JP2006162304A - Torque detection device - Google Patents

Torque detection device Download PDF

Info

Publication number
JP2006162304A
JP2006162304A JP2004350554A JP2004350554A JP2006162304A JP 2006162304 A JP2006162304 A JP 2006162304A JP 2004350554 A JP2004350554 A JP 2004350554A JP 2004350554 A JP2004350554 A JP 2004350554A JP 2006162304 A JP2006162304 A JP 2006162304A
Authority
JP
Japan
Prior art keywords
torque
module
shaft body
support member
torque detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350554A
Other languages
Japanese (ja)
Inventor
Hiroaki Hoshika
浩昭 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004350554A priority Critical patent/JP2006162304A/en
Publication of JP2006162304A publication Critical patent/JP2006162304A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque detector which is small and light, highly sensitive and accurate, and capable of cheaply manufacturing, has no restriction of attachment and can follow conventional production process. <P>SOLUTION: The device is constituted of an axis for transmitting torque and a torque-detecting module which is fixed to the axis rotatably with the axis, receives small displacement generated by twist of the axis as a stress to the module support member, detects and calculates the torque value using the stress and sends the torque information outside of the axis with electromagnetic wave. The device does not utilize the material properties of the axis whose stress detection principle is transmitting the torque or the properties of material fixed as a film on the axis surface, it utilizes the material properties of the module support member or the properties of material fixed as a film on the support member surface. The torque detecting module has a support member of an X shape in part and the torque detection principle is arranged in the center. The main support part of the torque detecting body module is provided with a portion (ear) which is not eventually used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は軸やギアやプーリーその他の回転体におけるトルクを検出するのに好適で、安価であり、また車両等の使用に適応可能なトルク検出装置に関する。   The present invention relates to a torque detection device that is suitable for detecting torque in a shaft, gear, pulley, or other rotating body, is inexpensive, and can be adapted for use in a vehicle or the like.

軸のトルクを電気信号として測定する方法としては、図8(B)のように軸体807の機械的な変位をひずみゲージ808で検出したり、図8(C)のように軸体の機械的変位を光学センサ809と光学スリット810で検出したり、図8(A)のように、軸体802の表面に塗布した磁歪材料801の逆磁歪効果を利用したいわゆる磁歪式トルク検出装置などが一般的である。この磁歪式トルク検出装置のトルク検出原理で代表的なものを、図1,図2で説明する。   As a method of measuring the torque of the shaft as an electric signal, a mechanical displacement of the shaft body 807 is detected by a strain gauge 808 as shown in FIG. 8B, or a shaft machine is used as shown in FIG. 8C. There is a so-called magnetostrictive torque detecting device that detects the mechanical displacement with the optical sensor 809 and the optical slit 810, or uses the inverse magnetostrictive effect of the magnetostrictive material 801 applied to the surface of the shaft body 802 as shown in FIG. It is common. A typical torque detection principle of the magnetostrictive torque detector will be described with reference to FIGS.

軸体にトルクTを印加すると、軸体の機械的捻れによって図1における符号101,
102で示すような、軸体104の軸方向に対して+45度及び−45度方向に一方が引っ張り、他方には圧縮方向となる応力が生じる。この応力は軸のどの部分でも発生しているものである。
When a torque T is applied to the shaft body, reference numeral 101 in FIG.
As shown by 102, one of the pulling directions is in the + 45 ° and −45 ° directions with respect to the axial direction of the shaft body 104, and the stress in the compression direction is generated in the other. This stress is generated in any part of the shaft.

ところで、正の飽和磁歪定数を有する磁歪材料は、図2に示すように材料を引っ張ると透磁率が増大し、圧縮すると逆に透磁率が減少する性質を持っている。このような磁歪材料を符号103で示すように軸体104の表面に固定すると、軸体104の軸方向に対して+45度及び−45度の方向に逆磁歪効果が発生する。図8(A)は、このような逆磁歪効果を利用した磁歪式トルクセンサの具体的構成を示したもので、軸体802の表面に磁歪材料801を塗布し、この軸体802上の磁歪材料801に、軸体802の軸方向に対してそれぞれ+45度及び−45度で細長いスリット803,806を設け、それぞれのスリット803,806の外側に磁歪材料部分の磁気特性を検出する検出コイル804、805を配置している。このような磁歪効果を利用した磁歪式トルク検出装置としては、例えば、軸体の表面に磁歪材料の膜を設け、軸の周囲に検出コイルを配置したものが知られている(例えば、特許文献1参照。)。   By the way, as shown in FIG. 2, a magnetostrictive material having a positive saturation magnetostriction constant has a property that the permeability increases when the material is pulled, and the permeability decreases conversely when the material is compressed. When such a magnetostrictive material is fixed to the surface of the shaft body 104 as indicated by reference numeral 103, an inverse magnetostriction effect is generated in directions of +45 degrees and −45 degrees with respect to the axial direction of the shaft body 104. FIG. 8A shows a specific configuration of the magnetostrictive torque sensor using the inverse magnetostrictive effect. A magnetostrictive material 801 is applied to the surface of the shaft body 802 and the magnetostriction on the shaft body 802 is applied. The material 801 is provided with elongated slits 803 and 806 at +45 degrees and −45 degrees with respect to the axial direction of the shaft body 802, respectively, and a detection coil 804 that detects the magnetic characteristics of the magnetostrictive material portion outside the slits 803 and 806. , 805 are arranged. As a magnetostrictive torque detection device using such a magnetostrictive effect, for example, a device in which a film of a magnetostrictive material is provided on the surface of a shaft body and a detection coil is arranged around the shaft is known (for example, Patent Documents). 1).

また、他の磁歪式トルク検出装置としては、検出コイルのコア部を軸に対して傾斜かつ対向的に配置して検出コイルを磁気ヘッド形に小型簡略化したものや(例えば、特許文献2,3参照。)、軸体表面の磁歪層上にフィルム状の平面コイルを設けて感度や温度特性を改善したトルク検出装置(例えば、特許文献4参照。)、軸体上にトルク検出モジュールを固定して電磁波でトルク値を読み出すもの(例えば、特許文献5参照。)が知られている。   As another magnetostrictive torque detection device, the detection coil is arranged in a tilted and opposed manner with respect to the axis, and the detection coil is reduced to a magnetic head type (for example, Patent Document 2, 3), a torque detection device (see, for example, Patent Document 4) in which a film-like planar coil is provided on the magnetostrictive layer on the surface of the shaft body to improve sensitivity and temperature characteristics, and a torque detection module is fixed on the shaft body. And what reads a torque value with electromagnetic waves (for example, refer patent document 5) is known.

特公平3−26339号公報Japanese Patent Publication No. 3-26339 特開平6−221940号公報JP-A-6-221940 特開平10−38714号公報JP-A-10-38714 特開平7−63627号公報Japanese Patent Laid-Open No. 7-63627 特願2004−028407号Japanese Patent Application No. 2004-028407

しかしながら、従来の一般的な機械変位検出型トルク検出装置には精度,構造的な制約や安価に製造する上での問題も多く、特に磁歪式トルク検出装置は以下に示す多様な課題があり、他の物理量検出センサに比べて普及が遅れている。   However, the conventional general mechanical displacement detection type torque detection device has many problems in accuracy, structural restrictions and low cost manufacturing, and the magnetostrictive torque detection device has various problems shown below. The spread is delayed compared to other physical quantity detection sensors.

例えば、上記特許文献1に記載の磁歪式トルク検出装置は、その構造上、軸方向の寸法が大きくならざるを得ず、また、環状の検出コイルを軸に通す必要があるため、機器に組み込む際の制約も大きい。また、相反する逆磁歪現象の発生部位が物理的に離れているため、軸体に温度勾配があると磁気特性がバランスしなくなり、トルク検出特性に温度ドリフトが生じてしまう課題がある。これらの課題を改善するために、上記特許文献2又は3に記載のトルク検出装置では、磁気コアに十字形の溝を形成し、この溝に八の字形のコイルを挿入した磁気ヘッド形のトルクセンサとしている。これらは検出コイルを軸に通す必要が無く、軸周囲の一箇所に取付け可能である。検出部が小型なので温度ドリフト特性も改善するが、軸体と検出コイルコアのギャップ変化がトルク検出感度に影響するため、高精度な軸受け構造や厳密なギャップ管理が必要となり、センサ自体が小型にできても軸まわりの構造やセンサ取付けに多くの制約が発生する。また、磁気ヘッド形の検出コイルは高度な製造技術が必要であり、安価に製造する事が難しかった。   For example, the magnetostrictive torque detection device described in Patent Document 1 must have a large axial dimension due to its structure, and it is necessary to pass an annular detection coil through the shaft. There are also great restrictions. In addition, since the opposite inverse magnetostriction generation sites are physically separated from each other, there is a problem that if the shaft body has a temperature gradient, the magnetic characteristics are not balanced and a temperature drift occurs in the torque detection characteristics. In order to improve these problems, in the torque detection device described in Patent Document 2 or 3, a magnetic head type torque in which a cross-shaped groove is formed in the magnetic core and an eight-shaped coil is inserted in the groove. It is a sensor. These do not require the detection coil to pass through the shaft, and can be mounted at one location around the shaft. Although the temperature drift characteristics are improved because the detector is small, the change in the gap between the shaft and the detection coil core affects the torque detection sensitivity. Therefore, a highly accurate bearing structure and strict gap management are required, and the sensor itself can be downsized. However, there are many restrictions on the structure around the shaft and sensor mounting. In addition, a magnetic head type detection coil requires advanced manufacturing technology, and it has been difficult to manufacture at low cost.

前記を改善したものに、特許文献4に記載のトルク検出装置のように磁歪材料を表面に持つ軸体にフィルム状平面コイルを直接張りつけ、軸上の異なる場所でこのコイルを軸外部から励磁する別の環状コイルを具備させ、検出感度,ギャップによる感度変動,温度ドリフト等をさらに改善したものが提案されている。しかしながら、この特許文献4に記載のトルク検出装置においても、軸体に励磁用の環状コイルを通さなければならず、センサの組付けに構造的な制約が大きく、又、トルク検出部のインピーダンス変化を環状コイル経由で間接的に検出しているので、感度向上にも限界があった。   To improve the above, a film-like planar coil is directly attached to a shaft body having a magnetostrictive material on the surface like the torque detection device described in Patent Document 4, and this coil is excited from outside the shaft at different locations on the shaft. There has been proposed another annular coil that is further improved in detection sensitivity, sensitivity fluctuation due to a gap, temperature drift, and the like. However, even in the torque detection device described in Patent Document 4, it is necessary to pass an annular coil for excitation through the shaft body, and there are great structural restrictions on the assembly of the sensor, and the impedance change of the torque detection unit Is indirectly detected via an annular coil, so there is a limit to the improvement in sensitivity.

上記を大幅に改善したものに、特許文献5及び図9に記載のトルク検出装置のように磁歪材料を直接固定し、この上にフィルム上の平面コイル及び、送受信アンテナ及び、信号処理チップで構成した軸側トルクセンサモジュール902を配置して、固定側モジュール905で電磁波による電源送受信とトルク検出値信号伝達を行うものが提案されている。この提案は軸で直接トルクを検出・処理して電磁波で検出値を送信するため、小型,高感度でセンサ取付けの自由度が高い。さらにその発展形として図9(C)に示すような各アンテナと検出コイルを半導体チップ上に成形して軸側トルクセンサモジュールワンチップ型としたものも提案されている。しかしながら、これらはいずれも軸表面に直接磁歪材料膜を蒸着やスパッタリング等で固定しなければならず、軸体の一般的な製造プロセスとスパッタリング等のプロセスでは、部品の重量,大きさ,清潔度,油等の付着物質,材質などの面でかけ離れており、軸体製造方法の大幅な見なおしや、特殊な膜固定装置が必要であるという問題があった。これらは総じて軸の製造や、トルク検出装置の価格増を招き、実用化の障害となる。   A magnetostrictive material is directly fixed as in the torque detection device described in Patent Document 5 and FIG. 9, and a planar coil on a film, a transmission / reception antenna, and a signal processing chip are formed on the magnetostrictive material as described in Patent Document 5 and FIG. It has been proposed that the shaft side torque sensor module 902 is arranged to perform power transmission / reception and torque detection value signal transmission by electromagnetic waves in the fixed side module 905. This proposal detects and processes the torque directly on the shaft and transmits the detected value as an electromagnetic wave. Further, as an advanced form, there has been proposed one in which each antenna and detection coil shown in FIG. 9C are molded on a semiconductor chip to form a one-chip type torque sensor module. However, all of these must fix the magnetostrictive material film directly on the shaft surface by vapor deposition, sputtering, etc., and the general manufacturing process of the shaft body and the process of sputtering, etc., the weight, size, cleanliness of parts There is a problem in that it is far away in terms of the adhering substances and materials such as oil and the like, and the shaft manufacturing method is greatly disregarded and a special membrane fixing device is required. In general, these cause the manufacture of the shaft and the price of the torque detection device, which impede practical use.

また、種々の理由から軸体を樹脂や非磁性金属や繊維強化プラスティックやその他の特殊材料で作成しなければならない場合は、磁歪材料膜の固定に問題があったり、軸の磁気特性の利用ができないため、逆磁歪効果が有効に利用できない。   Also, if the shaft must be made of resin, non-magnetic metal, fiber reinforced plastic or other special materials for various reasons, there is a problem in fixing the magnetostrictive material film, or the magnetic properties of the shaft may not be used. Therefore, the inverse magnetostriction effect cannot be used effectively.

また、軸強度を高めるための熱処理も、軸の磁気的な特性が変化することから、トルク検出性能や安定性に問題が発生するし、耐食や意匠の為に塗装が必要な場合もあり、特許文献5に記載の方法であっても、一般的に軸体へ要求される特質に制約を与え、ひいてはトルク検出装置の適用範囲は十分とは言えなかった。   Also, the heat treatment to increase the shaft strength also changes the magnetic characteristics of the shaft, causing problems in torque detection performance and stability, and painting may be necessary for corrosion resistance and design, Even in the method described in Patent Document 5, the characteristics required for the shaft body are generally restricted, and as a result, the application range of the torque detection device is not sufficient.

本発明は、これらの課題を解決するものであり、小型軽量,高感度,高精度でかつ安価に製造でき、従来の製造プロセスをそのまま踏襲できるトルク検出装置を提供することを目的とする。   The present invention solves these problems, and an object of the present invention is to provide a torque detection device that can be manufactured in a small size, light weight, high sensitivity, high accuracy, and low cost, and that can follow a conventional manufacturing process as it is.

上記問題を解決するため、本発明に係るトルク検出装置は、トルクを伝達する軸体と、この軸体に固定され軸体と共に回転可能で、軸体の捻れによって発生する微小変位を、モジュール支持部材の応力として受領し、この応力からトルク値を検出及び算出し、前記トルク情報を電磁波で軸外部へ送出するトルク被検出モジュールからなり、モジュール支持部材の材料特性又は支持部材表面に膜状に固定された材料の特性を利用することを特徴とする。   In order to solve the above problems, a torque detection device according to the present invention is a module that supports a shaft body that transmits torque and a small displacement that is fixed to the shaft body and that can be rotated together with the shaft body and is generated by twisting of the shaft body. It consists of a torque detection module that receives as a member stress, detects and calculates a torque value from this stress, and sends the torque information to the outside of the shaft by electromagnetic waves, and forms a film on the material characteristics of the module support member or on the surface of the support member It is characterized by utilizing the properties of the fixed material.

本発明に係るトルク検出装置は、軸体表面に直接検出原理を固定したり、軸体の磁気的な特性を利用せず、軸体はその軸の機械的特性や材質を軸そのものの機能を優先させて構成し、トルク被検出部分はトルク検出機能を優先させた構成とし、軸体自身のの磁気特性を利用しないため、軸の材質の自由度が高く、非磁性金属,樹脂,繊維強化プラスティックなど広範囲な適用が可能となる。   The torque detection device according to the present invention does not fix the detection principle directly on the surface of the shaft body or use the magnetic characteristics of the shaft body. It is configured with priority, and the torque detection part is configured to prioritize the torque detection function and does not use the magnetic characteristics of the shaft itself, so the shaft material is highly flexible and non-magnetic metal, resin, fiber reinforced A wide range of applications such as plastic becomes possible.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は、本発明に係るトルク検出装置の第1の実施の形態を示す図である。   FIG. 3 is a diagram showing a first embodiment of a torque detection device according to the present invention.

図において、本例のトルク検出装置300は、トルク被検出体である軸体301に固定され軸体301と一体に回転するトルク被検出体側モジュール305と、軸体301とは別に固定される固定側モジュール315とを有して構成され、これらトルク被検出体側モジュール305と固定側モジュール315とが一対となって機能するようになっている。   In the figure, a torque detecting device 300 of this example is fixed to a shaft body 301 that is a torque detected body and is fixed separately from the shaft body 301 and a torque detected body side module 305 that rotates integrally with the shaft body 301. The torque detected body side module 305 and the fixed side module 315 function as a pair.

前記トルク被検出体側モジュール305は軸体に加工された取付け座面303,316の上に固定される。またこの実施例ではトルク検出部位の径方向全体に溝302を形成し、この溝302で座面を303と316に分割する事によって、座面303と316の間に印加トルクによる微小変位が生じるようにしている。トルク被検出体モジュール305は、センサモジュールの主たる支持部材であり、中央部がX形の形状をなした検出プレート307と、特許文献5及び図9(C)で説明されるようなセンサチップ306で構成され、検出プレート307の表面にセンサチップ306を固定している。検出プレートのX形部分は317に示すように、軸に対してそれぞれ+/−45度になるように配置する。前記検出プレート307は両端を座面303,316に溶接等で固定され、軸体にトルクが印加されることによる前記微小変位に応じて、検出プレート307に微小変位による応力が発生する。また、検出プレートの形状は、中央部がX形となっていれば図6(A)
603,603のように他の形状であってもよいし、X形ではなく他の形状であってもよい。
The torque detected body side module 305 is fixed on mounting seat surfaces 303 and 316 processed into a shaft body. Further, in this embodiment, a groove 302 is formed in the entire radial direction of the torque detection portion, and the seating surface is divided into 303 and 316 by this groove 302, thereby causing a minute displacement due to the applied torque between the seating surfaces 303 and 316. I am doing so. The torque detected object module 305 is a main support member of the sensor module, and includes a detection plate 307 whose central portion has an X shape, and a sensor chip 306 as described in Patent Document 5 and FIG. 9C. The sensor chip 306 is fixed to the surface of the detection plate 307. As shown at 317, the X-shaped portion of the detection plate is arranged to be +/− 45 degrees with respect to the axis. Both ends of the detection plate 307 are fixed to the seating surfaces 303 and 316 by welding or the like, and stress due to the minute displacement is generated in the detection plate 307 according to the minute displacement caused by applying torque to the shaft body. In addition, the shape of the detection plate is as shown in FIG.
Other shapes such as 603 and 603 may be used, and other shapes may be used instead of the X shape.

次に図3(B),(C)を使用して軸体へのトルク印加と、検出プレート307に発生する応力の関係を説明する。図3(B)で軸体304にトルク+Tが印加されると軸体の弾性力により座面303と316の間に微小な変位が発生する。この変位は軸の捻れに応じて発生し、溝302が深くなればこの変位も大きくなる。検出プレート307の両端は溶接等により強固に座面303,316に固定されているため、座面の変位は検出プレート307のX状部分でそれぞれ方向311に圧縮、方向312に引っ張りの応力が発生する。次に(C)の様に軸体304に反対側のトルク−Tが印加されると、検出プレート
307のX状部分で今度は方向311に引っ張り、方向312に圧縮の応力が発生する。これらは軸方向に対して+/−45度の相反する圧縮,引っ張り応力であり、先に図1,図2で説明した軸表面に発生する応力の関係と同一である。
Next, the relationship between the torque application to the shaft body and the stress generated in the detection plate 307 will be described with reference to FIGS. When a torque + T is applied to the shaft body 304 in FIG. 3B, a minute displacement occurs between the seating surfaces 303 and 316 due to the elastic force of the shaft body. This displacement occurs according to the twist of the shaft, and this displacement increases as the groove 302 becomes deeper. Since both ends of the detection plate 307 are firmly fixed to the seating surfaces 303 and 316 by welding or the like, the displacement of the seating surface generates compression stress in the direction 311 and tensile stress in the direction 312 at the X-shaped portion of the detection plate 307, respectively. To do. Next, when a torque -T on the opposite side is applied to the shaft body 304 as shown in (C), the X-shaped portion of the detection plate 307 is pulled in the direction 311 and a compressive stress is generated in the direction 312. These are contradictory compressive and tensile stresses of +/− 45 degrees with respect to the axial direction, and are the same as the relationship between the stresses generated on the shaft surface described above with reference to FIGS.

よって、前記検出プレート307のX部中央表面へ図6(A)601のように磁歪材料を膜状に固定したり、検出プレート自体を磁歪材料で作成し、+/−45方向それぞれの逆磁歪効果によるインピーダンス変化を計測すれば、軸体の表面に磁歪材料を固定したり、軸体材料の磁気特性を利用することなく、軸体のトルクを検出することが出来る。またこの発明によれば、検出プレート取付け座面303,316および検出プレートを曲面ではなく平面で構成できるため、軸径毎にセンサモジュールを変更する必要がなくなる。これにより、軸体は一般的な機械加工のみで済み、センサモジュール固定前であれば焼入れや、塗装等の後処理も可能である。さらにセンサモジュールの種類を増やさずに済み、検出プレートの材料自由度も高くなるため、大幅に軸体及びトルクセンサモジュール305の生産性を向上させることができ、ひいてはトルクセンサのコストを大幅に低減できる。   Therefore, a magnetostrictive material is fixed in the form of a film as shown in FIG. 6 (A) 601 on the surface of the X portion center of the detection plate 307, or the detection plate itself is made of a magnetostrictive material, and the inverse magnetostriction in each of +/− 45 directions By measuring the impedance change due to the effect, it is possible to detect the torque of the shaft body without fixing a magnetostrictive material on the surface of the shaft body or using the magnetic characteristics of the shaft body material. In addition, according to the present invention, the detection plate mounting seat surfaces 303 and 316 and the detection plate can be configured as flat surfaces instead of curved surfaces, so that it is not necessary to change the sensor module for each shaft diameter. As a result, the shaft body only needs to be subjected to general machining, and post-treatment such as quenching and painting can be performed before the sensor module is fixed. Furthermore, it is not necessary to increase the number of types of sensor modules, and the degree of freedom of material of the detection plate is increased, so that the productivity of the shaft body and the torque sensor module 305 can be greatly improved, and the cost of the torque sensor is greatly reduced. it can.

次に第2の実施例を図4を使用して説明する。前記軸体に形成するセンサモジュール用座面303,316の配置及び溝302の深さは、計測しようとするトルクの範囲や、検出プレート及びセンサチップの最大許容特性に対して適切でなければならない。よって、軸体の材質,熱処理,径,最大印加トルク等に応じ、座面の微小変位が十分発生するのであれば軸体401のように溝を廃止したり、逆に微小変位が不足する場合はトルク被検出部位のみ404のような外径拡大部を設けて微小変位を増幅しても良い。また、この外径拡大部は軸体と一体的に作られても良いし、404の部分を機械的に結合する構成であっても良い。   Next, a second embodiment will be described with reference to FIG. The arrangement of the sensor module seat surfaces 303 and 316 formed in the shaft body and the depth of the groove 302 must be appropriate for the range of torque to be measured and the maximum allowable characteristics of the detection plate and sensor chip. . Therefore, if a small displacement of the seating surface occurs sufficiently according to the material of the shaft body, heat treatment, diameter, maximum applied torque, etc., the groove is abolished like the shaft body 401, or conversely the minute displacement is insufficient. May be configured to amplify a minute displacement by providing an enlarged outer diameter portion such as 404 only in the torque detected portion. Further, the outer diameter enlarged portion may be formed integrally with the shaft body, or may be configured to mechanically connect the portions 404.

次に第3の実施例を図5を使用して説明する。これはセンサモジュール305の製造方法と、軸体への接合方法の一例を説明したものである。センサモジュール305は一般的に言う半導体製造に似た工程で製造された後、センサモジュール305単体で流通可能であり、センサモジュール305を固定する前の軸体301は一般的に言う機械部品製造の工程で製造され、軸単体でも流通可能であって、これら両者が結合されて、トルク検出装置付きの軸体となる。まず、センサモジュール305の検出プレート307は、薄板を巻き取った、いわゆるロール状の素材から、プレス加工等でX形やその他必要な形状に加工してロール状又は、棒状の検出プレート一次加工品501を作成する。これは半導体製品のリードフレームを製造する工程に酷似しているものである。検出プレートに磁歪材料の膜が必要な場合は、この段階で蒸着やスパッタリング等で磁歪膜を連続的に固定することが可能である。次に検出プレートの各X形部分にセンサチップ306を固定し、これらを切り離せばセンサモジュール製品502が完成する。なお、図3,図5では、説明のためにセンサチップがむき出しの状態となっているが、図6(B)のように、センサチップ部分を一般の半導体製品の様に樹脂モールド604等で覆ってもよい。また、センサモジュール製品502は、最終的に軸へ残るセンサモジュール305と後述する支持部位である耳505で構成され、耳505とセンサモジュール305の間に切り離し用の切りこみを形成してある。この耳505は軸へ固定する前までのセンサモジュール305の取り扱いと、位置決めを容易にするためのものであるので、この有無によりセンサモジュール機能に影響を与えるものではない。次にセンサモジュール製品502を加工済みの軸体301に固定する方法について説明する。まずセンサモジュール製品502を軸体の座面303,316の上に乗せ、所定の固定位置に合わせる。このとき座面303と316の端から端までの幅をセンサモジュール製品の幅と合わせておくと位置決めが容易である。又、センサモジュール製品502を軸体301に乗せるときや、位置合わせの時に耳505を利用すれば取り扱いが容易である。次に、センサモジュール製品502を軸体301の座面303,316上に位置決めした後、たとえばレーザーや電子などによる溶接ビーム504で検出プレート502を固定する。検出プレート502が固定されれば耳505は不要であるので、耳505を外側に引いて切り離せば良い。   Next, a third embodiment will be described with reference to FIG. This is an example of a method for manufacturing the sensor module 305 and a method for joining the shaft body. After the sensor module 305 is manufactured in a process similar to semiconductor manufacturing, the sensor module 305 can be circulated as a single unit. The shaft body 301 before fixing the sensor module 305 is generally used to manufacture mechanical parts. Manufactured in a process and can be circulated as a single shaft, both of which are combined to form a shaft body with a torque detector. First, the detection plate 307 of the sensor module 305 is a roll-shaped or rod-shaped detection plate primary processed product by processing a so-called roll-shaped material obtained by winding a thin plate into an X shape or other necessary shape by pressing or the like. 501 is created. This is very similar to the process of manufacturing a semiconductor product lead frame. When a film of a magnetostrictive material is required for the detection plate, it is possible to continuously fix the magnetostrictive film by vapor deposition or sputtering at this stage. Next, a sensor chip 306 is fixed to each X-shaped portion of the detection plate, and the sensor module product 502 is completed by separating them. 3 and 5, the sensor chip is exposed for the sake of explanation. However, as shown in FIG. 6B, the sensor chip portion is made of resin mold 604 or the like like a general semiconductor product. It may be covered. In addition, the sensor module product 502 includes a sensor module 305 that finally remains on the shaft and an ear 505 that is a support portion described later, and a cutout is formed between the ear 505 and the sensor module 305. The ear 505 is for facilitating the handling and positioning of the sensor module 305 before being fixed to the shaft, and therefore the presence or absence of this does not affect the sensor module function. Next, a method for fixing the sensor module product 502 to the processed shaft body 301 will be described. First, the sensor module product 502 is placed on the seat surfaces 303 and 316 of the shaft body and adjusted to a predetermined fixed position. At this time, positioning is easy if the width between the ends of the seating surfaces 303 and 316 is matched with the width of the sensor module product. Further, when the sensor module product 502 is placed on the shaft body 301 or when the position is aligned, the ear 505 is used for easy handling. Next, after positioning the sensor module product 502 on the seating surfaces 303 and 316 of the shaft body 301, the detection plate 502 is fixed by a welding beam 504 using, for example, a laser or an electron. Since the ear 505 is unnecessary if the detection plate 502 is fixed, the ear 505 may be separated by pulling outward.

上記の方法に係れば、センサモジュール305を半導体製品と同様な工程で製造でき、センサモジュール305の軸体301への取付けも従来通りの加工,固定技術が使用できる。   According to the above method, the sensor module 305 can be manufactured in the same process as the semiconductor product, and the conventional processing and fixing techniques can be used for mounting the sensor module 305 to the shaft body 301.

次にセンサモジュール検査装置の実施例を図7(A)(B)を使用して説明する。特許文献5では、センサモジュールを軸体に固定した後、既知のトルクを与えてセンサからの検出トルク情報と、既知のトルクを比較して校正値を算出し、これをセンサモジュールに書きこんでトルクセンサとしてのトルク検出精度を高める方法が提案されている。本実施例では軸体301に取付けられる前のセンサモジュール305が単独に製造され、流通することから、センサモジュール305での機能保証を行う必要があり、このための検査手段として、図7(A)に示す、微小角度を発生させ、センサモジュール製品502に角度変位を与える微小角度発生装置701と、発生した微小角度を計測する微小角度計702と、微小角度発生装置701で発生した角度変位をセンサモジュール製品502へ伝える可動側チャック703と、センサモジュール製品502の反対側を固定する固定側チャック704と、センサモジュールへ電源用電磁波と、センサモジュールが検出したねじり応力による信号を電磁波として受信するアンテナ705と、微小角度計702の角度検出値が所定の値になる様に微小角度発生装置701に角度発生を指示し、微小角度変化に応じて得られた図7(B)の特性と規格値707を比較するモジュール検査装置706からなる。   Next, an embodiment of the sensor module inspection apparatus will be described with reference to FIGS. In Patent Document 5, after fixing the sensor module to the shaft body, a known torque is applied to calculate the calibration value by comparing the detected torque information from the sensor with the known torque, and writing this into the sensor module. A method for improving the torque detection accuracy as a torque sensor has been proposed. In this embodiment, since the sensor module 305 before being attached to the shaft body 301 is manufactured and distributed independently, it is necessary to guarantee the function of the sensor module 305. As an inspection means for this purpose, FIG. ), A minute angle generator 701 that generates a minute angle and applies an angular displacement to the sensor module product 502, a minute angle meter 702 that measures the generated minute angle, and an angular displacement generated by the minute angle generator 701. A movable side chuck 703 for transmitting to the sensor module product 502, a fixed side chuck 704 for fixing the opposite side of the sensor module product 502, an electromagnetic wave for power supply to the sensor module, and a signal due to torsional stress detected by the sensor module are received as an electromagnetic wave. The detected angle values of the antenna 705 and the minute angle meter 702 are set to predetermined values. Instructs angle occurs small angle generator 701, consisting of module inspection apparatus 706 for comparing the characteristics and specifications 707 of FIG. 7 obtained in accordance with the small angle change (B).

センサモジュール製品502は、微小角度によってねじられると、中央のX形部分に、軸体に固定された時と同一方向の交錯応力が働く。この応力は与えた角度に依存する為、予め求めた角度とセンサモジュールからの信号の関係と比較して合否判断を行う。   When the sensor module product 502 is twisted by a minute angle, a crossing stress in the same direction as that when the sensor module product 502 is fixed to the shaft is applied to the central X-shaped portion. Since this stress depends on the applied angle, a pass / fail judgment is made by comparing the relationship between the angle obtained in advance and the signal from the sensor module.

この検査方法によれば、センサモジュール製品502を軸に取付ける前でも単体での機能確認を実施でき、また、センサモジュールを軸体に取付けた後に校正し得る範囲内にばらつきが収まる様管理したり、精度のクラス分けができるようになるため、ひいてはセンサモジュールのコストを低減することが可能となる。   According to this inspection method, it is possible to check the function of a single unit even before the sensor module product 502 is mounted on the shaft, and to manage the variation within a range that can be calibrated after the sensor module is mounted on the shaft body. Since the accuracy can be classified, the cost of the sensor module can be reduced.

磁歪材料の逆磁歪効果で軸トルクを検出する原理説明図。The principle explanatory drawing which detects axial torque by the inverse magnetostriction effect of a magnetostrictive material. 正の飽和磁歪定数をもつ磁歪材料の応力と透磁率の関係図。FIG. 5 is a relationship diagram of stress and permeability of a magnetostrictive material having a positive saturation magnetostriction constant. 本発明の第1の実施の形態のトルク検出装置を示す図。The figure which shows the torque detection apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態のトルク検出装置の構成を示す図。The figure which shows the structure of the torque detection apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のトルク検出装置の構成を示す図。The figure which shows the structure of the torque detection apparatus of the 3rd Embodiment of this invention. 図1に示すセンサモジュールの信号処理チップの構成を示す図。The figure which shows the structure of the signal processing chip | tip of the sensor module shown in FIG. センサモジュールの検査装置の構成を示す図。The figure which shows the structure of the inspection apparatus of a sensor module. 従来のトルク検出装置を示す図。The figure which shows the conventional torque detection apparatus. 改良された従来のトルク検出装置を示す図。The figure which shows the conventional torque detection apparatus improved.

符号の説明Explanation of symbols

101,102…軸体表面に発生する応力、103…磁歪材料、304,506…センサモジュールが固定された軸体、305…被検出体側センサモジュール、303,316…座面、306…センサチップ、307,602,603…検出プレート、315…固定側モジュール、501…切り離し前の検出プレート1次加工品、502…耳付きのセンサモジュール製品、504…溶接ビーム、505…耳、601,903…磁歪材料膜、604…樹脂モールド、701…微小角度発生装置、702…微小角度計、703…可動側チャック、704…固定側チャック、705…アンテナ、706…モジュール検査装置、707…規格値。   101, 102 ... Stress generated on the surface of the shaft body, 103 ... Magnetostrictive material, 304, 506 ... Shaft body on which the sensor module is fixed, 305 ... Sensor module to be detected side, 303, 316 ... Seat surface, 306 ... Sensor chip, 307, 602, 603 ... detection plate, 315 ... fixed side module, 501 ... primary processed product of detection plate before separation, 502 ... sensor module product with ear, 504 ... welding beam, 505 ... ear, 601,903 ... magnetostriction Material film, 604 ... resin mold, 701 ... minute angle generator, 702 ... minute angle meter, 703 ... movable side chuck, 704 ... fixed side chuck, 705 ... antenna, 706 ... module inspection device, 707 ... standard value.

Claims (11)

トルクを伝達する軸体と、この軸体に固定され軸体と共に回転可能で、軸体の捻れによって発生する微小変位を、モジュール支持部材の応力として受領し、この応力からトルク値を検出及び算出し、前記トルク情報を電磁波で軸外部へ送出するトルク被検出モジュールからなり、モジュール支持部材の材料特性又は支持部材表面に膜状に固定された材料の特性を用いることを特徴とするトルク検出装置。   A shaft body that transmits torque, and a small displacement that is fixed to the shaft body and that can rotate with the shaft body and that is generated by twisting of the shaft body is received as the stress of the module support member, and the torque value is detected and calculated from this stress And a torque detecting device comprising a torque detected module for transmitting the torque information to the outside of the shaft by electromagnetic waves, and using the material characteristics of the module support member or the characteristics of the material fixed on the surface of the support member as a film. . 前記トルク被検出体モジュール支持部材形状の一部がX形をなし、トルク検出手段がこの中心に配置されていることを特徴とする請求項1に記載のトルク検出装置。   2. The torque detection device according to claim 1, wherein a part of the shape of the torque detected body module support member is X-shaped, and the torque detection means is disposed at the center. 前記トルク検出手段を、前記トルク被検出モジュールの主たる支持部材上に固定された磁歪材料と、該磁歪材料の表面近傍に配置され該磁歪材料の逆磁歪効果をインピーダンス変化として検出する検出コイルにより構成することを特徴とする請求項1に記載のトルク検出装置。   The torque detection means includes a magnetostrictive material fixed on a main support member of the torque detected module, and a detection coil that is disposed near the surface of the magnetostrictive material and detects an inverse magnetostrictive effect of the magnetostrictive material as an impedance change. The torque detection device according to claim 1, wherein: 前記トルク被検出体モジュールのトルク検出部に半導体チップを用い、この半導体チップの少なくとも一表面にインピーダンス検出用の平面又は立体的なコイルを配置したことを特徴とする請求項1に記載のトルク検出装置。   2. The torque detection according to claim 1, wherein a semiconductor chip is used for a torque detection portion of the torque detection target module, and a planar or three-dimensional coil for impedance detection is disposed on at least one surface of the semiconductor chip. apparatus. 前記トルクを検出される軸体の円周に溝もしくは、トルク被検出体側モジュール部用の外径拡大部を設け、ねじりによる微小変位を増幅する手段を有することを特徴とする請求項1に記載のトルク検出装置。   2. The apparatus according to claim 1, further comprising a means for amplifying a minute displacement due to torsion by providing a groove or an outer diameter enlarged portion for a torque detected body side module portion on a circumference of the shaft body from which the torque is detected. Torque detection device. 前記トルク被検出体モジュールの主たる支持部材に磁歪材料を使用することを特徴とした請求項1に記載のトルク検出装置。   The torque detection device according to claim 1, wherein a magnetostrictive material is used for a main support member of the torque detected body module. 前記トルク被検出体モジュールの主たる支持部材表面の一部又は全面に磁歪材料を膜状に固定することを特徴とする請求項1に記載のトルク検出装置。   2. The torque detecting device according to claim 1, wherein a magnetostrictive material is fixed in a film shape on a part or the entire surface of a main support member of the torque detected body module. 前記トルク被検出体モジュールの支持部材として複数の被検出体モジュールの作成に適用するように帯状とすることを特徴とする請求項1に記載のトルク検出装置。   The torque detection device according to claim 1, wherein the torque detection device is formed in a band shape so as to be applied to creation of a plurality of detection target modules as a support member of the torque detection target module. 前記トルク被検出体モジュール支持部と軸体の結合を、溶接又は、塑性変形又は、インサートモールド又は、融着又は、接着のいずれかを用いることを特徴とする請求項1に記載のトルク検出装置。   The torque detection device according to claim 1, wherein the torque detected body module support portion and the shaft body are joined by welding, plastic deformation, insert molding, fusion, or adhesion. . 前記トルク被検出体モジュールの主たる支持部に支持部とは異なる部位を設け、軸体との結合が完了した後に、前記部位を切り離すことを特徴とする請求項1に記載のトルク検出装置。   The torque detection device according to claim 1, wherein a portion different from the support portion is provided in a main support portion of the torque detected body module, and the portion is separated after the coupling with the shaft body is completed. 前記トルク被検出体モジュール単体の両端を保持し、電気的に動作させながら、前記トルク被検出体モジュールの主たる支持部に外部から捻り応力を与えることによってモジュール単体の動作確認を行うことを特徴とする請求項1に記載のトルク検出装置。   The operation of the module itself is confirmed by applying a torsional stress to the main support part of the torque detected module from outside while holding both ends of the torque detected module alone and electrically operating the module. The torque detection device according to claim 1.
JP2004350554A 2004-12-03 2004-12-03 Torque detection device Pending JP2006162304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350554A JP2006162304A (en) 2004-12-03 2004-12-03 Torque detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350554A JP2006162304A (en) 2004-12-03 2004-12-03 Torque detection device

Publications (1)

Publication Number Publication Date
JP2006162304A true JP2006162304A (en) 2006-06-22

Family

ID=36664499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350554A Pending JP2006162304A (en) 2004-12-03 2004-12-03 Torque detection device

Country Status (1)

Country Link
JP (1) JP2006162304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345137A (en) * 2019-08-07 2021-02-09 上海金艺检测技术有限公司 Flexible transmission system torque monitoring method based on stress testing technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345137A (en) * 2019-08-07 2021-02-09 上海金艺检测技术有限公司 Flexible transmission system torque monitoring method based on stress testing technology

Similar Documents

Publication Publication Date Title
US8776616B2 (en) Multiaxial force-torque sensors
EP0502722B1 (en) Torque sensor
US6330833B1 (en) Magnetoelastic torque sensor
CA2381077C (en) Circularly magnetized disk-shaped torque transducer and method for measuring torque using same
KR102027607B1 (en) Magneto-elastic force sensor and method for compensating distance dependency in a measurement signal of such a sensor
US5437197A (en) Magnetostrictive sensor structures
RU2591587C2 (en) Magnetoelastic torque sensor
WO2017195420A1 (en) Torque sensor and force-controllable actuator
JP4292967B2 (en) Magnetostrictive torque sensor
CA2381075C (en) Magnetoelastic load cell
EP1053457A1 (en) Torque sensor for rotating shaft
US20070113684A1 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
US20220099507A1 (en) Arrangement and method for measuring a mechanical load on a test object, with the detection of changes in the magnetic field
EP3705863A1 (en) Magnetostriction type torque detection sensor
JPH0422830A (en) Torque sensor
JP2006162304A (en) Torque detection device
EP2182338B1 (en) Method and system for packaging and mounting surface acoustic wave sensor elements to a flex plate
JP4305271B2 (en) Magnetostrictive torque sensor
JP2006250865A (en) Torque detecting device and torque controller using same
WO2019069620A1 (en) Torque detection device
JP2005221337A (en) Torque detection device and torque calibration information preparation device
JPH03282338A (en) Manufacture of torque sensor
JPS63182535A (en) Torque sensor
JPH04140624A (en) Torque measuring apparatus
JP2002228526A (en) Torque sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A7424