JP2006166106A - Picture reader - Google Patents

Picture reader Download PDF

Info

Publication number
JP2006166106A
JP2006166106A JP2004355518A JP2004355518A JP2006166106A JP 2006166106 A JP2006166106 A JP 2006166106A JP 2004355518 A JP2004355518 A JP 2004355518A JP 2004355518 A JP2004355518 A JP 2004355518A JP 2006166106 A JP2006166106 A JP 2006166106A
Authority
JP
Japan
Prior art keywords
reading
cis
scanning direction
main scanning
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355518A
Other languages
Japanese (ja)
Inventor
Takehiko Saito
武彦 斎藤
Masaaki Yoshida
正明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004355518A priority Critical patent/JP2006166106A/en
Priority to PCT/JP2005/018076 priority patent/WO2006061941A1/en
Publication of JP2006166106A publication Critical patent/JP2006166106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • H04N1/1911Simultaneously or substantially simultaneously scanning picture elements on more than one main scanning line, e.g. scanning in swaths
    • H04N1/1916Simultaneously or substantially simultaneously scanning picture elements on more than one main scanning line, e.g. scanning in swaths using an array of elements displaced from one another in the main scan direction, e.g. a diagonally arranged array
    • H04N1/1917Staggered element array, e.g. arrays with elements arranged in a zigzag
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a picture reader where a quality of read pictures is high by suppressing picture quality deterioration at the joint of readers. <P>SOLUTION: Regarding reading pixel data about a part where pixels in the main scanning direction of adjacent CISs are overlapped, weighted average processing is carried out to the output value of respective photodetective elements at the same position in the main scanning direction, and a weighted coefficient is not designated to be the same in an overlapped range. Thus, the joint between the readers becomes inconspicuous to improve the quality of the read picture. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、画像読み取り装置に関し、詳細には、受光素子が主走査方向に複数配列した読み取り部を複数個用いた原稿の読み取りに関し、各読み取り部間での画像データのつなぎ合わせを正確におこなって画像品質を向上させる画像読み取り装置に関する。   The present invention relates to an image reading apparatus, and more particularly, to reading of a document using a plurality of reading units in which a plurality of light receiving elements are arranged in the main scanning direction, and accurately connecting image data between the reading units. The present invention relates to an image reading apparatus that improves image quality.

従来の画像読み取り装置では、原稿に読み取り光を照射して、当該原稿からの反射光を主走査方向に1列に並んだ受光素子からなる読み取り部で光電変換する事で画像データを得ていた。読み取り部としては、構造が単純で、小型化しやすいという特徴から、等倍センサであるCISが使われている。CISでは、品質のよい画像を得る為に、受光素子が通常300dpiから1200dpiの間隔で並べられている。受光素子はセルフォックレンズなどの光学部品とフォトトランジスタなどの光電変換素子を組み合わせ、原稿面の反射光をセルフォックレンズを通す事で光電変換部に結像させている。A4、A3サイズ位までは、CISの製造は比較的容易で、量産効果から、安価に供給する事が可能であるが、A1、A0サイズの原稿を、ひとつのCISで網羅するだけの受光素子をならべる事は製造が難しく、歩留まりが悪くなり、結果として、高価になる。ゆえに、A1やA0といった大きなサイズの読み取り装置では、A4やA3サイズ程度の原稿読み取り用のCISを複数ならべる事で、センサーユニットを形成し、大きなサイズの原稿を1回の原稿搬送で読み取る事を可能としている。また、複数のCISを主走査方向1列にならべると、図15に示すように、一つのCISの端の受光素子と、隣接する他のCISの端の受光素子との距離Lyが、一つのCISの受光素子間の距離(Lx)よりも大きくなってしまうので、読み取り後に、CIS間に画素を補間する事で、つなぎ目の不自然さをめだたせないようにするなどの処理をおこなう必要がある。ただし、この画素補間では、周辺の読み取った画素情報から、補間する画素を推測するので、正しくない。その為、図3に示すように、隣接するCISを副走査方向異なる位置に配置し、隣接するCISの端部をオーバーラップさせ、さらには、上流側で、読み取った画像データを遅延手段を用いて遅延させた後に、下流側の画像データと合成する事で、つなぎ目の空白をなくす方法が用いられている。このような従来のつなぎあわせの具体例を図16(a)を用いて以下に説明する。なお、本明細書で記載する副走査方向とは、原稿搬送方向の事であり、また主走査方向とは、副走査方向とは直角をなす、読み取り部内の受光素子が1列に並んでいる方向の事である。   In a conventional image reading apparatus, image data is obtained by irradiating a document with reading light and photoelectrically converting reflected light from the document with a reading unit composed of light receiving elements arranged in a line in the main scanning direction. . As a reading unit, a CIS that is a unity size sensor is used because of its simple structure and easy miniaturization. In CIS, in order to obtain a high quality image, light receiving elements are usually arranged at intervals of 300 dpi to 1200 dpi. The light receiving element combines an optical component such as a Selfoc lens and a photoelectric conversion element such as a phototransistor, and the reflected light from the original surface is imaged on the photoelectric conversion section by passing through the Selfoc lens. Up to A4 and A3 sizes, CIS is relatively easy to manufacture and can be supplied at low cost due to its mass production effect. However, a light receiving element that covers A1 and A0 size documents with a single CIS. It is difficult to manufacture, and the yield is poor, resulting in high costs. Therefore, a large-size reading device such as A1 or A0 can form a sensor unit by reading a plurality of CISs for reading A4 or A3 size originals, and can read a large-size original in one original conveyance. It is possible. When a plurality of CISs are arranged in one row in the main scanning direction, as shown in FIG. 15, the distance Ly between the light receiving elements at one CIS end and the light receiving elements at the other adjacent CIS ends is one. Since it becomes larger than the distance (Lx) between the light receiving elements of the CIS, it is necessary to perform processing such as preventing unnaturalness of joints by interpolating pixels between the CIS after reading. is there. However, this pixel interpolation is not correct because the pixel to be interpolated is estimated from the pixel information read in the vicinity. Therefore, as shown in FIG. 3, adjacent CISs are arranged at different positions in the sub-scanning direction, the ends of adjacent CISs are overlapped, and further, the read image data is delayed on the upstream side by using a delay unit. After the delay, the method of eliminating the blank space at the joint is used by combining with the downstream image data. A specific example of such conventional joining will be described below with reference to FIG. Note that the sub-scanning direction described in this specification is the original transport direction, and the main scanning direction is a row of light receiving elements in the reading unit that is perpendicular to the sub-scanning direction. It ’s a direction.

図16(a)におけるCIS(A)101と、CIS(B)102はそれぞれ、X個の受光素子からなる。CIS(A)101の(X−3)番目111からX番目116の受光素子とCIS(B)102の1番目121から4番目124までの受光素子を主走査方向でオーバーラップさせる。CIS(A)101では、(X−2)番目114までの受光素子を有効として、(X−1)115、X番目116の受光素子は無効とする。同様にCIS(B)102では、3番目123からの受光素子を有効として、1番目121、2番目122の受光素子を無効として、以下に示すようにつなぎあわせる。   Each of CIS (A) 101 and CIS (B) 102 in FIG. 16A is composed of X light receiving elements. The (X-3) th 111th to Xth 116th light receiving elements of CIS (A) 101 and the first 121th to fourth 124th light receiving elements of CIS (B) 102 are overlapped in the main scanning direction. In CIS (A) 101, the (X-2) th to 114th light receiving elements are valid, and (X-1) 115 and the Xth 116th light receiving element are invalid. Similarly, in the CIS (B) 102, the light receiving elements from the third 123 are made valid and the first 121, the second 122 light receiving elements are made invalid, and they are connected as shown below.

・・・・、CIS(A)101の(X−4)番目の受光素子112、CIS(A)101の(X−3)番目の受光素子113、CIS(A)101の(X−2)番目の受光素子114、CIS(B)102の1番目の受光素子121,CIS(B)102の2番目の受光素子122,CIS(B)102の3番目の受光素子123、・・・・
このようなつなぎあわせ方法により、読み取り部を主走査方向1列に並べた際の画素補間の必要性がなくなり、つなぎ目に関して、より原稿を忠実に再現する事が可能となる。
..., (X-4) th light receiving element 112 of CIS (A) 101, (X-3) th light receiving element 113 of CIS (A) 101, (X-2) of CIS (A) 101 The first light receiving element 114, the first light receiving element 121 of the CIS (B) 102, the second light receiving element 122 of the CIS (B) 102, the third light receiving element 123 of the CIS (B) 102,.
Such a joining method eliminates the need for pixel interpolation when the reading units are arranged in one row in the main scanning direction, and the original can be reproduced more faithfully with respect to the joints.

しかし、このようなCISの端部をオーバーラップさせた画像読み取り装置でも、読み取った画像のつなぎ目が不自然になる場合がある。これは、読み取り解像度が高い程、わずかなCISの取り付け精度のばらつきや、CISを取り付けるプレートの温度等の環境によるわずかな伸縮により、図16(b)に示すように、CIS同士のオーバーラップ部の本来、主走査方向で同じ位置にあるべき受光素子にΔLxのずれが生じる。このΔLxにより、CIS間の画像つなぎ目を不自然にし、自然画の読み取りにおいては、つなぎめに、線がはいったように見えるなど読み取り画像の品質を悪くしていた。主走査方向のばらつきに関しては、つなぎあわせるCIS上の画素の位置を変更する事で、受光素子の間隔単位で調節する事は可能であるが、CIS上の受光素子の間隔以下の調節はできない。この吸収する事のできないばらつきにより、画像のつなぎ目にずれが生じ、不自然さが残り、画像の品質を悪くしていた。
特開昭60−31357号公報(第8頁、第1図)
However, even in such an image reading apparatus in which the ends of the CIS are overlapped, the joints of the read images may become unnatural. This is because the higher the reading resolution, the smaller the CIS mounting accuracy, and the slight expansion and contraction due to the temperature of the plate to which the CIS is mounted. Therefore, a shift of ΔLx occurs in the light receiving elements that should be at the same position in the main scanning direction. This ΔLx makes the image joint between CIS unnatural, and when reading a natural image, the quality of the read image is deteriorated, for example, a line appears to be connected. The variation in the main scanning direction can be adjusted in units of the intervals between the light receiving elements by changing the positions of the pixels on the CIS to be joined, but cannot be adjusted below the interval between the light receiving elements on the CIS. Due to this non-absorbable variation, the joints of the images are displaced, leaving unnaturalness and degrading the image quality.
JP-A-60-31357 (page 8, FIG. 1)

以上に述べた従来の複数のCISを用いた画像読み取り装置では、つなぎ目の画像の品質が悪いという問題があった。   The conventional image reading apparatus using a plurality of CISs described above has a problem that the quality of the joint image is poor.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、つなぎ目の画像の不自然さをなくし、読み取り画像の品質が高い画像読み取り装置を実現する事を目的とするものである。   An object of the present invention is to solve the problem of such a conventional configuration, and to eliminate the unnaturalness of the joint image and to realize an image reading apparatus with high quality of the read image. It is what.

上記目的を達成するために、本発明は、つなぎ合わせる際に隣接するCISの主走査方向の画素が重なる部分に関しての読み取り画素データは主走査方向で同位置にあるそれぞれの受光素子の出力値を重み付けによる平均化演算をおこない、かつ重み付け係数をオーバーラップ範囲で同一にしない。すなわち、つなぎあわせる読み取り部、それぞれにおいて、つなぎ目周辺の画素の階調値を読み取り、双方の読み取り階調値が含まれるので、つなぎ目の階調の不連続性を目立たせなくする事ができる。   In order to achieve the above object, according to the present invention, read pixel data relating to a portion where pixels in the main scanning direction of adjacent CISs overlap at the time of joining are output values of light receiving elements at the same position in the main scanning direction. An averaging operation by weighting is performed, and the weighting coefficient is not the same in the overlap range. That is, in each of the reading sections to be connected, the gradation values of the pixels around the joint are read, and both read gradation values are included, so that the discontinuity of the gradation of the joint can be made inconspicuous.

また本発明は、隣接する読み取り部の受光素子が重なる部分の画素を一方の受光素子から得られた階調値と他方の受光素子から得られた階調値から以下の演算式を用いて算出する画像読み取り装置である。
Nout(x)=Na(x)×(ga(x)/G)+Nb(x)×(gb(x)/G)
G=ga(x)+gb(x)
x:つなぎあわせ後の画像の主走査方向の画素位置
Nout(x):主走査方向xの位置における画素の算出後の階調値。
Na(x):主走査方向xの位置における一方の読み取り部の画素の階調値。
Nb(x):主走査方向xの位置における他方の読み取り部の画素の階調値。
ga(x):主走査方向xの位置における一方の読み取り部の画素の重み付け係数。
gb(x):主走査方向xの位置における他方の読み取り部の画素の重み付け係数。
G:1以上の整数
また本発明は、隣接する読み取り部の主走査方向で重なる範囲の画素を算出する際に用いる重み付け係数を一方の読み取り部に近い側では、一方の読み取り部の階調値への重み付け係数を大きくし、他方の読み取り部に近い側では、他方の読み取り部の階調値への重み付け係数を大きくした画像読み取り装置である。
Further, according to the present invention, the pixel where the light receiving element of the adjacent reading unit overlaps is calculated from the gradation value obtained from one light receiving element and the gradation value obtained from the other light receiving element using the following arithmetic expression. An image reading apparatus.
Nout (x) = Na (x) × (ga (x) / G) + Nb (x) × (gb (x) / G)
G = ga (x) + gb (x)
x: pixel position Nout (x) in the main scanning direction of the images after stitching: gradation value after calculation of pixels at a position in the main scanning direction x.
Na (x): gradation value of a pixel of one reading unit at a position in the main scanning direction x.
Nb (x): The gradation value of the pixel of the other reading unit at the position in the main scanning direction x.
ga (x): A weighting coefficient for pixels of one reading unit at a position in the main scanning direction x.
gb (x): weighting coefficient of the pixel of the other reading unit at the position in the main scanning direction x.
G: integer greater than or equal to 1 Further, according to the present invention, the weighting coefficient used when calculating the pixels in the overlapping range in the main scanning direction of the adjacent reading units is the gradation value of one reading unit on the side close to one reading unit. This is an image reading apparatus in which the weighting coefficient is increased and the weighting coefficient for the gradation value of the other reading unit is increased on the side closer to the other reading unit.

また本発明は、当該読み取り部の主走査方向で重なる範囲において、より当該読み取り部に近い方の重なる範囲においては、当該CISの読み取り値の重み付け係数を隣接する読み取り部の主走査同一個所の読み取り階調値の重み付けよりも大きくし、逆に、より隣接する読み取り部に近い方の主走査方向で重なる範囲のつなぎ目処理においては、当該読み取り部の読み取り階調値の重み付け係数を隣接する読み取り部の主走査同一個所の読み取り値の重み付け係数よりも小さくするので、つなぎあわせる範囲の階調の不自然さを軽減することができる。   Further, according to the present invention, in the overlapping range in the main scanning direction of the reading unit, in the overlapping range closer to the reading unit, the weighting coefficient of the reading value of the CIS is read at the same main scanning position of the adjacent reading unit. In the joint processing of the range that is larger than the weighting of the gradation value and conversely overlaps in the main scanning direction closer to the adjacent reading unit, the weighting coefficient of the reading gradation value of the reading unit is adjacent to the reading unit. Since the weighting coefficient of the reading value at the same position in the main scanning is made smaller, the unnaturalness of the gradation in the range to be joined can be reduced.

本発明の読み取り装置では、読み取り部のつなぎめで発生する読み取った画像の不自然さをなくすことのできる画像読み取り装置を提供することができる。   According to the reading apparatus of the present invention, it is possible to provide an image reading apparatus that can eliminate the unnaturalness of the read image that occurs when the reading unit is joined.

以下、本発明の実施の形態を図1〜図14に基づいて説明する。
CIS41と呼ばれる読み取り部は図4に示すように、5000個の受光素子42が主走査方向1列に配置されている。受光素子42は、図示しないセルフォックレンズなどの光学部品と、図示しないフォトトランジスタなどの光電変換素子の組み合わせからなり、原稿からの反射光を、セルフォックレンズで、光電変換素子の受光面に結像している。さらに、CIS41には、受光素子の並び方向と平行になるような位置に導光体が3本配置されている。導光体はそれぞれ、赤、青、緑色に発光するLEDにより、原稿に赤色光、青色光、緑色光をそれぞれ照射する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
As shown in FIG. 4, the reading unit called CIS 41 has 5000 light receiving elements 42 arranged in one line in the main scanning direction. The light receiving element 42 is composed of a combination of an optical component such as a Selfoc lens (not shown) and a photoelectric conversion element such as a phototransistor (not shown). The reflected light from the original is coupled to the light receiving surface of the photoelectric conversion element by the Selfoc lens. I image. Further, in the CIS 41, three light guides are arranged at positions that are parallel to the arrangement direction of the light receiving elements. The light guides respectively irradiate the original with red light, blue light, and green light by LEDs that emit red, blue, and green light.

センサーユニットは図3に示すように、CISと呼ばれる読み取り部21〜25をプレート31上に5個、千鳥配列になるように固定する。前記センサーユニット上で、原稿26を原稿搬送方向27に従って搬送する事で、各CISが原稿を読取る。図2は図3を真上からの視点でみた、各CISと原稿との位置関係を示している。図2、図3からわかるように、CIS(A)21、CIS(C)23、CIS(E)25は副走査方向同じ位置に、主走査方向で重ならないように配置され、また、前記3個のCISと副走査方向異なる位置で、原稿搬送に対して下流側にCIS(B)22、CIS(D)24が副走査方向同じ位置にCIS(A)、(C)、(E)と千鳥配列になるように配置されている。なお、CIS(A)21とCIS(B)22、CIS(B)22とCIS(C)23、CIS(C)23とCIS(D)24、CIS(D)24とCIS(E)25では、それぞれ受光素子が主走査方向で264個オーバーラップするように本実施例では、配置されている。   As shown in FIG. 3, the sensor unit fixes five reading units 21 to 25 called CIS on the plate 31 so as to form a staggered arrangement. Each of the CISs reads the document by transporting the document 26 in the document transport direction 27 on the sensor unit. FIG. 2 shows the positional relationship between each CIS and the document when FIG. 3 is viewed from above. As can be seen from FIGS. 2 and 3, the CIS (A) 21, CIS (C) 23, and CIS (E) 25 are arranged at the same position in the sub-scanning direction so as not to overlap in the main scanning direction. CIS (B) 22 and CIS (D) 24 are located at the same position in the sub-scanning direction at a position different from the individual CIS in the sub-scanning direction, and CIS (A), (C), (E) They are arranged in a staggered arrangement. In CIS (A) 21 and CIS (B) 22, CIS (B) 22 and CIS (C) 23, CIS (C) 23 and CIS (D) 24, CIS (D) 24 and CIS (E) 25 In this embodiment, the light receiving elements are arranged so that 264 light receiving elements overlap each other in the main scanning direction.

次に、前記センサユニット上のCISの出力データの流れを図5のブロック図で説明する。CIS(A)21、CIS(B)22、CIS(C)23、CIS(D)24、CIS(E)25の出力はADコンバータ51に入力される。ADコンバータ51の出力はデータ処理部52に入力される。データ処理部52には、画像メモリ55、不揮発性メモリ56が接続され、データ処理部52によりリード/ライト可能である。データ処理部52の出力は画像処理部57に入力され、画像処理部57の出力はスキャナー外部へ接続されている。CPU53はデータ処理部52に接続され、CPU53がデータ処理部52を制御する。また、CPU53には、プログラムメモリ54が接続され、CPU53の動作を定義するプログラムが格納されている。   Next, the flow of CIS output data on the sensor unit will be described with reference to the block diagram of FIG. The outputs of CIS (A) 21, CIS (B) 22, CIS (C) 23, CIS (D) 24, and CIS (E) 25 are input to AD converter 51. The output of the AD converter 51 is input to the data processing unit 52. An image memory 55 and a nonvolatile memory 56 are connected to the data processing unit 52 and can be read / written by the data processing unit 52. The output of the data processing unit 52 is input to the image processing unit 57, and the output of the image processing unit 57 is connected to the outside of the scanner. The CPU 53 is connected to the data processing unit 52, and the CPU 53 controls the data processing unit 52. The CPU 53 is connected to a program memory 54 and stores a program that defines the operation of the CPU 53.

センサユニットはCIS毎に、データ処理部52から入力されるトリガパルスを起点として、各CIS上の1番目から5000番目まで順番に、受光素子からの出力値をデータ処理部52が生成する図示しないCIS用基準クロックの立ち上がりエッジにあわせてアナログ信号として出力する。ADコンバータ51では、前記CIS用基準クロックの立ち上がりエッジにあわせてサンプリングし、A/D変換し、8ビットのディジタルデータとして出力する。データ処理部52はゲートアレイや、セルベースなどのASICやFPGAなどで構成され、ADコンバータ出力のディジタルデータを受け取り、シェーディング補正を実施する。シェーディング補正の具体的な方法については後述する。また、上流側のCISがpライン目の読み取りデータを出力している場合、下流側のCISはp−qライン目の読み取りデータを出力している。したがって、データ処理部は上流側のCISの処理後のデータを一旦、画像メモリ55に保管する。そして、qライン分の原稿搬送後、下流側のCISがpラインを読み取り、データ処理部においてAD変換された後、上流側のCISによる同じラインのデータをメモリから読み出し、センサ間つなぎ合わせ処理を行う。つなぎ合わせ処理により、それまで5分割して処理されていたデータが1ラインのデータとなって、画像処理部へ送られる。   For each CIS, the data processing unit 52 generates output values from the light receiving elements in order from the first to the 5000th on each CIS starting from the trigger pulse input from the data processing unit 52 for each CIS. An analog signal is output in accordance with the rising edge of the CIS reference clock. The AD converter 51 samples in accordance with the rising edge of the CIS reference clock, performs A / D conversion, and outputs it as 8-bit digital data. The data processing unit 52 includes a gate array, a cell-based ASIC, an FPGA, or the like, receives digital data output from the AD converter, and performs shading correction. A specific method of shading correction will be described later. In addition, when the upstream CIS outputs the read data for the p-th line, the downstream CIS outputs the read data for the p-q line. Therefore, the data processing unit temporarily stores the data after the upstream CIS processing in the image memory 55. After the q lines of originals are conveyed, the downstream CIS reads the p-line, and after AD conversion is performed in the data processing unit, the same line data is read from the memory by the upstream CIS, and the sensor-to-sensor joining process is performed. Do. By the stitching process, the data that has been processed by being divided into five pieces so far becomes one line of data and is sent to the image processing unit.

画像処理部は、DSP(Digital Signal Processor)などで構成され、コントラスト調整や、ガンマ補正などの画像処理、主走査方向、副走査方向必要な範囲の切り出し処理、拡大縮小、2値化などの処理が必要に応じて実行された後、読み取り装置外部へ送出され、用途に応じて、画像データとして保管したり、プリントアウトしたり、LAN、WANを経由して、遠隔地へ転送される。   The image processing unit is configured by a DSP (Digital Signal Processor) or the like, and performs image processing such as contrast adjustment and gamma correction, clipping processing required in the main scanning direction and sub-scanning direction, enlargement / reduction, and binarization processing. Is executed as necessary, and then sent to the outside of the reading apparatus, and stored as image data, printed out, or transferred to a remote location via a LAN or WAN according to the application.

前記データ処理部のフローを図6を用いて以下に説明する。ADコンバータ51から入力されたデータはADコンバータ51とデータ処理部52の間の転送レートと、データ処理部内転送レートの違いを吸収する為、一旦、FIFO61に入る。読取り部内切り出し処理部62は、FIFO61からデータを読み出し、後述するように、CISセンサの不要となる両端100画素分のデータを破棄してから、シェーディング補正部に送る。シェーディング補正は、読み取りデータのダイナミックレンジを広げるために、階調数が256の場合、以下の計算式で演算される。   The flow of the data processing unit will be described below with reference to FIG. Data input from the AD converter 51 temporarily enters the FIFO 61 in order to absorb the difference between the transfer rate between the AD converter 51 and the data processing unit 52 and the transfer rate in the data processing unit. The reading unit cutout processing unit 62 reads data from the FIFO 61 and discards data for 100 pixels at both ends which are unnecessary for the CIS sensor, as will be described later, and sends the data to the shading correction unit. The shading correction is calculated by the following formula when the number of gradations is 256 in order to widen the dynamic range of the read data.

シェーディング補正後のデータ=255×((N(x)−Bk(x))/(Wh(x)−Bk(x)))
N(x):原稿を読取った際のxの位置におけるADコンバータ出力の読み取りデータ
Bk(x):CISのLEDを消灯した状態でのxの位置におけるADコンバータ出力の読み取りデータ
Wh(x):白基準板を読取った際のxの位置におけるADコンバータ出力の読み取りデータ
シェーディング補正時に用いるBk(x)は原稿読み取りの前にCISのLEDを消灯した状態で受光素子の出力のAD変換値を不揮発性メモリ56に保管し、またWh(x)は同じく、原稿読み取りの前に装置に備え付けられた白基準板を読取った際の受光素子の出力のAD変換値を不揮発性メモリ56に格納する事で得られ、シェーディング補正時に不揮発性メモリ56から前記Bk(x)、Wh(x)を読み出し、シェーディング補正を実施している。
Data after shading correction = 255 × ((N (x) −Bk (x)) / (Wh (x) −Bk (x)))
N (x): AD converter output read data Bx (x) when the document is read Bk (x): AD converter output read data Wh (x) at the x position with the CIS LED turned off: Bk (x) used for the data shading correction of the AD converter output at the position x when the white reference plate is read is a non-volatile value of the AD conversion value of the light receiving element output with the CIS LED turned off before reading the document. The Wh (x) is also stored in the non-volatile memory 56. The Wh (x) stores the AD conversion value of the output of the light receiving element when the white reference plate provided in the apparatus is read before reading the document. The Bk (x) and Wh (x) are read from the nonvolatile memory 56 at the time of shading correction, and shading correction is performed.

シェーディング補正後のデータはメモリコントローラ64により、遅延処理をおこなう為、画像メモリ55に書き込まれる。遅延処理部65は千鳥配列されているCISの副走査方向搬送時間のずれを考慮して、原稿上の同じラインに相当するデータをメモリコントローラ64経由で読み出し、センサ間つなぎ処理部66におくられる。センサ間つなぎ処理部66の動作については後述する。   The data after shading correction is written into the image memory 55 for delay processing by the memory controller 64. The delay processing unit 65 reads the data corresponding to the same line on the document via the memory controller 64 in consideration of the shift of the transport time in the sub-scanning direction of the CIS arranged in a staggered arrangement, and puts it in the inter-sensor connection processing unit 66. . The operation of the inter-sensor connection processing unit 66 will be described later.

つなぎ処理後のデータは主走査方向データ切り出し処理部67に送られ、CPUにより指定される主走査方向の範囲のみ抽出してから出力FIFO68に送る。出力FIFO68はデータ処理部52と画像処理部の間の転送レートにあうように、出力FIFO68からデータを読み出しデータ処理部52外へ転送され、画像処理部57で前述の処理が実施される。   The data after the linking process is sent to the main scanning direction data cutout processing unit 67, and only the range in the main scanning direction designated by the CPU is extracted and sent to the output FIFO 68. The output FIFO 68 reads data from the output FIFO 68 and transfers it to the outside of the data processing unit 52 so as to meet the transfer rate between the data processing unit 52 and the image processing unit, and the image processing unit 57 performs the above-described processing.

センサ間つなぎ処理の詳細な実施例について以下、説明する。
各CISにおいて両端の100画素は隣接するCISとの間の主走査方向のずれが受光素子の間隔以上のずれがあった場合の調整用として使い、製造ばらつきによる調整が不要の場合、端の100画素分の出力は無効となる。
ゆえに、101番目の受光素子から、4900番目の受光素子のあわせて4800個の受光素子が有効となる。隣接するCISがある場合、4800個の内の端の64画素分の受光素子、つまりCIS内で、101〜164番目、4737番目〜4800番目の受光素子がつなぎあわせの演算対象となる。つなぎあわせの演算では、一方のCISの101番目の受光データと他方のCISの4737番目の受光データで重み付け演算を実施し、当該画素のデータが算出される。以下、同様に一方のCISの102番目と他方の4738番目、・・・・・一方の164番目と他方の4800番目同士で重み付け演算が実施される。
A detailed embodiment of the inter-sensor connection process will be described below.
In each CIS, 100 pixels at both ends are used for adjustment when the deviation in the main scanning direction between adjacent CISs is larger than the interval between the light receiving elements. The output for pixels is invalid.
Therefore, 4800 light receiving elements are effective from the 101st light receiving element to the 4900th light receiving element. When there are adjacent CISs, the light receiving elements for 64 pixels at the end of 4800, that is, the 101st to 164th and 4737th to 4800th light receiving elements in the CIS are the calculation target of the joining. In the joining calculation, weighting calculation is performed on the 101st received light data of one CIS and the 4737th received light data of the other CIS, and the data of the pixel is calculated. Thereafter, similarly, the weighting operation is performed on the 102nd and 4738th of the other CIS,... 164th and the other 4800th of the other CIS.

よって、CIS(A)、CIS(E)では4800個の受光素子が有効であり、内、64個は隣接するCISとのつなぎあわせ用であり、つなぎ合わせ処理を経ない受光素子は4736個である。また、両端でつなぎあわせ処理を必要とするCIS(B)、CIS(C)、CIS(D)では、4800個の受光素子が有効であり、内、128個は隣接するCISとのつなぎあわせ用であり、つなぎ合わせ処理を経ない受光素子は4672個である。よって、つなぎ合わせ後の1ラインの画素数は4736+64+4672+64+4672+64+4672+64+4736=23744である。   Therefore, in CIS (A) and CIS (E), 4800 light receiving elements are effective. Of these, 64 are used for connection with adjacent CIS, and 4736 light receiving elements are not subjected to the connecting process. is there. In CIS (B), CIS (C), and CIS (D), which require joint processing at both ends, 4800 light receiving elements are effective, of which 128 are used for joining with adjacent CIS. There are 4672 light receiving elements not subjected to the joining process. Therefore, the number of pixels in one line after joining is 4736 + 64 + 4672 + 64 + 4672 + 64 + 4672 + 64 + 4736 = 23744.

つなぎ合わせ処理における重み付け演算では、一方の受光素子の階調をNaとし、他方の受光素子の階調をNbとすると、以下の式で算出する。
Nout=((ga/G)×Na)+(((G−ga)/G)×Nb)
Nout:つなぎあわせ処理後の階調
G:1以上の整数
ga:重み付け係数で、1以上G以下の整数からなる
本実施例では、前記Gを9として、つなぎあわせの範囲64画素分を8個の小エリアにわけ、それぞれの小エリア内で、同じ重み付け係数を用いる。ここで、前記Gは9に限られず、上記小分けエリアを細かく分ければ、それに応じて小分けエリアの数以上の数となる。例えば、つなぎあわせの範囲64画素分を64個の小エリアにわけるとすると、前記Gは64以上の数となるし、つなぎあわせの範囲が64画素以上になると、それに合わせて大きな数となる。前記小分けエリア及びGは、小分けエリアを細かく分けGが大きくなるほどに、自然な画像のつなぎ目を実現することができるが、その分処理が必要なデータ量が増えてしまう。
In the weighting calculation in the joining process, when the gradation of one light receiving element is Na and the gradation of the other light receiving element is Nb, calculation is performed using the following equation.
Nout = ((ga / G) × Na) + (((G−ga) / G) × Nb)
Nout: Gradation after stitching G: integer greater than or equal to 1: ga: weighting factor, which is an integer greater than or equal to 1 and less than or equal to G. In this embodiment, G is 9 and 8 stitches in the range of 64 pixels. The same weighting coefficient is used in each small area. Here, G is not limited to 9, and if the subdivision area is subdivided, the number of subdivision areas will be equal to or greater than that. For example, if the connection range of 64 pixels is divided into 64 small areas, the G is a number of 64 or more, and if the connection range is 64 pixels or more, the G is a large number. As the subdivision area and G are subdivided into smaller subdivision areas, natural image joints can be realized, but the amount of data that needs to be processed increases accordingly.

また、重み付け係数gaは1以上G以下の整数であり、主走査方向で同じ位置にある他方のCISの重み付け係数gbと足し合わせるとGとなる。   Further, the weighting coefficient ga is an integer of 1 or more and G or less, and becomes G when added to the weighting coefficient gb of the other CIS at the same position in the main scanning direction.

また、一つの読み取り部内で、主走査方向位置xにある重み付け係数ga(x)と、同じ読み取り部内で、位置xと隣接し他方の読み取り部に近い位置yにある重み付け係数ga(y)では、ga(x)≧ga(y)の式を満たす。つまり、CISの端に近い受光素子になるに従い、小さな重み付け係数となり、より自然な読み取り画像を得ることが出来る。   Also, the weighting coefficient ga (x) at the position x in the main scanning direction within one reading unit and the weighting coefficient ga (y) at the position y adjacent to the position x and close to the other reading unit within the same reading unit. , Ga (x) ≧ ga (y) is satisfied. That is, as the light receiving element is closer to the end of the CIS, the weighting coefficient becomes smaller, and a more natural read image can be obtained.

図7(a)に、CIS(A)とCIS(B)のつなぎ合わせ部の位置関係を示す。図中、a10〜a18はCIS(A)の受光素子の位置を示す。b1〜b9はCIS(B)の受光素子の位置を示す。同様に、図7(b)にCIS(B)とCIS(C)に関して示し,図7(c)にCIS(C)とCIS(D)に関して示し、図7(d)にCIS(D)とCIS(E)に関して示している。   FIG. 7 (a) shows the positional relationship between the joining portions of CIS (A) and CIS (B). In the figure, a10 to a18 indicate the positions of the light receiving elements of CIS (A). b1 to b9 indicate the positions of the light receiving elements of the CIS (B). Similarly, FIG. 7 (b) shows CIS (B) and CIS (C), FIG. 7 (c) shows CIS (C) and CIS (D), and FIG. 7 (d) shows CIS (D) and CIS (D). CIS (E) is shown.

図7の記号(a10〜a18、b1〜b9、b10〜b18、c1〜c9、c10〜c18、d1〜d9、d10〜d18、e1〜e9)が各CIS上のどの受光素子を特定しているかを図8に示す。
また、図7、図8に示す重み付け演算を必要とする前記小エリアごとの重み付け係数を図9に示す。
Which light receiving element on each CIS is identified by the symbols (a10 to a18, b1 to b9, b10 to b18, c1 to c9, c10 to c18, d1 to d9, d10 to d18, e1 to e9) in FIG. Is shown in FIG.
FIG. 9 shows the weighting coefficients for the small areas that require the weighting operations shown in FIGS.

図9の重み付け係数を用いた、つなぎあわせ後の1ラインの画素データの演算式を図10〜図14に示す。
これらのつなぎ合わせ処理により、読取り部間の周辺の画素は、主走査方向で同じ位置における双方の読み取りデータが含まれる為、CISの製造ばらつきや、CISのセンサユニットへの取り付け精度のばらつきにより発生する読み取り部のつなぎめで発生する読み取った画像の不自然さをなくす事ができる。
10 to 14 show arithmetic expressions for pixel data of one line after joining, using the weighting coefficient of FIG.
Due to these splicing processes, the peripheral pixels between the reading units contain both reading data at the same position in the main scanning direction, which is caused by variations in CIS manufacturing and accuracy in mounting the CIS to the sensor unit. Therefore, it is possible to eliminate the unnaturalness of the read image that occurs when the reading unit is connected.

図1は本発明の一実施例の読み取り装置の構成を示す。
図1において、1は原稿に読み取り光を照射して、その反射光を読み取るセンサーユニットで、3は原稿台、原稿台3を挟んで、センサーユニット1と対峙する位置に、白基準板2を固定する。原稿台3と、白基準板2の間が原稿の搬送経路4である。5a、5bは、外部から原稿を図示しない原稿搬入口から挿入した際に、原稿の挿入を感知する透過センサーである。原稿の挿入感知により原稿を原稿台3へ搬送する搬入用駆動ローラ6a、搬入用従動ローラ6bがある。8a、8bは原稿台3への原稿搬送を感知するセンサ、7aは原稿を搬送する駆動ローラであり、7bは原稿搬送用従動ローラである。また、9aは読み取り終了後の原稿を装置外へ排出する排出用駆動ローラであり、9bは排出用従動ローラである。
FIG. 1 shows the configuration of a reading apparatus according to an embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a sensor unit that irradiates an original with reading light and reads the reflected light. Reference numeral 3 denotes an original table and an original table 3, and a white reference plate 2 is placed at a position facing the sensor unit 1. Fix it. A document transport path 4 is between the document table 3 and the white reference plate 2. Reference numerals 5a and 5b denote transmission sensors for detecting the insertion of a document when the document is inserted from the document carry-in entrance (not shown) from the outside. There are a carry-in driving roller 6a and a carry-in driven roller 6b for conveying the document to the document table 3 by sensing the insertion of the document. Reference numerals 8a and 8b denote sensors for detecting the conveyance of the original to the original table 3. Reference numeral 7a denotes a driving roller for conveying the original. Reference numeral 7b denotes a driven roller for conveying the original. Reference numeral 9a denotes a discharge driving roller for discharging the original after reading out of the apparatus, and 9b denotes a discharge driven roller.

次に、図1に示す実施例の動作について説明する。原稿読み取り前に、センサーユニット1は消灯した状態で黒基準値を読み取り、また、センサユニット1上のLEDを点灯して白基準板2を読み、シェーディング補正の為のパラメータを保管する。図示しない原稿搬入口から挿入された原稿は透過センサ5a,5bにより感知され、搬入用駆動ローラ6a、搬入用従動ローラ6bにより、透過センサ8a、8bが原稿の先端を感知するまで、原稿台3へ送られる。原稿送り用駆動ローラ7a、原稿送り用従動ローラ7bにより、原稿が搬送されながら、センサユニット1により原稿が読取られる。所定ラインの読み取りが完了した時点、または、透過センサ5a,5bが原稿の後端を検出した時点で、センサユニット1は読み取りを終了し、排出用駆動ローラ9a、排出用従動ローラ9bによって、装置外部へ排出される。   Next, the operation of the embodiment shown in FIG. 1 will be described. Before reading the document, the sensor unit 1 reads the black reference value with the light turned off, and the LED on the sensor unit 1 is turned on to read the white reference plate 2, and the parameters for shading correction are stored. A document inserted from a document carry-in entrance (not shown) is sensed by the transmission sensors 5a and 5b, and the document table 3 until the transmission sensors 8a and 8b sense the leading edge of the document by the carry-in driving roller 6a and the carry-in driven roller 6b. Sent to. The original is read by the sensor unit 1 while the original is being conveyed by the original feeding driving roller 7a and the original feeding driven roller 7b. When the reading of the predetermined line is completed or when the transmission sensors 5a and 5b detect the trailing edge of the document, the sensor unit 1 finishes reading, and the discharge driving roller 9a and the discharge driven roller 9b It is discharged outside.

本発明に係る読み取り装置の構成図Configuration diagram of a reader according to the present invention 本発明に係る読取り部の千鳥配列と原稿の位置関係を示す図The figure which shows the positional relationship of the zigzag arrangement | sequence of the reading part based on this invention, and a document. 本発明に係るセンサユニットの構成を示す図The figure which shows the structure of the sensor unit which concerns on this invention 本発明に係る読取り部の構成を示す図The figure which shows the structure of the reading part which concerns on this invention 本発明に係る読取り部の電気的構成を示すブロック図The block diagram which shows the electric constitution of the reading part which concerns on this invention 図5に示したデータ処理部のフローを示す図The figure which shows the flow of the data processing part shown in FIG. 隣接する読み取り部の受光素子の重なりを示す図The figure which shows the overlap of the light receiving element of an adjacent reading part 図7に示した各読み取り部の位置を示す記号の具体的な場所を示す図The figure which shows the specific place of the symbol which shows the position of each reading part shown in FIG. センサ間つなぎ合わせ処理における受光素子の位置と重み付け係数の対応を示す図The figure which shows the correspondence of the position of the light receiving element and the weighting coefficient in the joining process between sensors 実施例におけるCIS(A)とCIS(B)の間の重み付け演算式を示す図The figure which shows the weighting calculating formula between CIS (A) and CIS (B) in an Example. 実施例におけるCIS(B)とCIS(C)の間の重み付け演算式を示す図The figure which shows the weighting arithmetic expression between CIS (B) and CIS (C) in an Example. 実施例におけるCIS(C)とCIS(D)の間の重み付け演算式を示す図The figure which shows the weighting arithmetic expression between CIS (C) and CIS (D) in an Example. 実施例におけるCIS(D)とCIS(E)の間の重み付け演算式を示す図The figure which shows the weighting arithmetic expression between CIS (D) and CIS (E) in an Example. 図10、図11、図12、図13に含まれない範囲の読み取りデータを算出する演算式を示す図The figure which shows the computing equation which calculates the read data of the range which is not contained in FIG.10, FIG.11, FIG.12 and FIG. 従来の読取り部の配置を示す図The figure which shows arrangement of the conventional reading part 従来の読取り部のつなぎあわせを説明する図The figure explaining the joining of the conventional reading part

符号の説明Explanation of symbols

1 センサユニット
2 白基準板
3 原稿台
4 原稿搬送経路
5a 透過センサ受光部
5b 透過センサ発光部
6a 原稿搬入用駆動ローラ
6b 原稿搬入用従動ローラ
7a 原稿送り用駆動ローラ
7b 原稿送り用従動ローラ
8a 透過センサ受光部
8b 透過センサ発光部
9a 原稿排出用駆動ローラ
9b 原稿排出用従動ローラ
21 CIS(A)
22 CIS(B)
23 CIS(C)
24 CIS(D)
25 CIS(E)
26 原稿
27 原稿搬送方向
41 CIS
42 受光素子
43 赤色LED用導光体
44 緑色LED用導光体
45 青色LED用導光体
51 ADコンバータ
52 データ処理部
53 CPU
54 プログラムメモリ
55 画像メモリ
56 不揮発性メモリ
57 画像処理部
58 読み取り装置
61 入力用FIFO
62 読取り部内切り出し処理部
63 シェーディング補正部
64 メモリコントローラ
65 遅延処理部
66 センサ間つなぎ処理部
67 主走査方向データ切り出し処理部
68 出力用FIFO
69 出力処理部
91 CIS(A)上の受光素子
92 CIS(B)上の受光素子
93 CIS(C)上の受光素子
94 CIS(D)上の受光素子
95 CIS(E)上の受光素子
101 一方の読み取り部
102 他方の読み取り部
103 受光素子
104 CIS上の隣接する受光素子の間隔
105 隣接するCISの端の受光素子同士の間隔
111 一方のCISのx−5番目の受光素子
112 一方のCISのx−4番目の受光素子
113 一方のCISのx−3番目の受光素子
114 一方のCISのx−2番目の受光素子
115 一方のCISのx−1番目の受光素子
116 一方のCISのx番目の受光素子
121 他方のCISの1番目の受光素子
122 他方のCISの2番目の受光素子
123 他方のCISの3番目の受光素子
124 他方のCISの4番目の受光素子
125 他方のCISの5番目の受光素子
126 他方のCISの6番目の受光素子
131 一方のCISのx−5番目の受光素子
132 一方のCISのx−4番目の受光素子
133 一方のCISのx−3番目の受光素子
134 一方のCISのx−2番目の受光素子
135 一方のCISのx−1番目の受光素子
136 一方のCISのx番目の受光素子
141 他方のCISの1番目の受光素子
142 他方のCISの2番目の受光素子
143 他方のCISの3番目の受光素子
144 他方のCISの4番目の受光素子
145 他方のCISの5番目の受光素子
146 他方のCISの6番目の受光素子
DESCRIPTION OF SYMBOLS 1 Sensor unit 2 White reference board 3 Document stand 4 Document conveyance path 5a Transmission sensor light-receiving part 5b Transmission sensor light emission part 6a Document loading drive roller 6b Document loading driven roller 7a Document feeding drive roller 7b Document feeding driven roller 8a Transmission Sensor light receiving portion 8b Transmission sensor light emitting portion 9a Document discharge driving roller 9b Document discharge driven roller 21 CIS (A)
22 CIS (B)
23 CIS (C)
24 CIS (D)
25 CIS (E)
26 Document 27 Document transport direction 41 CIS
42 Light-receiving element 43 Light guide for red LED 44 Light guide for green LED 45 Light guide for blue LED 51 AD converter 52 Data processing unit 53 CPU
54 Program memory 55 Image memory 56 Non-volatile memory 57 Image processing unit 58 Reading device 61 Input FIFO
62 Intra-reading cutout processing unit 63 Shading correction unit 64 Memory controller 65 Delay processing unit 66 Inter-sensor connection processing unit 67 Main scanning direction data cutout processing unit 68 Output FIFO
69 Output processor 91 Light receiving element 92 on CIS (A) Light receiving element 93 on CIS (B) Light receiving element 94 on CIS (C) Light receiving element 95 on CIS (D) Light receiving element 101 on CIS (E) One reading unit 102 The other reading unit 103 The light receiving element 104 The distance 105 between adjacent light receiving elements on the CIS 111 The distance 111 between the light receiving elements at the ends of adjacent CISs The x-5th light receiving element 112 of one CIS One CIS X-4th light receiving element 113 of one CIS x-3th light receiving element 114 of one CIS x-2th light receiving element 115 of one CIS x-1th light receiving element 116 of one CIS x The first light receiving element 121 of the other CIS The first light receiving element 122 of the other CIS The second light receiving element 123 of the other CIS The third light receiving element 124 of the other CIS The other C S 4th light receiving element 125 5th light receiving element 126 of the other CIS 6th light receiving element 131 of the other CIS x-5th light receiving element 132 of one CIS x-4th light receiving element of one CIS Element 133 One CIS x-3 light receiving element 134 One CIS x-2 light receiving element 135 One CIS x-1 light receiving element 136 One CIS x light receiving element 141 The other CIS x-2 light receiving element 141 CIS first light receiving element 142 The other CIS second light receiving element 143 The other CIS third light receiving element 144 The other CIS fourth light receiving element 145 The other CIS fifth light receiving element 146 The other CIS fifth light receiving element 146 CIS 6th photo detector

Claims (6)

原稿に読み取り光を照射してその反射光を受光素子で光電変換する事で、当該原稿の画像を読み取る読み取り部を、隣接する読み取り部の受光素子の一部が主走査方向で重なるような主走査方向の異なる位置に少なくとも2個以上配置し、前記読み取り部は、当該複数の読み取り部からなるセンサーユニット又は前記当該原稿を、移動手段を用いて副走査方向に移動させる事で、前記当該原稿を読み取り、上流側に位置する前記読み取り部で読み取った画像データと下流側の読み取り部で読み取った画像データとを合成手段を用いて合成して、1ラインの画像データを生成する画像読み取り装置において、前記合成手段は、隣接する読み取り部の主走査方向で受光素子が重なる範囲の階調値を、上流側に位置する読み取り部から得られる階調値と下流側に位置する読み取り部から得られる階調値の重み付けのある平均化処理演算によって算出するつなぎ目画像処理手段を備え、前記平均化処理演算に用いる重み付けの係数は主走査方向の位置に依存して前記重なる範囲で異なっている事を特徴とする画像読み取り装置。   By irradiating the original with the reading light and photoelectrically converting the reflected light by the light receiving element, the reading part for reading the image of the original is arranged in such a manner that a part of the light receiving element of the adjacent reading part overlaps in the main scanning direction. At least two or more are arranged at different positions in the scanning direction, and the reading unit moves the sensor unit composed of the plurality of reading units or the document in the sub-scanning direction using a moving unit, thereby the document. An image reading apparatus that combines image data read by the reading unit positioned upstream and image data read by the downstream reading unit using a combining unit to generate one line of image data The synthesizing unit obtains gradation values in a range in which the light receiving elements overlap in the main scanning direction of the adjacent reading units from the reading unit located on the upstream side. And a joint image processing means for calculating by means of weighted averaging processing of gradation values obtained from a reading unit located on the downstream side, and the weighting coefficient used for the averaging processing calculation depends on the position in the main scanning direction The image reading apparatus is characterized by being different in the overlapping range. 前記画像読み取り装置は、センサーユニットを固定して、原稿を原稿移動手段を用いて移動させることを特徴とする請求項1記載の画像読み取り装置。   The image reading apparatus according to claim 1, wherein the image reading apparatus fixes the sensor unit and moves the document using document moving means. 前記画像読み取り装置は原稿を固定して、センサーユニットをセンサーユニット移動手段を用いて移動させることを特徴とする請求項1記載の画像読み取り装置。   The image reading apparatus according to claim 1, wherein the image reading apparatus fixes a document and moves the sensor unit using a sensor unit moving unit. 前記読み取り部は、主走査方向奇数番目と、偶数番目で、副走査方向それぞれに同じ位置に配置されている事を特徴とする請求項1〜3のうち何れか1に記載の画像読み取り装置。   The image reading apparatus according to claim 1, wherein the reading units are odd-numbered and even-numbered in the main scanning direction, and are arranged at the same position in each of the sub-scanning directions. 前記重み付けのある平均化処理演算は、以下の式で算出される事を特徴とする請求項1〜4のうち何れか1に記載の画像読み取り装置。
Nout(x)=Na(x)×(ga(x)/G)+Nb(x)×(gb(x)/G)
G=ga(x)+gb(x)
x:つなぎあわせ後の画像の主走査方向の画素位置
Nout(x):主走査方向xの位置における画素の算出後の階調値。
Na(x):主走査方向xの位置における一方の読み取り部の画素の階調値。
Nb(x):主走査方向xの位置における他方の読み取り部の画素の階調値。
ga(x):主走査方向xの位置における一方の読み取り部の画素の重み付け係数。
gb(x):主走査方向xの位置における他方の読み取り部の画素の重み付け係数。
G:1以上の整数
The image reading apparatus according to claim 1, wherein the weighted averaging processing calculation is calculated by the following equation.
Nout (x) = Na (x) × (ga (x) / G) + Nb (x) × (gb (x) / G)
G = ga (x) + gb (x)
x: pixel position Nout (x) in the main scanning direction of the images after stitching: gradation value after calculation of pixels at a position in the main scanning direction x.
Na (x): gradation value of a pixel of one reading unit at a position in the main scanning direction x.
Nb (x): The gradation value of the pixel of the other reading unit at the position in the main scanning direction x.
ga (x): A weighting coefficient for pixels of one reading unit at a position in the main scanning direction x.
gb (x): weighting coefficient of the pixel of the other reading unit at the position in the main scanning direction x.
G: integer greater than or equal to 1
前記平均化に用いる重み付け係数は、一つの読み取り部内の主走査方向の隣接する画素において、一つの読み取り部中心に近い位置xにある画素の重み付け係数ga(x)と、xに隣接する他の読み取り部に近い位置yにある画素の重み付け係数ga(y)では、ga(x)≧ga(y)である事を特徴とする請求項1から5の何れか1に記載の画像読み取り装置。 The weighting coefficient used for the averaging is the weighting coefficient ga (x) of the pixel located at the position x close to the center of one reading section and the other weighting coefficients adjacent to x in the adjacent pixels in the main scanning direction in one reading section. 6. The image reading apparatus according to claim 1, wherein ga (x) ≧ ga (y) is satisfied in a weighting coefficient ga (y) of a pixel located at a position y close to the reading unit.
JP2004355518A 2004-12-08 2004-12-08 Picture reader Pending JP2006166106A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004355518A JP2006166106A (en) 2004-12-08 2004-12-08 Picture reader
PCT/JP2005/018076 WO2006061941A1 (en) 2004-12-08 2005-09-30 Image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355518A JP2006166106A (en) 2004-12-08 2004-12-08 Picture reader

Publications (1)

Publication Number Publication Date
JP2006166106A true JP2006166106A (en) 2006-06-22

Family

ID=36577771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355518A Pending JP2006166106A (en) 2004-12-08 2004-12-08 Picture reader

Country Status (2)

Country Link
JP (1) JP2006166106A (en)
WO (1) WO2006061941A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028662A (en) * 2006-07-20 2008-02-07 Ricoh Co Ltd Image reader and image forming apparatus
JP2009135919A (en) * 2007-11-07 2009-06-18 Ricoh Co Ltd Image reading apparatus, image forming apparatus, and image data processing program
US8264705B2 (en) 2007-11-07 2012-09-11 Ricoh Company, Ltd. Image reading apparatus, image forming apparatus and computer readable information recording medium
JP2015109638A (en) * 2013-10-22 2015-06-11 キヤノン・コンポーネンツ株式会社 Image sensor unit, image reader, and paper-sheet kind identification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692812A (en) * 1985-03-26 1987-09-08 Kabushiki Kaisha Toshiba Picture image reader
JPS6348053A (en) * 1986-08-15 1988-02-29 Canon Inc Picture information inputting device
JP2002057860A (en) * 2000-08-10 2002-02-22 Pfu Ltd Image reader
US20030138167A1 (en) * 2002-01-22 2003-07-24 Joergen Rasmusen Method and a system for stitching images produced by two or more sensors in a graphical scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028662A (en) * 2006-07-20 2008-02-07 Ricoh Co Ltd Image reader and image forming apparatus
JP2009135919A (en) * 2007-11-07 2009-06-18 Ricoh Co Ltd Image reading apparatus, image forming apparatus, and image data processing program
US8264705B2 (en) 2007-11-07 2012-09-11 Ricoh Company, Ltd. Image reading apparatus, image forming apparatus and computer readable information recording medium
JP2015109638A (en) * 2013-10-22 2015-06-11 キヤノン・コンポーネンツ株式会社 Image sensor unit, image reader, and paper-sheet kind identification device
US9478090B2 (en) 2013-10-22 2016-10-25 Canon Components, Inc. Image sensor unit, image reading apparatus, and paper sheet distinguishing apparatus

Also Published As

Publication number Publication date
WO2006061941A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4107029B2 (en) Image reading device
JP5609288B2 (en) Image reading device
JP2007049673A (en) Image reading apparatus, image forming apparatus, image inspection apparatus and image forming system
US7672019B2 (en) Enhancing resolution of a color signal using a monochrome signal
JP2017216622A (en) Image reading device, image forming apparatus, and image forming system
US20060279748A1 (en) Apparatus and method for compensating for resolution differences of color and monochrome sensors
US5903363A (en) Image processing apparatus and method
WO2006061941A1 (en) Image reading device
JP2006129296A (en) Original reading method, original reading apparatus, image forming apparatus, and image scanner
JP4179329B2 (en) Line sensor chip, line sensor, image information reading device, facsimile, scanner and copying machine
EP1680914A2 (en) Method and device for using multiple outputs of image sensor
JP2006186558A (en) Image reading apparatus
JP2003198813A (en) Image reader, control method thereof, image reading method, and program thereof
JP2006186902A (en) Image reading apparatus
JP5771993B2 (en) Image reading apparatus and image forming apparatus
JPWO2019225410A1 (en) Light receiving unit
JP5429035B2 (en) Contact image sensor
JP2006311293A (en) Image processor
JP5590911B2 (en) Image reading apparatus and method
JP4052134B2 (en) Image reading apparatus, image forming apparatus, and image processing method
JP4613980B2 (en) Line sensor chip, line sensor, image information reading device, facsimile, scanner and copying machine
JP4616716B2 (en) Image reading apparatus and image forming apparatus
JP4414276B2 (en) Image reading device
JPH1051603A (en) Image reader
JP2006237802A (en) Original reading apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070601