JP2006164546A - Separator - Google Patents

Separator Download PDF

Info

Publication number
JP2006164546A
JP2006164546A JP2004349721A JP2004349721A JP2006164546A JP 2006164546 A JP2006164546 A JP 2006164546A JP 2004349721 A JP2004349721 A JP 2004349721A JP 2004349721 A JP2004349721 A JP 2004349721A JP 2006164546 A JP2006164546 A JP 2006164546A
Authority
JP
Japan
Prior art keywords
separator
metal plate
flow path
fuel gas
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349721A
Other languages
Japanese (ja)
Inventor
Takeharu Kuramochi
竹晴 倉持
Takayuki Hirao
隆行 平尾
Nobufumi Oe
伸史 大江
Yasue Tanaka
安栄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004349721A priority Critical patent/JP2006164546A/en
Priority to PCT/JP2005/020943 priority patent/WO2006059478A1/en
Publication of JP2006164546A publication Critical patent/JP2006164546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator capable of increasing conductivity by reducing contact resistance and achieving the substantial reduction of the number of parts. <P>SOLUTION: This separator is provided with a first metal plate 16, a second metal plate 17 disposed facing the first metal plate 16 with a prescribed space between and a plurality of partition members arranged between the first metal plate 16 and the second metal plate 17 and making the metal plate 16, 17 conductive with each other. In the separator 15, a plurality of recessed parts 25 and protruded parts 26 which constitute a flow passage are alternately formed in an area contributing to at least power generation, the flow passage formed on one surface serves as a fuel gas flow passage 27 in which fuel gas circulates, the flow passage formed on the other surface serves as an oxidation gas flow passage 28 in which an oxidation gas circulates, and the flow passage formed with the partition members 18 serves as a coolant passage 29 in which cooling water circulates. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池を構成するセパレータに関し、詳細には、燃料ガス流路及び酸化剤ガス流路と交差する方向に冷媒流路を形成した、新規なセパレータに関する。   The present invention relates to a separator constituting a fuel cell, and more particularly, to a novel separator in which a refrigerant flow path is formed in a direction intersecting with a fuel gas flow path and an oxidant gas flow path.

例えば、高分子電解質膜の両面に水素と酸素を供給して起電力を発生させる燃料電池では、単位体積当たりの起電力をより一層高めるために、金属製の薄板をプレス加工してガス流路を形成する、いわゆる薄板金属セパレータの開発がなされている。   For example, in a fuel cell in which hydrogen and oxygen are supplied to both surfaces of a polymer electrolyte membrane to generate electromotive force, a metal thin plate is pressed to form a gas flow path in order to further increase the electromotive force per unit volume. A so-called thin metal separator that forms a thin film has been developed.

かかる薄板金属セパレータを用いた燃料電池としては、例えば、接合体(固体高分子電解質膜)を挟んでその一方の面に、凹凸形状の流路を形成した第1セパレータを配置し、他方の面に、やはり凹凸形状の流路を形成した2枚のセパレータで板ばねを挟んだ積層構造とした第2セパレータを配置してなる、単セルの複数個を積層した構造としている(例えば、特許文献1参照)。
特開2002−367665号公報(第2頁および第3頁、第5図および第図6)
As a fuel cell using such a thin metal separator, for example, a first separator having a concavo-convex channel is disposed on one side of a bonded body (solid polymer electrolyte membrane), and the other side. In addition, a structure in which a plurality of single cells are laminated, in which a second separator having a laminated structure in which a leaf spring is sandwiched between two separators each having an uneven channel, is arranged (for example, Patent Documents). 1).
Japanese Patent Application Laid-Open No. 2002-367665 (Pages 2 and 3; FIGS. 5 and 6)

しかしながら、特許文献1に記載の燃料電池では、単セル自体の厚みが厚いため、単位体積当たりの出力が低下する。また、この燃料電池では、単セルの部品点数が多いことから、それら構成部品間の接触抵抗が増大し、導電性の向上が困難である。さらに、かかる燃料電池では、部品点数増加によるコストアップや重量増加の課題が残る。   However, in the fuel cell described in Patent Document 1, since the single cell itself is thick, the output per unit volume is reduced. Moreover, in this fuel cell, since the number of parts of a single cell is large, the contact resistance between these components increases, and it is difficult to improve conductivity. Furthermore, in such a fuel cell, the problem of cost increase and weight increase due to an increase in the number of parts remains.

そこで、本発明は、接触抵抗の低減を図り導電性を高めると共に部品点数の大幅な削減を実現することのできるセパレータを提供することを目的とする。   Therefore, an object of the present invention is to provide a separator that can reduce contact resistance to increase conductivity and realize a significant reduction in the number of components.

本発明のセパレータは、第1の金属板と、この第1の金属板に対して所定間隔を置いて対向配置された第2の金属板と、これら第1の金属板と第2の金属板との間に複数配置されると共にこれら金属板同士を導通させる仕切部材とを備える。   The separator of the present invention includes a first metal plate, a second metal plate disposed opposite to the first metal plate at a predetermined interval, and the first metal plate and the second metal plate. And a plurality of partition members for conducting the metal plates.

そして、本発明に係るセパレータは、少なくとも発電に寄与する領域に流路を構成する凹条部と凸条部を交互に複数形成しており、一方の面に形成された流路を、燃料ガスが流通する燃料ガス流路とし、他方の面に形成された流路を、酸化剤ガスが流通する酸化剤ガス流路とし、さらに、前記仕切部材によって形成された流路を、冷却水が流通する冷媒流路としている。   In the separator according to the present invention, a plurality of concave and convex ridges constituting the flow path are alternately formed at least in a region contributing to power generation, and the flow path formed on one surface is provided with fuel gas. The flow path formed on the other surface is the oxidant gas flow path through which the oxidant gas flows, and the cooling water flows through the flow path formed by the partition member. The refrigerant flow path is used.

本発明のセパレータによれば、第1の金属板と第2の金属板との間に複数配置した仕切板によって形成された流路を、冷却水が流通する冷媒流路としているので、1つのセパレータで燃料ガス流路と酸化剤ガス流路及び冷媒流路を持つことができる。   According to the separator of the present invention, the flow path formed by the plurality of partition plates arranged between the first metal plate and the second metal plate is used as the coolant flow path through which the cooling water flows. The separator can have a fuel gas channel, an oxidant gas channel, and a refrigerant channel.

したがって、本発明のセパレータを高分子電解質膜を挟んで燃料電池単セルを構成し、その燃料電池単セルの複数個を積層すれば、燃料電池単セルの積層ピッチの縮減を図ることができると共に接触抵抗も減らせるので、単位体積当たりの起電力を高めることができ、燃料電池全体としての出力を大幅に向上させることができる。   Therefore, if a separator of the present invention is used to constitute a single fuel cell with a polymer electrolyte membrane sandwiched, and a plurality of the fuel cell single cells are stacked, the stacking pitch of the single fuel cell can be reduced. Since the contact resistance can also be reduced, the electromotive force per unit volume can be increased, and the output of the entire fuel cell can be greatly improved.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

先ず、燃料電池スタックの全体構成について簡単に説明する。図1は燃料電池スタックの全体構成を示す斜視図である。   First, the overall configuration of the fuel cell stack will be briefly described. FIG. 1 is a perspective view showing the overall configuration of the fuel cell stack.

燃料電池スタック1は、図1に示すように、燃料ガスと酸化剤ガスの反応により起電力を生じる単位電池としての燃料電池単セル2を所定数だけ積層した積層体3とされ、その積層体3の両端に集電板4、絶縁板5およびエンドプレート6を配置し、該積層体3の内部に貫通した貫通孔(図示は省略する)にタイロッド7を貫通させ、そのタイロッド7の端部にナット(図示は省略する)を螺合させることで構成されている。   As shown in FIG. 1, the fuel cell stack 1 is a laminated body 3 in which a predetermined number of fuel cell single cells 2 as unit cells that generate an electromotive force by the reaction of fuel gas and oxidant gas are laminated. Current collector plate 4, insulating plate 5, and end plate 6 are arranged at both ends of 3, and a tie rod 7 is passed through a through-hole (not shown) penetrating through the laminated body 3. And a nut (not shown) are screwed together.

この燃料電池スタック1においては、燃料ガス及び酸化剤ガスをそれぞれ各燃料電池単セル2のセパレータに形成された流路に流通させるための燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11を、一方のエンドプレート6に形成している。   In the fuel cell stack 1, a fuel gas introduction port 8, a fuel gas discharge port 9, and an oxidant gas for allowing the fuel gas and the oxidant gas to flow through the flow paths formed in the separators of the respective fuel cell single cells 2. An inlet 10 and an oxidant gas outlet 11 are formed in one end plate 6.

また、この燃料電池スタック1では、各燃料電池単セル2のセパレータに形成された冷媒流路に冷却水を流通させるための冷却水導入口12と冷却水排出口(図示は省略する)を、当該燃料電池スタック1の上面及び下面に設けられたタンク部13に形成している。   Further, in this fuel cell stack 1, a cooling water inlet 12 and a cooling water discharge port (not shown) for circulating cooling water through the refrigerant flow path formed in the separator of each fuel cell single cell 2, The fuel cell stack 1 is formed in tank portions 13 provided on the upper and lower surfaces of the fuel cell stack 1.

燃料ガスは、燃料ガス導入口8より導入されてセパレータに形成された燃料ガス供給用の流路を流れ、燃料ガス排出口9より排出される。酸化剤ガスは、酸化剤ガス導入口10より導入されてセパレータに形成された酸化剤ガス供給用の流路を流れ、酸化剤ガス排出口11より排出される。冷却水は、燃料電池スタック1の上面に設けられたタンク部13の冷却水導入口12より導入された後、各セパレータに形成された冷媒流路を流れ、下面に設けられたタンク部13の冷却水排出口より排出される。   The fuel gas is introduced from the fuel gas introduction port 8, flows through the fuel gas supply channel formed in the separator, and is discharged from the fuel gas discharge port 9. The oxidant gas is introduced from the oxidant gas introduction port 10, flows through the oxidant gas supply passage formed in the separator, and is discharged from the oxidant gas discharge port 11. The cooling water is introduced from the cooling water inlet 12 of the tank portion 13 provided on the upper surface of the fuel cell stack 1, and then flows through the refrigerant flow path formed in each separator, and is supplied to the tank portion 13 provided on the lower surface. It is discharged from the cooling water outlet.

燃料電池単セル2は、膜電極接合体(MEA:membrane electrode assembly)と、この膜電極接合体の両面にそれぞれ配置されるセパレータとから構成される。膜電極接合体は、例えば水素イオンを通す高分子電解質膜である固体高分子電解質膜と、アノード触媒とガス拡散層からなるアノード電極と、カソード触媒とガス拡散層からなるカソード電極(何れも図示は省略する)とからなる。かかる膜電極接合体は、アノード電極とカソード電極によって、固体高分子電解質膜をその両側から挟み込んだ積層構造とされている。   The fuel cell single cell 2 includes a membrane electrode assembly (MEA) and separators disposed on both surfaces of the membrane electrode assembly. The membrane electrode assembly includes, for example, a solid polymer electrolyte membrane that is a polymer electrolyte membrane that allows hydrogen ions to pass through, an anode electrode that includes an anode catalyst and a gas diffusion layer, and a cathode electrode that includes a cathode catalyst and a gas diffusion layer (both illustrated) Is omitted). Such a membrane electrode assembly has a laminated structure in which a solid polymer electrolyte membrane is sandwiched from both sides by an anode electrode and a cathode electrode.

セパレータ15は、図2から図4に示すように、第1の金属板16と、この第1の金属板16に対して所定間隔を置いて対向配置された第2の金属板17と、これら第1の金属板16と第2の金属板17との間に所定間隔を置いて複数配置されると共にこれら金属板16、17同士を通電させる仕切部材18とからなり、これらが一体的に形成されている。   As shown in FIGS. 2 to 4, the separator 15 includes a first metal plate 16, a second metal plate 17 disposed to face the first metal plate 16 at a predetermined interval, and these The first metal plate 16 and the second metal plate 17 are arranged in a plurality with a predetermined interval and are composed of a partition member 18 for energizing the metal plates 16 and 17, and these are integrally formed. Has been.

かかるセパレータ15には、前記した燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10及び酸化剤ガス排出口11と連通するそれぞれのマニホールド19、20、21、22が形成されている。例えば、図2で示すセパレータ15の左側下から上へ順次、燃料ガス導入用マニホールド19、酸化剤ガス導入用マニホールド20とされている。また、セパレータ15の右側下から上へ順次、酸化剤ガス排出用マニホールド21、燃料ガス排出用マニホールド22とされている。   The separator 15 has manifolds 19, 20, 21, 22 communicating with the fuel gas inlet 8, fuel gas outlet 9, oxidant gas inlet 10, and oxidant gas outlet 11. Yes. For example, the fuel gas introduction manifold 19 and the oxidant gas introduction manifold 20 are sequentially formed from the lower left side to the upper side of the separator 15 shown in FIG. Further, an oxidant gas discharge manifold 21 and a fuel gas discharge manifold 22 are sequentially formed from the lower right side to the upper side of the separator 15.

また、セパレータ15には、タイロッド7を貫通させるスタッキング孔23が形成されている。スタッキング孔23は、例えばセパレータ15の四隅に円形孔として形成されている。さらに、このセパレータ15には、後述する燃料ガス及び酸化剤ガスを流通させる流路と燃料ガス導入用マニホールド19及び燃料ガス排出用マニホールド22をその内部に取り囲むように形成されるシール部材24が設けられている。かかるシール部材24は、例えば断面三角形状或いは半円形状をなす凸条とされ、いわゆる一筆書きとして形成されている。   Further, the separator 15 is formed with a stacking hole 23 through which the tie rod 7 passes. The stacking holes 23 are formed as circular holes at the four corners of the separator 15, for example. Further, the separator 15 is provided with a flow path for flowing a fuel gas and an oxidant gas, which will be described later, and a seal member 24 formed so as to surround the fuel gas introduction manifold 19 and the fuel gas discharge manifold 22 therein. It has been. The seal member 24 is, for example, a convex strip having a triangular cross-section or a semicircular shape, and is formed as a so-called single stroke.

また、セパレータ15には、発電に寄与するアクティブ領域(膜電極接合体と接する中央部分の領域)に、流路を構成する凹条部25と凸条部26を交互に複数形成した凹凸形状(いわゆるコルゲート形状)を形成している。これら凹条部25及び凸条部26は、セパレータ15の長手方向に沿って形成されている。膜電極接合体のアノード側に接して配置されるセパレータ15の一方の面に形成された凹条部25は、膜電極接合体との間に燃料ガス(水素H)を流通させる燃料ガス流路27を構成する。また、膜電極接合体のカソード側に接して配置されるセパレータ15の他方の面に形成された凸条部26は、膜電極接合体との間に酸化剤ガス(酸素O)を流通させる酸化剤ガス流路28を構成する。 Further, the separator 15 has an uneven shape in which a plurality of concave portions 25 and convex portions 26 constituting a flow path are alternately formed in an active region that contributes to power generation (region of a central portion in contact with the membrane electrode assembly) ( So-called corrugated shape). The concave stripe portion 25 and the convex stripe portion 26 are formed along the longitudinal direction of the separator 15. A concave portion 25 formed on one surface of the separator 15 disposed in contact with the anode side of the membrane electrode assembly has a fuel gas flow for allowing a fuel gas (hydrogen H 2 ) to flow between the concave portion 25 and the membrane electrode assembly. A path 27 is formed. Further, the ridge portion 26 formed on the other surface of the separator 15 disposed in contact with the cathode side of the membrane electrode assembly allows an oxidant gas (oxygen O 2 ) to flow between the membrane electrode assembly. An oxidant gas flow path 28 is formed.

例えば、燃料ガスHは、図2に示すように、燃料ガス導入用マニホールド19からセパレータ15の一方の面のアクティブ領域に形成されたそれぞれの燃料ガス流路27を流れた後、燃料ガス排出用マニホールド22へ排出される。酸化剤ガスOは、酸化剤ガス導入用マニホールド20からセパレータ15の他方の面のアクティブ領域に形成されたそれぞれの酸化剤ガス流路28を流れた後、酸化剤ガス排出用マニホールド21へ排出される。 For example, as shown in FIG. 2, the fuel gas H 2 flows from the fuel gas introduction manifold 19 through each fuel gas flow path 27 formed in the active region on one side of the separator 15 and then is discharged. It is discharged to the manifold 22 for use. The oxidant gas O 2 flows from the oxidant gas introduction manifold 20 through each oxidant gas flow path 28 formed in the active region on the other surface of the separator 15, and then is discharged to the oxidant gas discharge manifold 21. Is done.

また、セパレータ15には、冷却水(LLC)を流通させる冷媒流路29が形成されている。冷媒流路29は、少なくともアクティブ領域と対応する部分に形成されており、前記燃料ガス及び酸化剤ガスの流れる方向と交差(直交)する方向に延在して設けられた各仕切部材18の間にそれぞれ形成されている。この仕切部材18で囲まれた空間部からなる冷媒流路29には、燃料ガスH及び酸化剤ガスOが流れる向きと直交する向きに冷却水LLCが流れる。 Further, the separator 15 is formed with a refrigerant channel 29 through which cooling water (LLC) flows. The refrigerant flow path 29 is formed at least in a portion corresponding to the active region, and extends between the partition members 18 provided to extend in a direction intersecting (orthogonal) with the flow direction of the fuel gas and the oxidant gas. Are formed respectively. Coolant water LLC flows through the refrigerant flow path 29 formed by the space surrounded by the partition member 18 in a direction orthogonal to the direction in which the fuel gas H 2 and the oxidant gas O 2 flow.

このように構成されたセパレータ15の凹凸形状は、一定のクリアランスを持たせた金型でプレス加工することにより形成される。そのとき、仕切部材18が潰れて冷媒流路29が閉塞されないようにするために、図5に示すように、当該仕切部材18の一部に肉厚を薄くして屈曲し易くした屈曲脆弱部30を形成する。かかる屈曲脆弱部30を形成することで、セパレータ15を厚み方向にプレス成形して凹凸形状を形成したときに、この屈曲脆弱部30で座屈し易くなるため、当該仕切部材18が潰れてしまうことを防止できる。   The uneven shape of the separator 15 configured as described above is formed by pressing with a mold having a certain clearance. At this time, in order to prevent the partition member 18 from being crushed and the refrigerant flow path 29 from being blocked, as shown in FIG. 30 is formed. By forming such a weakened fragile portion 30, when the separator 15 is press-molded in the thickness direction to form a concavo-convex shape, the bent fragile portion 30 is likely to buckle, so that the partition member 18 is crushed. Can be prevented.

燃料電池スタック1は、前記構成のセパレータ15を膜電極接合体の両側に積層することで燃料電池単セル2を構成し、その燃料電池単セル2の複数個をスタックするすることで積層体を構成し、その積層体の両端に集電板4、絶縁板5及びエンドプレート6を配置させタイロッド7で締結し、さらにタンク部13を取り付けることで構成される。   The fuel cell stack 1 comprises a single fuel cell 2 by laminating the separator 15 having the above-described configuration on both sides of the membrane electrode assembly, and a plurality of fuel cell single cells 2 are stacked to form a laminated body. The current collector plate 4, the insulating plate 5, and the end plate 6 are arranged at both ends of the laminated body, fastened with a tie rod 7, and further a tank portion 13 is attached.

以上のように、本実施の形態によれば、第1の金属板16と第2の金属板17との間に複数配置した仕切板によって形成された流路を、冷却水が流通する冷媒流路29としているので、1つのセパレータ15で燃料ガス流路27と酸化剤ガス流路28及び冷媒流路29を持つことができる。したがって、本実施の形態のセパレータ15を膜電極接合体を挟んで燃料電池単セル2を構成し、その燃料電池単セル2の複数個を積層すれば、燃料電池単セル2の積層ピッチの縮減を図ることができると共に接触抵抗も減らせるので、単位体積当たりの起電力を高めることができ、燃料電池全体としての出力を大幅に向上させることができる。   As described above, according to the present embodiment, the coolant flow in which the cooling water flows through the flow path formed by the plurality of partition plates arranged between the first metal plate 16 and the second metal plate 17. Since the passage 29 is provided, the single gas separator 15 can have the fuel gas passage 27, the oxidant gas passage 28, and the refrigerant passage 29. Therefore, if the fuel cell single cell 2 is configured with the separator 15 of the present embodiment sandwiching the membrane electrode assembly, and a plurality of the fuel cell single cells 2 are stacked, the stacking pitch of the fuel cell single cells 2 is reduced. Since the contact resistance can be reduced, the electromotive force per unit volume can be increased, and the output of the entire fuel cell can be greatly improved.

また、本実施の形態では、図2に示すように、アクティブ領域の凹条部25、凸条部26の長手方向の長さよりも、これと交差する方向の長さが長く形成された縦長形状の例を示したが、車両への搭載性を考慮して、凹条部25、凸条部26の長手方向の長さよりも、これと交差する方向の長さが短く形成された横長形状にしてもよい。その場合には、燃料ガス流路27及び酸化剤ガス流路28の長さに対し交差する方向の冷却水の流路の長さが短くなることから、流路内での温度上昇が低いまま冷却水排出口に戻して循環させることが可能となり、燃料電池スタックの温度と冷却水の温度差を大きくすることが可能で、そのため冷却水の冷却効率が高くなり、また圧力損失も低く冷却水供給用のポンプも小型化することが可能となる。   Further, in the present embodiment, as shown in FIG. 2, a vertically long shape in which the length in the direction intersecting with the longitudinal direction of the concave portion 25 and the convex portion 26 in the active region is longer than the length in the longitudinal direction. However, in consideration of the ease of mounting on a vehicle, the laterally long shape is formed so that the length in the direction intersecting with the concave portions 25 and 26 is shorter than the length in the longitudinal direction. May be. In that case, the length of the cooling water flow path in the direction intersecting the length of the fuel gas flow path 27 and the oxidant gas flow path 28 is shortened, so that the temperature rise in the flow path remains low. It is possible to circulate it back to the cooling water discharge port, and it is possible to increase the temperature difference between the temperature of the fuel cell stack and the cooling water, thereby increasing the cooling efficiency of the cooling water and reducing the pressure loss. The supply pump can also be reduced in size.

また、本実施の形態によれば、仕切部材18に屈曲脆弱部30を設けたので、セパレータ15に燃料ガス流路27及び酸化剤ガス流路28をプレス成形したときに、その屈曲脆弱部30から容易に折れ曲がるため、仕切部材18が潰れて冷媒流路29が閉塞されることを防止できる。   In addition, according to the present embodiment, since the bending fragile portion 30 is provided in the partition member 18, when the fuel gas passage 27 and the oxidant gas passage 28 are press-molded in the separator 15, the bending fragile portion 30. Therefore, the partition member 18 can be prevented from being crushed and the refrigerant flow path 29 being blocked.

以上、本発明を適用した具体的な実施の形態について説明したが、本実施の形態は、上述の実施の形態に制限されることなく種々の変更が可能である。   The specific embodiment to which the present invention is applied has been described above, but the present embodiment is not limited to the above-described embodiment, and various modifications can be made.

例えば、図6に示すように、第1の金属板16と第2の金属板17の間に、お互いに接するようにして中空状の金属パイプ31を、仕切部材18として複数配置するようにしてもよい。金属パイプ31を使用すれば、そのパイプ内の空間部が冷媒流路29となり、またその外周壁が仕切壁となる。金属パイプ31は、例えば第1の金属板16と第2の金属板17に対して、ろう付け、溶接、振動溶着等によって接合する。このように接合一体化された金属板をプレス成形すれば、やはり先の実施の形態と同様の効果を奏するセパレータ15が得られる。   For example, as shown in FIG. 6, a plurality of hollow metal pipes 31 are arranged as partition members 18 so as to be in contact with each other between the first metal plate 16 and the second metal plate 17. Also good. If the metal pipe 31 is used, the space part in the pipe becomes the refrigerant | coolant flow path 29, and the outer peripheral wall becomes a partition wall. For example, the metal pipe 31 is joined to the first metal plate 16 and the second metal plate 17 by brazing, welding, vibration welding, or the like. If the metal plate thus joined and integrated is press-molded, the separator 15 having the same effect as that of the previous embodiment can be obtained.

または、図7に示すように、第1の金属板16と第2の金属板17の間に、所定間隔を置いて中実金属棒32を複数配置するようにしてもよい。中実金属棒32を使用すれば、各中実金属棒32間の空間部が冷媒流路29となり、また当該中実金属棒32自体が仕切壁となる。中実金属棒32には、例えば金属ワイヤーなどを使用する。なお、この中実金属棒32と第1の金属板16及び第2の金属板17との接合は、先の例と同じくろう付け、溶接、振動溶着による。   Alternatively, as shown in FIG. 7, a plurality of solid metal rods 32 may be arranged between the first metal plate 16 and the second metal plate 17 at a predetermined interval. If the solid metal rod 32 is used, the space between the solid metal rods 32 becomes the refrigerant flow path 29, and the solid metal rod 32 itself becomes the partition wall. For the solid metal rod 32, for example, a metal wire or the like is used. The solid metal rod 32 and the first metal plate 16 and the second metal plate 17 are joined by brazing, welding, and vibration welding as in the previous example.

または、図8に示すように、第1の金属板16と第2の金属板17との間にハニカム構造(いわゆる蜂の巣構造)を構成するように仕切部材33を設けてもよい。このようにすれば、先の実施の形態のセパレータ15と同様の効果が得られることに加えて、セパレータ15の機械的強度をより一層高めることができる。   Alternatively, as shown in FIG. 8, a partition member 33 may be provided so as to form a honeycomb structure (so-called honeycomb structure) between the first metal plate 16 and the second metal plate 17. In this way, in addition to obtaining the same effect as the separator 15 of the previous embodiment, the mechanical strength of the separator 15 can be further increased.

または、図9に示すように、仕切部材18を避けた櫛歯形状の凸部34、35を有した上型36と下型37でプレス成形すれば、仕切部材18の損傷を最小限に抑えることができる。   Alternatively, as shown in FIG. 9, if the upper mold 36 and the lower mold 37 having the comb-shaped convex portions 34 and 35 that avoid the partition member 18 are press-molded, damage to the partition member 18 is minimized. be able to.

燃料電池スタックの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a fuel cell stack. セパレータの平面図である。It is a top view of a separator. 図2に示したセパレータのA−A線における拡大断面斜視図である。It is an expanded sectional perspective view in the AA line of the separator shown in FIG. 図2に示したセパレータのB−B線における拡大断面図である。It is an expanded sectional view in the BB line of the separator shown in FIG. 仕切部材に屈曲脆弱部が形成されたセパレータの要部拡大断面図である。It is a principal part expanded sectional view of the separator by which the bending weak part was formed in the partition member. 仕切部材として金属パイプを使用したセパレータの拡大断面図である。It is an expanded sectional view of the separator which uses a metal pipe as a partition member. 仕切部材として中実金属棒を使用したセパレータの拡大断面図である。It is an expanded sectional view of the separator which uses a solid metal rod as a partition member. 冷媒流路をハニカム構造としたセパレータの拡大断面図である。It is an expanded sectional view of the separator which made the refrigerant | coolant flow path the honeycomb structure. 仕切部材を潰さないようにして燃料ガス流路及び酸化剤ガス流路をプレス成形するための金型を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the metal mold | die for press-molding a fuel gas flow path and an oxidant gas flow path so that a partition member may not be crushed.

符号の説明Explanation of symbols

1…燃料電池スタック
2…燃料電池単セル
15…セパレータ
16…第1の金属板
17…第2の金属板
18、33…仕切部材
25…凹条部
26…凸条部
27…燃料ガス流路
28…酸化剤ガス流路
29…冷媒流路
30…屈曲脆弱部
31…金属パイプ
32…中実金属棒
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 2 ... Fuel cell single cell 15 ... Separator 16 ... 1st metal plate 17 ... 2nd metal plate 18, 33 ... Partition member 25 ... Concave part 26 ... Convex part 27 ... Fuel gas flow path 28 ... Oxidant gas flow path 29 ... Refrigerant flow path 30 ... Bending weak part 31 ... Metal pipe 32 ... Solid metal rod

Claims (6)

第1の金属板と、この第1の金属板に対して所定間隔を置いて対向配置された第2の金属板と、これら第1の金属板と第2の金属板との間に複数配置されると共にこれら金属板同士を導通させる仕切部材とを備え、
少なくとも発電に寄与する領域に流路を構成する凹条部と凸条部を交互に複数形成しており、一方の面に形成された流路を、燃料ガスが流通する燃料ガス流路とし、他方の面に形成された流路を、酸化剤ガスが流通する酸化剤ガス流路とし、さらに、前記仕切部材によって形成された流路を、冷却水が流通する冷媒流路とした
ことを特徴とするセパレータ。
A first metal plate, a second metal plate disposed opposite to the first metal plate at a predetermined interval, and a plurality of the metal plates disposed between the first metal plate and the second metal plate And a partition member for conducting the metal plates together,
A plurality of concave and convex ridges constituting the flow path are formed alternately in a region contributing to power generation, and the flow path formed on one surface is a fuel gas flow path through which fuel gas flows, The flow path formed on the other surface is an oxidant gas flow path through which oxidant gas flows, and the flow path formed by the partition member is a refrigerant flow path through which cooling water flows. Separator.
請求項1に記載のセパレータであって、
前記燃料ガス流路及び酸化剤ガス流路と交差して前記冷媒流路を設けた
ことを特徴とするセパレータ。
The separator according to claim 1,
The separator characterized in that the coolant channel is provided so as to intersect the fuel gas channel and the oxidant gas channel.
請求項1または請求項2に記載のセパレータであって、
前記仕切部材は、屈曲脆弱部を有した金属板からなる
ことを特徴とするセパレータ。
The separator according to claim 1 or 2,
The said partition member consists of a metal plate which has a bending weak part. The separator characterized by the above-mentioned.
請求項1または請求項2に記載のセパレータであって、
前記仕切部材は、お互いに接して配置される金属パイプからなる
ことを特徴とするセパレータ。
The separator according to claim 1 or 2,
The partition member is composed of metal pipes arranged in contact with each other.
請求項1または請求項2に記載のセパレータであって、
前記仕切部材は、所定間隔を置いて配置された中実金属棒からなる
ことを特徴とするセパレータ。
The separator according to claim 1 or 2,
The said partition member consists of a solid metal rod arrange | positioned at predetermined intervals. The separator characterized by the above-mentioned.
請求項1に記載のセパレータであって、
前記冷媒流路をハニカム構造とした
ことを特徴とするセパレータ。
The separator according to claim 1,
A separator characterized in that the refrigerant flow path has a honeycomb structure.
JP2004349721A 2004-12-02 2004-12-02 Separator Pending JP2006164546A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004349721A JP2006164546A (en) 2004-12-02 2004-12-02 Separator
PCT/JP2005/020943 WO2006059478A1 (en) 2004-12-02 2005-11-15 Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349721A JP2006164546A (en) 2004-12-02 2004-12-02 Separator

Publications (1)

Publication Number Publication Date
JP2006164546A true JP2006164546A (en) 2006-06-22

Family

ID=36564913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349721A Pending JP2006164546A (en) 2004-12-02 2004-12-02 Separator

Country Status (2)

Country Link
JP (1) JP2006164546A (en)
WO (1) WO2006059478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024345A1 (en) * 2007-08-22 2009-02-26 Daimler Ag Apparatus and method for managing a flow of cooling media in a fuel cell stack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444784B (en) * 2019-07-16 2020-10-30 珠海格力电器股份有限公司 Fuel cell stack and fuel cell stack with same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810600B2 (en) * 1986-09-30 1996-01-31 株式会社日立製作所 Laminated fuel cell separator
JPH02278666A (en) * 1989-04-18 1990-11-14 Fuji Electric Co Ltd Cooling body for fuel cell
JPH10308227A (en) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd Solid high molecular electrolyte type fuel cell
JP3700642B2 (en) * 2001-12-11 2005-09-28 日産自動車株式会社 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024345A1 (en) * 2007-08-22 2009-02-26 Daimler Ag Apparatus and method for managing a flow of cooling media in a fuel cell stack

Also Published As

Publication number Publication date
WO2006059478A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4899339B2 (en) Fuel cell separator
JP4828841B2 (en) Fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JP4871348B2 (en) Fuel cell stack
JP4268536B2 (en) Fuel cell
JP5128861B2 (en) Fuel cell
JP2019096382A (en) Metal separator for fuel cell and fuel cell
JP5042507B2 (en) Fuel cell
JP4259041B2 (en) Fuel cell
JP5180946B2 (en) Fuel cell
JP4803957B2 (en) Internal manifold fuel cell
JP2008021523A (en) Fuel cell stack
WO2012081333A1 (en) Fuel cell
JP4947337B2 (en) Fuel cell separator
JP5274908B2 (en) Fuel cell stack
JP6068218B2 (en) Operation method of fuel cell
JP2006147258A (en) Separator and fuel battery stack
JP2006164546A (en) Separator
JP2016171006A (en) Fuel battery stack
JP2009105005A (en) Fuel cell and its separator
JP2008004300A (en) Press separator for fuel cell
JP4197514B2 (en) Fuel cell system and stack
JP2000067885A (en) Fuel cell
JP7480216B2 (en) Fuel cell separator and power generation cell
US20220302480A1 (en) Fuel cell stack