JP2006164714A - Non-aqueous electrolytic liquid secondary battery - Google Patents

Non-aqueous electrolytic liquid secondary battery Download PDF

Info

Publication number
JP2006164714A
JP2006164714A JP2004353625A JP2004353625A JP2006164714A JP 2006164714 A JP2006164714 A JP 2006164714A JP 2004353625 A JP2004353625 A JP 2004353625A JP 2004353625 A JP2004353625 A JP 2004353625A JP 2006164714 A JP2006164714 A JP 2006164714A
Authority
JP
Japan
Prior art keywords
metal plate
plate
metal
sealing plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004353625A
Other languages
Japanese (ja)
Inventor
Koichi Sato
広一 佐藤
Tomohiko Yokoyama
智彦 横山
Takaaki Ikemachi
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004353625A priority Critical patent/JP2006164714A/en
Publication of JP2006164714A publication Critical patent/JP2006164714A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic liquid secondary battery capable of reducing electric resistance of a sealing plate. <P>SOLUTION: The non-aqueous electrolytic liquid secondary battery is constructed by housing an electrode body 4 impregnated with non-aqueous electrolytic liquid inside a battery can 1 in which a sealing plate 2 is caulked and fixed to the opening part of a bottomed cylinder 11. The sealing plate 2 has a three-layer structure in which a metal layer 23 of aluminum is interposed between a first metal plate 21 of nickel and a second metal plate 22 of aluminum and both metal plates 21, 23 are mutually welded and fixed. In the state where the sealing plate 2 is caulked and fixed at the opening part of the bottomed cylinder 11, the first metal plate 21 faces the outside of the battery can 1 and the second metal plate 22 faces the inside of the battery can 1. The metal layer 23 is formed by vapor-depositing aluminum on the face of the first metal plate 21 facing the second metal plate 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有底筒体の開口部に封口板を固定してなる電池缶の内部に、発電要素となる電極体を収容して構成される非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery configured by accommodating an electrode body serving as a power generation element inside a battery can formed by fixing a sealing plate to an opening of a bottomed cylindrical body.

円筒型リチウムイオン二次電池は、図5に示す如く、円筒状の電池缶(1)の内部に巻き取り電極体(4)を収容して構成される。電池缶(1)は、負極となる有底筒体(11)の開口部に絶縁部材(13)を介して封口板(6)をかしめ固定してなり、封口板(6)には、正極端子(25)が取り付けられている(特許文献1及び特許文献2参照)。   As shown in FIG. 5, the cylindrical lithium ion secondary battery is configured by accommodating a winding electrode body (4) inside a cylindrical battery can (1). The battery can (1) is formed by fixing a sealing plate (6) to an opening of a bottomed cylindrical body (11) serving as a negative electrode through an insulating member (13), and the sealing plate (6) includes a positive electrode. A terminal (25) is attached (see Patent Document 1 and Patent Document 2).

図5及び図6に示す如く、封口板(6)は、ニッケル板(61)とアルミニウム板(62)とが互いに接合された2層構造を有し、該封口板(6)が有底筒体(11)の開口部にかしめ固定された状態で、ニッケル板(61)は電池缶(1)の外部に面し、アルミニウム板(62)は電池缶(1)の内部に面している。
更に、ニッケル板(61)には中央孔(26)が開設され、アルミニウム板(62)には、ニッケル板(61)の中央孔(26)と対向する領域に、内圧が所定値を超えたときに開放すべき弁膜(63)が形成されている。
尚、封口板(6)は、ニッケル板(61)とアルミニウム板(62)とを互いに重ね合わせてかしめ固定することにより構成される。又、封口板(6)は、電池の内圧に耐え得る厚さに形成されており、例えば、直径が30mm以上の大型電池の場合、封口板(6)は、1〜2mm以上の厚さに形成されることになる。
特開2000−90892号公報 [H01M 2/04] 特開2003−187773号公報 [H01M 2/12]
As shown in FIGS. 5 and 6, the sealing plate (6) has a two-layer structure in which a nickel plate (61) and an aluminum plate (62) are joined together, and the sealing plate (6) is a bottomed cylinder. The nickel plate (61) faces the outside of the battery can (1) and the aluminum plate (62) faces the inside of the battery can (1) in a state where it is caulked and fixed to the opening of the body (11). .
Further, a central hole (26) is opened in the nickel plate (61), and the internal pressure of the aluminum plate (62) exceeds a predetermined value in a region facing the central hole (26) of the nickel plate (61). A valve membrane (63) to be opened sometimes is formed.
The sealing plate (6) is configured by caulking and fixing a nickel plate (61) and an aluminum plate (62) to each other. The sealing plate (6) is formed to a thickness that can withstand the internal pressure of the battery. For example, in the case of a large battery having a diameter of 30 mm or more, the sealing plate (6) has a thickness of 1 to 2 mm or more. Will be formed.
JP 2000-90892 A [H01M 2/04] JP 2003-187773 A [H01M 2/12]

ところで、円筒型リチウムイオン二次電池において、高レートの充放電を行なうためには、電気抵抗の小さな封口板が必要となる。
しかしながら、従来の封口板(6)は、ニッケル板(61)とアルミニウム板(62)とがかしめ固定により接合されているに過ぎないため、ニッケル板(61)とアルミニウム板(62)との間の接触抵抗が大きく、これによって封口板(6)の電気抵抗は大きなものとなる。この結果、電池の内部抵抗が増大し、高レートの充放電を行うことが出来ない問題があった。
By the way, in a cylindrical lithium ion secondary battery, in order to perform charge / discharge at a high rate, a sealing plate having a small electric resistance is required.
However, in the conventional sealing plate (6), the nickel plate (61) and the aluminum plate (62) are merely joined together by caulking, so that the nickel plate (61) and the aluminum plate (62) are not connected. The contact resistance of the sealing plate (6) becomes large. As a result, there is a problem that the internal resistance of the battery is increased and charging / discharging at a high rate cannot be performed.

この問題を解決する方法として、ニッケル板(61)とアルミニウム板(62)とをクラッド接合する方法がある。この方法によれば、ニッケル板(61)とアルミニウム板(62)との接合面積が大きくなるので、封口板の電気抵抗は小さくなる。しかしながら、ニッケル板(61)及び/又はアルミニウム板(62)の厚さが大きくなると、両者をクラッド接合することが困難となるので、1〜2mm以上の厚さが必要とされる大型電池用の封口板をクラッド接合により作製することは困難であった。   As a method of solving this problem, there is a method of clad joining the nickel plate (61) and the aluminum plate (62). According to this method, since the joint area between the nickel plate (61) and the aluminum plate (62) is increased, the electrical resistance of the sealing plate is reduced. However, when the thickness of the nickel plate (61) and / or the aluminum plate (62) is increased, it becomes difficult to clad-join both, so for a large battery that requires a thickness of 1 to 2 mm or more. It was difficult to produce a sealing plate by clad bonding.

又、封口板(6)の別の構造として、ニッケル板(61)とアルミニウム板(62)とをレーザ溶接して接合した構造が知られている。この構造によれば、ニッケル板(61)及び/又はアルミニウム板(62)の厚さを大きくすることにより、上述の如き大型電池用の封口板を作製することが出来る。しかしながら、ニッケル板(61)とアルミニウム板(62)とをレーザ溶接して作製した封口板は、アルミニウムとニッケルの間の溶接性が悪いため、ニッケル板(61)とアルミニウム板(62)とが小なる接合面積で互いに溶接されているに過ぎない。従って、封口板(6)の電気抵抗は、ニッケル板(61)とアルミニウム板(62)をクラッド接合して作製した封口板の電気抵抗に比べて大きなものとなる。この結果、電池の内部抵抗が増大し、高レートでの充放電を行なうことが出来ない問題があった。   As another structure of the sealing plate (6), a structure in which a nickel plate (61) and an aluminum plate (62) are joined by laser welding is known. According to this structure, the sealing plate for a large battery as described above can be produced by increasing the thickness of the nickel plate (61) and / or the aluminum plate (62). However, since the sealing plate produced by laser welding the nickel plate (61) and the aluminum plate (62) has poor weldability between aluminum and nickel, the nickel plate (61) and the aluminum plate (62) They are only welded together with a small joint area. Therefore, the electrical resistance of the sealing plate (6) is larger than the electrical resistance of the sealing plate produced by clad joining the nickel plate (61) and the aluminum plate (62). As a result, there is a problem that the internal resistance of the battery is increased and charging / discharging at a high rate cannot be performed.

そこで本発明の目的は、封口板の電気抵抗を低減させることが出来る非水電解液二次電池を提供することである。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can reduce the electrical resistance of the sealing plate.

本発明に係る非水電解液二次電池は、有底筒体(11)の開口部に封口板(2)を固定してなる電池缶(1)の内部に、非水電解液を含浸した電極体(4)が収容され、電池缶(1)に設けた一対の電極端子部から電極体(4)の発生電力を取り出すことが出来る。前記封口板(2)は、第1金属板(21)と第2金属板(22)の間に金属層(23)を介在させて両金属板(21)(22)を互いに溶接固定した積層構造を有し、第1金属板(21)は電池缶(1)の外部に面する一方、第2金属板(22)は電池缶(1)の内部に面している。
第1金属板(21)は第2金属板(22)よりも強度の高い金属によって形成され、第2金属板(22)は第1金属板(21)よりも前記非水電解液に対する耐腐食性の高い金属によって形成され、前記金属層(23)は、何れか一方の金属板の他方の金属板との対向面に、該他方の金属板と同材質の金属を薄膜形成方法により成膜して形成されている。
具体的には、前記封口板(2)は、前記第1金属板(21)と第2金属板(22)とを互いにレーザ溶接或いは超音波溶接して構成される。
The nonaqueous electrolyte secondary battery according to the present invention is impregnated with a nonaqueous electrolyte inside a battery can (1) in which a sealing plate (2) is fixed to an opening of a bottomed cylindrical body (11). The electrode body (4) is accommodated, and the generated power of the electrode body (4) can be taken out from a pair of electrode terminal portions provided on the battery can (1). The sealing plate (2) is a laminate in which a metal layer (23) is interposed between a first metal plate (21) and a second metal plate (22), and the two metal plates (21) and (22) are fixed to each other by welding. The first metal plate (21) faces the outside of the battery can (1) while the second metal plate (22) faces the inside of the battery can (1).
The first metal plate (21) is made of a metal having higher strength than the second metal plate (22), and the second metal plate (22) is more resistant to corrosion by the non-aqueous electrolyte than the first metal plate (21). The metal layer (23) is formed of a metal of the same material as that of the other metal plate on the surface facing one of the other metal plates by a thin film forming method. Is formed.
Specifically, the sealing plate (2) is formed by laser welding or ultrasonic welding of the first metal plate (21) and the second metal plate (22) to each other.

上記本発明の非水電解液二次電池において、金属層(23)は、第1金属板(21)と第2金属板(22)の内、何れか一方の金属板の表面に薄膜形成方法により形成されることにより、該一方の金属板の表面全体に強固に結合している。又、金属層(23)は、前記一方の金属板に溶接されるべき他方の金属板と同材質の金属から構成されているので、前記他方の金属板と金属層(23)は、同一の材質面どうしで接触することになる。これによって、第1金属板(21)と第2金属板(22)の間の溶接性が従来よりも向上し、第1金属板(21)と第2金属板(22)は、金属層(23)を介して大きな接合面積で互いに溶接されることになる。この結果、封口板(2)の電気抵抗は小さなものとなる。
尚、金属層(23)は真空蒸着法、CVD法、スパッタリング法等の周知の薄膜形成方法により形成することが可能である。
In the nonaqueous electrolyte secondary battery of the present invention, the metal layer (23) is formed on the surface of one of the first metal plate (21) and the second metal plate (22). Is firmly bonded to the entire surface of the one metal plate. Further, since the metal layer (23) is made of the same metal as the other metal plate to be welded to the one metal plate, the other metal plate and the metal layer (23) are the same. Contact will be made between the material surfaces. As a result, the weldability between the first metal plate (21) and the second metal plate (22) is improved as compared with the prior art, and the first metal plate (21) and the second metal plate (22) 23) to be welded to each other with a large joint area. As a result, the electrical resistance of the sealing plate (2) becomes small.
The metal layer (23) can be formed by a well-known thin film forming method such as a vacuum deposition method, a CVD method, or a sputtering method.

又、具体的には、前記封口板(2)の厚さは1mm以上である。
従来、第1金属板(21)と第2金属板(22)とを溶接により接合して構成した封口板の電気抵抗は、第1金属板(21)と第2金属板(22)とをクラッド接合して構成した封口板の電気抵抗よりも大きく、電池の低抵抗化を阻害していた。しかしながら、上記本発明の非水電解液二次電池によれば、第1金属板(21)と第2金属板(22)は、金属層(23)を介して互いに大きな接合面積で溶接されているので、封口板(2)の電気抵抗は、第1金属板(21)と第2金属板(22)とをクラッド接合して構成した封口板の電気抵抗と略同等となる。更に、クラッド接合により作製することが困難であった厚さが1〜2mm以上の大型電池用の封口板を作製することが可能であり、これによって封口板の高耐圧化を図ることが出来る。
Specifically, the sealing plate (2) has a thickness of 1 mm or more.
Conventionally, the electrical resistance of the sealing plate formed by welding the first metal plate (21) and the second metal plate (22) is the same as that of the first metal plate (21) and the second metal plate (22). The electric resistance of the sealing plate formed by clad bonding is larger than that of the sealing plate. However, according to the nonaqueous electrolyte secondary battery of the present invention, the first metal plate (21) and the second metal plate (22) are welded to each other with a large bonding area through the metal layer (23). Therefore, the electrical resistance of the sealing plate (2) is substantially equal to the electrical resistance of the sealing plate formed by clad joining the first metal plate (21) and the second metal plate (22). Furthermore, it is possible to produce a sealing plate for a large battery having a thickness of 1 to 2 mm or more, which has been difficult to produce by clad bonding, and this can increase the pressure resistance of the sealing plate.

具体的構成において、前記第1金属板(21)には中央孔(26)が開設され、第2金属板(22)には、前記第1金属板(21)の中央孔(26)と対向する領域に、内圧が所定値を超えたときに解放すべき弁膜(24)が形成されている。   In a specific configuration, the first metal plate (21) is provided with a central hole (26), and the second metal plate (22) is opposed to the central hole (26) of the first metal plate (21). A valve membrane (24) to be released when the internal pressure exceeds a predetermined value is formed in the region where the pressure is applied.

封口板(2)を構成する第2金属板(22)の中央部に形成された弁膜(24)は、第2金属板(22)の他の領域よりも薄肉に形成されているため、従来は、第1金属板(21)と第2金属板(22)との溶接時に発生する熱によって、弁膜(24)に大きな歪みが生じることがあった。しかしながら、上記本発明の非水電解液二次電池によれば、
一方の金属板に形成された金属層(23)と他方の金属板は、同一の材質面どうしで接触することになるので、第1金属板(21)と第2金属板(22)の間の溶接性が従来よりも向上し、これによって、第1金属板(21)と第2金属板(22)とを小さなエネルギーで溶接することが出来る。従って、弁膜(24)を形成した第2金属板(22)と第1金属板(21)とを金属層(23)を介して溶接したときに、前記弁膜(24)に大きな歪みが生じることはない。
Since the valve membrane (24) formed in the central part of the second metal plate (22) constituting the sealing plate (2) is formed thinner than other regions of the second metal plate (22), In some cases, the valve membrane (24) may be greatly distorted by heat generated during welding of the first metal plate (21) and the second metal plate (22). However, according to the nonaqueous electrolyte secondary battery of the present invention,
Since the metal layer (23) formed on one metal plate and the other metal plate are in contact with each other on the same material surface, between the first metal plate (21) and the second metal plate (22). Therefore, the first metal plate (21) and the second metal plate (22) can be welded with small energy. Therefore, when the second metal plate (22) on which the valve membrane (24) is formed and the first metal plate (21) are welded via the metal layer (23), a large distortion occurs in the valve membrane (24). There is no.

尚、封口板(2)の第1金属板(21)はステンレス鋼、ニッケル、又は鉄の芯体にニッケル鍍金を施した材料から形成され、第2金属板(22)は、アルミニウム又はアルミニウム合金から形成され、金属層(23)はアルミニウム又はニッケルから形成されている。   The first metal plate (21) of the sealing plate (2) is made of a stainless steel, nickel, or iron core plated with nickel, and the second metal plate (22) is made of aluminum or an aluminum alloy. The metal layer (23) is made of aluminum or nickel.

本発明の非水電解液二次電池によれば、封口板の電気抵抗を低減させることが出来、これによって高レートでの充放電が可能となる。   According to the nonaqueous electrolyte secondary battery of the present invention, it is possible to reduce the electrical resistance of the sealing plate, thereby enabling charge / discharge at a high rate.

以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
本発明に係る円筒型リチウムイオン二次電池は、図1に示す如く、円筒形の電池缶(1)の内部に巻き取り電極体(4)を収容してなり、電池缶(1)は、有底筒体(11)の開口部にリング状の絶縁部材(13)を介して封口板(2)をかしめ固定して構成される。
尚、電池缶(1)の外径は35mm、長さは100mmである。
Hereinafter, embodiments of the present invention applied to a cylindrical lithium ion secondary battery will be described in detail with reference to the drawings.
As shown in FIG. 1, a cylindrical lithium ion secondary battery according to the present invention has a winding electrode body (4) housed inside a cylindrical battery can (1). The sealing plate (2) is caulked and fixed to the opening of the bottomed cylindrical body (11) via a ring-shaped insulating member (13).
The battery can (1) has an outer diameter of 35 mm and a length of 100 mm.

図1及び図2に示す如く、封口板(2)は、ニッケル製の第1金属板(21)とアルミニウム製の第2金属板(22)との間にアルミニウムからなる金属層(23)を介在させて、両金属板(21)(22)を互いにレーザ溶接した3層構造を有し、第1金属板(21)及び第2金属板(22)は円板状を呈している。
金属層(23)は、第1金属板(21)の片面にアルミニウムを蒸着により成膜して形成され、第1金属板(21)の表面全体に強固に結合している。
As shown in FIGS. 1 and 2, the sealing plate (2) has a metal layer (23) made of aluminum between a first metal plate (21) made of nickel and a second metal plate (22) made of aluminum. It has a three-layer structure in which both metal plates (21) and (22) are laser welded to each other, and the first metal plate (21) and the second metal plate (22) have a disk shape.
The metal layer (23) is formed by depositing aluminum on one side of the first metal plate (21) by vapor deposition, and is firmly bonded to the entire surface of the first metal plate (21).

封口板(2)が有底筒体(11)の開口部にかしめ固定された状態で、第1金属板(21)は電池缶(1)の外部に面し、第2金属板(22)は電池缶(1)の内部に面している。又、第1金属板(21)の表面には、正極端子(25)が取り付けられている。
第1金属板(21)には円形の中央孔(26)が開設され、第2金属板(22)には、第1金属板(21)の中央孔(26)と対向する領域に、内圧が所定値(0.98〜1.18MPa)を超えたときに開放すべき弁膜(24)が、第2金属板(22)の中央部を圧延して薄膜状に形成されている。
The first metal plate (21) faces the outside of the battery can (1) while the sealing plate (2) is caulked and fixed to the opening of the bottomed cylinder (11), and the second metal plate (22) Faces the inside of the battery can (1). A positive terminal (25) is attached to the surface of the first metal plate (21).
The first metal plate (21) has a circular central hole (26), and the second metal plate (22) has an internal pressure in a region facing the central hole (26) of the first metal plate (21). The valve membrane (24) to be opened when the value exceeds a predetermined value (0.98 to 1.18 MPa) is formed into a thin film by rolling the central portion of the second metal plate (22).

巻き取り電極体(4)は、図3に示す如く、厚さ15μmのアルミニウム箔からなる芯体(45)の表面にコバルト酸リチウムからなる正極活物質(44)を塗布してなる正極(41)と、厚さ10μmの銅箔からなる芯体(47)の表面に炭素材料を含む負極活物質(46)を塗布してなる負極(43)と、非水電解液が含浸されたイオン透過性のポリプロピレン製微多孔膜からなるセパレータ(42)とから構成され、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向にずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。   As shown in FIG. 3, the wound electrode body (4) has a positive electrode (41) formed by applying a positive electrode active material (44) made of lithium cobalt oxide to the surface of a core body (45) made of an aluminum foil having a thickness of 15 μm. ), A negative electrode (43) obtained by applying a negative electrode active material (46) containing a carbon material to the surface of a core (47) made of a copper foil having a thickness of 10 μm, and an ion permeation impregnated with a nonaqueous electrolytic solution The separator (42) is made of a porous polypropylene microporous membrane, and the positive electrode (41) and the negative electrode (43) are superimposed on the separator (42) while being shifted in the width direction and wound in a spiral shape. Yes. As a result, the end of the core body (45) of the positive electrode (41) is more outward than the edge of the separator (42) at one end of both ends in the winding axis direction of the winding electrode body (4). The edge (48) protrudes, and at the other end, the end edge (48) of the core (47) of the negative electrode (43) protrudes outward from the end edge of the separator (42).

そして、巻き取り電極体(4)の正極(41)側の端縁(48)には、リード部(53)を具えた正極集電板(51)がレーザ溶接され、巻き取り電極体(4)の負極(43)側の端縁(48)には、負極集電板(52)がレーザ溶接される。   A positive electrode current collector plate (51) having a lead portion (53) is laser-welded to an end edge (48) on the positive electrode (41) side of the winding electrode body (4), and the winding electrode body (4 The negative electrode current collector plate (52) is laser-welded to the edge (48) on the negative electrode (43) side of).

図1の如く、正極集電板(51)のリード部(53)の先端は、封口板(2)を構成する第2金属板(22)の裏面に溶接されている。又、負極集電板(図示省略)は、有底筒体(11)の底面に溶接されている。
これによって、正極端子(25)及び有底筒体(11)の裏面から巻き取り電極体(4)の発生電力を取り出すことが出来る。
As shown in FIG. 1, the tip of the lead portion (53) of the positive electrode current collector plate (51) is welded to the back surface of the second metal plate (22) constituting the sealing plate (2). Further, the negative electrode current collector plate (not shown) is welded to the bottom surface of the bottomed cylindrical body (11).
Thereby, the electric power generated by the winding electrode body (4) can be taken out from the back surface of the positive electrode terminal (25) and the bottomed cylindrical body (11).

封口板(2)を作製する際には、図4(a)に示す如く、第1金属板(21)の片面に金属層(23)を形成した後、図4(b)の如く、第1金属板(21)と第2金属板(22)とを金属層(23)を挟んで互いに重ね合わせる。この状態で、第2金属板(22)側から第1金属板(21)の中央孔(26)を包囲する円周に沿ってレーザ光を照射して、第1金属板(21)と第2金属板(22)とを金属層(23)を介して互いにレーザ溶接する。
尚、第1金属板(21)及び第2金属板(22)の直径dは33mmである。又、第1金属板(21)の厚さt1は1mm、第2金属板(22)の厚さt3は0.5mm、金属層(23)の厚さt2は100μmである。
When producing the sealing plate (2), as shown in FIG. 4 (a), a metal layer (23) is formed on one side of the first metal plate (21), and then as shown in FIG. 4 (b). The first metal plate (21) and the second metal plate (22) are overlapped with each other with the metal layer (23) interposed therebetween. In this state, laser light is irradiated from the second metal plate (22) side along the circumference surrounding the central hole (26) of the first metal plate (21), and the first metal plate (21) and the first metal plate (21) Two metal plates (22) are laser welded to each other through a metal layer (23).
The diameter d of the first metal plate (21) and the second metal plate (22) is 33 mm. The thickness t1 of the first metal plate (21) is 1 mm, the thickness t3 of the second metal plate (22) is 0.5 mm, and the thickness t2 of the metal layer (23) is 100 μm.

封口板(2)は、超音波溶接によって作製することも可能である。この場合には、第1金属板(21)と第2金属板(22)とを金属層(23)を挟んで互いに重ね合わせ、該金属層(23)と第2金属板(22)とを密着させた状態で、第2金属板(22)側から第1金属板(21)の中央孔(26)を包囲する円周に沿って超音波を加え、第1金属板(21)と第2金属板(22)とを金属層(23)を介して互いに超音波溶接する。   The sealing plate (2) can also be produced by ultrasonic welding. In this case, the first metal plate (21) and the second metal plate (22) are overlapped with each other across the metal layer (23), and the metal layer (23) and the second metal plate (22) are stacked. In close contact, ultrasonic waves are applied from the second metal plate (22) side along the circumference surrounding the central hole (26) of the first metal plate (21), and the first metal plate (21) and the first metal plate (21) Two metal plates (22) are ultrasonically welded to each other through a metal layer (23).

上述の如く、第2金属板(22)と金属層(23)は、同一の材質面どうしで接触するので、第1金属板(21)と第2金属板(22)の間の溶接性が従来よりも向上する。これによって、第1金属板(21)と第2金属板(22)は、金属層(23)を介して大きな接合面積で互いに溶接されることになる。この結果、封口板(2)の電気抵抗は小さなものとなる。   As described above, since the second metal plate (22) and the metal layer (23) are in contact with each other on the same material surface, the weldability between the first metal plate (21) and the second metal plate (22) is improved. Improves than before. Thus, the first metal plate (21) and the second metal plate (22) are welded to each other with a large bonding area through the metal layer (23). As a result, the electrical resistance of the sealing plate (2) becomes small.

又、上述の如く溶接性が向上したことにより、従来に比べて小さなエネルギーで第1金属板(21)と第2金属板(22)とを溶接することが出来る。従って、第1金属板(21)と第2金属板(22)とを金属層(23)を介して溶接したときに、第2金属板(22)の中央部に形成された薄膜状の弁膜(24)に大きな歪みが生じることはない。   Further, since the weldability is improved as described above, the first metal plate (21) and the second metal plate (22) can be welded with less energy than in the prior art. Accordingly, when the first metal plate (21) and the second metal plate (22) are welded via the metal layer (23), a thin-film valve membrane formed at the center of the second metal plate (22). There is no great distortion in (24).

上記本発明の非水電解液二次電池によれば、第1金属板(21)と第2金属板(22)は、金属層(23)を介して大きな接合面積で溶接されるので、封口板(2)の電気抵抗は、第1金属板(21)と第2金属板(22)とをクラッド接合して構成した封口板の電気抵抗と略同等となる。更に、クラッド接合により作製することが困難であった厚さ1〜2mm以上の封口板を作製することも出来、これによって封口板の高耐圧化を図ることが出来る。   According to the non-aqueous electrolyte secondary battery of the present invention, the first metal plate (21) and the second metal plate (22) are welded with a large joining area via the metal layer (23). The electric resistance of the plate (2) is substantially equal to the electric resistance of the sealing plate formed by clad joining the first metal plate (21) and the second metal plate (22). Furthermore, it is possible to produce a sealing plate having a thickness of 1 to 2 mm or more, which has been difficult to produce by clad bonding, and this makes it possible to increase the pressure resistance of the sealing plate.

本発明の効果を確認するべく、後述する方法で2種類の円筒型リチウムイオン二次電池(実施例及び比較例)を作製し、両電池の抵抗値を比較した。
実施例
図3に示す如く、2枚の芯体(45)(47)にそれぞれ正極及び負極活物質(44)(46)を塗布して作製した正極(41)及び負極(43)を、セパレータ(42)を間に挟んで重ね合わせ、これらを渦巻き状に巻回して巻き取り電極体(4)を作製した。
図4(b)に示す3層構造の封口板(2)の作製においては、先ず、中央孔(26)を開設した厚さ1mmのニッケル板(21)の片面にアルミニウムを蒸着して、厚さ100μmの金属層(23)を形成した。そして、金属層(23)を形成したニッケル板(21)の片面に、弁膜(63)が形成された厚さ0.5mmのアルミニウム板(22)を重ね合わせ、金属層(23)を介してアルミニウム板(22)とニッケル板(21)とを互いにレーザ溶接して、封口板(2)を作製した。
In order to confirm the effect of the present invention, two types of cylindrical lithium ion secondary batteries (Example and Comparative Example) were prepared by the method described later, and the resistance values of both batteries were compared.
EXAMPLE As shown in FIG. 3, a positive electrode (41) and a negative electrode (43) prepared by applying a positive electrode and a negative electrode active material (44) (46) to two cores (45) and (47), respectively, were separated into separators. (42) was sandwiched between them, and these were spirally wound to produce a wound electrode body (4).
In the production of the sealing plate (2) having a three-layer structure shown in FIG. 4 (b), first, aluminum is vapor-deposited on one surface of a 1 mm thick nickel plate (21) having a central hole (26). A metal layer (23) having a thickness of 100 μm was formed. Then, an aluminum plate (22) having a thickness of 0.5 mm on which the valve membrane (63) is formed is superposed on one surface of the nickel plate (21) on which the metal layer (23) is formed, and the metal layer (23) is interposed therebetween. The aluminum plate (22) and the nickel plate (21) were laser welded together to produce the sealing plate (2).

図3に示す如く、巻き取り電極体(4)の正極側の端縁(48)には、アルミニウム製の正極集電板(51)をレーザ溶接し、巻き取り電極体(4)の負極側の端縁(48)には、ニッケル製の負極集電板(52)をレーザ溶接した。そして、図1に示す如く、正極集電板(51)及び負極集電板(52)が溶接された巻き取り電極体(4)を有底筒体(11)内に収容して、負極集電板(52)を有底筒体(11)の底面に抵抗溶接し、正極集電板(51)のリード部(53)を封口板(2)の裏面に抵抗溶接した。
更に、有底筒体(11)の開口部から有底筒体(11)内に電解液を注入した後、図1に示す如く、有底筒体(11)の開口部に絶縁部材(13)を介して封口板(2)をかしめ固定して、実施例の円筒型リチウムイオン二次電池を作製した。
As shown in FIG. 3, the positive electrode current collector plate (51) made of aluminum is laser-welded to the positive electrode side edge (48) of the winding electrode body (4), and the negative electrode side of the winding electrode body (4) A nickel negative electrode current collector plate (52) was laser welded to the edge (48). Then, as shown in FIG. 1, the winding electrode body (4) to which the positive electrode current collecting plate (51) and the negative electrode current collecting plate (52) are welded is accommodated in the bottomed cylindrical body (11), and the negative electrode current collecting plate is accommodated. The electric plate (52) was resistance welded to the bottom surface of the bottomed cylindrical body (11), and the lead portion (53) of the positive electrode current collector plate (51) was resistance welded to the back surface of the sealing plate (2).
Furthermore, after injecting the electrolyte into the bottomed cylinder (11) from the opening of the bottomed cylinder (11), as shown in FIG. 1, the insulating member (13 ) To fix the sealing plate (2) by caulking, to produce a cylindrical lithium ion secondary battery of the example.

比較例
図5に示す如く、中央孔(26)を開設した厚さ1mmのニッケル板(61)と、弁膜(63)が形成された厚さ0.5mmのアルミニウム板(62)とを重ねた状態で、アルミニウム板(62)とニッケル板(61)とをレーザ溶接して2層構造の封口板(6)を作製したこと以外は実施例と同様にして、比較例の円筒型リチウムイオン二次電池を作製した。
Comparative Example As shown in FIG. 5, a 1 mm thick nickel plate (61) having a central hole (26) and a 0.5 mm thick aluminum plate (62) on which a valve membrane (63) was formed were stacked. In the same manner as in the Example, except that the aluminum plate (62) and the nickel plate (61) were laser welded to produce a two-layer sealing plate (6). A secondary battery was produced.

電池の抵抗測定
実施例及び比較例における周波数1kHzでの電池の抵抗値を測定した。
抵抗測定の結果を下記表1に示す。
Battery Resistance Measurement The battery resistance value at a frequency of 1 kHz in Examples and Comparative Examples was measured.
The results of resistance measurement are shown in Table 1 below.

Figure 2006164714
Figure 2006164714

測定結果から明らかなように、実施例のリチウムイオン二次電池は、比較例のリチウムイオン二次電池よりも抵抗値が低く、充放電性能が向上したことが分かる。
これは、ニッケル板の片面にアルミニウムを蒸着して作製した3層構造の封口板の方が、アルミニウムを蒸着せずに作製した2層構造の封口板に比べて、ニッケル板とアルミニウム板との接合面積が大きく、これによって低抵抗になったものである。
従って、本発明の非水電解液二次電池によれば、電池の低抵抗化を図ることが出来、これによって高い充放電性能が得られる。
As is apparent from the measurement results, it can be seen that the lithium ion secondary batteries of the examples have lower resistance values and improved charge / discharge performance than the lithium ion secondary batteries of the comparative examples.
This is because the three-layered sealing plate produced by vapor-depositing aluminum on one side of the nickel plate is compared with the two-layered sealing plate produced without vapor-depositing aluminum. The junction area is large, which results in low resistance.
Therefore, according to the non-aqueous electrolyte secondary battery of the present invention, the resistance of the battery can be reduced, and thereby high charge / discharge performance can be obtained.

尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば本実施例においては、ニッケル製の第1金属板(21)の第2金属板(22)との対向面に、アルミニウム製の金属層(23)を蒸着したが、これに代えて、アルミニウム製の第2金属板(22)の第1金属板(21)との対向面にニッケル蒸着層を形成した構成を採用することも可能である。
又、金属層(23)は蒸着により形成したが、例えばスパッタリング法等の他の周知の薄膜形成方法により形成してもよい。
更に、第1金属板(21)はニッケル製、第2金属板(22)はアルミニウム製としたが、第1金属板(21)をステンレス鋼、又は鉄の芯体にニッケル鍍金を施した材料から形成してもよく、第2金属板(22)は、アルミニウム合金から形成してもよい。
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, in the present embodiment, an aluminum metal layer (23) is deposited on the surface of the first metal plate (21) made of nickel facing the second metal plate (22). It is also possible to adopt a configuration in which a nickel vapor deposition layer is formed on the surface of the second metal plate (22) made of the second metal plate (22) facing the first metal plate (21).
The metal layer (23) is formed by vapor deposition, but may be formed by other well-known thin film forming methods such as sputtering.
Furthermore, the first metal plate (21) is made of nickel, and the second metal plate (22) is made of aluminum. However, the first metal plate (21) is made of stainless steel or an iron core with nickel plating. The second metal plate (22) may be formed from an aluminum alloy.

本発明の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of this invention. 図1の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of FIG. 巻き取り電極体の一部展開斜視図である。It is a partial expansion perspective view of a winding electrode body. 封口板の構成を示す断面図である。It is sectional drawing which shows the structure of a sealing board. 従来の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the conventional cylindrical lithium ion secondary battery. 図5の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of FIG.

符号の説明Explanation of symbols

(1) 電池缶
(11) 有底筒体
(2) 封口板
(21) 第1金属板
(22) 第2金属板
(23) 金属層
(24) 弁膜
(26) 中央孔
(4) 巻き取り電極体
(51) 正極集電板
(52) 負極集電板
(1) Battery can
(11) Bottomed cylinder
(2) Sealing plate
(21) First metal plate
(22) Second metal plate
(23) Metal layer
(24) Valve membrane
(26) Central hole
(4) Winding electrode body
(51) Positive current collector
(52) Negative current collector

Claims (5)

有底筒体(11)の開口部に封口板(2)を固定してなる電池缶(1)の内部に、非水電解液を含浸した電極体(4)が収容され、電池缶(1)に設けた一対の電極端子部から電極体(4)の発生電力を取り出すことが出来る非水電解液二次電池において、前記封口板(2)は、第1金属板(21)と第2金属板(22)の間に金属層(23)を介在させて両金属板(21)(22)を互いに溶接固定した積層構造を有し、第1金属板(21)は電池缶(1)の外部に面する一方、第2金属板(22)は電池缶(1)の内部に面し、第1金属板(21)は第2金属板(22)よりも強度の高い金属によって形成され、第2金属板(22)は第1金属板(21)よりも前記非水電解液に対する耐腐食性の高い金属によって形成され、前記金属層(23)は、何れか一方の金属板の他方の金属板との対向面に、該他方の金属板と同材質の金属を薄膜形成方法により成膜して形成されていることを特徴とする非水電解液二次電池。   An electrode body (4) impregnated with a non-aqueous electrolyte is accommodated in a battery can (1) formed by fixing a sealing plate (2) to an opening of a bottomed cylindrical body (11). In the non-aqueous electrolyte secondary battery in which the electric power generated by the electrode body (4) can be taken out from a pair of electrode terminal portions provided on the sealing plate (2), the sealing plate (2) includes the first metal plate (21) and the second metal plate (21). It has a laminated structure in which a metal layer (23) is interposed between metal plates (22) and both metal plates (21) and (22) are fixed to each other by welding. The first metal plate (21) is a battery can (1). The second metal plate (22) faces the inside of the battery can (1), and the first metal plate (21) is made of a metal having higher strength than the second metal plate (22). The second metal plate (22) is made of a metal having a higher corrosion resistance to the non-aqueous electrolyte than the first metal plate (21), and the metal layer (23) is the other of the metal plates. On the surface facing the other metal plate, the same metal material as the other metal plate is thinned. Non-aqueous electrolyte secondary battery, characterized by being formed by forming a forming method. 前記封口板(2)は、前記第1金属板(21)と第2金属板(22)とを互いにレーザ溶接或いは超音波溶接して構成される請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary according to claim 1, wherein the sealing plate (2) is configured by laser welding or ultrasonic welding of the first metal plate (21) and the second metal plate (22) to each other. battery. 前記封口板(2)の厚さが1mm以上である請求項1又は請求項2に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the sealing plate (2) has a thickness of 1 mm or more. 前記第1金属板(21)には中央孔(26)が開設され、第2金属板(22)には、前記第1金属板(21)の中央孔(26)と対向する領域に、内圧が所定値を超えたときに解放すべき弁膜(24)が形成されている請求項1乃至請求項3の何れかに記載の非水電解液二次電池。   The first metal plate (21) has a central hole (26), and the second metal plate (22) has an internal pressure in a region facing the central hole (26) of the first metal plate (21). The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein a valve membrane (24) to be released when the value exceeds a predetermined value. 封口板(2)の第1金属板(21)はステンレス鋼、ニッケル、又は鉄の芯体にニッケル鍍金を施した材料から形成され、第2金属板(22)は、アルミニウム又はアルミニウム合金から形成され、金属層(23)はアルミニウム又はニッケルから形成されている請求項1乃至請求項4の何れかに記載の非水電解液二次電池。   The first metal plate (21) of the sealing plate (2) is made of a stainless steel, nickel or iron core plated with nickel, and the second metal plate (22) is made of aluminum or an aluminum alloy. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the metal layer (23) is made of aluminum or nickel.
JP2004353625A 2004-12-07 2004-12-07 Non-aqueous electrolytic liquid secondary battery Withdrawn JP2006164714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353625A JP2006164714A (en) 2004-12-07 2004-12-07 Non-aqueous electrolytic liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353625A JP2006164714A (en) 2004-12-07 2004-12-07 Non-aqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JP2006164714A true JP2006164714A (en) 2006-06-22

Family

ID=36666483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353625A Withdrawn JP2006164714A (en) 2004-12-07 2004-12-07 Non-aqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JP2006164714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069779A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
KR101862437B1 (en) * 2014-10-02 2018-05-29 주식회사 엘지화학 Cap assembly for secondary battery and manufacturing method the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069779A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
KR101631250B1 (en) 2013-12-16 2016-06-16 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
KR101862437B1 (en) * 2014-10-02 2018-05-29 주식회사 엘지화학 Cap assembly for secondary battery and manufacturing method the same

Similar Documents

Publication Publication Date Title
JP5583421B2 (en) Square sealed secondary battery and method for manufacturing square sealed secondary battery
JP6093874B2 (en) Prismatic secondary battery
JP2009110751A (en) Secondary battery
US20160155998A1 (en) Secondary battery
JP2010257945A (en) Secondary battery
US20190221824A1 (en) Non-aqueous electrolyte secondary battery
JP2011119214A (en) Secondary battery
WO2012090599A1 (en) Cylindrical battery and method of manufacturing thereof
JP2018133323A (en) Power storage device
CN114982038A (en) Electrode assembly including anti-fault layer and method of manufacturing the same
JP3831595B2 (en) Cylindrical secondary battery
JP6838640B2 (en) Power storage device
CN108292732B (en) Battery with a battery cell
WO2013024774A1 (en) Cylindrical secondary battery
JP4780954B2 (en) Secondary battery
JP3707945B2 (en) Cylindrical battery
JP2018055904A (en) Electrochemical cell and manufacturing method of the electrochemical cell
JP6447015B2 (en) Power storage device and method for manufacturing power storage device
JP5158435B2 (en) Battery and manufacturing method thereof
JP2013054998A (en) Square battery and manufacturing method therefor
JP5747082B2 (en) Cylindrical secondary battery
WO2018150829A1 (en) Power storage device
JP2006164714A (en) Non-aqueous electrolytic liquid secondary battery
JP7278154B2 (en) electrochemical cell
JP2012185912A (en) Cylindrical secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091120