで使用した。 Example 7: Example using porcelain as carrier, alumina ceramics (0.5 mm x 50 cm x 50 cm) were selected from general-purpose porcelain and used as the carrier of the present invention.

(1)基材の洗浄及び乾燥:容量300mlの容器内に無水エタノール(試薬一級)150mlを収容し、その中に基材を浸漬して、液中ピンセットを用いて基材を揺動させながら洗浄した。次に別の容量300mlの容器内に上記基材を収容し、これに純水(電気伝導率1マイクロS以下)300mlを加えて洗浄した。この純水による洗浄を3回繰り返し行った。洗浄終了後基材を全自動除湿保管庫(D−BOX,サンプラテック製)に収容し、窒素ガス気流(流量100ml/min)中で5時間乾燥した。 (1) Cleaning and drying of the substrate: 150 ml of absolute ethanol (first grade reagent) is placed in a 300 ml container, and the substrate is immersed in it, while the substrate is rocked using tweezers in the liquid. Washed. Next, the base material was accommodated in another container having a capacity of 300 ml, and 300 ml of pure water (electric conductivity of 1 micro S or less) was added thereto for washing. This washing with pure water was repeated three times. After completion of the cleaning, the base material was housed in a fully automatic dehumidification storage (D-BOX, manufactured by Sampleratec) and dried in a nitrogen gas stream (flow rate 100 ml / min) for 5 hours.

(2)銀塩塗布及びエージング:容量300mlの容器内に、硝酸銀水溶液(濃度;0.02mol/l)100mlを収容し液の温度を20度C(設定温度範囲+−3度C)に保持した。次に上記乾燥済みの基材を、容器内の硝酸銀水溶液に浸漬して、ピンセットで緩やかに撹拌しながら5分間浸漬した。この間に基材の表面が液面より上に出ないように注意した。浸漬終了後に基材を引上げて表面に液滴が付着した状態のまま、温度が20+−3度C、湿度がほぼ飽和状態に保たれた別の容器(容量約500ml内部に皿状の別容器が置かれ中に純水が満たされている)内に移し、基材表面が乾燥しない状態を10分間保持してエージングを行った。 (2) Silver salt coating and aging: 100 ml of silver nitrate aqueous solution (concentration: 0.02 mol / l) is contained in a 300 ml capacity container, and the temperature of the liquid is kept at 20 degrees C (set temperature range + -3 degrees C). did. Next, the dried substrate was immersed in an aqueous silver nitrate solution in a container and immersed for 5 minutes while gently stirring with tweezers. During this time, care was taken so that the surface of the substrate did not come out above the liquid level. After completion of immersion, the substrate is pulled up and the liquid droplets are attached to the surface, and the temperature is 20 + -3 degrees C. The humidity is kept almost saturated. And was aged with the substrate surface kept dry for 10 minutes.

(3)水分除去(水和イオンのエネルギー制御):上記エージング操作が終了した基材を温度25+−5度C、湿度10%RH以下に保たれた乾燥器(i−BOXオート,サンプラテック製)に収容し、12時間乾燥して水分を除去した。 (3) Moisture removal (energy control of hydrated ions): a drier (i-BOX Auto, manufactured by Sampleratech) in which the base material after the aging operation is maintained at a temperature of 25 + -5 ° C and a humidity of 10% RH or less And dried for 12 hours to remove moisture.

(4)アルカリ処理及び洗浄:容量300mlの容器内に水酸化カルシウム水溶液(濃度1/50mol/l)200mlを収容し温度を20度C(設定温度範囲+−3度C)に保持した。これにピンセットで上記基材を浸漬して静かに揺動させながらアルカリ処理を7分間行った。アルカリ処理液から引上げた基材は直ちに純水で洗浄し、付着しているアルカリ液を除去した。洗浄方法は容量300mlの容器内に、約200mlの純水(温度は室温20+−5度C)を収容し、これに基材を浸漬揺動して約2分間洗浄した。一回の洗浄毎に純水を交換して5回洗浄した。洗浄回数が3回目以降は、毎回洗浄後の洗浄水に、フェノールフタレンの2%アルコール溶液を一滴加えて、洗浄液が赤紫色に変色しないことを確認して洗浄を終了した。洗浄液が赤紫色に着色する時はアルカリの残留を示しているので、更に洗浄回数を増やす必要があるが本実施例ではその必要はなかった。 (4) Alkali treatment and washing: 200 ml of an aqueous calcium hydroxide solution (concentration 1/50 mol / l) was placed in a 300 ml container, and the temperature was maintained at 20 ° C. (set temperature range + −3 ° C.). The substrate was immersed in this with tweezers and subjected to alkali treatment for 7 minutes while gently rocking. The base material pulled up from the alkaline treatment liquid was immediately washed with pure water to remove the adhered alkaline liquid. In the washing method, about 200 ml of pure water (temperature is room temperature 20 + -5 degrees C) was accommodated in a container having a capacity of 300 ml, and the substrate was immersed and swung in this for about 2 minutes. Each time of washing, the pure water was changed and washed 5 times. After the third wash, one drop of a 2% alcohol solution of phenolphthalene was added to the wash water after each wash, and it was confirmed that the wash liquid did not turn reddish purple, and the wash was completed. When the cleaning liquid is colored reddish purple, it indicates that alkali remains, so it is necessary to increase the number of cleanings, but this is not necessary in this embodiment.

(5)乾燥:上記洗浄の完了した基材は直ちに遮光乾燥器に収容した。当該遮光乾燥器は、上記工程(1)項に記載した全自動除湿保管庫(D−BOX)と同様別途の設備を使用し、窒素ガス気流(流量150ml/minl)中で3時間乾燥した。なお上記乾燥工程は遮光の必要があるため乾燥器の正面扉の透明部分に黒の遮光膜を貼り付けた。 (5) Drying: The substrate after the washing was immediately stored in a light-shielding dryer. The shading dryer was dried in a nitrogen gas stream (flow rate 150 ml / minl) for 3 hours using a separate facility similar to the fully automatic dehumidification storage (D-BOX) described in the above step (1). In addition, since the said drying process needs light shielding, the black light shielding film was affixed on the transparent part of the front door of a dryer.

(6)化学還元処理及び洗浄と乾燥:容量300mlの容器内にアセトアルデヒド水溶液(濃度:1/20mol/l)150mlを収容し、温度を20度C(温度管理範囲+−3度C)にセットした。次にピンセットを用いて上記乾燥済み基材を浸漬し、緩やかに揺動させながら5分間還元処理した。処理後基材を引上げ直ちに次の洗浄及び乾燥を行った。容量500mlの容器内に基材を収容し、容器に純水(電気伝導率1マイクロS以下)300mlを加えて基材を揺動させながら約1分間洗浄した。同様に純水を交換して更に3回洗浄を繰り返し、計4回、4分間洗浄を行った。最終の洗浄水の電気伝導率は0.7マイクロSであった。なお洗浄の完了は洗浄水の電気伝導率が1マイクロS未満を基準とした。 (6) Chemical reduction treatment, washing and drying: 150 ml of acetaldehyde aqueous solution (concentration: 1/20 mol / l) is accommodated in a 300 ml capacity container, and the temperature is set to 20 degrees C (temperature control range + -3 degrees C). did. Next, the dried substrate was dipped using tweezers and reduced for 5 minutes while gently rocking. After the treatment, the substrate was pulled up and immediately washed and dried. The substrate was housed in a 500 ml capacity container, and 300 ml of pure water (electric conductivity 1 micro S or less) was added to the container, and the substrate was washed for about 1 minute while rocking. Similarly, the pure water was changed, and the washing was further repeated 3 times, for a total of 4 times for 4 minutes. The final wash water had an electrical conductivity of 0.7 microS. The completion of washing was based on the electric conductivity of washing water being less than 1 micro S.

(7)抗菌機能検査及び検査結果:以下は実施例1−(7)と同じであるが実施例7アルミナ磁器を担体とする抗菌性銀微粒子担持体の抗菌作用効率は、5.5秒であった。 (7) Antibacterial function test and test results: The following is the same as Example 1- (7), but the antibacterial silver microparticle carrying body using alumina porcelain as the carrier of Example 7 has an antibacterial action efficiency of 5.5 seconds. there were.

請求項1の発明は抗菌性銀微粒子担持体であり、担体の表面に銀塩溶液を塗布し、水分を除去した後でアルカリ溶液処理により銀酸化物粒子を該担持体表面に生成させ、次に活性水素系還元剤あるいは波長400ナノメートル以下の紫外線照射から還元処理する特徴を有するので、この分野を扱う産業が使用する担体は多種多量のため素材的提供による相乗的付加価値として大きな市場効果を産み出す即時性を備えている。 The invention of claim 1 is an antibacterial silver fine particle carrier, wherein a silver salt solution is applied to the surface of the carrier, water is removed, and then silver oxide particles are generated on the surface of the carrier by alkaline solution treatment. Since it has the feature of reducing treatment from active hydrogen-based reducing agent or ultraviolet irradiation with a wavelength of 400 nanometers or less, there are a large number of carriers used by industries dealing with this field, so it has a great market effect as a synergistic added value by providing materials It has the immediacy to produce.

請求項2の発明は、請求項1に記載の抗菌性銀微粒子担持体であり、担体が、高分子樹脂、天然ガーゼ類あるいは合成繊維、ガラス、セラミックス、金属酸化物および金属酸化物焼結体よりなる群から選択される少なくとも一種の担体であることを特徴とするため、上記の材質に相乗的付加価値を伴わせて大きな市場効果を産み出す素材供給と製造法の提供を行う即時性を備えている。 The invention of claim 2 is the antibacterial silver fine particle carrier according to claim 1, wherein the carrier is a polymer resin, natural gauze or synthetic fiber, glass, ceramics, metal oxide and metal oxide sintered body. It is characterized in that it is at least one carrier selected from the group consisting of the above materials, and therefore, it is possible to supply materials that produce a large market effect with synergistic added value to the above materials and to provide a manufacturing method. I have.

請求項3の発明は、請求項1に記載の抗菌性銀微粒子担持体であり、銀塩溶液が、アンモニア性硝酸銀溶液、硫酸銀水溶液、硝酸銀水溶液、からなる郡から選ばれた少なくとも一種の銀塩溶液であることを特徴とするため、上記の材質に相乗的付加価値を伴わせて大きな市場効果を産み出す素材供給と製造法の提供を行う即時性を備えている。 The invention of claim 3 is the antibacterial silver fine particle carrier according to claim 1, wherein the silver salt solution is at least one silver selected from the group consisting of an ammoniacal silver nitrate solution, a silver sulfate aqueous solution, and a silver nitrate aqueous solution. Since it is a salt solution, it has the immediacy of supplying materials and providing manufacturing methods that produce a great market effect with the above materials with synergistic added value.

請求項4の発明は、請求項1に記載の抗菌性銀微粒子担持体であり、アルカリ溶液が、苛性ソーダ、苛性カリ、水酸化リチウム、水酸化カルシウムの各水溶液からなる群から選択される少なくとも一種のアルカリ溶液であることを特徴とするため、上記の材質に相乗的付加価値を伴わせて大きな市場効果を産み出す素材供給と製造法の提供を行う即時性を備えている。 The invention of claim 4 is the antibacterial silver fine particle carrier according to claim 1, wherein the alkaline solution is at least one selected from the group consisting of aqueous solutions of caustic soda, caustic potash, lithium hydroxide, and calcium hydroxide. Since it is an alkaline solution, it has the immediacy of supplying the material and providing the manufacturing method that produce a great market effect with the above-mentioned materials with synergistic added value.

請求項5の発明は、請求項1に記載の抗菌性銀微粒子担持体であり、活性水素系還元剤が、ギ酸、ホルムアルデヒド、アセトアルデヒド、アスコルビン酸、ハイドロキノンからなる群から選択された少なくとも一種の活性水素系還元剤であることを特徴とするため、上記の材質に相乗的付加価値を伴わせて大きな市場効果を産み出す素材供給と製造法の提供を行う即時性を備えている。
The invention of claim 5 is the antibacterial silver fine particle carrier according to claim 1, wherein the active hydrogen reducing agent is at least one selected from the group consisting of formic acid, formaldehyde, acetaldehyde, ascorbic acid and hydroquinone. Since it is a hydrogen-based reducing agent, it has the immediacy of supplying a material and providing a manufacturing method that produce a great market effect with a synergistic added value to the above materials.

Claims (5)

担体の表面に銀塩溶液を塗布し、水分を除去した後、これをアルカリ溶液に浸漬して銀酸化物粒子を生成させ、次いでこれを活性水素系還元剤、あるいは波長400nm以下の紫外線照射による還元処理により,当該担体の表面に抗菌性に優れた銀微細粒子を生成及び担持させてなることを特徴とする抗菌性銀微粒子担持体。 After applying a silver salt solution to the surface of the carrier and removing water, this is immersed in an alkaline solution to produce silver oxide particles, which are then activated by an active hydrogen reducing agent or by irradiation with ultraviolet light having a wavelength of 400 nm or less. An antibacterial silver fine particle carrier characterized by producing and carrying silver fine particles having excellent antibacterial properties on the surface of the carrier by reduction treatment. 前記担体が、高分子樹脂、ガーゼ等の天然あるいは合成繊維、ガラス、セラミックス、金属酸化物及び金属酸化物焼結体よりなる群から選択される少なくとも一種の担体であることを特徴とする請求項1に記載の抗菌性銀微粒子担持体。 The carrier is at least one carrier selected from the group consisting of natural or synthetic fibers such as polymer resins and gauze, glass, ceramics, metal oxides, and metal oxide sintered bodies. The antibacterial silver fine particle carrier according to 1. 前記銀塩溶液が、アンモニア性硝酸銀溶液、硫酸銀水溶液、硝酸銀水溶液、より成る群から選択される少なくとも一種の銀塩溶液であることを特徴とする請求項1に記載の抗菌性銀微粒子担持体。 The antibacterial silver fine particle carrier according to claim 1, wherein the silver salt solution is at least one silver salt solution selected from the group consisting of an ammoniacal silver nitrate solution, a silver sulfate aqueous solution, and a silver nitrate aqueous solution. . 前記アルカリ溶液が、苛性ソーダ、苛性カリ、水酸化リチウム、水酸化カルシウムの各水溶液より成る群から選択される少なくとも一種のアルカリ溶液であることを特徴とする請求項1に記載の抗菌性銀微粒子担持体。 The antibacterial silver fine particle carrier according to claim 1, wherein the alkaline solution is at least one alkaline solution selected from the group consisting of aqueous solutions of caustic soda, caustic potash, lithium hydroxide, and calcium hydroxide. . 前記活性水素系還元剤が、ギ酸、ホルムアルデヒド、アセトアルデヒド、アスコルビン酸、ハイドロキノンより成る群から選択される少なくとも一種の活性水素系還元剤であることを特徴とする請求項1に記載の抗菌性銀微粒子担持体。
The antibacterial silver fine particles according to claim 1, wherein the active hydrogen reducing agent is at least one active hydrogen reducing agent selected from the group consisting of formic acid, formaldehyde, acetaldehyde, ascorbic acid, and hydroquinone. Carrier.
JP2004367074A 2004-12-20 2004-12-20 Supported ultrafine silver particle having excellent antibacterial property Pending JP2006169208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367074A JP2006169208A (en) 2004-12-20 2004-12-20 Supported ultrafine silver particle having excellent antibacterial property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367074A JP2006169208A (en) 2004-12-20 2004-12-20 Supported ultrafine silver particle having excellent antibacterial property

Publications (1)

Publication Number Publication Date
JP2006169208A true JP2006169208A (en) 2006-06-29

Family

ID=36670336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367074A Pending JP2006169208A (en) 2004-12-20 2004-12-20 Supported ultrafine silver particle having excellent antibacterial property

Country Status (1)

Country Link
JP (1) JP2006169208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302645A (en) * 2006-05-11 2007-11-22 Nippon Kogyo Gijutsu Kaihatsu Kenkyusho:Kk Antimicrobial composition obtained by supporting silver very fine particle on polypeptide compound
JP2009120498A (en) * 2007-11-12 2009-06-04 Zenshin:Kk Cosmetic
JP2009120499A (en) * 2007-11-12 2009-06-04 Refine Kk Cosmetic
CN112806388A (en) * 2019-11-15 2021-05-18 银未来株式会社 Antibacterial product, antibacterial rod and water storage container
CN114871426A (en) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 Mesoporous alumina in-situ coated nano-silver material, preparation method and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302645A (en) * 2006-05-11 2007-11-22 Nippon Kogyo Gijutsu Kaihatsu Kenkyusho:Kk Antimicrobial composition obtained by supporting silver very fine particle on polypeptide compound
JP2009120498A (en) * 2007-11-12 2009-06-04 Zenshin:Kk Cosmetic
JP2009120499A (en) * 2007-11-12 2009-06-04 Refine Kk Cosmetic
CN112806388A (en) * 2019-11-15 2021-05-18 银未来株式会社 Antibacterial product, antibacterial rod and water storage container
CN114871426A (en) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 Mesoporous alumina in-situ coated nano-silver material, preparation method and application
CN114871426B (en) * 2022-05-20 2023-12-22 爱科美材料科技(南通)有限公司 Mesoporous alumina in-situ coated nano silver material, preparation method and application

Similar Documents

Publication Publication Date Title
JP3109101B2 (en) Antimicrobial solid, method for producing the same, and method for using the same
Gankanda et al. Role of atmospheric CO2 and H2O adsorption on ZnO and CuO nanoparticle aging: formation of new surface phases and the impact on nanoparticle dissolution
Li et al. Dissolution-accompanied aggregation kinetics of silver nanoparticles
Mallampati et al. Biomimetic metal oxides for the extraction of nanoparticles from water
JP6132418B2 (en) Method for producing reduced water and apparatus for producing reduced water
Abdel-Karim et al. Antifouling PES/Cu@ Fe3O4 mixed matrix membranes: Quantitative structure–activity relationship (QSAR) modeling and wastewater treatment potentiality
Yentür et al. Fabrication of magnetically separable plasmonic composite photocatalyst of Ag/AgBr/ZnFe2O4 for visible light photocatalytic oxidation of carbamazepine
Sreeja et al. Microbial disinfection of water with endotoxin degradation by photocatalysis using Ag@ TiO2 core shell nanoparticles
Muruganandham et al. Environmental applications of ZnO materials
Sajid et al. Synthesis of Zn 3 (VO 4) 2/BiVO 4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H 2 O 2
Li et al. Investigation of silver biocide as a disinfection tehcnology for spacecraft–an early literature review
Akbarzadeh et al. Electrochemical hydrogen storage, photocatalytical and antibacterial activity of FeAg bimetallic nanoparticles supported on TiO2 nanowires
JP2007520326A (en) Nanocomposite solution having composite function and method for producing the same
Galioglu et al. Zeolite A coated Zn 1− X Cu XO MOS sensors for NO gas detection
WO2012161603A2 (en) Hybrid material containing silver nanoparticles, method for obtaining the same and use thereof
JP2006169208A (en) Supported ultrafine silver particle having excellent antibacterial property
US8834687B2 (en) Multilayer self-decontaminating coatings
BR112021006865A2 (en) electrolytic devices and methods for producing dry hydrogen peroxide
Alshandoudi et al. Static adsorption and photocatalytic degradation of amoxicillin using titanium dioxide/hydroxyapatite nanoparticles based on sea scallop shells
JP5024594B2 (en) Antibacterial composition comprising silver fine particles supported on a polypeptide compound
Elamin et al. Fabrication of ternary Co3O4@ β-Bi2O3@ g-C3N4 nanosorbent for efficacy Basic Fuchsin (BF) dye decontamination
JP3261959B2 (en) Photocatalytic material
EP2103349B1 (en) Stain-resistant material synthesized by reprecipitation method and having weather resistance, and process for production thereof
JP2011063525A (en) Composition, method for producing composition and antimicrobial agent
JP5038102B2 (en) Cosmetics