JP2006164901A - Fuel cell stack, manufacturing method of the same, and manufacturing device of the same - Google Patents

Fuel cell stack, manufacturing method of the same, and manufacturing device of the same Download PDF

Info

Publication number
JP2006164901A
JP2006164901A JP2004358412A JP2004358412A JP2006164901A JP 2006164901 A JP2006164901 A JP 2006164901A JP 2004358412 A JP2004358412 A JP 2004358412A JP 2004358412 A JP2004358412 A JP 2004358412A JP 2006164901 A JP2006164901 A JP 2006164901A
Authority
JP
Japan
Prior art keywords
fuel cell
holding member
cell stack
fuel cells
stacked body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004358412A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
健 清水
Kazutaka Hachiman
和孝 八幡
Shinichiro Noguchi
慎一郎 野口
Nobuaki Akutsu
伸明 阿久津
Miyuki Terado
美由紀 寺戸
Takashi Yamaguchi
剛史 山口
Masanori Iwamoto
雅則 岩本
Fumio Saito
史生 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004358412A priority Critical patent/JP2006164901A/en
Publication of JP2006164901A publication Critical patent/JP2006164901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell stack reducible in weight, and the number of parts, and improvable in output density, and to provide a manufacturing method and a manufacturing device of the same. <P>SOLUTION: The fuel cell stack 10 is composed of a lamination body 11 formed by laminating a plurality of fuel battery cells 20, and a holding member 30 covering the outer periphery of the lamination body to maintain a laminated state of the plurality of fuel battery cells. The holding member is made of resin. At least a part of end faces 11a, 11b of the lamination body extending in the lamination direction of the fuel battery cell is included at the outer periphery of the lamination body covered by the holding member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池スタック、燃料電池スタックの製造方法、および燃料電池スタックの製造装置に関する。   The present invention relates to a fuel cell stack, a fuel cell stack manufacturing method, and a fuel cell stack manufacturing apparatus.

燃料電池スタックは、複数個の燃料電池セルを積層した積層体を加圧し、コンプレッションが掛かった状態で当該積層体を締め付け保持している。燃料電池セルは、例えば、触媒反応層を有する一対の電極により高分子電解質膜を挟み込み、さらに、一方の電極側には燃料ガスを供給する導電性セパレータを配置し、他方の電極側には酸化剤ガスを供給する導電性セパレータを配置して構成されている(特許文献1、2参照)。   The fuel cell stack pressurizes a laminated body in which a plurality of fuel battery cells are laminated, and clamps and holds the laminated body in a compressed state. In the fuel cell, for example, a polymer electrolyte membrane is sandwiched between a pair of electrodes having a catalytic reaction layer, a conductive separator that supplies fuel gas is disposed on one electrode side, and an oxidation is disposed on the other electrode side. A conductive separator for supplying the agent gas is arranged (see Patent Documents 1 and 2).

燃料電池スタックは、複数個の燃料電池セルの積層状態を保持するために、燃料電池セルの積層方向に沿う積層体の両端部に、エンドプレートと称される金属製の板状部品を配置し、エンドプレート同士を接近させて積層体を締め付けている。また、積層体を締め付ける締結部品として、タイロッドボルトや、スタックワイヤとも指称される線状部材が用いられている。
特開2001−135344号公報 特開平10−55813号公報
In the fuel cell stack, in order to maintain a stacked state of a plurality of fuel cells, metal plate parts called end plates are arranged at both ends of the stacked body along the stacking direction of the fuel cells. The laminate is tightened by bringing the end plates closer to each other. In addition, a tie rod bolt or a linear member also referred to as a stack wire is used as a fastening part for fastening the laminated body.
JP 2001-135344 A Japanese Patent Laid-Open No. 10-55813

従来の燃料電池スタックは、一対のエンドプレートや締結部品が必要であり、燃料電池スタック全体の重量が増し、部品点数も増えるという問題がある。さらに、部品点数が増えることに伴って燃料電池スタックの体積が増加する結果、燃料電池スタックの単位体積当たりの起電力、と定義される出力密度が悪化するという問題もある。   Conventional fuel cell stacks require a pair of end plates and fastening parts, which increases the overall weight of the fuel cell stack and increases the number of parts. Furthermore, as the number of parts increases, the volume of the fuel cell stack increases, resulting in a problem that the output density defined as the electromotive force per unit volume of the fuel cell stack deteriorates.

本発明の目的は、軽量化、部品点数の低減、および出力密度の向上を図り得る、燃料電池スタック、燃料電池スタックの製造方法、および燃料電池スタックの製造装置を提供することにある。   An object of the present invention is to provide a fuel cell stack, a fuel cell stack manufacturing method, and a fuel cell stack manufacturing apparatus capable of reducing the weight, reducing the number of components, and improving the power density.

上記目的は下記の手段により達成される。   The above object is achieved by the following means.

上記目的を達成するための請求項1に記載の発明は、複数個の燃料電池セルを積層してなる積層体と、
前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材と、を含み、
前記保持部材は、樹脂材料から形成され、当該保持部材によって覆われる前記積層体の外周には、前記燃料電池セルの積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタックである。
In order to achieve the above object, the invention according to claim 1 is a laminate comprising a plurality of fuel cells stacked;
A holding member that covers the outer periphery of the stacked body and holds the stacked state of the plurality of fuel cells, and
The holding member is made of a resin material, and the outer periphery of the stacked body covered by the holding member includes at least part of both end faces of the stacked body along the stacking direction of the fuel cells. It is a battery stack.

上記目的を達成するための請求項8に記載の発明は、複数個の燃料電池セルを積層してなる積層体を成形型内に配置し、
前記燃料電池セルの積層方向に沿って前記積層体を加圧しながら、前記積層体の外周に樹脂からなる成形材料を供給して、前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材を形成してなり、
前記保持部材によって覆われる前記積層体の外周には、前記積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタックの製造方法である。
In order to achieve the above object, the invention according to claim 8 is characterized in that a laminate formed by laminating a plurality of fuel cells is arranged in a mold.
While pressing the stack along the stacking direction of the fuel cells, a molding material made of resin is supplied to the outer periphery of the stack, and the outer periphery of the stack is covered with the plurality of fuel cells. Forming a holding member that holds the laminated state,
In the method for manufacturing a fuel cell stack, an outer periphery of the stacked body covered with the holding member includes at least a part of both end faces of the stacked body along the stacking direction.

上記目的を達成するための請求項13に記載の発明は、複数個の燃料電池セルを積層してなる積層体を配置する成形型と、
前記燃料電池セルの積層方向に沿って前記積層体を加圧する加圧機と、
前記積層体の外周に樹脂からなる成形材料を供給する供給手段と、を有し、
前記成形型内のキャビティは、前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材を形成するための形状を有し、
前記保持部材によって覆われる前記積層体の外周には、前記積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタックの製造装置である。
In order to achieve the above object, the invention according to claim 13 includes a molding die in which a laminate formed by laminating a plurality of fuel cells is disposed,
A pressurizing machine that pressurizes the stack along the stacking direction of the fuel cells;
Supply means for supplying a molding material made of resin to the outer periphery of the laminate,
The cavity in the mold has a shape for forming a holding member that covers the outer periphery of the stacked body and holds the stacked state of the plurality of fuel cells,
In the fuel cell stack manufacturing apparatus, an outer periphery of the stacked body covered by the holding member includes at least part of both end faces of the stacked body along the stacking direction.

本発明によれば、積層体の外周を覆う保持部材が積層体の両端面に係止する構造となるため、燃料電池セルにおけるシール部や電極に必要な面圧を付与しつつ、複数個の燃料電池セルの積層状態を保持することが可能となる。また、複数個の燃料電池セルの積層状態を保持するに際して、比較的重い金属製のエンドプレート、およびタイロッドボルトやスタックワイヤなどの締結部品を使用する必要がないため、燃料電池スタック全体の重量の軽量化を図ることができ、部品点数の削減も図ることができる。さらに、部品点数の削減を通して燃料電池スタックの体積を小さくできる結果、燃料電池スタックの出力密度(燃料電池スタックの単位体積当たりの起電力)の向上を図ることができる。もって、軽量化、部品点数の低減、および出力密度の向上を図り得る、燃料電池スタック、燃料電池スタックの製造方法、および燃料電池スタックの製造装置を提供できる。   According to the present invention, since the holding member that covers the outer periphery of the laminated body is configured to be engaged with both end faces of the laminated body, a plurality of pressures are applied to the seal portion and the electrode in the fuel cell while applying the necessary surface pressure. It becomes possible to maintain the stacked state of the fuel cells. In addition, when maintaining the stacked state of a plurality of fuel cells, it is not necessary to use a relatively heavy metal end plate and fastening parts such as tie rod bolts and stack wires. The weight can be reduced, and the number of parts can be reduced. Furthermore, the volume of the fuel cell stack can be reduced by reducing the number of parts, and as a result, the output density of the fuel cell stack (electromotive force per unit volume of the fuel cell stack) can be improved. Accordingly, it is possible to provide a fuel cell stack, a fuel cell stack manufacturing method, and a fuel cell stack manufacturing apparatus capable of reducing the weight, reducing the number of components, and improving the power density.

以下、本発明の実施形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(A)は、本発明の実施形態に係る燃料電池スタック10の一例を示す断面図、図1(B)は、燃料電池セル20に設けられた規制部材25を示す断面図である。   FIG. 1A is a cross-sectional view showing an example of the fuel cell stack 10 according to the embodiment of the present invention, and FIG. 1B is a cross-sectional view showing a regulating member 25 provided in the fuel cell 20.

図1(A)を参照して、燃料電池スタック10は、例えば電気自動車の動力源として使用され、概説すれば、複数個の燃料電池セル20を積層してなる積層体11と、積層体11の外周を覆って複数個の燃料電池セル20の積層状態を保持する保持部材30と、を含んでいる。図示省略するが、燃料電池スタック10には、燃料である水素を供給するための燃料供給系、空気を供給するための空気供給系、冷却水を循環させて燃料電池スタック10を冷却する冷却水循環系などの公知の要素が接続されている。また、燃料電池セル20間には、Oリングなどのシール部材が配置されている。   Referring to FIG. 1A, a fuel cell stack 10 is used, for example, as a power source for an electric vehicle. In brief, a stack 11 formed by stacking a plurality of fuel cells 20 and a stack 11 And a holding member 30 that holds the stacked state of the plurality of fuel cells 20. Although not shown, the fuel cell stack 10 includes a fuel supply system for supplying hydrogen as a fuel, an air supply system for supplying air, and a cooling water circulation for circulating the cooling water to cool the fuel cell stack 10. Known elements such as systems are connected. Further, a sealing member such as an O-ring is disposed between the fuel cells 20.

前記積層体11を構成する燃料電池セル20は、触媒反応層を有する一対の電極22、23により電解質膜21を挟み込み、さらに、一方の電極22側には燃料ガス(水素)を供給する導電性セパレータ24を配置し、他方の電極23側には酸化剤ガス(空気)を供給する導電性セパレータ24を配置して構成されている(図1(B)参照)。燃料極では、水素が水素イオンと電子に解離する。水素イオンは電解質を通り、電子は外部回路を通って電力を発生させ、空気極にそれぞれ移動する。空気極では、供給された空気中の酸素と水素イオンおよび電子が反応して水が生成し、外部に排出される。燃料電池スタック10の電解質としては、高エネルギー密度化、低コスト化、軽量化などを考慮して、例えば固体高分子電解質が用いられる。固体高分子電解質は、例えばフッ素樹脂系イオン交換膜などイオン(プロトン)伝導性の高分子膜からなるものであり、飽和含水することによってイオン伝導性電解質として機能する。   In the fuel cell 20 constituting the laminate 11, the electrolyte membrane 21 is sandwiched between a pair of electrodes 22 and 23 having a catalytic reaction layer, and the fuel gas (hydrogen) is supplied to one electrode 22 side. A separator 24 is disposed, and a conductive separator 24 for supplying an oxidant gas (air) is disposed on the other electrode 23 side (see FIG. 1B). At the fuel electrode, hydrogen dissociates into hydrogen ions and electrons. Hydrogen ions pass through the electrolyte, and electrons pass through an external circuit to generate power and move to the air electrode. At the air electrode, oxygen in the supplied air reacts with hydrogen ions and electrons to produce water, which is discharged to the outside. As the electrolyte of the fuel cell stack 10, for example, a solid polymer electrolyte is used in consideration of high energy density, low cost, light weight, and the like. The solid polymer electrolyte is made of an ion (proton) conductive polymer membrane such as a fluororesin ion exchange membrane, and functions as an ion conductive electrolyte when saturated with water.

前記保持部材30は、樹脂材料から形成され、当該保持部材30によって覆われる積層体11の外周には、燃料電池セル20の積層方向(図中、上下方向)に沿う積層体11の両端面11a、11bの一部が少なくとも含まれている。したがって、保持部材30は、積層体11の図中上面11aおよび下面11bに係止される係止部30a、30bを有することになる。保持部材30の成形材料は、所定の強度を有する樹脂材料であれば特に限定されないが、例えば、1液性加熱硬化型オレフィン系樹脂のような熱硬化性樹脂を用いることができる。かかる保持部材30によれば、係止部30a、30bが積層体11の上下面11a、11bに係止する構造となるため、燃料電池セル20におけるシール部や電極に必要な面圧を付与しつつ、複数個の燃料電池セル20の積層状態を保持することが可能となる。本実施形態の燃料電池スタック10にあっては、複数個の燃料電池セル20の積層状態を保持するに際して、比較的重い金属製のエンドプレート、およびタイロッドボルトやスタックワイヤなどの締結部品を使用する必要がない。このため、燃料電池スタック10全体の重量の軽量化を図ることができ、部品点数の削減も図ることができる。さらに、部品点数の削減を通して燃料電池スタック10の体積を小さくできる結果、燃料電池スタック10の出力密度(燃料電池スタック10の単位体積当たりの起電力)の向上を図ることができる。燃料電池スタック10の軽量化に関して、エンドプレートや締結部品を廃止することによって、従来構造に比べて、約5〜15%の軽量化を図ることができる。   The holding member 30 is made of a resin material, and is disposed on the outer periphery of the stacked body 11 covered by the holding member 30 at both end surfaces 11a of the stacked body 11 along the stacking direction (vertical direction in the drawing) of the fuel cells 20. , 11b is included at least. Therefore, the holding member 30 has the locking portions 30a and 30b that are locked to the upper surface 11a and the lower surface 11b of the laminate 11 in the drawing. The molding material of the holding member 30 is not particularly limited as long as it is a resin material having a predetermined strength. For example, a thermosetting resin such as a one-component thermosetting olefin resin can be used. According to the holding member 30, since the locking portions 30 a and 30 b are locked to the upper and lower surfaces 11 a and 11 b of the stacked body 11, a necessary surface pressure is applied to the seal portion and the electrode in the fuel cell 20. However, the stacked state of the plurality of fuel cells 20 can be maintained. In the fuel cell stack 10 of the present embodiment, a relatively heavy metal end plate and fastening parts such as tie rod bolts and stack wires are used when the stacked state of the plurality of fuel cells 20 is maintained. There is no need. Therefore, the weight of the entire fuel cell stack 10 can be reduced, and the number of parts can be reduced. Furthermore, the volume of the fuel cell stack 10 can be reduced by reducing the number of parts, and as a result, the output density of the fuel cell stack 10 (electromotive force per unit volume of the fuel cell stack 10) can be improved. Regarding the weight reduction of the fuel cell stack 10, by eliminating the end plate and the fastening parts, the weight can be reduced by about 5 to 15% compared to the conventional structure.

積層方向に沿う積層体11の端部に位置する一方の燃料電池セル20(図中、最上位の燃料電池セル20)は、当該燃料電池セル20に含まれる導電性セパレータ24の一部が保持部材30の外部に臨んでいる。保持部材30の外部に臨んだ導電性セパレータ24の一部は、集電板として使用される。   One fuel battery cell 20 (the uppermost fuel battery cell 20 in the figure) located at the end of the stacked body 11 along the stacking direction is held by a part of the conductive separator 24 included in the fuel battery cell 20. It faces the outside of the member 30. A part of the conductive separator 24 facing the outside of the holding member 30 is used as a current collector plate.

図1(B)を参照して、燃料電池セル20のそれぞれは、積層位置を規制するための規制部材25を有している。具体的には規制部材25は、積層方向に沿う燃料電池セル20の一の面(図中、上面)に設けられた突状部26と、他の面(図中、下面)に設けられ突状部26が嵌まり合う凹部27と、を有している。突状部26および凹部27は、燃料電池セル20に含まれる導電性セパレータ24に形成され、下位側の導電性セパレータ24の上面に形成された突状部26が、上位側の導電性セパレータ24の下面に形成された凹部27に嵌まり合う。突状部26と凹部27とは、断面テーパ面26a、27aを介して嵌まり合っている。かかる規制部材25を設けることにより、各燃料電池セル20の積層位置を正しい位置に簡単に位置決めすることができ、積層体11を加圧する際においても、燃料電池セル20に位置ずれが発生しない。したがって、燃料電池セル20間に配置されるシール部材に位置ずれが生じないため、各シール部材に作用する加圧力は配置位置に拘わらず均一になり、シール性能にばらつきが生じない。   Referring to FIG. 1B, each of the fuel cells 20 has a regulating member 25 for regulating the stacking position. Specifically, the restricting member 25 is provided on one surface (upper surface in the drawing) of the fuel cell 20 along the stacking direction and on the other surface (lower surface in the drawing). And a concave portion 27 in which the shape portion 26 fits. The protruding portion 26 and the recessed portion 27 are formed in the conductive separator 24 included in the fuel battery cell 20, and the protruding portion 26 formed on the upper surface of the lower conductive separator 24 is the upper conductive separator 24. It fits into the recess 27 formed on the lower surface of the. The protruding portion 26 and the recessed portion 27 are fitted to each other via the tapered surface 26a, 27a. By providing such a regulating member 25, the stacking position of each fuel battery cell 20 can be easily positioned at the correct position, and even when the stacked body 11 is pressurized, the fuel battery cell 20 is not displaced. Accordingly, no positional deviation occurs between the sealing members arranged between the fuel cells 20, so that the pressure applied to each sealing member is uniform regardless of the arrangement position, and the sealing performance does not vary.

図示例では、最上位の燃料電池セル20は、当該燃料電池セル20に含まれる導電性セパレータ24に設けた突状部26が保持部材30の外部に臨んでいる。積層位置を規制するために設けた突状部26を、集電板として使用することができ、部品点数の増加を抑えることができる。後述するが、燃料電池スタック10を製造する際に、突状部26に加圧機60を当接させることによって、突状部26を保持部材30の外部に簡単に臨ませることができる。   In the illustrated example, the uppermost fuel cell 20 has a protrusion 26 provided on the conductive separator 24 included in the fuel cell 20 facing the outside of the holding member 30. The protruding portion 26 provided for regulating the stacking position can be used as a current collector plate, and an increase in the number of components can be suppressed. As will be described later, when the fuel cell stack 10 is manufactured, the protruding portion 26 can be easily exposed to the outside of the holding member 30 by bringing the pressurizer 60 into contact with the protruding portion 26.

突状部26の端面26bは、保持部材30の表面30cと面一の状態で、保持部材30の外部に臨んでいる。したがって、燃料電池スタック10の体積を可及的に低減することができ、出力密度の向上を図ることができる。   The end surface 26 b of the protruding portion 26 faces the outside of the holding member 30 in a state where it is flush with the surface 30 c of the holding member 30. Therefore, the volume of the fuel cell stack 10 can be reduced as much as possible, and the output density can be improved.

図2(A)は、燃料電池スタック10を製造するための成形装置40を示す断面図、図2(B)は、ゲート54を示す断面図である。   FIG. 2A is a cross-sectional view showing a molding apparatus 40 for manufacturing the fuel cell stack 10, and FIG. 2B is a cross-sectional view showing a gate 54.

成形装置40(燃料電池スタックの製造装置に相当する)は、複数個の燃料電池セル20を積層してなる積層体11を配置する成形型50と、燃料電池セル20の積層方向に沿って積層体11を加圧する加圧機60と、積層体11の外周に樹脂からなる成形材料を供給する供給手段70と、を有している。成形型50内のキャビティ51は、積層体11の外周を覆って複数個の燃料電池セル20の積層状態を保持する保持部材30を形成するための形状を有している。そして、前述したように、保持部材30によって覆われる積層体11の外周には、積層方向に沿う積層体11の両端面11a、11bの一部が少なくとも含まれている。樹脂からなる成形材料には、前述したように、1液性加熱硬化型オレフィン系樹脂が用いられる。   The molding apparatus 40 (corresponding to a fuel cell stack manufacturing apparatus) is stacked along the stacking direction of the fuel cell 20 and the molding die 50 in which the stacked body 11 formed by stacking a plurality of fuel cells 20 is disposed. A pressurizer 60 that pressurizes the body 11 and a supply means 70 that supplies a molding material made of resin to the outer periphery of the laminate 11 are provided. The cavity 51 in the mold 50 has a shape for forming a holding member 30 that covers the outer periphery of the stacked body 11 and holds the stacked state of the plurality of fuel cells 20. As described above, the outer periphery of the multilayer body 11 covered by the holding member 30 includes at least part of both end faces 11a and 11b of the multilayer body 11 along the stacking direction. As described above, a one-component thermosetting olefin resin is used for the molding material made of resin.

成形型50は、図において左右方向に分割自在な可動型52と、固定型53とを含んでいる。成形型50を開いた状態において、複数個の燃料電池セル20が順次積層され、積層体11が配置される。別工程で製作した積層体11を成形型50内に搬入、配置してもよい。可動型52に、樹脂からなる成形材料を供給するためにゲート54が設けられている。ゲート54には、供給配管71を介して、成形材料圧送機72が接続されている。供給配管71および成形材料圧送機72により供給手段70が構成されている。成形材料圧送機72から、所定圧力に昇圧された溶融樹脂材料が供給配管71を介してゲート54まで導かれ、ゲート54からキャビティ51内に供給される。ゲート54には、通路断面を一部において狭めるオリフィス状部材54aが設けられている(図2(B)参照)。供給された溶融樹脂材料の一部はゲート54内において固化するが、オリフィス状部材54aによって、断面積が小さい脆弱部が形成されることになる。このため、可動型52を開いたときに、固化した成形材料を脆弱部で確実に破断させることができる。なお、保持部材30に連なるバリは、成形完了後の工程において切除される。   The mold 50 includes a movable mold 52 that can be divided in the left-right direction in the drawing and a fixed mold 53. In a state where the mold 50 is opened, the plurality of fuel cells 20 are sequentially stacked, and the stacked body 11 is disposed. You may carry in and arrange | position the laminated body 11 manufactured by another process in the shaping | molding die 50. FIG. A gate 54 is provided to supply the movable mold 52 with a molding material made of resin. A molding material pump 72 is connected to the gate 54 via a supply pipe 71. A supply means 70 is constituted by the supply pipe 71 and the molding material pump 72. The molten resin material whose pressure has been increased to a predetermined pressure is guided from the molding material feeder 72 to the gate 54 via the supply pipe 71 and supplied from the gate 54 into the cavity 51. The gate 54 is provided with an orifice-shaped member 54a that partially narrows the passage cross section (see FIG. 2B). A part of the supplied molten resin material is solidified in the gate 54, but a fragile portion having a small cross-sectional area is formed by the orifice-shaped member 54a. For this reason, when the movable mold 52 is opened, the solidified molding material can be reliably broken at the fragile portion. In addition, the burr | flash connected to the holding member 30 is excised in the process after completion of molding.

図示省略するが、成形型50には、成形材料を硬化させるために成形型50を加熱する加熱手段と、成形型50を冷却する冷却手段と、が設けられている。加熱手段は、例えば電気ヒータから構成され、冷却手段は、例えば、水などの冷却媒体を流す通路から構成されている。   Although not shown, the mold 50 is provided with a heating means for heating the mold 50 and a cooling means for cooling the mold 50 in order to cure the molding material. The heating means is composed of, for example, an electric heater, and the cooling means is composed of a passage through which a cooling medium such as water flows.

可動型52を閉じると、成形型50内に、保持部材30の外形形状に合致した内面形状を有するキャビティ51が形成される。キャビティ51下面には、最下位の導電性セパレータ24の下面に形成された凹部27に嵌まり合う支持台55が設けられている。最下位の導電性セパレータ24の凹部27に支持台55が嵌まり合うことによって、キャビティ51下面と積層体11の下面11bとの間に所定の空間が形成される。この空間によって、積層体11の下面11bに係止される係止部30bが成形される。   When the movable die 52 is closed, a cavity 51 having an inner surface shape that matches the outer shape of the holding member 30 is formed in the molding die 50. On the lower surface of the cavity 51, there is provided a support base 55 that fits into the recess 27 formed on the lower surface of the lowest conductive separator 24. A predetermined space is formed between the lower surface of the cavity 51 and the lower surface 11 b of the multilayer body 11 by fitting the support base 55 into the concave portion 27 of the lowermost conductive separator 24. Due to this space, a locking portion 30 b that is locked to the lower surface 11 b of the laminate 11 is formed.

加圧機60は、積層体11の上方に配置されたプレス部61と、プレス部61を支持固定する支持台62とを有する。支持台62および前述した成形型50はベース41上に取り付けられている。プレス部61は、油圧などによりポンチ63を昇降駆動し、燃料電池セル20の積層方向に沿って積層体11を加圧する力を当該積層体11に付勢する。   The pressurizer 60 includes a press unit 61 disposed above the stacked body 11 and a support base 62 that supports and fixes the press unit 61. The support table 62 and the above-described mold 50 are mounted on the base 41. The pressing unit 61 drives the punch 63 up and down by hydraulic pressure or the like, and urges the stack 11 to apply a force that pressurizes the stack 11 along the stacking direction of the fuel cells 20.

積層方向に沿う積層体11の端部に位置する一方の燃料電池セル20(図中、最上位の燃料電池セル20)は、当該燃料電池セル20に含まれる導電性セパレータ24に、加圧機60のポンチ63が当接する突状部26が設けられている。突状部26のうちポンチ63が当接した部位には、成型材料が供給されない。したがって、突状部26に加圧機60を当接させることによって、突状部26を保持部材30の外部に臨ませることができる。   One fuel battery cell 20 (the uppermost fuel battery cell 20 in the figure) located at the end of the stacked body 11 along the stacking direction is connected to the conductive separator 24 included in the fuel battery cell 20 by the pressurizer 60. A protruding portion 26 with which the punch 63 contacts is provided. The molding material is not supplied to the portion of the protrusion 26 where the punch 63 is in contact. Therefore, the projecting portion 26 can be exposed to the outside of the holding member 30 by bringing the pressurizer 60 into contact with the projecting portion 26.

ここで、キャビティ51の内面51aは、最上位の燃料電池セル20の突状部26の端面26bつまり上面と面一に設定されている。突状部26の端面26bを、成形された保持部材30の表面30cと面一の状態で、保持部材30の外部に臨ませることができるからである。   Here, the inner surface 51 a of the cavity 51 is set to be flush with the end surface 26 b of the protrusion 26 of the uppermost fuel cell 20, that is, the upper surface. This is because the end surface 26b of the protruding portion 26 can face the outside of the holding member 30 in a state of being flush with the surface 30c of the molded holding member 30.

成形装置40はさらに、キャビティ51内の圧力を調整する圧力調整弁56をさらに有し、樹脂からなる成形材料を、圧力を掛けてキャビティ51に供給できるようにしている。圧力調整弁56は、キャビティ51に連通する配管57途上に設けられている。配管57は可動型52の貫通孔58に接続され、貫通孔58には、ゲート54と同様のオリフィス状部材が設けられている。供給された溶融樹脂材料の一部は貫通孔58内において固化するが、オリフィス状部材によって脆弱部が形成されているため、可動型52を開いたときに、固化した成形材料を脆弱部で確実に破断させることができる。なお、保持部材30に連なるバリは、ゲート54におけるバリと同様に、成形完了後の工程において切除される。なお、成形材料の供給量は、配管を通って圧力調整弁56にまで達しない所定量に設定されている。   The molding apparatus 40 further includes a pressure regulating valve 56 that regulates the pressure in the cavity 51 so that a molding material made of resin can be supplied to the cavity 51 under pressure. The pressure regulating valve 56 is provided in the middle of the pipe 57 communicating with the cavity 51. The pipe 57 is connected to a through hole 58 of the movable mold 52, and an orifice-like member similar to the gate 54 is provided in the through hole 58. A part of the supplied molten resin material is solidified in the through-hole 58, but since the fragile portion is formed by the orifice-shaped member, when the movable mold 52 is opened, the solidified molding material is surely secured at the fragile portion. Can be broken. In addition, the burr | flash connected to the holding member 30 is excised in the process after completion of shaping | molding similarly to the burr | flash in the gate 54. FIG. The supply amount of the molding material is set to a predetermined amount that does not reach the pressure regulating valve 56 through the pipe.

圧力調整弁56を設けてキャビティ51内圧を高めることにより、次のような利点がある。すなわち、第1に、キャビティ51内に供給された溶融樹脂材料に気泡が生じることを防止できる。第2に、成形された保持部材30の密度を高めて当該保持部材30の強度を高めることができる。第3に、微小隙間に溶融樹脂材料を充填し易くしてシール性を高めることができる。   Providing the pressure regulating valve 56 to increase the internal pressure of the cavity 51 has the following advantages. That is, first, bubbles can be prevented from being generated in the molten resin material supplied into the cavity 51. Secondly, the density of the holding member 30 can be increased by increasing the density of the formed holding member 30. Thirdly, it is possible to easily fill the minute gap with the molten resin material and improve the sealing performance.

次に、燃料電池スタック10の製造手順を説明する。   Next, the manufacturing procedure of the fuel cell stack 10 will be described.

まず、成形型50を開いた状態において、複数個の燃料電池セル20を順次積層し、積層体11を成形型50内に配置する。このとき、燃料電池セル20のそれぞれを、当該燃料電池セル20に設けた規制部材25によって積層位置を規制しながら積層する。燃料電池セル20に設けた規制部材25をなす突状部26および凹部27が相互に嵌まり合うことによって、各燃料電池セル20の積層位置が正しい位置に位置決めされる。   First, in a state where the mold 50 is opened, the plurality of fuel cells 20 are sequentially stacked, and the stacked body 11 is disposed in the mold 50. At this time, each fuel cell 20 is stacked while the stacking position is regulated by the regulating member 25 provided in the fuel cell 20. The projecting portion 26 and the recessed portion 27 forming the regulating member 25 provided in the fuel cell 20 are fitted to each other, whereby the stacking position of each fuel cell 20 is positioned at the correct position.

積層体11の配置が終了すると成形型50を閉じ、加圧機60のポンチ63を下降駆動し、最上位の導電性セパレータ24の突状部26に当接させる。ポンチ63をさらに下降駆動し、燃料電池セル20の積層方向に沿って積層体11を加圧する力を当該積層体11に付勢する。積層体11は規制部材25によって各燃料電池セル20の積層位置が規制されているため、積層体11を加圧する際においても、燃料電池セル20に位置ずれが発生しない。   When the arrangement of the laminated body 11 is completed, the mold 50 is closed, the punch 63 of the pressurizer 60 is driven downward, and is brought into contact with the protruding portion 26 of the uppermost conductive separator 24. The punch 63 is further driven downward, and a force that pressurizes the stacked body 11 along the stacking direction of the fuel cells 20 is urged to the stacked body 11. In the stacked body 11, the stack position of each fuel cell 20 is regulated by the regulating member 25, so that even when the stacked body 11 is pressurized, the fuel cell 20 is not displaced.

積層体11を加圧した状態を維持したまま、積層体11の外周に樹脂からなる成形材料を供給する。つまり、成形材料圧送機72から、所定圧力に昇圧された溶融樹脂材料をゲート54まで導き、ゲート54からキャビティ51内に供給する。材料供給時には圧力調整弁56によってキャビティ51内の圧力を調整し、溶融樹脂材料を、圧力を掛けてキャビティ51に供給する。樹脂からなる成形材料を、圧力を掛けてキャビティ51に供給することによって、キャビティ51内圧が高まり、キャビティ51内に供給された溶融樹脂材料に気泡が生じることが防止される。さらに、成形された保持部材30の密度を高めて当該保持部材30の強度を高めることができ、微小隙間に溶融樹脂材料を充填し易くしてシール性を高めることができる。   A molding material made of resin is supplied to the outer periphery of the laminate 11 while maintaining the state in which the laminate 11 is pressurized. That is, the molten resin material whose pressure has been increased to a predetermined pressure is guided from the molding material feeder 72 to the gate 54 and supplied from the gate 54 into the cavity 51. When the material is supplied, the pressure in the cavity 51 is adjusted by the pressure adjusting valve 56, and the molten resin material is supplied to the cavity 51 under pressure. By supplying a molding material made of resin to the cavity 51 under pressure, the internal pressure of the cavity 51 is increased, and bubbles are prevented from being generated in the molten resin material supplied into the cavity 51. Furthermore, the density of the formed holding member 30 can be increased to increase the strength of the holding member 30, and the molten resin material can be easily filled in the minute gaps to improve the sealing performance.

所定量の成形材料の供給が終了すると、加熱手段によって成形型50を加熱し、成形材料を硬化させる。成形材料の硬化が終了すると、加熱手段による成形型50の加熱を停止し、冷却手段によって成形型50を冷却する。   When the supply of the predetermined amount of the molding material is completed, the molding die 50 is heated by the heating means to cure the molding material. When the curing of the molding material is completed, heating of the mold 50 by the heating unit is stopped, and the mold 50 is cooled by the cooling unit.

成形型50の温度が所定温度まで下がると、成形型50を開く。ゲート54および貫通孔58内において固化した成形材料は、可動型52を開くのに伴って脆弱部で破断し、保持部材30に連なるバリとなる。そして、成形型50から燃料電池スタック10を取り出し、保持部材30に連なるバリなどを切除すれば、燃料電池スタック10の製造が完了する。   When the temperature of the mold 50 is lowered to a predetermined temperature, the mold 50 is opened. The molding material solidified in the gate 54 and the through hole 58 is broken at the fragile portion as the movable mold 52 is opened, and becomes a burr connected to the holding member 30. Then, when the fuel cell stack 10 is taken out from the mold 50 and burrs and the like connected to the holding member 30 are removed, the manufacture of the fuel cell stack 10 is completed.

製造された燃料電池スタック10は、積層体11の外周を覆って複数個の燃料電池セル20の積層状態を保持する保持部材30が形成され、保持部材30によって覆われる積層体11の外周には、積層方向に沿う積層体11の両端面11a、11bの一部が少なくとも含まれている。このため、前述したように、燃料電池スタック10全体の重量の軽量化を図ることができ、部品点数の削減も図ることができる。さらに、部品点数の削減を通して燃料電池スタック10の体積を小さくできる結果、燃料電池スタック10の出力密度の向上を図ることができる。   The manufactured fuel cell stack 10 is formed with a holding member 30 that covers the outer periphery of the stacked body 11 and holds the stacked state of the plurality of fuel cells 20, and is formed on the outer periphery of the stacked body 11 covered by the holding member 30. In addition, at least a part of both end faces 11a and 11b of the stacked body 11 along the stacking direction is included. Therefore, as described above, the weight of the entire fuel cell stack 10 can be reduced, and the number of parts can be reduced. Furthermore, as a result of reducing the volume of the fuel cell stack 10 through reduction in the number of parts, the output density of the fuel cell stack 10 can be improved.

したがって、上述した成形装置40および製造方法によれば、軽量化、部品点数の低減、および出力密度の向上を図った燃料電池スタック10を製造できる。   Therefore, according to the molding apparatus 40 and the manufacturing method described above, it is possible to manufacture the fuel cell stack 10 in which the weight is reduced, the number of parts is reduced, and the output density is improved.

また、最上位の導電性セパレータ24の突状部26に加圧機60を当接させることによって、突状部26を保持部材30の外部に臨ませることができ、積層位置を規制するために設けた突状部26を、集電板として使用することができ、部品点数の増加を抑えることができる。   In addition, by bringing the pressurizer 60 into contact with the protruding portion 26 of the uppermost conductive separator 24, the protruding portion 26 can be exposed to the outside of the holding member 30, and is provided to regulate the stacking position. The protruding portion 26 can be used as a current collecting plate, and an increase in the number of parts can be suppressed.

さらに、突状部26の端面26bを、保持部材30の表面30cと面一の状態で、保持部材30の外部に臨ませることができ、燃料電池スタック10の体積を可及的に低減することができ、出力密度の向上を図ることができる。   Furthermore, the end surface 26b of the projecting portion 26 can be exposed to the outside of the holding member 30 while being flush with the surface 30c of the holding member 30, and the volume of the fuel cell stack 10 can be reduced as much as possible. The output density can be improved.

燃料電池スタック10を車両などに搭載する場合には、図示省略するが、燃料電池スタック10は支持プレート上に取り付けられ、燃料電池スタック10の上側には、空気、水素および冷却水を分配するマニホールドが取り付けられる。   When the fuel cell stack 10 is mounted on a vehicle or the like, although not shown, the fuel cell stack 10 is mounted on a support plate, and on the upper side of the fuel cell stack 10 is a manifold that distributes air, hydrogen, and cooling water. Is attached.

(変形例)
保持部材30と積層体11との接触面積を大きくする手段を燃料電池セル20に施してもよい。例えば、燃料電池セル20に含まれる導電性セパレータ24の角部を面取りし、樹脂が食い込む断面三角形状の凹部を積層体11に形成すればよい。面取りした分だけ、面取りしない形態と比較して、保持部材30と積層体11との接触面積が大きくなる。
(Modification)
Means for increasing the contact area between the holding member 30 and the laminate 11 may be applied to the fuel cell 20. For example, the corners of the conductive separator 24 included in the fuel battery cell 20 may be chamfered, and a recess having a triangular cross section into which the resin bites may be formed in the laminate 11. The contact area between the holding member 30 and the laminated body 11 is increased by the amount of chamfering as compared with the form without chamfering.

図1(A)は、本発明の実施形態に係る燃料電池スタックの一例を示す断面図、図1(B)は、燃料電池セルに設けられた規制部材を示す断面図である。FIG. 1A is a cross-sectional view showing an example of a fuel cell stack according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view showing a regulating member provided in the fuel cell. 図2(A)は、燃料電池スタックを製造するための成形装置を示す断面図、図2(B)は、ゲートを示す断面図である。2A is a cross-sectional view showing a molding apparatus for manufacturing a fuel cell stack, and FIG. 2B is a cross-sectional view showing a gate.

符号の説明Explanation of symbols

10 燃料電池スタック、
11 積層体、
11a、11b 積層体の両端面、
20 燃料電池セル、
24 導電性セパレータ、
25 規制部材、
26 突状部、
26a 断面テーパ面、
26b 突状部の端面、
27 凹部、
27a 断面テーパ面、
30 保持部材、
30a 係止部、
30b 係止部、
30c 保持部材の表面、
40 成形装置(燃料電池スタックの製造装置)、
50 成形型、
51 キャビティ、
51a キャビティの内面、
52 可動型、
53 固定型、
54 ゲート、
54a オリフィス状部材、
55 支持台、
56 圧力調整弁、
57 配管、
58 貫通孔、
60 加圧機、
61 プレス部、
63 ポンチ、
70 供給手段、
71 供給配管、
72 成形材料圧送機。
10 Fuel cell stack,
11 laminates,
11a, 11b Both end faces of the laminate,
20 fuel cells,
24 conductive separator,
25 restriction member,
26 Projection,
26a section taper surface,
26b, the end face of the protrusion,
27 recess,
27a Tapered section,
30 holding member,
30a locking part,
30b locking part,
30c the surface of the holding member,
40 Molding device (fuel cell stack manufacturing device),
50 molds,
51 cavities,
51a inner surface of the cavity,
52 Movable type,
53 Fixed type,
54 Gate,
54a Orifice-like member,
55 support base,
56 pressure regulating valve,
57 piping,
58 through holes,
60 pressurizer,
61 Press department,
63 punches,
70 supply means,
71 supply piping,
72 Molding material pressure feeder.

Claims (16)

複数個の燃料電池セルを積層してなる積層体と、
前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材と、を含み、
前記保持部材は、樹脂材料から形成され、当該保持部材によって覆われる前記積層体の外周には、前記燃料電池セルの積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタック。
A laminate formed by laminating a plurality of fuel cells; and
A holding member that covers the outer periphery of the stacked body and holds the stacked state of the plurality of fuel cells, and
The holding member is made of a resin material, and the outer periphery of the stacked body covered by the holding member includes at least part of both end faces of the stacked body along the stacking direction of the fuel cells. Battery stack.
前記積層方向に沿う前記積層体の端部に位置する一方の前記燃料電池セルは、当該燃料電池セルに含まれる導電性セパレータの一部が前記保持部材の外部に臨んでいることを特徴とする請求項1に記載の燃料電池スタック。   One of the fuel cells located at the end of the stacked body along the stacking direction is characterized in that a part of the conductive separator included in the fuel cell faces the outside of the holding member. The fuel cell stack according to claim 1. 前記燃料電池セルのそれぞれは、積層位置を規制するための規制部材を有していることを特徴とする請求項1に記載の燃料電池スタック。   2. The fuel cell stack according to claim 1, wherein each of the fuel cells has a regulating member for regulating a stacking position. 前記規制部材は、前記積層方向に沿う前記燃料電池セルの一の面に設けられた突状部と、他の面に設けられ前記突状部が嵌まり合う凹部と、を有していることを特徴とする請求項3に記載の燃料電池スタック。   The restricting member has a protruding portion provided on one surface of the fuel cell along the stacking direction, and a recess provided on the other surface in which the protruding portion fits. The fuel cell stack according to claim 3. 前記突状部と前記凹部とは、断面テーパ面を介して嵌まり合うことを特徴とする請求項4に記載の燃料電池スタック。   5. The fuel cell stack according to claim 4, wherein the protrusion and the recess are fitted through a tapered surface in cross section. 前記積層方向に沿う前記積層体の端部に位置する一方の前記燃料電池セルは、当該燃料電池セルに含まれる導電性セパレータに設けた前記突状部が前記保持部材の外部に臨んでいることを特徴とする請求項4に記載の燃料電池スタック。   One of the fuel cells located at the end of the stacked body along the stacking direction has the protruding portion provided on the conductive separator included in the fuel cell facing the outside of the holding member. The fuel cell stack according to claim 4. 前記突状部の端面は、前記保持部材の表面と面一の状態で、前記保持部材の外部に臨んでいることを特徴とする請求項6に記載の燃料電池スタック。   The fuel cell stack according to claim 6, wherein an end surface of the projecting portion faces the outside of the holding member in a state flush with a surface of the holding member. 複数個の燃料電池セルを積層してなる積層体を成形型内に配置し、
前記燃料電池セルの積層方向に沿って前記積層体を加圧しながら、前記積層体の外周に樹脂からなる成形材料を供給して、前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材を形成してなり、
前記保持部材によって覆われる前記積層体の外周には、前記積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタックの製造方法。
A laminate formed by laminating a plurality of fuel cells is placed in a mold,
While pressing the stack along the stacking direction of the fuel cells, a molding material made of resin is supplied to the outer periphery of the stack, and the outer periphery of the stack is covered with the plurality of fuel cells. Forming a holding member that holds the laminated state,
A method for manufacturing a fuel cell stack, wherein an outer periphery of the stacked body covered by the holding member includes at least a part of both end faces of the stacked body along the stacking direction.
前記燃料電池セルのそれぞれを、当該燃料電池セルに設けた規制部材によって積層位置を規制しながら積層することを特徴とする請求項8に記載の燃料電池スタックの製造方法。   9. The method of manufacturing a fuel cell stack according to claim 8, wherein each of the fuel cells is stacked while restricting a stacking position by a regulating member provided in the fuel cell. 前記樹脂からなる成形材料を、圧力を掛けて前記成形型内のキャビティに供給することを特徴とする請求項8に記載の燃料電池スタックの製造方法。   9. The method of manufacturing a fuel cell stack according to claim 8, wherein the molding material made of the resin is supplied to the cavity in the mold under pressure. 前記積層方向に沿う前記積層体の端部に位置する一方の前記燃料電池セルは、当該燃料電池セルに含まれる導電性セパレータに突状部が設けられ、
前記突状部に加圧機を当接させることによって、前記突状部を前記保持部材の外部に臨ませることを特徴とする請求項8に記載の燃料電池スタックの製造方法。
One of the fuel cells located at the end of the stacked body along the stacking direction is provided with a protruding portion on a conductive separator included in the fuel cell,
9. The method of manufacturing a fuel cell stack according to claim 8, wherein the projecting portion is exposed to the outside of the holding member by bringing a pressurizer into contact with the projecting portion.
前記突状部の端面を、前記保持部材の表面と面一の状態で、前記保持部材の外部に臨ませることを特徴とする請求項11に記載の燃料電池スタックの製造方法。   12. The method of manufacturing a fuel cell stack according to claim 11, wherein an end surface of the projecting portion faces the outside of the holding member in a state flush with the surface of the holding member. 複数個の燃料電池セルを積層してなる積層体を配置する成形型と、
前記燃料電池セルの積層方向に沿って前記積層体を加圧する加圧機と、
前記積層体の外周に樹脂からなる成形材料を供給する供給手段と、を有し、
前記成形型内のキャビティは、前記積層体の外周を覆って前記複数個の燃料電池セルの積層状態を保持する保持部材を形成するための形状を有し、
前記保持部材によって覆われる前記積層体の外周には、前記積層方向に沿う前記積層体の両端面の一部が少なくとも含まれてなる燃料電池スタックの製造装置。
A molding die for arranging a laminate formed by laminating a plurality of fuel cells; and
A pressurizing machine that pressurizes the stack along the stacking direction of the fuel cells;
Supply means for supplying a molding material made of resin to the outer periphery of the laminate,
The cavity in the mold has a shape for forming a holding member that covers the outer periphery of the stacked body and holds the stacked state of the plurality of fuel cells,
The fuel cell stack manufacturing apparatus, wherein an outer periphery of the stacked body covered by the holding member includes at least part of both end faces of the stacked body along the stacking direction.
前記キャビティ内の圧力を調整する圧力調整弁をさらに有し、
前記樹脂からなる成形材料を、圧力を掛けて前記キャビティに供給することを特徴とする請求項13に記載の燃料電池スタックの製造装置。
A pressure regulating valve for regulating the pressure in the cavity;
14. The fuel cell stack manufacturing apparatus according to claim 13, wherein the molding material made of resin is supplied to the cavity under pressure.
前記積層方向に沿う前記積層体の端部に位置する一方の前記燃料電池セルは、当該燃料電池セルに含まれる導電性セパレータに、前記加圧機が当接する突状部が設けられ、
前記突状部に前記加圧機を当接させることによって、前記突状部を前記保持部材の外部に臨ませることを特徴とする請求項13に記載の燃料電池スタックの製造装置。
One of the fuel cells located at the end of the stacked body along the stacking direction is provided with a projecting portion with which the pressurizer comes into contact with a conductive separator included in the fuel cell,
14. The fuel cell stack manufacturing apparatus according to claim 13, wherein the protrusion is caused to face the outside of the holding member by bringing the pressurizer into contact with the protrusion.
前記キャビティの内面は、前記突状部の端面と面一に設定され、
前記突状部の前記端面を、前記保持部材の表面と面一の状態で、前記保持部材の外部に臨ませることを特徴とする請求項15に記載の燃料電池スタックの製造装置。
The inner surface of the cavity is set flush with the end surface of the protruding portion,
16. The fuel cell stack manufacturing apparatus according to claim 15, wherein the end surface of the projecting portion faces the outside of the holding member in a state flush with the surface of the holding member.
JP2004358412A 2004-12-10 2004-12-10 Fuel cell stack, manufacturing method of the same, and manufacturing device of the same Pending JP2006164901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358412A JP2006164901A (en) 2004-12-10 2004-12-10 Fuel cell stack, manufacturing method of the same, and manufacturing device of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358412A JP2006164901A (en) 2004-12-10 2004-12-10 Fuel cell stack, manufacturing method of the same, and manufacturing device of the same

Publications (1)

Publication Number Publication Date
JP2006164901A true JP2006164901A (en) 2006-06-22

Family

ID=36666645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358412A Pending JP2006164901A (en) 2004-12-10 2004-12-10 Fuel cell stack, manufacturing method of the same, and manufacturing device of the same

Country Status (1)

Country Link
JP (1) JP2006164901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134202A (en) * 2005-11-11 2007-05-31 Daihatsu Motor Co Ltd Fuel cell and its manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195064U (en) * 1984-11-29 1986-06-19
JPS63128716U (en) * 1987-02-16 1988-08-23
JPH01183071A (en) * 1988-01-11 1989-07-20 Meidensha Corp Electrolyte circulation type stacked secondary cell
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JPH087915A (en) * 1994-06-22 1996-01-12 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JPH097857A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Molded transformer
JP2000067886A (en) * 1998-08-20 2000-03-03 Matsushita Electric Ind Co Ltd Solid polymer fuel cell and its manufacture
JP2001504632A (en) * 1996-11-19 2001-04-03 バラード パワー システムズ インコーポレイティド Electrochemical fuel cell stack with compression band
JP2001313425A (en) * 2000-04-28 2001-11-09 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for molding of foil plate
JP2002252152A (en) * 2001-02-23 2002-09-06 Nec Tokin Ceramics Corp Electronic component
JP2003317743A (en) * 2002-02-22 2003-11-07 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195064U (en) * 1984-11-29 1986-06-19
JPS63128716U (en) * 1987-02-16 1988-08-23
JPH01183071A (en) * 1988-01-11 1989-07-20 Meidensha Corp Electrolyte circulation type stacked secondary cell
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JPH087915A (en) * 1994-06-22 1996-01-12 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JPH097857A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Molded transformer
JP2001504632A (en) * 1996-11-19 2001-04-03 バラード パワー システムズ インコーポレイティド Electrochemical fuel cell stack with compression band
JP2000067886A (en) * 1998-08-20 2000-03-03 Matsushita Electric Ind Co Ltd Solid polymer fuel cell and its manufacture
JP2001313425A (en) * 2000-04-28 2001-11-09 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for molding of foil plate
JP2002252152A (en) * 2001-02-23 2002-09-06 Nec Tokin Ceramics Corp Electronic component
JP2003317743A (en) * 2002-02-22 2003-11-07 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134202A (en) * 2005-11-11 2007-05-31 Daihatsu Motor Co Ltd Fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3571687B2 (en) Method for manufacturing seal-integrated separator
JP6056964B2 (en) Fuel cell manufacturing method and manufacturing apparatus
JP5852200B2 (en) Method and apparatus for manufacturing joined product
CA2910082C (en) Insulating structure, fuel cell and fuel cell stack
US6818165B2 (en) Method of fabricating fluid flow field plates
CN109417177B (en) Method for manufacturing separator-integrated gasket for fuel cell
WO2000039872A1 (en) Fuel cell, fuel cell separator, and method of manufacture of separator
JP2010123491A (en) Apparatus for manufacturing membrane electrode assembly
JP4398763B2 (en) Manufacturing method of fuel cell separator
JP2006286546A (en) Assembling method of fuel cell stack
EP2668689B1 (en) Fuel cell seal
JP4880995B2 (en) Fuel cell module and fuel cell stack
JP2006164901A (en) Fuel cell stack, manufacturing method of the same, and manufacturing device of the same
JP4237128B2 (en) Fuel cell separator mold, fuel cell separator manufacturing method, fuel cell separator, fuel cell separator manufacturing apparatus, and fuel cell
JP4669242B2 (en) Piping member for fuel cell and manufacturing method thereof
JP2004079246A (en) Assembling method of fuel cell stack
JP5376128B2 (en) Fuel cell manufacturing method and fuel cell manufacturing apparatus
JP2019139993A (en) Fuel cell module and manufacturing method thereof
JP4011867B2 (en) Manufacturing method of fuel cell separator
JP2004311084A (en) Fuel cell and its manufacturing method
JP4784077B2 (en) Membrane electrode assembly joining apparatus and membrane electrode assembly joining method
JP4826159B2 (en) Fuel cell separator and seal molding method thereof
JP4611653B2 (en) Fuel cell separator and method for producing the same
JP4494057B2 (en) Fuel cell separator and fuel cell manufacturing method using the same
CN109546175B (en) Method for manufacturing fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125