JP2006163004A - Micro optical element - Google Patents

Micro optical element Download PDF

Info

Publication number
JP2006163004A
JP2006163004A JP2004354753A JP2004354753A JP2006163004A JP 2006163004 A JP2006163004 A JP 2006163004A JP 2004354753 A JP2004354753 A JP 2004354753A JP 2004354753 A JP2004354753 A JP 2004354753A JP 2006163004 A JP2006163004 A JP 2006163004A
Authority
JP
Japan
Prior art keywords
film
photoresist film
optical element
sio
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004354753A
Other languages
Japanese (ja)
Inventor
Tadashi Takano
忠 高野
Yasushi Munemasa
康 宗正
Makoto Mita
信 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004354753A priority Critical patent/JP2006163004A/en
Publication of JP2006163004A publication Critical patent/JP2006163004A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a micro and high-performance optical component for converting optical beam. <P>SOLUTION: A lens to be a prototype is approximated by steps 13, corresponding to some phase difference. In the curved surface of the multi-step constitution, the thickness 14 corresponding to 360° is made zero, each time it becomes an integral multiple of the wavelength λ. Accordingly, the final form 15 is made into a multilayer structure of planar films, and the thickness can be reduced down to λ. In the case of a reflective element, the multilayer structure is made and the surface is then made reflective, as has been mentioned. As a result, loss, such as spillover is reduced, and the high-efficiency optical element is realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

光ビームを変換するための光学素子を、超小型でかつ高性能で実現する。       An optical element for converting a light beam is realized with a small size and high performance.

図1は、従来の小型カメラで用いられるレンズを示す。1は透明な誘電体であり、その曲面2と3は概ね球面であるが、若干補正を加えた形状である。図2は、製作法を示す。まず雌型5と6を精密加工により製作し、次にその型に透明誘電体4を入れて成形する。
また半導体レーザ7の発光端面8には、図3に示すように、狭い発光域から広がって出てくる光を集束させるために、レンズが装着されている。これは、光学的性能と製造コストを勘案した結果、球ガラスを用いている。
FIG. 1 shows a lens used in a conventional small camera. Reference numeral 1 denotes a transparent dielectric, and the curved surfaces 2 and 3 are generally spherical, but have a shape with some corrections. FIG. 2 shows the manufacturing method. First, the female molds 5 and 6 are manufactured by precision machining, and then the transparent dielectric 4 is put into the mold and molded.
Further, as shown in FIG. 3, a lens is mounted on the light emitting end face 8 of the semiconductor laser 7 in order to focus the light spreading out from a narrow light emitting area. This uses spherical glass as a result of considering optical performance and manufacturing cost.

寸法が数mm以下のレンズや反射鏡の光学素子を製作する場合、従来の機械的切削や研磨では充分な精度が得られない。   When manufacturing optical elements such as lenses and reflectors with dimensions of several millimeters or less, conventional mechanical cutting and polishing cannot provide sufficient accuracy.

型によるレンズ成形法では、型の製作に過大な費用が生じてしまう。半導体レーザの集束レンズの場合、理想的には放物面に近い曲面のはずであるが、球面で近似しているので、発光を全量集束することができない.またPN接合の発光の端面は著しく細長いが、球体ではその非対称性を補うことはできない。   In the lens molding method using a mold, an excessive cost is required to manufacture the mold. In the case of a semiconductor laser focusing lens, it should ideally be a curved surface close to a paraboloid, but since it is approximated by a spherical surface, it cannot focus all of the emitted light. The light emission end face of the PN junction is extremely elongated, but the asymmetry cannot be compensated for by a sphere.

MEMS技術を応用して、課題を解決する。すなわちレンズのような透過型素子の場合、SiO2膜を所定の厚さと範囲に形成し、これを多層構造としてフレネルレンズとする。反射型素子の場合、SiあるいはSiO2表面を前述の如く多層構造として、しかる後表面を反射性にする。 Apply MEMS technology to solve problems. That is, in the case of a transmissive element such as a lens, a SiO 2 film is formed in a predetermined thickness and range, and this is formed into a Fresnel lens having a multilayer structure. In the case of a reflective element, the Si or SiO 2 surface has a multilayer structure as described above, and then the surface is made reflective.

図4は本発明における膜面の厚さと形状の決め方を示す。同図(a)は、原型となるレンズ1を示す。ここではz軸11を厚み方向、x軸10を半径方向とした円形レンズとする。表面3は平面で、表面2は曲面である。2は素子端部で終わるが、そこでの素子厚みを位相φの規準として、0°とする。半径xに対し、段差13が位相差90°に相当する階段で近似する場合を示している(同図(b))。この多段構成の曲面を、波長λの整数倍になる毎に、360°に相当する厚み14をゼロにする(同図(c))。こうすることにより最終形態15は、平面膜の多層構造として、かつ厚みをλまで減らすことが出来る。
FIG. 4 shows how to determine the thickness and shape of the film surface in the present invention. FIG. 1A shows a lens 1 as a prototype. Here, the z-axis 11 is a circular lens having a thickness direction and the x-axis 10 is a radial direction. The surface 3 is a plane and the surface 2 is a curved surface. 2 ends at the end of the element, but the element thickness there is set to 0 ° with reference to the phase φ. The case where the step 13 is approximated by a step corresponding to a phase difference of 90 ° with respect to the radius x is shown ((b) in the figure). Each time the multistage curved surface becomes an integral multiple of the wavelength λ, the thickness 14 corresponding to 360 ° is made zero ((c) in the figure). By doing so, the final form 15 has a multilayer structure of planar films and can be reduced in thickness to λ.

MEMS技術によればSiあるいはSiO2の多層構造は、厚み精度を数nm、巾精度を数10nmにできる。従って直径数100μm以下にできる。また球ガラスよりも優れた光学特性を、実現できる。特に、いわゆる鏡面修整技術により曲面形状を決めれば、スピルオーバ等の損失を減らして高能率の光学素子を実現できる。
According to MEMS technology, a multilayer structure of Si or SiO 2 can have a thickness accuracy of several nm and a width accuracy of several tens of nm. Therefore, the diameter can be made several hundred μm or less. In addition, optical properties superior to spherical glass can be realized. In particular, if the curved surface shape is determined by a so-called mirror surface modification technique, a highly efficient optical element can be realized by reducing loss such as spillover.

図5は、本発明の一実施形態を示す。酸化シリコン(SiO2)基板16の上にフォトレスト膜17を張り、所望の形状パターン作る。化学的食刻剤18により、レジストで覆っていない部分の酸化シリコン(SiO2)を所定の深さだけ削り取り、次に残ったフォトレジスト膜17′を除去する。必要とする段数に応じて、新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得る。
FIG. 5 illustrates one embodiment of the present invention. A photorest film 17 is stretched on a silicon oxide (SiO 2 ) substrate 16 to form a desired shape pattern. A portion of silicon oxide (SiO 2 ) not covered with the resist is scraped by a predetermined depth by the chemical etching agent 18, and then the remaining photoresist film 17 ′ is removed. Depending on the number of steps required, a new photoresist film is applied and the above process is repeated to obtain a desired stepped surface.

図6は、本発明の一実施形態を示す。酸化シリコン(SiO2)基板16の上にフォトレジスト膜17を張り、所望の形状パターンを作った後、シリコン(Si)膜をスパッタあるいはエピタキシャル成長19等により所定の厚さだけ形成する。その後フォトレジスト膜17′を除去し、残ったシリコン(Si)膜20を酸化してSiO2の膜21とする。次に新たにその上にフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得る。
FIG. 6 illustrates one embodiment of the present invention. A photoresist film 17 is stretched on a silicon oxide (SiO 2 ) substrate 16 to form a desired shape pattern, and then a silicon (Si) film is formed to a predetermined thickness by sputtering or epitaxial growth 19 or the like. Thereafter, the photoresist film 17 ′ is removed, and the remaining silicon (Si) film 20 is oxidized to form a SiO 2 film 21. Next, a photoresist film is newly applied thereon, and the above-described process is repeated to obtain a desired stepped surface.

図7は、本発明の一実施形態を示す。酸化シリコン(SiO2)基板16の上に、フォトレジスト膜17を張り所望の形状を作った後、酸化シリコン(SiO2)をスパッタあるいはエピタキシャル成長22等により蒸着する。その後フォトレジスト膜を除去してSiO2の膜23とする。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得る。
FIG. 7 illustrates one embodiment of the present invention. After a photoresist film 17 is applied on a silicon oxide (SiO 2 ) substrate 16 to form a desired shape, silicon oxide (SiO 2 ) is deposited by sputtering or epitaxial growth 22 or the like. Thereafter, the photoresist film is removed to form a SiO 2 film 23. Next, a new photoresist film is applied and the above process is repeated to obtain a desired stepped surface.

図8は、本発明の一実施形態を示す。本発明になる透過型超小型光学素子15を、面発光レーザダイオード24上に装着した構成を示す。発光域に極近接して平板状レンズを配置できるので、発光全体をレンズに入射でき、かつ理想的な位相分布により鋭い集束ビームを形成できる。
FIG. 8 illustrates one embodiment of the present invention. A configuration in which a transmission type micro optical element 15 according to the present invention is mounted on a surface emitting laser diode 24 is shown. Since the flat lens can be arranged in close proximity to the light emission region, the entire light emission can be incident on the lens, and a sharp focused beam can be formed with an ideal phase distribution.

図9は、本発明の一実施形態を示す。物質を推積して階段を作る場合、各層の境界で光学特性が不均一あるいは劣化してしまう。これを防ぐためには、最も段数の多い(厚い)部分から順に、一回の処理により推積を行う。すなわち図9に示すように、まず最も浅い段相当部分のみフォトレジスト膜を除去し、深い段から浅い段に至る厚さの膜25を形成する。その後、次に浅い段26を順に形成する。
こうすればどのxに対応する部分もz方向には一様な物質で形成できる。ただし異なる段数の部分間では、光学特性が若干異なることになるが、光線は殆どz軸方向に進むので、境界による光学特性劣化は小さい。
FIG. 9 shows an embodiment of the present invention. When staircases are formed by depositing materials, optical properties are uneven or deteriorated at the boundary between layers. In order to prevent this, the estimation is performed by one processing in order from the thickest part with the largest number of stages. That is, as shown in FIG. 9, first, the photoresist film is removed only at the portion corresponding to the shallowest step, and a film 25 having a thickness from the deep step to the shallow step is formed. Thereafter, the next shallowest step 26 is formed in order.
In this way, a portion corresponding to any x can be formed of a uniform material in the z direction. However, the optical characteristics are slightly different between the portions having different numbers of stages, but since the light ray almost proceeds in the z-axis direction, the optical characteristic deterioration due to the boundary is small.

図10は、本発明の一実施形態を示す。シリコン(Si)基板27の上にフォトレジスト膜17を張り、所望の形状を作った後、化学的食刻剤18により、シリコン(Si)を所定の深さだけ削り取る。その後残ったフォトレジスト膜17′を除去する。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得る。最後にその表面に、金属あるいは多層誘電体による反射膜28を形成する。
FIG. 10 shows an embodiment of the present invention. After a photoresist film 17 is stretched on a silicon (Si) substrate 27 to form a desired shape, the silicon (Si) is scraped off to a predetermined depth by a chemical etchant 18. Thereafter, the remaining photoresist film 17 'is removed. Next, a new photoresist film is applied and the above process is repeated to obtain a desired stepped surface. Finally, a reflective film 28 made of metal or a multilayer dielectric is formed on the surface.

図11は、本発明の一実施形態を示す。シリコン(Si)基板27上に、フォトレジスト膜17を張り所望の形状を作った後、シリコン(Si)をスパッタあるいはエピタキシャル成長等19により蒸着し、その後フォトレジスト膜17′を除去する。するとSiの推積膜20が形成される。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得る。最後にその表面に金属あるいは多層誘電体による反射膜28を形成する。
FIG. 11 shows an embodiment of the present invention. After a photoresist film 17 is stretched on a silicon (Si) substrate 27 to form a desired shape, silicon (Si) is deposited by sputtering or epitaxial growth 19 or the like, and then the photoresist film 17 'is removed. Then, the Si deposited film 20 is formed. Next, a new photoresist film is applied and the above process is repeated to obtain a desired stepped surface. Finally, a reflective film 28 made of metal or a multilayer dielectric is formed on the surface.

図12は、本発明の一実施形態を示す。まず最も深い段相当部分のみフォトレジスト膜を除去し、1段分の厚さの膜29を形成する。その後、次に深い段30を順に形成する。反射型素子なので、各層の特性の差異あるいは境界の特性が、光学特性に影響をしない。従って、深い段から順に作っていく方が、作り易くかつ特性も劣化しない。
FIG. 12 shows an embodiment of the present invention. First, the photoresist film is removed only at the deepest step corresponding portion to form a film 29 having a thickness of one step. Thereafter, the next deeper step 30 is formed in order. Since it is a reflective element, the difference in the characteristics of each layer or the characteristics of the boundary do not affect the optical characteristics. Therefore, it is easier to make the products in order from the deeper steps, and the characteristics are not deteriorated.

図13は、本発明の一実施形態を示す。本発明では光学素子の曲面を、図4の多層構造で近似するので、段が必ずしも直角に切れている必要はない。むしろ曲面に沿う段の側面に余分な物質が残っている方が、光学的に望ましい。反対に曲面に沿う段の側面が凹んでは、極めてまずい。従って化学的食刻剤を、流線31に示すように、上方から曲面に沿って吹き降すのが良い。図13の実施例のように、母材を削り取って凸面の段差を作る場合は、外向き半径方向に流すことになる。凹面の段差を作る場合は、吹き降す方向が内向き半径方向になる。また基板に材料を推積して作る場合は、蒸着物質やスパッタ媒体を、削りとる場合と全く反対に流す。
FIG. 13 shows an embodiment of the present invention. In the present invention, since the curved surface of the optical element is approximated by the multilayer structure of FIG. 4, the steps do not have to be cut at right angles. Rather, it is optically desirable that an extra substance remains on the side surface of the step along the curved surface. On the other hand, if the side of the step along the curved surface is recessed, it is extremely bad. Therefore, the chemical etching agent is preferably blown down along the curved surface from above as shown by the streamline 31. When the base material is scraped to create a convex step as in the embodiment of FIG. 13, it flows in the outward radial direction. When creating a concave step, the direction of blowing down is the inward radial direction. When the material is deposited on the substrate, the vapor deposition material and the sputter medium are made to flow in the opposite direction to the case of scraping.

図14は、本発明の一実施形態を示す。削りとり法と推積法いずれの場合においても、厚みを波長λの整数倍だけ減らす部分(大きい段差)32では、側面に余分な物質が残って凸んでも、側面の物質が不足して凹んでも、光学特性が劣化する。従って、全ての段差が出来上がった後で、曲面に沿う小段差の部分はフォトレシスト膜で被って、しかる後大きい段差をエッチングで切り揃える。

図15は、本発明の一実施形態を示す。33は、本発明になる凹面反射素子である。凸反射素子33´は、透明基板の上に形成されている。33の上に、支持材35を介して33´を装着し、全体としてカセグレン型光アンテナを成す構成を示す。送信に用いる場合、レーザ光はビーム通過孔34を通り、33´で反射され、33に至り更に反射されて、空間に放射される。
FIG. 14 shows an embodiment of the present invention. In both the scraping method and the accumulation method, the portion (large step) 32 in which the thickness is reduced by an integral multiple of the wavelength λ is concave due to insufficient material on the side surface even if the material is convex on the side surface. However, the optical characteristics deteriorate. Therefore, after all the steps are completed, the small steps along the curved surface are covered with the photoresist film, and then the large steps are cut out by etching.

FIG. 15 shows an embodiment of the present invention. Reference numeral 33 denotes a concave reflecting element according to the present invention. The convex reflection element 33 ′ is formed on a transparent substrate. A configuration in which 33 'is mounted on 33 via a support member 35 to form a Cassegrain type optical antenna as a whole is shown. When used for transmission, the laser light passes through the beam passage hole 34, is reflected by 33 ', reaches 33, is further reflected, and is emitted into space.

レーザレーダや光ワイヤレス通信に用いる光アンテナとして応用する。またレーザ端面の集束レンズやカメラ用小形レンズの成形型の製作にも、用いられる。
It is applied as an optical antenna used for laser radar and optical wireless communication. It can also be used to manufacture molds for focusing lenses on laser end faces and small lenses for cameras.

従来の小型レンズConventional small lens 雌型によるレンズ成形Lens molding with female mold 半導体レーザと集光レンズSemiconductor laser and condenser lens 所望の曲面と階段状構造Desired curved surface and stepped structure 請求項2に対応した素子製作プロセスDevice manufacturing process corresponding to claim 2 請求項3に対応した素子製作プロセスDevice manufacturing process corresponding to claim 3 請求項4に対応した素子製作プロセスDevice manufacturing process corresponding to claim 4 面発光半導体レーザへの適応例Application example to surface emitting semiconductor laser 請求項6に対応した素子製作プロセス(推積法で浅い段から作る例)Device manufacturing process corresponding to claim 6 (example of making from a shallow step by an accumulation method) 反射素子・削り取り法Reflective element and shaving method 反射素子・堆積法Reflective element / deposition method 請求項6に対応した素子製作プロセス(推積法で深い段から作る例)Device manufacturing process corresponding to claim 6 (example of making from a deep stage by the inference method) 請求項5に対応した素子製作プロセス(半径方向流れを使う例)Device fabrication process corresponding to claim 5 (example using radial flow) 最後の大段差切りそろえFinal step adjustment 反射素子を2個組み合わせたカセグレン型光アンテナCassegrain type optical antenna combining two reflective elements

符号の説明Explanation of symbols

1 透明誘電体
2 曲面#1
3 曲面#2
4 透明誘電体によるレンズ
5 金型#1
6 金型#2
7 半導体レーザ
8 発光域
9 集光レンズ
10 x軸(レンズ半径方向)
11 z軸(レンズ厚み方向)
12 曲面#1が最も深い点
13 膜厚(位相段差)
14 位相360°に相当する厚み
15 超小型光学素子
16 石英ガラス
17 レジスト
18 食刻剤の流れ
19 Si堆積
20 Si膜
酸化して生成したSiO2
22 SiO2スパッタ
23 堆積したSiO2
24 面発光レーザダイオード
25 堆積すべき最大厚さの膜
26 堆積すべき2番目厚さの膜
27 Si基板
28 反射膜
29 第1段
第2段
31 食刻剤の流れ
32 食刻剤の流れ
33 反射型光学素子
34 ビーム通過孔
35 支持材



1 Transparent dielectric 2 Curved surface # 1
3 Curved surface # 2
4 Lens with transparent dielectric 5 Mold # 1
6 Mold # 2
7 Semiconductor laser 8 Emission area 9 Condensing lens
10 x axis (Lens radial direction)
11 z-axis (lens thickness direction)
12 Surface # 1 has the deepest point
13 Film thickness (phase step)
14 Thickness equivalent to phase 360 °
15 Ultra-compact optical element
16 quartz glass
17 resist
18 Etch flow
19 Si deposition
20 SiO2 produced by oxidation of Si film
22 SiO2 sputtering
23 Deposited SiO2
24 surface emitting laser diode
25 Maximum thickness film to be deposited
26 Second thickness film to be deposited
27 Si substrate
28 Reflective film
29 1st stage 2nd stage
31 Flow of etching
32 Flow of etching
33 Reflective optics
34 Beam passage hole
35 Support material



Claims (10)

超微細加工技術により、基板上に透明な膜あるいは表面で反射する膜を所望の形状に複数層形成し、各々透過あるいは反射する光線が集束あるいは発散するように位相差を与えることを特徴とする超小型光学素子。
Using ultra-fine processing technology, a transparent film or a film that reflects on the surface is formed in multiple layers in a desired shape, and a phase difference is given so that each transmitted or reflected light beam is converged or diverged. Ultra-compact optical element.
酸化シリコン(SiO2)基板上にフォトレジスト膜を張り、所望の形状を作った後、化学的食刻剤により、酸化シリコン(SiO2)を所定の深さだけ削り取り、次に残ったフォトレジスト膜を除去し、新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得ることを特徴とする超小型光学素子。
After a photoresist film is formed on a silicon oxide (SiO 2 ) substrate to form a desired shape, the silicon oxide (SiO 2 ) is shaved to a predetermined depth by a chemical etching agent, and then the remaining photoresist An ultra-compact optical element characterized in that a desired stepped surface is obtained by removing the film, applying a new photoresist film, and repeating the above process.
酸化シリコン(SiO2)基板上にフォトレジスト膜を張り、所望の形状を作った後、シリコン(Si)膜をスパッタあるいはエピタキシャル成長等により所定の厚さだけ形成し、その後フォトレジスト膜を除去し、残ったシリコン(Si)膜を酸化してSiO2とする。次に新たにその上にフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得ることを特徴とする超小型光学素子。
After a photoresist film is formed on a silicon oxide (SiO 2 ) substrate and a desired shape is formed, a silicon (Si) film is formed to a predetermined thickness by sputtering or epitaxial growth, and then the photoresist film is removed. The remaining silicon (Si) film is oxidized to SiO 2 . Next, a photoresist film is newly applied thereon, and a desired stepped surface is obtained by repeating the above-described process.
酸化シリコン(SiO2)基板上に、フォトレジスト膜を張り所望の形状を作った後、酸化シリコン(SiO2)をスパッタあるいはエピタキシャル成長等により蒸着し、その後フォトレジスト膜を除去する。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得ることを特徴とする超小型光学素子。
After a photoresist film is formed on a silicon oxide (SiO 2 ) substrate to form a desired shape, silicon oxide (SiO 2 ) is deposited by sputtering or epitaxial growth, and then the photoresist film is removed. Next, a microscopic optical element characterized in that a desired stepped surface is obtained by newly applying a photoresist film and repeating the above process.
請求項3と4において、所望の階段状表面のうち、浅い段から深い段に順に形成することを特徴とする超小型光学素子。
5. The micro optical element according to claim 3, wherein a desired stepped surface is formed in order from a shallow step to a deep step.
シリコン(Si)基板あるいは透明基板の上にSiを積載した板の上に、フォトレジスト膜を張り、所望の形状を作った後、化学的食刻剤により、シリコン(Si)を所定の深さだけ削り取り、その後残ったフォトレジスト膜を除去する。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得、その表面に金属あるいは多層誘電体による反射膜を形成することを特徴とする超小型光学素子。

A photoresist film is formed on a silicon (Si) substrate or a plate on which a Si is placed on a transparent substrate, a desired shape is formed, and then silicon (Si) is etched to a predetermined depth by a chemical etchant. Then, the remaining photoresist film is removed. Next, a photoresist film is newly applied, and the above-described process is repeated to obtain a desired stepped surface, and a reflective film made of metal or a multilayer dielectric is formed on the surface.

シリコン(Si)基板あるいは透明基板の上に、フォトレジスト膜を張り所望の形状を作った後、シリコン(Si)をスパッタあるいはエピタキシャル成長等により蒸着し、その後フォトレジスト膜を除去する。次に新たにフォトレジスト膜を張り、前記のプロセスを繰り返すことにより所望の階段状表面を得、その表面に金属あるいは多層誘電体による反射膜を形成することを特徴とする超小型光学素子。
After a photoresist film is formed on a silicon (Si) substrate or a transparent substrate to form a desired shape, silicon (Si) is deposited by sputtering or epitaxial growth, and then the photoresist film is removed. Next, a photoresist film is newly applied, and the above-described process is repeated to obtain a desired stepped surface, and a reflective film made of metal or a multilayer dielectric is formed on the surface.
請求項7において、所望の階段状表面のうち、深い段から浅い段に順に形成することを特徴とする超小型光学素子。
8. The microminiature optical element according to claim 7, wherein a desired stepped surface is formed in order from a deep step to a shallow step.
請求項2〜4および請求項6と7において、膜形状が円形の場合、化学的食刻剤、Si蒸着物質あるいはSiOスパッタリング物質を、膜面の半径方向に流すことを特徴とする超小型光学素子。
The microminiature according to any one of claims 2 to 4 and claims 6 and 7, wherein when the film shape is circular, a chemical etching agent, a Si vapor deposition material or a SiO 2 sputtering material is caused to flow in the radial direction of the film surface. Optical element.
全階段ができあがった後、小段差の部分をフォトレジストで被い、波長λの整数倍の段差部分を垂直に食刻することを特徴とする超小型光学素子。 An ultra-compact optical element characterized in that, after the entire staircase is completed, a small step portion is covered with a photoresist, and a step portion that is an integral multiple of the wavelength λ is etched vertically.
JP2004354753A 2004-12-08 2004-12-08 Micro optical element Pending JP2006163004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354753A JP2006163004A (en) 2004-12-08 2004-12-08 Micro optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354753A JP2006163004A (en) 2004-12-08 2004-12-08 Micro optical element

Publications (1)

Publication Number Publication Date
JP2006163004A true JP2006163004A (en) 2006-06-22

Family

ID=36665099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354753A Pending JP2006163004A (en) 2004-12-08 2004-12-08 Micro optical element

Country Status (1)

Country Link
JP (1) JP2006163004A (en)

Similar Documents

Publication Publication Date Title
US9157799B2 (en) Optical wavelength dispersion device and method of manufacturing the same
US11747529B2 (en) Wafer level microstructures for an optical lens
JP6520041B2 (en) Pellicle
JP2004326083A (en) Method for manufacturing mirror, and mirror device
JP2008089926A (en) Microoptical element, manufacture method therefor, and photomask
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
JP2019035954A (en) Multi-level diffractive optical element thin film coating
US9910195B2 (en) Optical wavelength dispersion device and method of manufacturing the same
US7416674B2 (en) Method for fabricating micro optical elements using CMP
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2011523466A (en) Fabrication of thin pellicle beam splitter
JP2005527459A (en) Method for making a product having a structured surface
JP2006163004A (en) Micro optical element
JP4457589B2 (en) Optical apparatus having a transmissive optical element
US20030038033A1 (en) Process for fabricating high aspect ratio embossing tool and microstructures
US8515223B2 (en) Lens
JP2008216610A (en) Method of manufacturing optical component for laser beam machining
JP2001296416A (en) Method for manufacturing device or method for manufacturing diffraction optical device, and die for manufacture of diffraction optical device, diffraction optical device and optical system such as optical appliance by that method for manufacturing diffraction optical device
JPH081810A (en) Microlens formed by isotropic etching
US6947223B2 (en) Multi-focal length miniature refractive element and method for making the same
Lim et al. LED packaging using high sag rectangular microlens array
WO2024014272A1 (en) Metalens, method for manufacturing metalens, electronic instrument, and method for designing metalens
KR100820023B1 (en) Fabrication method of tilt mirror
JP3680569B2 (en) Method for manufacturing diffractive optical element
KR100913634B1 (en) Fabrication method of 45 degree tilt mirror