JP2006167594A - Crystal structure having periodic structure - Google Patents

Crystal structure having periodic structure Download PDF

Info

Publication number
JP2006167594A
JP2006167594A JP2004363685A JP2004363685A JP2006167594A JP 2006167594 A JP2006167594 A JP 2006167594A JP 2004363685 A JP2004363685 A JP 2004363685A JP 2004363685 A JP2004363685 A JP 2004363685A JP 2006167594 A JP2006167594 A JP 2006167594A
Authority
JP
Japan
Prior art keywords
refractive index
light
effect
periodic structure
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363685A
Other languages
Japanese (ja)
Inventor
Koichi Awazu
浩一 粟津
Giyoumin O
暁民 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004363685A priority Critical patent/JP2006167594A/en
Publication of JP2006167594A publication Critical patent/JP2006167594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means which blocks in a light in visible light and ultraviolet light regions, prepares an amplifying structure (photonic crystal) on a surface of a photocatalyst material itself, and increases dramatically a purification effect with three effects, an optical amplification effect, a reflectance decreasing effect, and a surface area increasing effect, to function sufficiently even in poor surroundings. <P>SOLUTION: A periodic structure to the light constituted by metal oxide is provided on a substrate, and comprises an element having a high refractive index, and arranged periodically, and an element having a low refractive index, and arranged periodically. The high refractive index element or the low refractive index element consists of a repeated structure of one or more of anyone of a columnar, a spherical, or a polygonal structure, and has an optical confinement function in visible light and ultraviolet light regions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可視光および紫外光の領域に光閉じ込め作用を有する周期的な構造を有する結晶構造体に関する。   The present invention relates to a crystal structure having a periodic structure having an optical confinement effect in the visible light and ultraviolet light regions.

現在、外壁、トイレの便器などに光触媒は用いられているが、効率が低いために汚染の速度が浄化の速度を圧倒的に勝っている。このため、道路近傍のような劣悪な環境では数時間で浄化効率が落ちてしまうことが知られている。また、現在の光触媒は紫外線においてのみ作用するため、紫外線のほとんど入り込まない屋内ではほとんど洗浄作用がない。例えば、太陽光からの紫外線は平方センチあたり1mWであるが、屋内では平方センチあたり1μWである。シックハウス(室内空気汚染)問題では総揮発性有機化合物(TVOC)が立方メートルあたり300μgのレベルで呼吸器敏感症が報告されている(旧厚生省生活衛生局2000年9月25日発表資料)。この濃度のトルエンを現在の光触媒を用いて分解するのに要する時間を試算してみた。光化学反応はφ-Me + 14H2O + 36h+ → 7CO2 + 36H+である(φはベンゼン環、Meはメチル基)。量子効率3%程度であることから、300μg/m3のトルエンを完全に分解するには30年もかかることがわかる。このように、現在の光触媒は屋外のみでしか作用は見られない。 Currently, photocatalysts are used for outer walls, toilets, etc., but due to their low efficiency, the rate of contamination is overwhelmingly faster than the rate of purification. For this reason, it is known that the purification efficiency drops in a few hours in a poor environment such as the vicinity of a road. Moreover, since the present photocatalyst works only in ultraviolet rays, there is almost no cleaning action indoors where ultraviolet rays hardly enter. For example, ultraviolet light from sunlight is 1 mW per square centimeter, but 1 μW per square centimeter indoors. In the sick house (indoor air pollution) problem, respiratory sensitivities have been reported with a total volatile organic compound (TVOC) level of 300μg per cubic meter (formerly released on September 25, 2000 by the Ministry of Health and Welfare). We estimated the time required to decompose this concentration of toluene using the current photocatalyst. The photochemical reaction is φ-Me + 14H 2 O + 36h + → 7CO 2 + 36H + (φ is a benzene ring, Me is a methyl group). Since the quantum efficiency is about 3%, it can be seen that it takes 30 years to completely decompose 300 μg / m 3 of toluene. Thus, the current photocatalyst can only be used outdoors.

このような従来の光触媒は、顔料であるアナターゼ相の二酸化チタンを壁面などに塗布するというのが一般的である。光触媒は、紫外〜可視光領域の光が光触媒表面にあたると、表面が親水性になり、汚れがついても水で簡単に洗い流せる作用を有している。あるいは、よごれそのものが光触媒により分解されて自浄効果を有している。ただ、その効果は現状では極めて小さいために、例えば道路外壁のような悪環境においては、排気ガスで外壁が汚れていくスピードの方が、光触媒による自浄作用や、親水性になり汚れがついても水で簡単に洗い流せる作用よりもはるかに勝っているために、すぐに汚れてしまう。ひとたび汚れてしまうと、表面反応であるが故、光触媒作用は全くなくなってしまうという問題点がある。   In such a conventional photocatalyst, it is common to apply anatase phase titanium dioxide, which is a pigment, to a wall surface or the like. The photocatalyst has a function of allowing the surface of the photocatalyst to become hydrophilic when light in the ultraviolet to visible light region hits the surface of the photocatalyst and easily wash away with water even if it is contaminated. Alternatively, the dirt itself is decomposed by the photocatalyst and has a self-cleaning effect. However, since the effect is extremely small at present, the speed at which the outer wall becomes dirty with exhaust gas in a bad environment such as a road outer wall is self-cleaning by the photocatalyst, and even if it becomes hydrophilic and dirty. Because it is far superior to the effect of being easily washed away with water, it quickly becomes dirty. Once soiled, there is a problem that the photocatalytic action is completely lost because it is a surface reaction.

本発明は、可視光、紫外光領域で光を閉じ込め、増幅する構造(フォトニック結晶)を光触媒材料そのものの表面に作製し、光増幅効果、反射率低下効果そして表面積増大効果の3点により飛躍的に浄化効果を高め、劣悪な環境下でも十分に機能するようにすることを目的としている。   In the present invention, a structure (photonic crystal) that confines and amplifies light in the visible light and ultraviolet light region is produced on the surface of the photocatalyst material itself, and jumps by three points: light amplification effect, reflectance reduction effect, and surface area increase effect. The purpose is to increase the purification effect and to function sufficiently even in a poor environment.

本発明の結晶構造体は、金属酸化物によって構成された光に対する周期的な構造を基板上に有する。この周期的な構造は、高屈折率を有する周期的に配置された素子と、低屈折率を有する周期的に配置された素子から構成される。高屈折率素子又は低屈折率素子は、柱状又は球状又は多角形のいずれか一つ以上の繰り返し構造から成り、可視光および紫外光の領域に光閉じ込め作用を有する。   The crystal structure of the present invention has a periodic structure with respect to light composed of a metal oxide on a substrate. This periodic structure is composed of periodically arranged elements having a high refractive index and periodically arranged elements having a low refractive index. The high-refractive index element or the low-refractive index element has a repeating structure of one or more of a columnar shape, a spherical shape, or a polygonal shape, and has a light confinement action in the visible light and ultraviolet light regions.

本発明は、可視光、紫外光領域で光を閉じ込め、増幅する構造(フォトニック結晶)を光触媒材料そのものの表面に作製し、光増幅効果、反射率低下効果そして表面積増大効果の3点により飛躍的に浄化効果を高め、劣悪な環境下でも十分に機能するようにする。本発明により、わずかな紫外線やほとんど感度のない可視光線を閉じ込めて増強するため、屋内においても光触媒作用が発揮される。これにより、公共の交通機関、タクシーなどで法令により義務化されている車内の消毒の回数を減らすことができる。また、太陽光に直接さらされる屋外では、外壁に排気ガス等が付着しても分解できる。また、表面は強い親水性を示すので、汚れも雨により簡単に流れ落ちるようになる。さらに特殊な環境、例えば原子力発電所など放射線施設の水中で発生するチェレンコフ光の波長を閉じ込める効果のあるフォトニック結晶構造を作製して、放射線により発生する有害物質の浄化を行うことも可能となる。フォトニック結晶構造はエンボス加工(ナノインプリント)により行うことによる低コスト化、大面積化が可能となる。   In the present invention, a structure (photonic crystal) that confines and amplifies light in the visible light and ultraviolet light region is produced on the surface of the photocatalyst material itself, and jumps by three points: light amplification effect, reflectance reduction effect, and surface area increase effect. To improve the purification effect and to function well even in poor environments. According to the present invention, a small amount of ultraviolet light and visible light with little sensitivity are confined and enhanced, so that photocatalytic action is exhibited even indoors. Thereby, the frequency | count of the disinfection in the vehicle obliged by the law in public transportation, a taxi, etc. can be reduced. In addition, when outdoors exposed directly to sunlight, it can be decomposed even if exhaust gas or the like adheres to the outer wall. Moreover, since the surface shows strong hydrophilicity, the dirt easily flows down due to rain. In addition, it is possible to produce a photonic crystal structure that has the effect of confining the wavelength of Cherenkov light generated in the water of a special environment, for example, a radiation facility such as a nuclear power plant, and to purify harmful substances generated by radiation. . The photonic crystal structure can be reduced in cost and area by embossing (nanoimprint).

図1及び図2は、本発明を具体化する結晶構造体を例示する図である。本発明の結晶構造体は、金属酸化物、例えば、酸化チタンを主原料とする遷移金属酸化物によって構成される。この構造体は、光に対する周期的な構造を持っていて、可視光および紫外光の領域に光閉じ込め作用を有している。   1 and 2 are diagrams illustrating crystal structures embodying the present invention. The crystal structure of the present invention is composed of a metal oxide, for example, a transition metal oxide mainly composed of titanium oxide. This structure has a periodic structure with respect to light and has a light confinement action in the visible light and ultraviolet light regions.

光に対する周期的な構造は、高屈折率を有する周期的に配置された素子と低屈折率を有する周期的に配置された素子から構成される。その高屈折率素子は、柱状又は球状又は多角形等の繰り返し構造からなる。或いは、低屈折率素子を、柱状又は球状又は多角形等の繰り返し構造にすることができる。低屈折率素子は、空間によって形成することができるが、それ以外にも、例えば、プラスティックや多孔体などの低屈折率材料を用いても十分効果がある。   The periodic structure for light is composed of periodically arranged elements having a high refractive index and periodically arranged elements having a low refractive index. The high refractive index element has a repetitive structure such as a columnar shape, a spherical shape, or a polygonal shape. Alternatively, the low-refractive index element can be a columnar structure, a spherical structure, a polygonal structure, or the like. The low refractive index element can be formed depending on the space, but other than that, for example, a low refractive index material such as a plastic or a porous body is sufficiently effective.

望ましくは、可視光、紫外光の光閉じ込め作用は、1eV-6eVであり、このような構造体の周期または構造体を形成する素子の半径は、30nm〜1ミクロンの範囲であり、表面反射率が5%以下である。
ナノ構造体作製方法としては、酸化チタン表面にレジストを塗布し、フェーズマスクを用いた二回露光、その後現像を行うことで、酸化チタン表面にレジストのパターンを形成する。あるいは、ナノインプリント技術により金型を作製し、酸化チタン上のレジストに押し付けることでパターニングを行う。その後、ドライまたはウエットエッチングすることで酸化チタンを二次元加工する。または、リソグラフィーにより高分子を二次元、三次元に加工して、テンプレートを作製する。このテンプレートに酸化チタンを充填させる。このまま使った場合、光閉じ込め効果は弱くなるが、機械的強度は強くなる。レジストを選択的に除去すると、さらに光閉じ込め効果は強くなり、光触媒としても機能が向上する。
Desirably, the optical confinement effect of visible light and ultraviolet light is 1 eV-6 eV, the period of such a structure or the radius of the element forming the structure is in the range of 30 nm to 1 micron, and the surface reflectance Is 5% or less.
As a nanostructure manufacturing method, a resist pattern is formed on the titanium oxide surface by applying a resist to the titanium oxide surface, performing exposure twice using a phase mask, and then developing. Alternatively, patterning is performed by producing a mold by nanoimprint technology and pressing it against a resist on titanium oxide. Thereafter, the titanium oxide is two-dimensionally processed by dry or wet etching. Alternatively, the template is fabricated by processing the polymer in two or three dimensions by lithography. This template is filled with titanium oxide. When used as it is, the light confinement effect is weakened, but the mechanical strength is increased. When the resist is selectively removed, the light confinement effect becomes stronger and the function as a photocatalyst is improved.

ある材料で周期の構造体を形成すると、その材料は本来、その波長を透過するにもかかわらず、その波長領域だけ捕獲されてしまうことになる。その波長の光はフォトニック結晶内で増幅され、例えばレーザー発振することが計算により予測されている。周期構造がレーザーでいえば、キャビティーの役割をする。光閉じ込めによりレーザーのように光が増強されることにより、光触媒効果を上げるというのが本発明である。   When a periodic structure is formed of a certain material, the material is originally trapped only in the wavelength region even though it transmits the wavelength. It is predicted by calculation that light of that wavelength is amplified in the photonic crystal and, for example, laser oscillation occurs. If the periodic structure is a laser, it acts as a cavity. It is the present invention that the photocatalytic effect is enhanced by enhancing light like a laser by light confinement.

このような構造体を、微細構造(高屈折素子)を形成する材料よりも低屈折率の基板上に作成することにより、光触媒を構成する。基板を低屈折率にすることにより、光閉じ込め効果は高くなる。基板に高屈折率材料を用いると光閉じこめ効果は減少する。基板は、例えば、非晶質シリカやプラスティック、多孔体である。   A photocatalyst is configured by creating such a structure on a substrate having a refractive index lower than that of the material forming the fine structure (high refractive element). By making the substrate have a low refractive index, the light confinement effect is enhanced. If a high refractive index material is used for the substrate, the light confinement effect is reduced. The substrate is, for example, amorphous silica, plastic, or porous material.

図3(a)は酸化チタンに孔をあけた構造の三角格子状二次元フォトニック結晶構造のバンド計算結果である。この計算によると、半径23nm、120nm間隔の構造体から半径100nm、200nm間隔の構造体の範囲でフォトニックバンドギャップが形成できる。すなわち光閉じ込めが起こり、光が酸化チタン内部で増幅されることを意味する。最も効率よく光閉じ込めが起こるのは、図3(b)に示すとおり半径/間隔=0.4付近である。   FIG. 3 (a) shows a band calculation result of a triangular lattice two-dimensional photonic crystal structure having a structure in which holes are formed in titanium oxide. According to this calculation, a photonic band gap can be formed in a range from a structure having a radius of 23 nm and a spacing of 120 nm to a structure having a radius of 100 nm and a spacing of 200 nm. That is, light confinement occurs and light is amplified inside the titanium oxide. Optical confinement occurs most efficiently when radius / interval = 0.4 as shown in FIG. 3 (b).

図3 (c)(d)は、図3 (a)(b)とは逆に酸化チタン柱の立った構造体の場合のシミュレーションを示す図である。この場合、柱の半径120nm、間隔54nmから柱の半径170nm、間隔240nmまでの範囲でフォトニックバンドギャップが形成できる。最も効率よく光閉じ込めが起こるのは、(d)にしめすとおり半径/間隔=0.2または0.32付近である。   FIGS. 3 (c) and 3 (d) are diagrams showing simulations in the case of a structure with a titanium oxide column standing up, contrary to FIGS. 3 (a) and 3 (b). In this case, a photonic band gap can be formed in a range from column radius 120 nm and interval 54 nm to column radius 170 nm and interval 240 nm. Optical confinement occurs most efficiently when radius / interval = 0.2 or 0.32 as shown in (d).

図4は、四角格子状に酸化チタンの柱が立った構造体に関して行ったシミュレーションを示す図である。この場合、半径29nm、148nm間隔の構造体から半径40nm、100nm間隔の構造体の範囲でTMモードでのフォトニックバンドギャップが形成できる。また、半径30nm、60nm間隔の構造体から半径40nm、100nm間隔の構造体の範囲でTEモードでのフォトニックバンドギャップが形成できる。さらに、半径64nm、200nm間隔の構造体から半径77nm、180nm間隔の構造体の範囲でTMおよびTEモードでのフォトニックバンドギャップ(完全フォトニックバンドギャップ)が形成される。   FIG. 4 is a diagram showing a simulation performed on a structure in which titanium oxide pillars stand in a square lattice pattern. In this case, a photonic band gap in the TM mode can be formed in a range of structures having a radius of 29 nm and 148 nm intervals to structures having a radius of 40 nm and 100 nm intervals. Further, a photonic band gap in the TE mode can be formed in a range of structures having a radius of 30 nm and 60 nm intervals to structures having a radius of 40 nm and 100 nm intervals. Further, a photonic band gap (complete photonic band gap) in the TM and TE modes is formed in a range of structures having a radius of 64 nm and 200 nm intervals to structures having a radius of 77 nm and 180 nm intervals.

図5は、六角格子状に酸化チタンの柱が立った構造体に関して行ったシミュレーションを示す図である。この場合、半径22nm、200nm間隔の構造体から半径48nm、120nm間隔の構造体の範囲でフォトニックバンドギャップが形成できる。   FIG. 5 is a diagram showing a simulation performed on a structure in which titanium oxide pillars stand in a hexagonal lattice shape. In this case, a photonic band gap can be formed in a range from structures having a radius of 22 nm and 200 nm intervals to structures having a radius of 48 nm and 120 nm.

図6に示すような三次元構造体(黒部分が酸化チタン、白抜き部分が空気)を作製する。柱の角度はこの場合35°になっている。この構造体のフォトニックバンド構造計算を図7に示した。左図より全方向でフォトニックバンドギャップが形成できることがわかる(完全フォトニックバンドギャップ)。半径79nm、220nm間隔から半径35nm、150nm間隔まで完全フォトニックバンドギャップが形成できる。この構造の場合、最も効率よく光閉じ込めが起こるのは、半径/間隔=0.2または0.32付近であることが図5よりわかる。   A three-dimensional structure (black portion is titanium oxide and white portion is air) as shown in FIG. In this case, the column angle is 35 °. The photonic band structure calculation of this structure is shown in FIG. From the left figure, it can be seen that a photonic band gap can be formed in all directions (complete photonic band gap). Complete photonic band gaps can be formed from radius 79nm and 220nm intervals to radius 35nm and 150nm intervals. In this structure, it can be seen from FIG. 5 that light confinement occurs most efficiently when radius / interval = 0.2 or 0.32.

実際に酸化チタンナノ構造体の作製を行った。X線リソグラフィー法により、高分子厚膜を高アスペクト比で加工し、酸化チタンを充填した後、高分子のみを選択的に除去して、上述のような構造体を得た。
X線マスクの平面パターンは、X線を透過する部分は例えば窒化シリコンで遮蔽する部分は金属で作製する。例えば○の部分はX線を透過してそれ以外の部分は遮蔽するようなマスクを作製し、露光・現像したのが図8である。シンクロトロン放射光から発生するX線は直進性に優れているので、レジストは図8のように円柱状に抜ける。この孔に酸化チタンを充填すると図9のように隙間無く充填することができる。その後、レジストを除去すると、図1のように酸化チタンのみが残る。この実施例では基板はシリコンであるが、微細構造を形成する材料よりも低屈折率である方が、光閉じ込め効果は高くなる。例えば、非晶質シリカやプラスティック、多孔体である。非晶質シリカを基板として微細構造体を作製することにも成功している。
A titanium oxide nanostructure was actually fabricated. The polymer thick film was processed at a high aspect ratio by X-ray lithography and filled with titanium oxide, and then only the polymer was selectively removed to obtain the structure as described above.
In the plane pattern of the X-ray mask, the portion that transmits X-rays is made of, for example, silicon nitride and the portion that is shielded by metal. For example, FIG. 8 shows a mask prepared by exposing the X-ray through the X-ray and shielding the other part, and exposing and developing the mask. Since X-rays generated from synchrotron radiation are excellent in straightness, the resist comes out in a cylindrical shape as shown in FIG. When this hole is filled with titanium oxide, it can be filled without a gap as shown in FIG. Thereafter, when the resist is removed, only titanium oxide remains as shown in FIG. In this embodiment, the substrate is silicon, but the light confinement effect is higher when the refractive index is lower than the material forming the fine structure. For example, amorphous silica, plastic, and porous material. A fine structure has also been successfully produced using amorphous silica as a substrate.

実施例3における半径29nm、格子間隔148nmの構造体の場合、公式R=(1-n)2/(1+n) 2を用いて反射率の計算を行った。ここで、nは酸化チタンの屈折率(2.5)である。酸化チタンが平面状である場合、反射率は18%となる。いいかえれば、18%もの光が損失となる。これに対して、当該四角格子の場合、反射率は0.4%となった。また実施例4の半径22nm、格子間隔200nmの六角格子構造体の場合、反射率は0.04%となった。 In the case of the structure having a radius of 29 nm and a lattice spacing of 148 nm in Example 3, the reflectance was calculated using the formula R = (1-n) 2 / (1 + n) 2 . Here, n is the refractive index (2.5) of titanium oxide. When titanium oxide is planar, the reflectance is 18%. In other words, as much as 18% of the light is lost. On the other hand, in the case of the square lattice, the reflectance was 0.4%. In the case of the hexagonal lattice structure having a radius of 22 nm and a lattice interval of 200 nm in Example 4, the reflectance was 0.04%.

道路や非電化区域での駅構内の外壁や防音壁に用いることにより、大気汚染の浄化を行う。室内では壁紙などに用いることで、TVOCを濃度を低減できる。病院内で発生する消毒薬臭や手術室で漏れ出る麻酔ガス(笑気ガス)を分解する。工場では例えば、製鉄所、ガラス工場などで発生する有害ガスを紫外線の少ない環境下でも分解できる。放射線施設では放射線により大気中より発生する窒素酸化物、オゾンの分解、原子力発電所で使用する水(冷却水など)に放射線により分解・発生する水素・酸素を水に戻す。また、放射線施設内で使用する水は流出しないようにしてあるため、水垢あるいは錆が発生する。これらを有効に除去・分解する。放射線施設では、太陽光が全く差し込まない場合が多いが、チェレンコフ光を利用すればよい。   Air pollution is purified by using the outer walls and soundproof walls of the station premises in roads and non-electrified areas. By using it indoors as wallpaper, the concentration of TVOC can be reduced. Disinfect disinfectant odor generated in the hospital and anesthetic gas (laughing gas) leaking in the operating room. In factories, for example, harmful gases generated in steelworks, glass factories, etc. can be decomposed even in an environment with little ultraviolet rays. In radiation facilities, nitrogen oxides and ozone generated from the atmosphere by radiation are decomposed, and hydrogen and oxygen decomposed and generated by radiation are returned to water used in nuclear power plants (cooling water, etc.). Moreover, since water used in the radiation facility is prevented from flowing out, scale or rust is generated. These are effectively removed and disassembled. In radiation facilities, sunlight is often not inserted at all, but Cherenkov light may be used.

酸化チタンの二次元フォトニック結晶構造、円柱の直径は640nmTwo-dimensional photonic crystal structure of titanium oxide, cylinder diameter is 640nm 酸化チタンの3次元フォトニック結晶構造、円柱の直径は400nmThree-dimensional photonic crystal structure of titanium oxide, cylinder diameter is 400nm (a)三角格子状穴あき形状フォトニック結晶のバンド計算(黒い部分が酸化チタン、白抜きは空気、(c)も同じ)、(b)バンドギャップの開きやすさ、(c)三角格子状柱状フォトニック結晶のバンド計算、(d) バンドギャップの開きやすさ(a) Band calculation of triangular lattice-shaped perforated photonic crystal (black portion is titanium oxide, white is air, (c) is the same), (b) easy opening of band gap, (c) triangular lattice shape Band calculation of columnar photonic crystal, (d) Ease of opening band gap 四角格子状柱状フォトニック結晶のバンド計算Band calculation of square lattice columnar photonic crystal 六角格子状柱状フォトニック結晶のバンド計算Band calculation of hexagonal lattice columnar photonic crystal 三次元フォトニック結晶3D photonic crystal 図6の完全フォトニックバンドギャップが開く配置のシミュレーションSimulation of an arrangement where the complete photonic bandgap in FIG. 6 opens X線マスクを介してレジストに露光を行い、現像した後の試料破断面。直径640nmの円柱状の孔が基板まで到達していることがわかる。この実施例での基板はシリコン。Sample fracture surface after exposing and developing resist through X-ray mask. It can be seen that a cylindrical hole having a diameter of 640 nm reaches the substrate. The substrate in this example is silicon. 図8の試料(テンプレート)に酸化チタンを充填した後の表面状態。テンプレートの孔に隙間無く酸化チタンが充填されている。この後、レジストを選択的に除去すると図1のように酸化チタンの微細構造体が形成される。The surface state after filling the sample (template) of FIG. 8 with titanium oxide. The template holes are filled with titanium oxide without any gaps. Thereafter, when the resist is selectively removed, a fine structure of titanium oxide is formed as shown in FIG.

Claims (5)

金属酸化物によって構成された光に対する周期的な構造を基板上に有し、
該周期的な構造は、高屈折率を有する周期的に配置された素子と、低屈折率を有する周期的に配置された素子から構成され、
前記高屈折率素子又は前記低屈折率素子は、柱状又は球状又は多角形のいずれか一つ以上の繰り返し構造から成り、
可視光および紫外光の領域に光閉じ込め作用を有する周期的な構造を有する結晶構造体。
Having a periodic structure for light composed of metal oxides on the substrate,
The periodic structure is composed of periodically arranged elements having a high refractive index and periodically arranged elements having a low refractive index,
The high-refractive index element or the low-refractive index element consists of one or more repeating structures of a columnar shape, a spherical shape, or a polygonal shape,
A crystal structure having a periodic structure having an optical confinement effect in the visible light and ultraviolet light regions.
前記金属酸化物は、酸化チタンを主原料とする遷移金属酸化物である請求項1に記載の周期的な構造を有する結晶構造体。   The crystal structure having a periodic structure according to claim 1, wherein the metal oxide is a transition metal oxide mainly composed of titanium oxide. 前記可視光及び紫外光の光閉じ込め作用が1eV-6eVである請求項1に記載の周期的な構造を有する結晶構造体。   The crystal structure having a periodic structure according to claim 1, wherein the light confinement action of the visible light and the ultraviolet light is 1 eV-6 eV. 前記構造体の周期または該構造体を形成する素子の半径が30nm-1ミクロンの範囲内にある周期的な構造を有する請求項1に記載の結晶構造体。   The crystal structure according to claim 1, wherein the crystal structure has a periodic structure in which a period of the structure or a radius of an element forming the structure is in a range of 30 nm-1 micron. 表面反射率が5%以下である請求項1に記載の周期的な構造を有する結晶構造体。
The crystal structure having a periodic structure according to claim 1, wherein the surface reflectance is 5% or less.
JP2004363685A 2004-12-15 2004-12-15 Crystal structure having periodic structure Pending JP2006167594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363685A JP2006167594A (en) 2004-12-15 2004-12-15 Crystal structure having periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363685A JP2006167594A (en) 2004-12-15 2004-12-15 Crystal structure having periodic structure

Publications (1)

Publication Number Publication Date
JP2006167594A true JP2006167594A (en) 2006-06-29

Family

ID=36668897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363685A Pending JP2006167594A (en) 2004-12-15 2004-12-15 Crystal structure having periodic structure

Country Status (1)

Country Link
JP (1) JP2006167594A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298520A (en) * 1993-04-13 1994-10-25 Agency Of Ind Science & Technol Production of silica gel containing dispersed ultrafine titanium oxide particle
JP2000325799A (en) * 1999-05-20 2000-11-28 Sony Corp Photocatalytic device
JP2002241130A (en) * 2001-02-09 2002-08-28 Japan Atom Energy Res Inst Method for manufacturing titanium dioxide ultrathin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298520A (en) * 1993-04-13 1994-10-25 Agency Of Ind Science & Technol Production of silica gel containing dispersed ultrafine titanium oxide particle
JP2000325799A (en) * 1999-05-20 2000-11-28 Sony Corp Photocatalytic device
JP2002241130A (en) * 2001-02-09 2002-08-28 Japan Atom Energy Res Inst Method for manufacturing titanium dioxide ultrathin film

Similar Documents

Publication Publication Date Title
Hanus et al. Nanotechnology innovations for the construction industry
Feng et al. Improved catalytic capability of mesoporous TiO2 microspheres and photodecomposition of toluene
Chen et al. Photocatalytic construction and building materials: from fundamentals to applications
Monge et al. Ozone formation from illuminated titanium dioxide surfaces
Mills et al. Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes
KR20120115076A (en) Streetlamp type vacreator
Castro-Hoyos et al. Challenges and opportunities of using titanium dioxide photocatalysis on cement-based materials
Durgalakshmi et al. Principles and mechanisms of green photocatalysis
Chen et al. A photocatalytic mortar prepared by tourmaline and TiO2 treated recycled aggregates and its air-purifying performance
Hassan Quantification of the environmental benefits of ultrafine/nanotitanium dioxide photocatalyst coatings for concrete pavement using hybrid life-cycle assessment
Khan Principles and mechanisms of photocatalysis
JP2006167594A (en) Crystal structure having periodic structure
Januszkiewicz et al. Air purification in highly-urbanized areas with the use of TiO2. New approach in designing urban public space with beneficial human condition
JP2002061314A (en) Atmosphere cleaning method using building of double exterior wall structure, and exterior wall structure body used therefor
CN107042065A (en) Visible ray near infrared band solid-state light catalytic purifying thin-film device
del Rio Photocatalytic degradation of phenolic compounds in water: irradiation and kinetic modeling
Mills et al. Photocatalytic oxidation of deposited sulfur and gaseous sulfur dioxide by TiO2 films
CN212098350U (en) Light hydrogen ion air purification equipment
CN101209412A (en) Titanium dioxide sol for preparing broad-spectrum photocatalytic material and preparation method thereof
Chen et al. Experimental Investigation and Modeling of the Sulfur Dioxide Abatement of Photocatalytic Mortar Containing Construction Wastes Pre-Treated by Nano TiO2
Lee Applications and future perspectives of photocatalytic coatings for air purification and self cleaning
Gupta et al. Role of photo-catalysis in water remediation
Kang et al. The reaction and effects of titanium dioxide (TiO2) used as the material of photocatalytic-pavement-method
Chowdhury et al. Consumer Nanoproducts for Environment
Mujkanović et al. Self-Cleaning Concrete–A construction material for building cleaner world

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301