JP2006163128A - Deflection scanner and scanning optical apparatus - Google Patents

Deflection scanner and scanning optical apparatus Download PDF

Info

Publication number
JP2006163128A
JP2006163128A JP2004356668A JP2004356668A JP2006163128A JP 2006163128 A JP2006163128 A JP 2006163128A JP 2004356668 A JP2004356668 A JP 2004356668A JP 2004356668 A JP2004356668 A JP 2004356668A JP 2006163128 A JP2006163128 A JP 2006163128A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
laser beam
flange member
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356668A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tanaka
嘉彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004356668A priority Critical patent/JP2006163128A/en
Publication of JP2006163128A publication Critical patent/JP2006163128A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deflection scanner and a scanning optical apparatus in which a rotating polygon mirror is accurately assembled into the deflection scanner, incoming and outgoing on a reflection face is reduced, and a high picture quality is realized. <P>SOLUTION: A typical structure of the deflection scanner and the scanning optical apparatus of the present invention is that the deflection scanner has the rotating polygon mirror 3 which deflects and scans a laser luminous flux and a flange member 2 composed of at least one or more members which support the rotating polygon mirror 3 being inserted into the central hole of the rotating polygon mirror 3. The linear thermal expansion coefficient of the flange member 2 is denoted by α1, the linear thermal expansion coefficient of the rotating polygon mirror 3 is denoted by α2, the outer diameter of the outer part 2a of the flange member 2 and the rotating polygon mirror 3 is denoted by D, normal environmental temperature is denoted by tJ, low temperature side operational environmental temperature is denoted by tL, high temperature side operational environmental temperature is denoted by tH, the fitting gap of the outer part 2a is denoted by Δd, then the deflection scanner is characterized by satisfying the conditions D×(α2-α1)×(tJ-tL)<Δd≤0.01 when α1≤α2 holds, and D×(α1-α2)×(tH-tJ)<Δd≤0.01 when α1>α2 holds. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザビームプリンタ等の画像形成装置に用いられ、レーザビームを偏向走査する偏向走査装置及び走査光学装置に関するものである。   The present invention relates to a deflection scanning apparatus and a scanning optical apparatus that are used in an image forming apparatus such as a laser beam printer and deflect and scan a laser beam.

レーザビームプリンタやレ−ザファクシミリ等の画像形成装置に用いられる走査光学装置は、偏向走査装置を備えている。偏向走査装置には、高速回転する回転多面鏡を支える軸受部に安定した滑らかな回転が得られる動圧軸受が広く用いられている。図4は特許文献2(特開2002−130282)に記載されている従来の偏向走査装置を示すものである。   A scanning optical device used in an image forming apparatus such as a laser beam printer or a laser facsimile includes a deflection scanning device. In the deflection scanning device, a dynamic pressure bearing that can obtain a stable and smooth rotation is widely used in a bearing portion that supports a rotating polygon mirror that rotates at high speed. FIG. 4 shows a conventional deflection scanning apparatus described in Patent Document 2 (Japanese Patent Laid-Open No. 2002-130282).

図4に示すように、偏向走査装置は、軸101を軸受孔内に回転自在に支持するスリーブ102と、スリーブ102の下端に固定されて前記軸受孔を封鎖するスラストカバー103と、スラストカバー103に支持されたスラスト板104と、スリーブ102の軸受孔の内側面と軸101の外側面の間や、スラスト板104と軸101の端面の間に充填されたオイルと、を有している。軸101の端面は凸状に形成され、スラスト板104によりピボット状に保持されて、ピボットスラスト軸受を構成する。   As shown in FIG. 4, the deflection scanning apparatus includes a sleeve 102 that rotatably supports a shaft 101 in a bearing hole, a thrust cover 103 that is fixed to the lower end of the sleeve 102 and seals the bearing hole, and a thrust cover 103. And the oil filled between the inner surface of the bearing hole of the sleeve 102 and the outer surface of the shaft 101 and between the thrust plate 104 and the end surface of the shaft 101. The end surface of the shaft 101 is formed in a convex shape, and is held in a pivot shape by a thrust plate 104 to constitute a pivot thrust bearing.

軸101の上部にはフランジ部材110が固定され、フランジ部材110上に回転多面鏡111が載置されている。回転多面鏡111は、反射面111aを有し、押えバネによってフランジ部材110へ押圧されてフランジ部材110およびロータ112と一体的に結合されている。なお、回転多面鏡111の中心穴111bの内径は、軸101の外径より0.05mm程度、大きく、ロータ112に対する回転多面鏡111の組付けは、特許文献3(特開平8−338961)に示すように、回転多面鏡の中心穴111bに軸101を遊嵌させて行われる。   A flange member 110 is fixed to the upper part of the shaft 101, and the rotary polygon mirror 111 is placed on the flange member 110. The rotary polygon mirror 111 has a reflecting surface 111a, and is pressed against the flange member 110 by a presser spring, and is integrally coupled to the flange member 110 and the rotor 112. The inner diameter of the central hole 111b of the rotary polygon mirror 111 is about 0.05 mm larger than the outer diameter of the shaft 101, and the assembly of the rotary polygon mirror 111 to the rotor 112 is disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 8-338961). As shown, the shaft 101 is loosely fitted in the center hole 111b of the rotary polygon mirror.

ロータ112は、永久磁石112aとこれを支持するヨーク112bを有する。スリーブ102には回路基板114が固定され、回路基板114にはステータ113のステータコア113bが立設支持される。ステータコア113bに巻回されたステータコイル113aは、ロータ112の永久磁石112aに対向しており、両者によって回転多面鏡111を回転駆動するモータが構成されている。   The rotor 112 includes a permanent magnet 112a and a yoke 112b that supports the permanent magnet 112a. A circuit board 114 is fixed to the sleeve 102, and a stator core 113 b of the stator 113 is supported upright on the circuit board 114. The stator coil 113a wound around the stator core 113b faces the permanent magnet 112a of the rotor 112, and a motor that rotationally drives the rotary polygon mirror 111 is configured by both of them.

特開平5−134102号公報JP-A-5-134102 特開2002−130282号公報JP 2002-130282 A 特開平8−338961号公報JP-A-8-338961

しかしながら上記従来技術によれば、回転多面鏡の組付けに関して、回転多面鏡111の中心穴111bが軸101に対して遊嵌されているため、回転多面鏡111と軸101の相対位置は前述の寸法差の範囲内で偏心した状態で固定される傾向がある。つまり回転多面鏡111が偏心した量だけ回転多面鏡111の反射面111aの出入りを生じる。   However, according to the above prior art, with respect to the assembly of the rotating polygon mirror, since the center hole 111b of the rotating polygon mirror 111 is loosely fitted to the shaft 101, the relative position of the rotating polygon mirror 111 and the shaft 101 is the same as that described above. There is a tendency to be fixed in an eccentric state within the range of the dimensional difference. That is, the reflecting surface 111a of the rotating polygon mirror 111 is moved in and out by an amount that the rotating polygon mirror 111 is eccentric.

例えば、特開昭61−28919において、光軸に対して所定の角度をもって回転多面鏡にレーザ光束を入射させる走査光学系が開示されている。このような走査光学系では、回転多面鏡の反射面に面の出入りがあると、感光体ドラムのレーザ光束の照射位置において副走査方向にずれが生じ、画像上に周期的なピッチムラが発生してしまう。   For example, Japanese Patent Application Laid-Open No. 61-28919 discloses a scanning optical system in which a laser beam is incident on a rotary polygon mirror at a predetermined angle with respect to the optical axis. In such a scanning optical system, if the surface of the reflecting surface of the rotary polygon mirror enters or exits, a deviation occurs in the sub-scanning direction at the laser beam irradiation position of the photosensitive drum, and periodic pitch unevenness occurs on the image. End up.

また、一般にfθレンズに入射するレーザ光束を、主走査方向において収束したレーザ光束とした場合、回転多面鏡の反射面の出入りが生じると、感光体ドラムのレーザ光束の照射位置において主走査方向にずれが生じ、画像品質の劣化となる。   In general, when the laser beam incident on the fθ lens is a laser beam converged in the main scanning direction, when the reflection surface of the rotary polygon mirror enters or exits, the laser beam irradiation position of the photosensitive drum in the main scanning direction. Deviation occurs, resulting in degradation of image quality.

そこで本発明は、偏向走査装置への回転多面鏡の組付けを精度良く行い、反射面の出入りを低減して、高品位な画像品質を実現することのできる偏向走査装置及び走査光学装置を提供することを目的とする。   Accordingly, the present invention provides a deflection scanning device and a scanning optical device capable of realizing high-quality image quality by accurately assembling the rotary polygon mirror to the deflection scanning device and reducing the entrance and exit of the reflecting surface. The purpose is to do.

上記課題を解決するために本発明に係る偏向走査装置及び走査光学装置の代表的な構成は、レーザ光束を偏向走査する回転多面鏡と、該回転多面鏡の中心穴に嵌合して該回転多面鏡を保持する少なくとも1つ以上の部材から構成された嵌合部材とを有した偏向走査装置において、前記嵌合部材の線膨張係数をα1、前記回転多面鏡の線膨張係数をα2、前記嵌合部材の前記回転多面鏡との嵌合部の外径をD、常温環境温度をtJ、低温側動作環境温度をtL、高温側動作環境温度をtH、該嵌合部の嵌合隙間をΔd、としたとき、
α1≦α2のとき、
D×(α2−α1)×(tJ−tL)<Δd≦0.01、
α1>α2のとき、
D×(α1−α2)×(tH−tJ)<Δd≦0.01、
を満足することを特徴とする。
In order to solve the above problems, a typical configuration of a deflection scanning apparatus and a scanning optical apparatus according to the present invention includes a rotating polygon mirror that deflects and scans a laser beam, and a rotation of the rotating polygon mirror that is fitted into the center hole of the rotating polygon mirror. In a deflection scanning apparatus having a fitting member composed of at least one member for holding a polygon mirror, the linear expansion coefficient of the fitting member is α1, the linear expansion coefficient of the rotary polygon mirror is α2, The outer diameter of the fitting portion of the fitting member with the rotary polygon mirror is D, the normal temperature environment temperature is tJ, the low temperature side operating environment temperature is tL, the high temperature side operating environment temperature is tH, and the fitting gap of the fitting portion is Δd,
When α1 ≦ α2
D × (α2−α1) × (tJ−tL) <Δd ≦ 0.01,
When α1> α2
D × (α1-α2) × (tH−tJ) <Δd ≦ 0.01,
It is characterized by satisfying.

以上説明したように、本発明によれば、回転多面鏡の偏心を極力低減することができ、かつ偏向走査装置の環境温度が変動しても回転多面鏡とフランジ部材または軸とが絞まり嵌めになることがないため、面変形の不具合を回避することが可能である。したがって、斜入射光学系や収束光学系において、感光体ドラム相当位置でのレーザ光束の照射位置ずれ量を低減することができ、高品質な画像を得ることができる。   As described above, according to the present invention, the eccentricity of the rotary polygon mirror can be reduced as much as possible, and the rotary polygon mirror and the flange member or the shaft can be tightly fitted even if the environmental temperature of the deflection scanning device fluctuates. Therefore, it is possible to avoid the problem of surface deformation. Therefore, in the oblique incident optical system and the converging optical system, the amount of laser beam irradiation position deviation at the position corresponding to the photosensitive drum can be reduced, and a high-quality image can be obtained.

[第一実施形態]
本発明に係る偏向走査装置及び走査光学装置の第一実施形態について、図を用いて説明する。図1は本実施形態にかかる偏向走査装置の断面図である。図3は走査光学装置の構成図である。
[First embodiment]
A first embodiment of a deflection scanning device and a scanning optical device according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a deflection scanning apparatus according to this embodiment. FIG. 3 is a configuration diagram of the scanning optical device.

(走査光学装置)
走査光学装置は、レーザビームプリンタやレ−ザファクシミリ等の画像形成装置に用いられる。図3に示すように、走査光学装置は、光源手段である半導体レーザユニット31からはレーザ光束Lを発生させる。レーザ光束Lの光路上には入射光学系を構成するシリンドリカルレンズ32、回転多面鏡3、回転多面鏡3を回転駆動する偏向走査装置34が順次に配列されている。回転多面鏡3の反射方向の光路上には、走査光学系を構成するFθレンズ35及び折り返しミラー36と、被走査面となる感光体ドラム37が配列されている。
(Scanning optical device)
The scanning optical device is used in an image forming apparatus such as a laser beam printer or a laser facsimile. As shown in FIG. 3, the scanning optical device generates a laser beam L from a semiconductor laser unit 31 that is a light source means. On the optical path of the laser beam L, a cylindrical lens 32 constituting the incident optical system, the rotary polygon mirror 3, and a deflection scanning device 34 for rotating the rotary polygon mirror 3 are sequentially arranged. On the optical path in the reflection direction of the rotary polygon mirror 3, an Fθ lens 35 and a folding mirror 36 constituting a scanning optical system and a photosensitive drum 37 serving as a scanning surface are arranged.

走査光学装置は、偏向走査装置と、レーザ光束を出射する光源手段である半導体レーザユニット31と、半導体レーザユニット31からのレーザ光束を回転多面鏡3の反射面に導光する入射光学系を構成するシリンドリカルレンズ32と、回転多面鏡3の反射面3bで反射されたレーザ光束を被走査面に導光する走査光学系を構成するFθレンズ35及び折り返しミラー36と、を有している。シリンドリカルレンズ32からのレーザ光束は回転多面鏡3の反射面3bに主走査断面内で収束光束で入射している。   The scanning optical device includes a deflection scanning device, a semiconductor laser unit 31 that is a light source unit that emits a laser beam, and an incident optical system that guides the laser beam from the semiconductor laser unit 31 to the reflecting surface of the rotary polygon mirror 3. A cylindrical lens 32, and an Fθ lens 35 and a folding mirror 36 constituting a scanning optical system that guides the laser beam reflected by the reflecting surface 3b of the rotating polygon mirror 3 to the surface to be scanned. The laser beam from the cylindrical lens 32 is incident on the reflecting surface 3b of the rotary polygon mirror 3 as a convergent beam within the main scanning section.

また、感光体ドラム37の有効画像領域外に偏向走査されるレーザ光束Lの一部を反射する信号検知ミラー38が配置され、信号検知ミラー38の反射方向の光路上には結像レンズ39と信号検知センサ310が設けられている。光学部材は光学箱311と蓋(不図示)等により密閉された空間に収容されている。   In addition, a signal detection mirror 38 that reflects a part of the laser beam L that is deflected and scanned outside the effective image area of the photosensitive drum 37 is disposed, and an imaging lens 39 and an optical path in the reflection direction of the signal detection mirror 38 are disposed. A signal detection sensor 310 is provided. The optical member is accommodated in a space sealed by an optical box 311 and a lid (not shown).

半導体レーザユニット31から発生させたレーザ光束Lは、シリンドリカルレンズ32によって回転多面鏡3上に線像を結像する。そして、このレーザ光束Lは回転多面鏡3を偏向走査装置34により回転させることによって偏向され、Fθレンズ35によって、折り返しミラー36で反射され感光体ドラム37上に結像走査される。   The laser beam L generated from the semiconductor laser unit 31 forms a line image on the rotary polygon mirror 3 by the cylindrical lens 32. The laser beam L is deflected by rotating the rotary polygon mirror 3 by the deflection scanning device 34, reflected by the folding mirror 36 by the Fθ lens 35, and image-scanned on the photosensitive drum 37.

Fθレンズ35は、回転多面鏡3において反射される光束が感光体ドラム37上においてスポットを形成するように集光され、またスポットの走査速度が等速に保たれるように設計されている。このようなFθレンズ35の特性を得るために、Fθレンズ35は球面レンズまたはトーリックレンズ35a、35bの2つのレンズで構成されている。 The Fθ lens 35 is designed such that the light beam reflected by the rotary polygon mirror 3 is condensed so as to form a spot on the photosensitive drum 37, and the scanning speed of the spot is kept constant. In order to obtain such characteristics of the Fθ lens 35, the Fθ lens 35 is composed of two lenses, a spherical lens or toric lenses 35a and 35b.

また、偏向されたレーザ光束Lの一部は画像領域外の部分を利用して信号検知ミラー38によって反射され、結像レンズ39を介して、信号検知センサ310に導かれて検知され、書き出し位置調整が行われる。   Further, a part of the deflected laser beam L is reflected by the signal detection mirror 38 using a portion outside the image region, guided to the signal detection sensor 310 via the imaging lens 39, and detected, and the writing position Adjustments are made.

回転多面鏡3の回転によって、感光体ドラム37においては光束による主走査が行われ、また、感光体ドラム37がその円筒の軸線まわりに回転駆動することによって副走査が行われる。このようにして感光体の表面には静電潜像が形成される。   By the rotation of the rotary polygon mirror 3, the main scanning by the light beam is performed on the photosensitive drum 37, and the sub scanning is performed by rotating the photosensitive drum 37 around the axis of the cylinder. In this way, an electrostatic latent image is formed on the surface of the photoreceptor.

(偏向走査装置)
図1に示すように、偏向走査装置は、軸1、嵌合部材であるフランジ部材2、回転多面鏡3、押えバネ4、Gリング5を備えている。また、偏向走査装置は、軸1を軸受孔内に回転自在に支持するスリーブ102と、スリーブ102の下端に固定されて前記軸受孔を封鎖するスラストカバー103と、スラストカバー103に支持されたスラスト板104と、スリーブ102の軸受孔の内側面と軸1の外側面の間や、スラスト板104と軸1の端面の間に充填されたオイルと、を有している。軸1の端面は凸状に形成され、スラスト板104によりピボット状に保持されて、ピボットスラスト軸受を構成する。
(Deflection scanning device)
As shown in FIG. 1, the deflection scanning apparatus includes a shaft 1, a flange member 2 that is a fitting member, a rotary polygon mirror 3, a presser spring 4, and a G ring 5. Further, the deflection scanning device includes a sleeve 102 that rotatably supports the shaft 1 in the bearing hole, a thrust cover 103 that is fixed to the lower end of the sleeve 102 and seals the bearing hole, and a thrust supported by the thrust cover 103. The plate 104 has oil filled between the inner surface of the bearing hole of the sleeve 102 and the outer surface of the shaft 1 and between the thrust plate 104 and the end surface of the shaft 1. The end surface of the shaft 1 is formed in a convex shape and is held in a pivot shape by a thrust plate 104 to constitute a pivot thrust bearing.

軸1の上部にはフランジ部材2が固定され、フランジ部材2上に回転多面鏡3が載置されている。回転多面鏡3は、反射面3bを有し、押えバネ4によってフランジ部材2へ押圧されてフランジ部材2およびロータ112と一体的に結合されている。   A flange member 2 is fixed to the upper portion of the shaft 1, and a rotary polygon mirror 3 is placed on the flange member 2. The rotary polygon mirror 3 has a reflecting surface 3 b and is pressed against the flange member 2 by the presser spring 4 and is integrally coupled to the flange member 2 and the rotor 112.

ロータ112は、永久磁石112aとこれを支持するヨーク112bを有する。スリーブ102には回路基板114が固定されている。巻回されたステータコイル113aは、ロータ112の永久磁石112aに対向しており、両者によって回転多面鏡3を回転駆動するモータが構成されている。   The rotor 112 includes a permanent magnet 112a and a yoke 112b that supports the permanent magnet 112a. A circuit board 114 is fixed to the sleeve 102. The wound stator coil 113a faces the permanent magnet 112a of the rotor 112, and a motor that rotationally drives the rotary polygon mirror 3 is configured by both of them.

(フランジ部材2の外形部2aと回転多面鏡3の内径部3aとの関係)
上述の構成において、フランジ部材2の外形部2aと回転多面鏡3の中心穴である内径部3aとの関係について説明する。フランジ部材2の嵌合部である外形部2aの外径をD1[mm]、フランジ部材2の線膨張係数をα1、回転多面鏡3の内径部3aの内径をD2[mm]、回転多面鏡3の線膨張係数をα2、常温環境温度をtJ、低温側動作環境温度をtL、高温側動作環境温度をtH、外径D1と内径D2との差をΔd[mm]とすると、Δdは、以下の式を満足した関係となっている。
(Relationship between the outer shape portion 2a of the flange member 2 and the inner diameter portion 3a of the rotary polygon mirror 3)
In the above configuration, the relationship between the outer shape portion 2a of the flange member 2 and the inner diameter portion 3a that is the center hole of the rotary polygon mirror 3 will be described. The outer diameter of the outer portion 2a that is the fitting portion of the flange member 2 is D1 [mm], the linear expansion coefficient of the flange member 2 is α1, the inner diameter of the inner diameter portion 3a of the rotary polygon mirror 3 is D2 [mm], and the rotary polygon mirror When the linear expansion coefficient of 3 is α2, the ambient temperature environment temperature is tJ, the low temperature side operating environment temperature is tL, the high temperature side operating environment temperature is tH, and the difference between the outer diameter D1 and the inner diameter D2 is Δd [mm], Δd is The relationship satisfies the following formula.

α1≦α2のとき
(D2×α2−D1×α1)×(tJ−tL)<Δd≦0.01・・・(1)式
α1>α2のとき
(D1×α1−D2×α2)×(tH−tJ)<Δd≦0.01・・・(2)式
上記式の左辺は、偏向走査装置の雰囲気温度が変動した際のフランジ部材2と回転多面鏡3との嵌合隙間Δdの変動量を表している。フランジ部材2の線膨張係数α1よりも回転多面鏡3の線膨張係数α2の方が大きいとき、(1)式において、偏向走査装置の動作環境温度が下がると嵌合隙間Δdは小さくなる。
When α1 ≦ α2 (D2 × α2−D1 × α1) × (tJ−tL) <Δd ≦ 0.01 (1) When α1> α2 (D1 × α1−D2 × α2) × (tH −tJ) <Δd ≦ 0.01 (2) Expression The left side of the above expression indicates the amount of change in the fitting gap Δd between the flange member 2 and the rotary polygon mirror 3 when the ambient temperature of the deflection scanning device fluctuates. Represents. When the linear expansion coefficient α2 of the rotary polygon mirror 3 is larger than the linear expansion coefficient α1 of the flange member 2, in the equation (1), when the operating environment temperature of the deflection scanning device decreases, the fitting gap Δd decreases.

このとき、フランジ部材2の外径D1よりも回転多面鏡の内径D2の方が小さくなり、フランジ部材2に対して回転多面鏡3が絞まり嵌めとなった場合、回転多面鏡3の反射面3bが面変形する恐れがある。面変形を生じるとレーザ光束のスポット形状が歪んだり、感光体ドラム上へのレーザ照射位置がずれたりするなどして画像品質の低下を招く。   At this time, when the inner diameter D2 of the rotary polygon mirror is smaller than the outer diameter D1 of the flange member 2, and the rotary polygon mirror 3 is tightly fitted to the flange member 2, the reflecting surface 3b of the rotary polygon mirror 3 is obtained. May be deformed. When the surface deformation occurs, the spot shape of the laser beam is distorted, or the laser irradiation position on the photosensitive drum is shifted, leading to a decrease in image quality.

したがって、本実施形態では、偏向走査装置の動作環境温度が変化しても、回転多面鏡3がフランジ部材2に対して絞まり嵌めにならないように嵌合隙間Δdを設定する。(1)式の左辺の(tJ−tL)は、常温動作環境温度tJと低温側動作環境温度tLの差分である。例えば、常温動作環境温度tJを25℃として、画像形成装置の低温側の動作環境温度tLを10℃とした場合、(tJ−tL)は、15℃となる。つまり、10℃の環境温度になっても回転多面鏡3がフランジ部材2に対して絞まり嵌めにならない様に、常温環境での嵌合隙間Δdを規程している。   Therefore, in the present embodiment, the fitting gap Δd is set so that the rotary polygon mirror 3 does not get stuck in the flange member 2 even if the operating environment temperature of the deflection scanning device changes. (TJ−tL) on the left side of the equation (1) is a difference between the normal temperature operating environment temperature tJ and the low temperature side operating environment temperature tL. For example, when the normal operating environment temperature tJ is 25 ° C. and the operating environment temperature tL on the low temperature side of the image forming apparatus is 10 ° C., (tJ−tL) is 15 ° C. That is, the fitting gap Δd in the normal temperature environment is regulated so that the rotary polygon mirror 3 does not become a tight fit with the flange member 2 even when the ambient temperature reaches 10 ° C.

ただし、軸1の線膨張係数がフランジ部材2の線膨張係数α1よりも小さい場合は注意が必要である。フランジ部材2は軸1に焼嵌め等の手段で固定されているため、環境温度が低温側へ変動した際に、フランジ部材2の外形は軸1の影響を受けてフランジ部材単品の縮小量よりは小さくなる。したがって、(1)式の計算では、回転多面鏡3がフランジ部材2に対して絞まり嵌めになる可能性がある。そこで、このような場合は、線膨張係数α1を、軸1とフランジ部材2との組み合わせによる線膨張係数として規定する。これによって環境温度が低温側へ変動しても回転多面鏡3がフランジ部材2に対して絞まり嵌めとなることはない。   However, care must be taken when the linear expansion coefficient of the shaft 1 is smaller than the linear expansion coefficient α1 of the flange member 2. Since the flange member 2 is fixed to the shaft 1 by means such as shrink fitting, when the environmental temperature fluctuates to the low temperature side, the outer shape of the flange member 2 is affected by the shaft 1 and is smaller than the reduction amount of the flange member alone. Becomes smaller. Therefore, in the calculation of the expression (1), there is a possibility that the rotary polygon mirror 3 becomes a tight fit with respect to the flange member 2. Therefore, in such a case, the linear expansion coefficient α1 is defined as the linear expansion coefficient by the combination of the shaft 1 and the flange member 2. As a result, the rotary polygon mirror 3 does not become an interference fit with the flange member 2 even if the environmental temperature fluctuates to the low temperature side.

右辺の0.01は、常温環境における嵌合隙間Δdの最大値を表している。嵌合隙間Δdが大きすぎると、前述した通り回転多面鏡3がフランジ部材2や軸1に対して大きく偏心した状態で組み付けられる可能性がある。したがって、反射面3bの面の出入りに大きな量が生じ好ましくない。   0.01 on the right side represents the maximum value of the fitting gap Δd in a normal temperature environment. If the fitting gap Δd is too large, the rotary polygon mirror 3 may be assembled with the flange member 2 and the shaft 1 being largely decentered as described above. Therefore, a large amount is generated in the entrance and exit of the reflecting surface 3b, which is not preferable.

例えば、特開昭61−28919のように、光軸に対して所定の角度をもって回転多面鏡にレーザ光束を入射させる走査光学系(斜入射光学系と呼ぶ)の場合(シリンドリカルレンズ32からのレーザ光束は、回転多面鏡3の反射面3bに偏向走査面以外から角度を持って入射する走査光学装置)、所定の角度をα、走査系の副走査倍率をβ、回転多面鏡の反射面の出入り量をδ1とすると、副走査方向のピッチムラ量Pは、P=2δ1αβで表される。つまりδ1=P/(2αβ)となる。   For example, as in JP-A-61-28919, in the case of a scanning optical system (referred to as an oblique incidence optical system) in which a laser beam is incident on a rotary polygon mirror at a predetermined angle with respect to the optical axis (laser from the cylindrical lens 32) The light beam is incident on the reflecting surface 3b of the rotating polygon mirror 3 at an angle from other than the deflection scanning surface), the predetermined angle is α, the sub-scan magnification of the scanning system is β, the reflecting surface of the rotating polygon mirror is Assuming that the amount of entry / exit is δ1, the pitch unevenness amount P in the sub-scanning direction is represented by P = 2δ1αβ. That is, δ1 = P / (2αβ).

ここで副走査方向のピッチムラ量の許容値は、感光体ドラム面上での副走査方向の走査線間隔の1/3以下に抑えるのが好ましい。これを超えると画像においてピッチムラが問題となる。   Here, the allowable value of the pitch unevenness amount in the sub-scanning direction is preferably suppressed to 1/3 or less of the scanning line interval in the sub-scanning direction on the photosensitive drum surface. If it exceeds this, pitch unevenness becomes a problem in the image.

したがって、回転多面鏡の反射面3bの出入り量δ1の許容値は、P=0.014[mm](600dpi相当)、斜入射光学系の値を、例えば、α=13[°](0.227[rad])、β=0.87とすると、δ1=0.035[mm]となる。更に、反射面3bの出入り量δ1は、回転多面鏡3単部品の回転中心に対する反射面3bの出入り量と、フランジ部材2の軸1に対する同軸度と、フランジ部材2と回転多面鏡3の嵌合隙間Δdとから成る。回転多面鏡3単部品の反射面3bの面の出入り量をおよそ0.02[mm]、同軸度をおよそ0.005[mm]とすると、嵌合隙間Δdはおよそ0.01[mm]となる。つまり、斜入射光学系において副走査方向のピッチムラを抑制するためには、嵌合隙間Δdは、およそ0.01[mm]以下に抑えることが好ましい。   Therefore, the allowable value of the amount of entry / exit δ1 of the reflecting surface 3b of the rotary polygon mirror is P = 0.014 [mm] (equivalent to 600 dpi), and the value of the oblique incidence optical system is, for example, α = 13 [°] (0. 227 [rad]), β = 0.87, δ1 = 0.035 [mm]. Further, the amount of entry / exit δ1 of the reflecting surface 3b is the amount of entry / exit of the reflecting surface 3b with respect to the center of rotation of the rotating polygon mirror 3, the degree of coaxiality of the flange member 2 with respect to the shaft 1, and the fitting of the flange member 2 and the rotating polygon mirror 3. It consists of a gap Δd. If the amount of the reflection surface 3b of the rotating polygon mirror 3 is about 0.02 [mm] and the coaxiality is about 0.005 [mm], the fitting gap Δd is about 0.01 [mm]. Become. That is, in order to suppress pitch unevenness in the sub-scanning direction in the oblique incidence optical system, it is preferable to suppress the fitting gap Δd to about 0.01 [mm] or less.

また、fθレンズに入射するレーザ光束を主走査方向において収束したレーザ光束とした光学系(収束光学系と呼ぶ)の場合(シリンドリカルレンズ32からのレーザ光束は、回転多面鏡3の反射面3bに主走査断面内で収束光束で入射する走査光学装置)も同様である。この場合、回転多面鏡3の反射面3bの出入りが大きいと、感光体ドラムのレーザ光束の照射位置において主走査方向にずれが生じる。そのずれ量δYは、次の数式1で表すことができる。

Figure 2006163128
Further, in the case of an optical system (referred to as a converging optical system) in which the laser beam incident on the fθ lens is a laser beam converged in the main scanning direction (the laser beam from the cylindrical lens 32 is incident on the reflecting surface 3 b of the rotary polygon mirror 3. The same applies to the scanning optical apparatus that enters with a convergent light beam in the main scanning section. In this case, if the reflection surface 3b of the rotary polygon mirror 3 is large in and out, a deviation occurs in the main scanning direction at the irradiation position of the laser beam on the photosensitive drum. The deviation amount δY can be expressed by the following formula 1.
Figure 2006163128


ここで、δ2は回転多面鏡3の反射面3bの出入り量、fはfθレンズの焦点距離、Skはfθレンズの後ろ側主平面からfθレンズに入射した収束光ビームがfθレンズによって収束されて結像される位置までの距離、Aはfθレンズの光軸と回転多面鏡3に入射するレーザ光束とのなす主走査方向における角度、Bはfθレンズの光軸と回転多面鏡3によって任意の角度に偏向反射されたレーザ光束のなす主走査方向における角度である。

Here, δ2 is the amount of entry / exit of the reflecting surface 3b of the rotary polygon mirror 3, f is the focal length of the fθ lens, Sk is the convergent light beam incident on the fθ lens from the back main plane of the fθ lens, and converged by the fθ lens. A distance to the image forming position, A is an angle in the main scanning direction formed by the optical axis of the fθ lens and the laser beam incident on the rotary polygon mirror 3, and B is an arbitrary value by the optical axis of the fθ lens and the rotary polygon mirror 3. This is the angle in the main scanning direction formed by the laser beam deflected and reflected at an angle.

この式よりδ2を算出する式へ換算すると、次の数式2となる。

Figure 2006163128
When this equation is converted into an equation for calculating δ2, the following equation 2 is obtained.
Figure 2006163128


主走査方向のずれ量δYの許容値は、副走査方向のピッチムラと同様に走査線間隔の1/3以下にするのが好ましい。この式に光学系の一例を適用して回転多面鏡3の面の出入りδ2を求めると、δY=0.014[mm]、f=136[mm]、Sk=102[mm]、A=60°、B=30°として、δ2はおよそ0.035[mm]となる。つまり斜入射光学系のときと同様に、回転多面鏡3とフランジ部材2との嵌合隙間Δdは、0.01[mm]以下とするのが好ましい。

The allowable value of the shift amount δY in the main scanning direction is preferably set to 1/3 or less of the scanning line interval, similarly to the pitch unevenness in the sub-scanning direction. By applying an example of the optical system to this equation and calculating the entrance / exit δ2 of the surface of the rotary polygon mirror 3, δY = 0.014 [mm], f = 136 [mm], Sk = 102 [mm], A = 60 Assuming ° and B = 30 °, δ2 is approximately 0.035 [mm]. That is, as in the case of the oblique incidence optical system, the fitting gap Δd between the rotary polygon mirror 3 and the flange member 2 is preferably set to 0.01 [mm] or less.

ここで、嵌合隙間Δdは、0.01[mm]以下としているため、(1)、(2)式の左辺の式は、フランジ部材の外径をDとして、以下の式(3)、(4)式に近似することができる。   Here, since the fitting gap Δd is 0.01 [mm] or less, the expression on the left side of the expressions (1) and (2) is expressed by the following expression (3), where D is the outer diameter of the flange member. (4) It can approximate.

α1≦α2のとき
D×(α2−α1)×(tJ−tL)<Δd≦0.01・・・(3)式
α1>α2のとき
D×(α1−α2)×(tH−tJ)<Δd≦0.01・・・(4)式
次に、(3)式を用いて具体例を示す。フランジ部材2の材質を黄銅とすると線膨張係数α1は20×10−6[K−1]、回転多面鏡3の材質をアルミニウムとすると線膨張係数α2は23×10−6[K−1]、フランジ部材2の外径Dを4[mm]、常温環境温度tJを25℃、低温側動作環境温度tLを10℃とする。そして、これらの値を(3)式にあてはめると、嵌合隙間Δdは、0.00018<Δd≦0.01となる。したがって、回転多面鏡3の内径を4.00018[mm]から4.01[mm]の範囲で設定すれば良い。
When α1 ≦ α2, D × (α2−α1) × (tJ−tL) <Δd ≦ 0.01 (3) When α1> α2, D × (α1−α2) × (tH−tJ) < Δd ≦ 0.01 (4) Formula Next, a specific example is shown using Formula (3). When the material of the flange member 2 is brass, the linear expansion coefficient α1 is 20 × 10 −6 [K−1], and when the material of the rotary polygon mirror 3 is aluminum, the linear expansion coefficient α2 is 23 × 10 −6 [K−1]. The outer diameter D of the flange member 2 is 4 [mm], the normal temperature environment temperature tJ is 25 ° C., and the low temperature side operation environment temperature tL is 10 ° C. When these values are applied to the equation (3), the fitting gap Δd is 0.00018 <Δd ≦ 0.01. Therefore, the inner diameter of the rotary polygon mirror 3 may be set in the range of 4.0018 [mm] to 4.01 [mm].

ここで、例えば、軸1の材質がステンレス系の場合、線膨張係数は10×10−6[K−1]程度であり、フランジ部材2の線膨張係数α1よりも小さい。したがって、α1には軸1とフランジ部材2とを組み合わせた線膨張係数を用いる。線膨張係数α1を12×10−6[K−1]とすると、0.00066<Δd≦0.01となる。つまり、回転多面鏡3の内径は4.00066[mm]より大きければ、回転多面鏡3の雰囲気温度が10℃になってもフランジ部材2に対して締り嵌めになることはない。   Here, for example, when the material of the shaft 1 is stainless steel, the linear expansion coefficient is about 10 × 10 −6 [K−1], which is smaller than the linear expansion coefficient α 1 of the flange member 2. Therefore, a linear expansion coefficient combining the shaft 1 and the flange member 2 is used for α1. When the linear expansion coefficient α1 is 12 × 10 −6 [K−1], 0.00066 <Δd ≦ 0.01. In other words, if the inner diameter of the rotary polygon mirror 3 is larger than 4.00066 [mm], there is no interference fit with the flange member 2 even when the atmospheric temperature of the rotary polygon mirror 3 reaches 10 ° C.

なお、上記の具体例より例えば、フランジ部材2の外径を4[mm]、回転多面鏡3の内径を4.001[mm]とすると、径の差は0.001[mm]であり、フランジ部材2に回転多面鏡3を挿入することは通常困難である。そのため、回転多面鏡3の組付け方法として、回転多面鏡3を加熱、膨張させ内径を広げた状態でフランジ部材2に組付けるようにすると良い。内径を広げる量を0.01[mm]とすると、回転多面鏡3を常温から約108℃加熱することになる。または、フランジ部材2を冷却、縮小させて、回転多面鏡3を組付ける方法でも良い。その後、押えバネ4とGリング5を軸1に挿入して回転多面鏡3の上面を付勢し、回転多面鏡3をフランジ部材2へ突き当てた状態で固定する。   From the above specific example, for example, if the outer diameter of the flange member 2 is 4 [mm] and the inner diameter of the rotary polygon mirror 3 is 4.001 [mm], the difference in diameter is 0.001 [mm] It is usually difficult to insert the rotary polygon mirror 3 into the flange member 2. Therefore, as a method of assembling the rotary polygon mirror 3, it is preferable to assemble the rotary polygon mirror 3 to the flange member 2 in a state where the rotary polygon mirror 3 is heated and expanded to widen the inner diameter. If the amount to expand the inner diameter is 0.01 [mm], the rotary polygon mirror 3 is heated from room temperature to about 108 ° C. Alternatively, a method of assembling the rotary polygon mirror 3 by cooling and reducing the flange member 2 may be used. Thereafter, the presser spring 4 and the G ring 5 are inserted into the shaft 1 to urge the upper surface of the rotary polygon mirror 3, and the rotary polygon mirror 3 is fixed to the flange member 2 while being abutted against it.

(4)式は、回転多面鏡3の線膨張係数α2が、フランジ部材2の線膨張係数α1よりも小さい場合の嵌合隙間Δdの範囲を示したものである。この場合、回転多面鏡3がフランジ部材2に対して絞まり嵌めになるのは、偏向走査装置の雰囲気温度が高温側へ変動した場合である。左辺の(tH−tJ)は、高温側動作環境温度tHと常温環境温度tJの差分であり、例えば、高温側動作環境温度tHを60℃、常温環境温度tJを25℃とすると35℃である。つまり、高温側動作環境温度になっても回転多面鏡3がフランジ部材2に対して絞まり嵌めにならない様に、常温環境での嵌合隙間Δdを規定している。この場合も軸1の線膨張係数がフランジ部材2の線膨張係数α1よりも大きい場合は、線膨張係数α1に軸1とフランジ部材2とを組み合わせた線膨張係数を用いる。   Equation (4) shows the range of the fitting gap Δd when the linear expansion coefficient α2 of the rotary polygon mirror 3 is smaller than the linear expansion coefficient α1 of the flange member 2. In this case, the rotary polygon mirror 3 is tightly fitted to the flange member 2 when the ambient temperature of the deflection scanning device changes to the high temperature side. (TH−tJ) on the left side is a difference between the high temperature side operating environment temperature tH and the normal temperature environment temperature tJ. For example, when the high temperature side operating environment temperature tH is 60 ° C. and the normal temperature environment temperature tJ is 25 ° C., it is 35 ° C. . That is, the fitting gap Δd in the normal temperature environment is defined so that the rotary polygon mirror 3 does not become a tight fit with the flange member 2 even when the operating environment temperature reaches the high temperature side. Also in this case, when the linear expansion coefficient of the shaft 1 is larger than the linear expansion coefficient α1 of the flange member 2, a linear expansion coefficient obtained by combining the shaft 1 and the flange member 2 with the linear expansion coefficient α1 is used.

このように、回転多面鏡3とフランジ部材2または軸1の線膨張係数と偏向走査装置の環境温度を考慮して、嵌合隙間を規定する。これにより、偏向走査装置の環境温度が変動しても、回転多面鏡3とフランジ部材2とが絞まり嵌めになることがないため、面変形の不具合を回避することが可能であり、かつ回転多面鏡3の偏心を極力低減することができる。したがって、斜入射光学系や収束光学系において、感光体ドラム相当位置でのレーザ光束の照射位置ずれ量を低減することができ、高品質な画像を得ることができる。   In this way, the fitting gap is defined in consideration of the linear expansion coefficient of the rotary polygon mirror 3 and the flange member 2 or the shaft 1 and the environmental temperature of the deflection scanning device. As a result, even if the environmental temperature of the deflection scanning device fluctuates, the rotary polygon mirror 3 and the flange member 2 do not have a tight fit, so that it is possible to avoid surface deformation problems, and the rotary polygon The eccentricity of the mirror 3 can be reduced as much as possible. Therefore, in the oblique incident optical system and the converging optical system, the amount of laser beam irradiation position deviation at the position corresponding to the photosensitive drum can be reduced, and a high-quality image can be obtained.

[第二実施形態]
次に本発明に係る偏向走査装置及び走査光学装置の第二実施形態について図を用いて説明する。図2は本実施形態に係る偏向走査装置の断面図である。上記第一実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the deflection scanning apparatus and the scanning optical apparatus according to the present invention will be described with reference to the drawings. FIG. 2 is a sectional view of the deflection scanning apparatus according to this embodiment. About the part which overlaps with said 1st embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図2(a)に示すように、本実施形態にかかる偏向走査装置は、軸6、回転多面鏡7、フランジ部材8を備えている。本実施形態において、軸6が嵌合部材として機能し、回転多面鏡7は軸6に嵌合している。このように、回転多面鏡7はフランジ部材8を介さず軸6へ嵌合される構成としても良い。軸6の外径6aと回転多面鏡7の内径7aとの嵌合隙間の関係は、上記第一実施形態と同様である。   As shown in FIG. 2A, the deflection scanning apparatus according to this embodiment includes a shaft 6, a rotary polygon mirror 7, and a flange member 8. In the present embodiment, the shaft 6 functions as a fitting member, and the rotary polygon mirror 7 is fitted to the shaft 6. Thus, the rotary polygon mirror 7 may be configured to be fitted to the shaft 6 without the flange member 8 being interposed. The relationship of the fitting clearance between the outer diameter 6a of the shaft 6 and the inner diameter 7a of the rotary polygon mirror 7 is the same as in the first embodiment.

軸6は回転多面鏡7の嵌合部6aと異なる径の軸外形部6bを有している。これにより、回転多面鏡7を加熱して軸6に組付ける際に、回転多面鏡7の内径7aが挿入途中で軸6に接触して回転多面鏡7の温度が下がり、内径7aが縮小して組み難くなることを回避している。   The shaft 6 has a shaft outer portion 6 b having a diameter different from that of the fitting portion 6 a of the rotary polygon mirror 7. Thereby, when the rotary polygon mirror 7 is heated and assembled to the shaft 6, the inner diameter 7a of the rotary polygon mirror 7 contacts the shaft 6 in the middle of insertion, the temperature of the rotary polygon mirror 7 is lowered, and the inner diameter 7a is reduced. To avoid being difficult to assemble.

嵌合部6aの回転軸方向の長さ(嵌合長)はなるべく短くした方が、回転多面鏡7の組付け時に回転多面鏡7が軸6と接触する懸念を低減できる。また、仮に量産時の部品バラツキで、環境温度の変動により軸6と回転多面鏡7が絞まり嵌めになることが発生した場合、嵌合長はなるべく短い方が回転多面鏡7の反射面の変形は少ない。   If the length (fitting length) of the fitting portion 6a in the rotation axis direction is as short as possible, the concern that the rotating polygon mirror 7 contacts the shaft 6 when the rotating polygon mirror 7 is assembled can be reduced. In addition, if the shaft 6 and the rotary polygonal mirror 7 are tightly fitted due to variations in environmental temperature due to variations in parts during mass production, the shorter the fitting length is, the more the deformation of the reflecting surface of the rotary polygonal mirror 7 will be. There are few.

回転多面鏡7の反射面の変形をなるべく少なくするためには、軸6と回転多面鏡7との嵌合長は、少なくとも回転多面鏡7の回転軸方向の長さ(厚み)の半分以下とするのが良い。嵌合長が半分以下であれば、仮に0.001[mm]程度の絞まり嵌めとなっても、回転多面鏡7の反射面の変形は、ほとんど発生することはない。   In order to reduce the deformation of the reflecting surface of the rotary polygon mirror 7 as much as possible, the fitting length between the shaft 6 and the rotary polygon mirror 7 is at least half the length (thickness) of the rotary polygon mirror 7 in the rotation axis direction. Good to do. If the fitting length is less than half, even if the interference fit is about 0.001 [mm], the reflective surface of the rotary polygon mirror 7 hardly deforms.

また、図2(b)は他の偏向走査装置の部分断面図である。図2(b)に示すように、偏向走査装置の部分断面図である。軸9には回転多面鏡10の内径10aと嵌合する外形部9aが形成されており、外形部9aの軸方向の嵌合部長さは回転多面鏡10の軸方向の厚みの半分以下となっている。このような構成で、軸9に回転多面鏡10を嵌合する構成でも良い。   FIG. 2B is a partial cross-sectional view of another deflection scanning device. FIG. 2B is a partial cross-sectional view of the deflection scanning device. The shaft 9 is formed with an outer shape portion 9 a that fits with the inner diameter 10 a of the rotary polygon mirror 10, and the axial length of the outer shape portion 9 a is less than half of the axial thickness of the rotary polygon mirror 10. ing. In such a configuration, the rotary polygon mirror 10 may be fitted to the shaft 9.

上述のごとく、上記第一実施形態と同様に軸6(軸9)と回転多面鏡7(回転多面鏡10)との嵌合隙間を規定する。これにより、上記第一実施形態と同様に、偏向走査装置の環境温度が変動しても、回転多面鏡7(10)と軸6(軸9)とが絞まり嵌めになることがないため、面変形の不具合を回避することが可能であり、かつ回転多面鏡7(10)の偏心を極力低減することができる。したがって、斜入射光学系や収束光学系において、感光体ドラム相当位置でのレーザ光束の照射位置ずれ量を低減することができ、高品質な画像を得ることができる。   As described above, the fitting gap between the shaft 6 (the shaft 9) and the rotary polygon mirror 7 (the rotary polygon mirror 10) is defined as in the first embodiment. As a result, as in the first embodiment, the rotary polygon mirror 7 (10) and the shaft 6 (axis 9) do not become an interference fit even when the environmental temperature of the deflection scanning device fluctuates. Deformation defects can be avoided and the eccentricity of the rotary polygon mirror 7 (10) can be reduced as much as possible. Therefore, in the oblique incident optical system and the converging optical system, the amount of laser beam irradiation position deviation at the position corresponding to the photosensitive drum can be reduced, and a high-quality image can be obtained.

第一実施形態にかかる偏向走査装置の断面図である。It is sectional drawing of the deflection | deviation scanning apparatus concerning 1st embodiment. 第二実施形態にかかる偏向走査装置の断面図である。(a)偏向走査装置の断面図である。(b)他の偏向走査装置の部分断面図である。It is sectional drawing of the deflection | deviation scanning apparatus concerning 2nd embodiment. (A) It is sectional drawing of a deflection | deviation scanning apparatus. (B) It is a fragmentary sectional view of another deflection scanning device. 従来の走査光学装置の構成図である。It is a block diagram of the conventional scanning optical apparatus. 従来の偏向走査装置の断面図である。It is sectional drawing of the conventional deflection | deviation scanning apparatus.

符号の説明Explanation of symbols

1、6、9…軸(嵌合部材に対応)2、8…フランジ部材(嵌合部材に対応)2a、9a…外形部3、10、7…回転多面鏡3a…内径部3b…反射面4…押えバネ5…リング6a…嵌合部6b…軸外形部7a、10a…内径31…半導体レーザユニット32…シリンドリカルレンズ34…偏向走査装置35…Fθレンズ35a、35b…トーリックレンズ36…折り返しミラー37…感光体ドラム38…信号検知ミラー39…結像レンズ102…スリーブ103…スラストカバー104…スラスト板112…ロータ112a…永久磁石112b…ヨーク113a…ステータコイル114…回路基板 DESCRIPTION OF SYMBOLS 1, 6, 9 ... Shaft (corresponding to fitting member) 2, 8 ... Flange member (corresponding to fitting member) 2a, 9a ... Outer part 3, 10, 7 ... Rotary polygon mirror 3a ... Inner diameter part 3b ... Reflecting surface 4 ... Presser spring 5 ... Ring 6a ... Fitting portion 6b ... Shaft outer portion 7a, 10a ... Inner diameter 31 ... Semiconductor laser unit 32 ... Cylindrical lens 34 ... Deflection scanning device 35 ... F.theta. 37 ... photosensitive drum 38 ... signal detection mirror 39 ... imaging lens 102 ... sleeve 103 ... thrust cover 104 ... thrust plate 112 ... rotor 112a ... permanent magnet 112b ... yoke 113a ... stator coil 114 ... circuit board

Claims (6)

レーザ光束を偏向走査する回転多面鏡と、該回転多面鏡の中心穴に嵌合して該回転多面鏡を保持する少なくとも1つ以上の部材から構成された嵌合部材とを有した偏向走査装置において、
前記嵌合部材の線膨張係数をα1、前記回転多面鏡の線膨張係数をα2、前記嵌合部材の前記回転多面鏡との嵌合部の外径をD、常温環境温度をtJ、低温側動作環境温度をtL、高温側動作環境温度をtH、該嵌合部の嵌合隙間をΔd、としたとき、
α1≦α2のとき、
D×(α2−α1)×(tJ−tL)<Δd≦0.01、
α1>α2のとき、
D×(α1−α2)×(tH−tJ)<Δd≦0.01、
を満足することを特徴とする偏向走査装置。
A deflection scanning apparatus having a rotary polygon mirror that deflects and scans a laser beam, and a fitting member that is fitted in a central hole of the rotary polygon mirror and includes at least one member that holds the rotary polygon mirror In
The linear expansion coefficient of the fitting member is α1, the linear expansion coefficient of the rotary polygon mirror is α2, the outer diameter of the fitting portion of the fitting member with the rotary polygon mirror is D, the ambient temperature is tJ, and the low temperature side When the operating environment temperature is tL, the high temperature side operating environment temperature is tH, and the fitting gap of the fitting portion is Δd,
When α1 ≦ α2
D × (α2−α1) × (tJ−tL) <Δd ≦ 0.01,
When α1> α2
D × (α1-α2) × (tH−tJ) <Δd ≦ 0.01,
A deflection scanning device characterized by satisfying
前記嵌合部の回転軸方向の長さが、前記回転多面鏡の回転軸方向の長さの半分以下であることを特徴とする請求項1に記載の偏向走査装置。 The deflection scanning device according to claim 1, wherein a length of the fitting portion in the rotation axis direction is not more than half of a length of the rotary polygon mirror in the rotation axis direction. 前記回転多面鏡の中心穴に嵌合部材を構成する回転軸が嵌合し、該回転軸の嵌合部の回転軸方向の長さが、前記回転多面鏡の回転軸方向の長さの半分以下となるように、前記回転軸に外径の異なる段差を設けたことを特徴とする請求項1または請求項2に記載の偏向走査装置。 A rotary shaft constituting a fitting member is fitted into the center hole of the rotary polygon mirror, and the length of the rotary shaft fitting portion in the rotation axis direction is half of the length of the rotary polygon mirror in the rotation axis direction. The deflection scanning apparatus according to claim 1, wherein a step having a different outer diameter is provided on the rotating shaft so as to satisfy the following conditions. 前記回転多面鏡を所定の温度に加熱した状態で前記嵌合部材に組付ける、または、前記嵌合部材を所定の温度に冷却した状態で前記回転多面鏡を組付ける、ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の偏向走査装置。 The rotating polygon mirror is assembled to the fitting member in a state where the rotating polygon mirror is heated to a predetermined temperature, or the rotating polygon mirror is assembled in a state where the fitting member is cooled to a predetermined temperature. The deflection scanning device according to any one of claims 1 to 3. 請求項1〜請求項4のいずれか1項に記載の偏向走査装置と、レーザ光束を出射する光源手段と、該光源手段からのレーザ光束を前記回転多面鏡の反射面に導光する入射光学系と、該回転多面鏡の反射面で反射されたレーザ光束を被走査面に導光する走査光学系と、を有する走査光学装置であって、
前記入射光学系からのレーザ光束は、前記回転多面鏡の反射面に主走査断面内で収束光束で入射していることを特徴とする走査光学装置。
5. A deflection scanning apparatus according to claim 1, light source means for emitting a laser beam, and incident optics for guiding the laser beam from the light source means to the reflecting surface of the rotary polygon mirror. A scanning optical device comprising: a system; and a scanning optical system that guides a laser beam reflected by the reflecting surface of the rotating polygon mirror to a surface to be scanned,
2. A scanning optical apparatus according to claim 1, wherein the laser beam from the incident optical system is incident on the reflecting surface of the rotary polygon mirror as a convergent beam within a main scanning section.
請求項1〜請求項4のいずれか1項に記載の偏向走査装置と、光源手段と、該光源手段からのレーザ光束を前記回転多面鏡の反射面に導光する入射光学系と、該回転多面鏡の反射面で反射されたレーザ光束を被走査面に導光する走査光学系と、を有する走査光学装置であって、
前記入射光学系からのレーザ光束は、前記回転多面鏡の反射面に偏向走査面以外から角度を持って入射していることを特徴とする走査光学装置。
5. The deflection scanning device according to claim 1, a light source unit, an incident optical system that guides a laser beam from the light source unit to a reflection surface of the rotary polygon mirror, and the rotation A scanning optical system having a scanning optical system that guides a laser beam reflected by a reflecting surface of a polygon mirror to a scanned surface,
2. A scanning optical apparatus according to claim 1, wherein the laser beam from the incident optical system is incident on the reflecting surface of the rotary polygon mirror at an angle from other than the deflection scanning surface.
JP2004356668A 2004-12-09 2004-12-09 Deflection scanner and scanning optical apparatus Pending JP2006163128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356668A JP2006163128A (en) 2004-12-09 2004-12-09 Deflection scanner and scanning optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356668A JP2006163128A (en) 2004-12-09 2004-12-09 Deflection scanner and scanning optical apparatus

Publications (1)

Publication Number Publication Date
JP2006163128A true JP2006163128A (en) 2006-06-22

Family

ID=36665210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356668A Pending JP2006163128A (en) 2004-12-09 2004-12-09 Deflection scanner and scanning optical apparatus

Country Status (1)

Country Link
JP (1) JP2006163128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170891A (en) * 2007-01-15 2008-07-24 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170891A (en) * 2007-01-15 2008-07-24 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2000066130A (en) Scanning unit of laser printer magnetic bearing device applied thereto
US7471433B2 (en) Optical scanning apparatus
JP2007171626A (en) Optical scanner and image forming apparatus
JP2006163128A (en) Deflection scanner and scanning optical apparatus
JP2010237432A (en) Optical scanner and image forming apparatus using the same
JP2017072777A (en) Scan optical device and image formation apparatus
JP2000275558A (en) Optical deflecting scanner
KR100584584B1 (en) Polygon mirror device and optical scanning apparatus employing it
JP2017194618A (en) Optical deflector, optical scanner, and image formation apparatus
JP2001166246A (en) Optical deflecting device and writing optical device
JP2006154391A (en) Deflection scanner
JP3719637B2 (en) Optical beam scanning device
JP2009223180A (en) Dynamic bearing unit, light deflector, light scanning device and image forming device
JP4996386B2 (en) Optical deflector, optical scanning device, and image forming apparatus
JP2022074710A (en) Optical deflector, optical scan device and image formation apparatus
JPH10288747A (en) Deflecting/scanning device
JP2005065499A (en) Motor, light deflector, image forming device, and method for manufacturing motor
JP2007316657A (en) Optical scanner and image forming apparatus
JP5219400B2 (en) Optical scanning device
JP3702676B2 (en) Optical deflection device
JP2000206441A (en) Deflecting scanning device
JP2004333556A (en) Scanning optical device and image forming device using the same
JP2000206442A (en) Deflecting scanning device
JP2000292733A (en) Deflecting scanner
JPH0894957A (en) Optical scanner