JP2006161150A - Carbon steel for induction hardening and component for machine structure - Google Patents

Carbon steel for induction hardening and component for machine structure Download PDF

Info

Publication number
JP2006161150A
JP2006161150A JP2005235967A JP2005235967A JP2006161150A JP 2006161150 A JP2006161150 A JP 2006161150A JP 2005235967 A JP2005235967 A JP 2005235967A JP 2005235967 A JP2005235967 A JP 2005235967A JP 2006161150 A JP2006161150 A JP 2006161150A
Authority
JP
Japan
Prior art keywords
induction hardening
less
steel material
steel
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235967A
Other languages
Japanese (ja)
Other versions
JP4677854B2 (en
Inventor
Katsumi Yamada
克美 山田
Kaoru Sato
馨 佐藤
Nobutaka Kurosawa
伸隆 黒澤
Yasuhiro Omori
靖浩 大森
Toru Hayashi
透 林
Akihiro Matsuzaki
明博 松崎
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005235967A priority Critical patent/JP4677854B2/en
Publication of JP2006161150A publication Critical patent/JP2006161150A/en
Application granted granted Critical
Publication of JP4677854B2 publication Critical patent/JP4677854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon steel for induction hardening suitable for obtaining an induction-hardened material having excellent mechanical properties represented by fatigue properties. <P>SOLUTION: The carbon steel comprises 0.3 to 0.6% C and 0.05 to 0.8% Mo. Since Mo has a tendency to segregation, and, in a stage to induction hardening treatment such as a slab heating stage, there is a need for suppressing the ununiformity in concentration caused by the segregation of Mo and attaining the uniformity of the structure, and the ratio between the maximum value (Imax) and the minimum value (Imin) in the characteristic X-ray intensity of Mo as the index of uniformization, Imax/Imin is controlled to ≤3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として疲労特性の向上を所期した高周波焼入れ処理に供する高周波焼入れ用炭素鋼材に関するものである。特に、本発明の高周波焼入れ用鋼材は、自動車のドライブシャフトや等速ジョイント等に適用される機械構造用鋼の素材として好適である。   The present invention relates to a carbon steel material for induction hardening that is mainly subjected to induction hardening with the aim of improving fatigue characteristics. In particular, the steel material for induction hardening according to the present invention is suitable as a material for steel for machine structures applied to drive shafts, constant velocity joints and the like of automobiles.

従来、自動車のドライブシャフトや等速ジョイント等に適用される機械構造用鋼材の製造では、熱間圧延棒鋼に、熱間鍛造、あるいはさらに切削および冷間鍛造等を施して所定の形状に加工した後、高周波焼入れ−焼戻しを行って、機械構造用鋼材としての重要な特性である、ねじり疲労強度または回転曲げ疲労強度を確保するのが一般的である。
他方、近年の環境問題の観点から、自動車部品に対する軽量化の要求が益々高まっており、該部品の薄肉化を実現するために、その素材のさらなる高強度化が望まれている。
Conventionally, in the manufacture of steel materials for machine structures applied to automobile drive shafts, constant velocity joints, etc., hot rolled steel bars were processed into a predetermined shape by hot forging or further cutting and cold forging. Thereafter, induction hardening and tempering are generally performed to ensure torsional fatigue strength or rotational bending fatigue strength, which is an important characteristic as a steel material for mechanical structures.
On the other hand, from the viewpoint of environmental problems in recent years, there has been an increasing demand for weight reduction of automobile parts, and in order to realize thinning of the parts, it is desired to further increase the strength of the material.

ここに、特許文献1には、周知のショットピーニングによる表面硬化法における材質のばらつきを課題とし、高周波焼入れ前に浸炭処理を施し、高周波焼入れ処理後に一定の表面研削を施すことによって、材質の均質化を図る技術が開示されているが、浸炭処理+高周波焼入れ処理+表面研削処理の多工程を要するために、その製造性が低いことが問題であった。   Here, Patent Document 1 has a problem of variation in materials in a known surface hardening method by shot peening. Carburizing treatment is performed before induction quenching, and constant surface grinding is performed after induction quenching, thereby homogenizing the materials. However, since a multi-step process of carburizing treatment + induction hardening treatment + surface grinding treatment is required, its productivity is low.

また、特許文献2には、高周波焼入れ処理前の製造工程において、未再結晶域で30%以上の大歪加工を2回以上実施することによって、高周波焼入れ硬化層の結晶粒度をJIS規定14番以上に制御し、強度および耐疲労性を改善する技術が開示されている。しかしながら、十分に熱間加工度を取れない製造工程には適用できない上、未再結晶域における大圧下は圧延荷重が大きくなり、製造ラインへの負担が極めて大きい。さらに、マルテンサイト組織の結晶粒度を評価することは一般に難しいため、製品管理が困難になるおそれがある。   Patent Document 2 discloses that the grain size of the induction-hardened hardened layer is set to JIS standard No. 14 by performing large strain processing of 30% or more in the non-recrystallized region twice or more in the manufacturing process before induction hardening. Techniques for controlling the above and improving the strength and fatigue resistance are disclosed. However, it cannot be applied to a manufacturing process that does not have a sufficient degree of hot work, and a large rolling in the non-recrystallized region increases the rolling load, and the burden on the manufacturing line is extremely large. Furthermore, since it is generally difficult to evaluate the grain size of the martensite structure, product management may be difficult.

さらに、特許文献3には、高周波焼入れ前の組織を制御することにより、高強度特性と低熱処理歪み特性に優れた鋼材を提供する技術が開示されている。すなわち、高周波焼入れ処理熱前の製造工程において、熱延加熱温度、仕上げ温度および熱延後の冷却速度を規定し、フェライトバンド評点と称される指標によりフェライトとパーライト組織を制御することにより、最終加熱処理前の冷間加工性を確保しつつ、高周波焼入れ処理後のマルテンサイト組織の均質化を図ることが示されている。しかしながら、高周波焼入れ処理前の組織がフェライトとパーライト組織では、最終組織の微細化が十分とは言えず、近年の高強度化志向に十分に耐えうる素材を提供するのは難しい。   Furthermore, Patent Document 3 discloses a technique for providing a steel material excellent in high strength characteristics and low heat treatment strain characteristics by controlling the structure before induction hardening. That is, in the manufacturing process before induction hardening heat, the hot rolling heating temperature, the finishing temperature and the cooling rate after hot rolling are defined, and the ferrite and the pearlite structure are controlled by an index called a ferrite band score. It has been shown that the martensite structure after induction hardening is homogenized while ensuring cold workability before heat treatment. However, when the structure before induction hardening is a ferrite and pearlite structure, it cannot be said that the final structure is sufficiently refined, and it is difficult to provide a material that can sufficiently withstand the recent increase in strength.

さらにまた、特許文献4および5には、微細なTi系炭化物および炭窒化物の析出状態を制御することによって、高周波焼入れ処理後の微細な旧γ粒径と母相強度を確保し、疲労強度を高める技術が開示されている。具体的には、製造工程中に一度は1250℃以上に加熱することで再析出させる固溶Ti量を確保し、切削性と母相強度を両立するように熱間加工後のTi系微細析出量を制御する工夫がなされている。しかしながら、Ti系炭化物もしくは炭窒化物は、一般的に極めて析出駆動力が大きく、冷間加工性と母相強度を両立する微妙な析出制御は容易ではない。
特開平8−260125号公報 特開平11−71633号公報 特開平11−236644号公報 特開平11−71630号公報 特開2003−321712号公報
Furthermore, in Patent Documents 4 and 5, by controlling the precipitation state of fine Ti-based carbides and carbonitrides, the fine old γ grain size and the matrix phase strength after induction hardening are ensured, and the fatigue strength A technique for enhancing the above is disclosed. Specifically, Ti-based fine precipitation after hot working to ensure the solid solution Ti amount to be reprecipitated by heating to 1250 ° C or higher once during the manufacturing process, and to achieve both machinability and matrix strength. There is a device to control the amount. However, Ti-based carbides or carbonitrides generally have a very large driving force for precipitation, and delicate precipitation control that achieves both cold workability and matrix strength is not easy.
JP-A-8-260125 JP-A-11-71633 Japanese Patent Laid-Open No. 11-236644 Japanese Patent Laid-Open No. 11-71630 JP 2003-321712 A

本発明の目的は、従来技術における、製造性、組織再現性および析出制御性等の問題を解決し、疲労特性に代表される機械的特性に優れる高周波焼入れ材を得るために好適の高周波焼入れ用炭素鋼材を提供しようとするものである。   The object of the present invention is to solve the problems of manufacturability, structure reproducibility, precipitation controllability, etc. in the prior art, and for induction hardening suitable for obtaining an induction hardening material excellent in mechanical properties represented by fatigue properties. It intends to provide carbon steel.

発明者らは、短時間の高周波焼入れを行うことを前提とし、この高周波焼入れにより安定した疲労特性を実現するための高周波焼入れ用素材に関して、特に組織の均質化について鋭意検討を行った。その結果、以下に示す条件(i)および(ii)を満たすために、高周波焼入れ前組織を積極的に制御することにより、製造性の低下を招くことなく、しかも析出制御のための高精度熱処理等を実施せずとも、疲労特性に代表される機械的特性に優れる高周波焼入れ材を提供し得ることを見出した。
以下、本発明を導くに到った知見について、詳しく説明する。
Based on the premise of performing induction hardening for a short time, the inventors have made intensive investigations on the homogenization of the structure particularly for the induction hardening material for realizing stable fatigue characteristics by this induction hardening. As a result, in order to satisfy the following conditions (i) and (ii), high-precision heat treatment for precipitation control without causing a decrease in manufacturability by actively controlling the structure before induction quenching It has been found that an induction-quenched material excellent in mechanical properties typified by fatigue properties can be provided without carrying out the above.
Hereinafter, the knowledge that led to the present invention will be described in detail.

(i)MoおよびWが固溶状態であること
耐疲労強度が要求される機械構造用部品用(特に、自動車部品用)の鋼種では、ショットピーニング、浸炭法および高周波焼入れ処理による表面硬化層の形成により、所望特性を達成している。特に、高周波焼入れ法は、短時間処理によって均質な表面硬化層が得られること、高い圧縮残留応力を付与できる等のメリットが多い。この高周波焼入れ法では、熱間圧延等で形成した素材を所定の形状に切削加工後、急速加熱次いで急速冷却によって微細なマルテンサイト組織を得るものである。特に、急速加熱工程では、熱間圧延後の組織から短時間でオーステナイト域へ逆変態させるために、適正な加熱温度の選択や、多段の加熱および冷却処理によって、極めて微細なオーステナイト粒径を有する焼入れマルテンサイト組織を得ることが可能である。
(I) Mo and W are in a solid solution state In steel grades for machine structural parts (particularly for automobile parts) that require fatigue resistance, the surface hardened layer formed by shot peening, carburizing and induction hardening is used. The formation achieves the desired properties. In particular, the induction hardening method has many merits such as being able to obtain a uniform hardened surface layer by a short time treatment and imparting high compressive residual stress. In this induction hardening method, a fine martensite structure is obtained by rapid heating and then rapid cooling after a material formed by hot rolling or the like is cut into a predetermined shape. In particular, in the rapid heating process, in order to reversely transform from the structure after hot rolling to the austenite region in a short time, it has an extremely fine austenite grain size by selecting an appropriate heating temperature and performing multi-stage heating and cooling processes. It is possible to obtain a quenched martensite structure.

ここで、炭素鋼をオーステナイト域に急速加熱した場合の逆変態においては、主として体拡散係数の大きな炭素の拡散支配になる。このため、高周波焼入れ処理前組織がフェライト+パーライト組織である場合、炭素濃度の高いパーライト組織では、炭化物溶解に伴う炭素濃度上昇によりオーステナイトへの逆変態が速やかに進行する。一方、炭化物析出の少ないフェライト組織部分では相対的にオーステナイトへの逆変態が遅延し、短時間の急速加熱では未変態となることも考えられる。この結果、最終的に得られる高周波焼入れ処理後のマルテンサイト組織は、高周波焼入れ前組織を反映した不均一組織となりやすい。   Here, in the reverse transformation when the carbon steel is rapidly heated to the austenite region, the diffusion control of carbon having a large body diffusion coefficient is mainly performed. For this reason, when the structure before induction hardening is a ferrite + pearlite structure, in a pearlite structure having a high carbon concentration, reverse transformation to austenite proceeds rapidly due to an increase in the carbon concentration accompanying carbide dissolution. On the other hand, it is considered that the reverse transformation to austenite is relatively delayed in the ferrite structure portion where the carbide precipitation is small, and that the transformation is not transformed by rapid heating in a short time. As a result, the finally obtained martensite structure after induction hardening tends to be a non-uniform structure reflecting the structure before induction hardening.

これに対して高周波焼入れ前組織をフェライト+パーライト組織ではなく、ベイナイト組織にすることは、熱間加工後の部品成型のための切削加工性の点で若干不利になるものの、上述した逆変態現象の平均化という観点では利点がある。すなわち、ベイナイト組織においては、ラス間の炭化物が高周波焼入れ時に溶解し、オーステナイトへの逆変態が多量のラス界面から一気に発生する。また、未変態フェライト率が低下することにより、ほぼオーステナイト単相からの焼入れマルテンサイト組織を得ることが容易になる。すなわち、高周波焼入れ処理前組織を適切に制御することにより、微細で均質なマルテンサイト組織とすれば、結果的に均質な表面硬化層が得られ、安定した疲労特性を得る事ができる。これらのことから、高周波焼入れ前の組織をベイナイト組織とする必要があり、ベイナイト相が得られやすいMoやWの添加が極めて有効である。   On the other hand, it is slightly disadvantageous in terms of machinability for forming parts after hot working to make the structure before induction hardening a bainite structure instead of a ferrite + pearlite structure, but the reverse transformation phenomenon described above. There is an advantage in terms of averaging. That is, in the bainite structure, carbides between the laths dissolve during induction hardening, and reverse transformation to austenite occurs at a stretch from a large amount of lath interfaces. Moreover, when the ratio of untransformed ferrite decreases, it becomes easy to obtain a quenched martensite structure almost from an austenite single phase. That is, by appropriately controlling the structure before induction hardening, if a fine and homogeneous martensite structure is obtained, a uniform hardened surface layer can be obtained as a result, and stable fatigue characteristics can be obtained. For these reasons, it is necessary to make the structure before induction hardening a bainite structure, and the addition of Mo and W that can easily obtain a bainite phase is extremely effective.

ここで、本発明が対象とする高周波焼入れ処理によってマルテンサイト組織を得るような鋼種系では、極めて転位密度が高く、また変態時の拘束による圧倒的な圧縮残留応力の存在が表面硬度をほぼ支配している。従って、Ti、VおよびNb等のような微細な炭窒化析出物の形成によるオーステナイト粒の粗大化抑制や、これら微細析出物による析出強化の寄与は相対的に低いと考えられる。むしろ、耐疲労強度の観点からは、高周波焼入れ時に形成される逆変態オーステナイト粒を微細に維持することが肝要である。実際、発明者等が検討したMoまたはWを添加した鋼種では、1000℃以下の高周波焼入れ処理にて、多くの場合数μm以下のオーステナイト粒が得られることを確認している。   Here, in a steel type system that obtains a martensite structure by induction hardening that is the subject of the present invention, the dislocation density is extremely high, and the presence of overwhelming compressive residual stress due to restraint during transformation almost dominates the surface hardness. is doing. Accordingly, it is considered that the contribution of coarsening of austenite grains due to the formation of fine carbonitride precipitates such as Ti, V and Nb, and precipitation strengthening due to these fine precipitates is relatively low. Rather, from the viewpoint of fatigue strength, it is important to keep the reverse-transformed austenite grains formed during induction hardening fine. In fact, it has been confirmed that a steel type added with Mo or W studied by the inventors can obtain austenite grains of several μm or less in many cases by induction hardening at 1000 ° C. or less.

このオーステナイト粒径はMoもしくはWの添加量に反比例すること、そして添加されたMoおよびWは一部析出するが大半は固溶していることから、MoおよびWは、Ti、VおよびNbといった炭窒化物形成能が高い元素とは本質的に異なる働きによって、疲労強度に優位な微細な逆変態オーステナイト粒を実現すると考えられる。但し、MoやWを過剰に添加した場合、高周波焼入れ前組織内に炭化物や金属間化合物としての析出量が増加し、有効な固溶量を確保することが困難になるため、未固溶である析出物が抑制される範囲での添加が望ましい。   Since this austenite grain size is inversely proportional to the amount of Mo or W added, and Mo and W added are partially precipitated but mostly dissolved, Mo and W are Ti, V and Nb. It is considered that fine reverse-transformed austenite grains superior in fatigue strength are realized by a function that is essentially different from an element having high carbonitride-forming ability. However, if Mo or W is added excessively, the amount of precipitation as carbides or intermetallic compounds in the structure before induction hardening increases, making it difficult to secure an effective amount of solid solution. Addition within a range that suppresses certain precipitates is desirable.

(ii)固溶MoあるいはWの濃度分布が均一であること
一方、素鋼溶製時には程度の差はあるが合金元素の偏析が(特に、析出物となっていない固溶状態の元素に対し)起っている。このため、拡散焼鈍あるいは熱間加工によって組成並びに組織の均一化をはかるのが一般的であるが、厚板や棒鋼等では熱間加工度が小さいために、一次素材成形過程での組織や組成の均質化が困難な場合がある。特に、発明者らが主として検討したMoおよびWの添加は、高周波焼入れ前組織としてベイナイト相を得ることが可能である反面、素鋼溶製時の元素偏析が著しく、1200℃程度の熱処理では凝固時の偏析が解消されないことが多かった。実際、高炭素鋼へMo添加を行った場合、添加するMo濃度が0.15質量%を超えると、素材溶製時に形成された固溶Moの偏析が熱間圧延によって圧延方向(L方向)断面において帯状に分布しやすいことを確認した。
この偏析の一例として、図1に、0.6質量%Mo添加鋼における高周波焼入れ前組織中のMo濃度不均一が明らかな場合の電子プローブマイクロアナライザー(EPMA)のMoマッピング像を示す。このマッピング像は、L方向断面、かつ表面から深さ0.25mmの領域を測定したものである。なお、図示の鋼材は、上記範囲のMoの他、0.4質量%C, 0.35質量%Si, 0.7質量%Mn, 0.025質量%Al, 0.0045質量%Nを含む鋼スラブを出発材として、粗圧延後に1250℃×30分の鋳片加熱処理を実施した後、24mmφまでの棒鋼圧延工程を経た、高周波焼入れ直前の鋼材である。
(Ii) Concentration distribution of solid solution Mo or W is uniform. On the other hand, segregation of alloy elements is not possible to a certain extent when producing steel (especially for solid solution elements that are not precipitates). Awake. For this reason, it is common to make the composition and structure uniform by diffusion annealing or hot working, but the structure and composition in the forming process of the primary material because the degree of hot working is small in thick plates and steel bars. It may be difficult to homogenize. In particular, the addition of Mo and W, which the inventors studied mainly, can obtain a bainite phase as a structure before induction quenching, but the elemental segregation during the melting of raw steel is remarkable, and solidification is caused by heat treatment at about 1200 ° C. In many cases, segregation of time was not resolved. In fact, when Mo is added to high carbon steel, if the Mo concentration to be added exceeds 0.15 mass%, the segregation of the solid solution Mo formed at the time of melting the material is caused by hot rolling in the rolling direction (L direction) section. It was confirmed that it was likely to be distributed in a strip shape.
As an example of this segregation, FIG. 1 shows a Mo mapping image of an electron probe microanalyzer (EPMA) in the case where the Mo concentration non-uniformity in the structure before induction quenching in 0.6 mass% Mo-added steel is clear. This mapping image is obtained by measuring a cross section in the L direction and a region having a depth of 0.25 mm from the surface. In addition, the steel shown in the drawing is a steel slab containing 0.4 mass% C, 0.35 mass% Si, 0.7 mass% Mn, 0.025 mass% Al, and 0.0045 mass% N in addition to Mo in the above range, and after rough rolling. It is a steel material just before induction hardening, after a slab heat treatment at 1250 ° C. for 30 minutes, followed by a bar rolling process up to 24 mmφ.

同図(a)は2次元マッピングおよび(b)はその一部をラインプロファイルにて示したものである。
図1(a)において、明るく白い部分がMoのX線強度が強い(即ち、固溶Mo濃度が高い)領域であり、グレー部分がMoのX線強度が弱い(即ち、固溶Mo濃度が低い)領域である。又この例では、濃度不均一の幅は、最大100μm(B−B′)である。例えば、圧延方向に垂直な直線(A−A’)上のMoのX線強度プロファイルを描けば、図1(b)に示す結果が得られる。
この図1(b)において、直線(A−A’)上でのMo強度の最大値は、図1(a)における白い領域のある点(c)として存在する。一方、Mo強度の最小値は、図1(b)におけるグレー領域のある点(d)として存在する。こうしたラインプロファイルを全視野にわたって描くことで、視野中の最大値と最小値が抽出できる。但し、組織内には明らかなボイドや析出物(図1(b)における(e))により、固溶Moあるいは固溶Wの組成を反映しない場合があるため、これらの値は評価の対象から除外する。
ちなみに、本鋼種ではしばしば数100nmからミクロンオーダーの粗大なMo系析出物が存在するが、これらは母相の組成から大きく外れており、TiやMoを極端に多く含むことから容易に判断できる。また、組成の変化は、例えば図2(a)および(b)における2種の析出物(Ti、Mo)(C、N)と(Fe、Mo)236の分析結果が示すように、例えばエネルギー分散X線分光(EDX)スペクトルより判断できる。以後は特に断らなければ、Mo濃度およびW濃度は、固溶Mo濃度および固溶W濃度を夫々示すものとする。
FIG. 4A shows a two-dimensional mapping, and FIG. 4B shows a part of it by a line profile.
In FIG. 1A, the bright white portion is a region where the X-ray intensity of Mo is strong (that is, the solid solution Mo concentration is high), and the gray portion is a low X-ray intensity of Mo (that is, the solid solution Mo concentration is low). Low) area. In this example, the non-uniform density width is a maximum of 100 μm (BB ′). For example, if an X-ray intensity profile of Mo on a straight line (AA ′) perpendicular to the rolling direction is drawn, the result shown in FIG. 1B is obtained.
In FIG. 1B, the maximum value of Mo intensity on the straight line (AA ′) exists as a point (c) with a white region in FIG. On the other hand, the minimum value of the Mo intensity exists as a point (d) having a gray region in FIG. By drawing such a line profile over the entire visual field, the maximum value and the minimum value in the visual field can be extracted. However, since the composition of solute Mo or solute W may not be reflected in the structure due to obvious voids and precipitates ((e) in FIG. 1B), these values are subject to evaluation. exclude.
By the way, this steel type often has coarse Mo-based precipitates on the order of several hundreds of nanometers to micron order, but these are greatly deviated from the composition of the matrix and can be easily judged from the extremely high content of Ti and Mo. Moreover, the change in composition is, for example, as shown in the analysis results of the two types of precipitates (Ti, Mo) (C, N) and (Fe, Mo) 23 C 6 in FIGS. 2 (a) and (b). For example, it can be judged from an energy dispersive X-ray spectroscopy (EDX) spectrum. Thereafter, unless otherwise specified, the Mo concentration and the W concentration indicate the solid solution Mo concentration and the solid solution W concentration, respectively.

前述のように、本発明の高周波焼入れ鋼の分野においては、最終組織が急速加熱および急速冷却による瞬時の変態現象に依存するため、初期の組成不均一性が最終組織の不均一性を助長することが懸念される。すなわち、高周波焼入れ前組織においてMo高濃度領域ではベイナイト組織主体であるのに対して、Mo低濃度領域ではフェライト+パーライト組織となる。Mo添加量が低い場合は初期濃度不均一も小さく、この不均一組成に起因する高周波焼入れ前組織の不均一化は回避されるが、Mo添加量の増加に伴い鋼材中の組成不均一が顕著になり、深刻な組織不均一化を引き起こすのである。   As described above, in the field of induction-hardened steel of the present invention, the initial structure non-uniformity promotes the non-uniformity of the final structure because the final structure depends on instantaneous transformation phenomenon due to rapid heating and rapid cooling. There is concern. That is, in the structure before induction quenching, the bainite structure is predominant in the high Mo concentration region, whereas the ferrite + pearlite structure is formed in the low Mo concentration region. When the Mo addition amount is low, the initial concentration non-uniformity is small, and non-uniformity of the structure before induction hardening due to this non-uniform composition is avoided, but as the Mo addition amount increases, the composition non-uniformity in the steel material becomes significant. And cause serious tissue non-uniformity.

そこで、発明者らは、いくつかのMo添加鋼種(Mo:0.15〜0.8質量%を含有し、製造履歴は図1の場合と同様)に関して、高周波焼入れ処理によって得られる表面硬化層中のMoの濃度不均一と、対応する領域での旧オーステナイト粒の組織不均一(粒径の標準偏差にて評価)との関係を調査した。図3に、EPMA分析におけるMoの特性X線強度(以後、X線強度とする)の最大値(Imax)および最小値(Imin)の比(Imax)/(Imin)と、旧オーステナイト粒径の標準偏差値との関係を示す。この結果より、MoのX線強度の比(Imax)/(Imin)が3を超えると、標準偏差が大きく増加し、高い疲労強度が得難くなることが分かった。更に、MoのX線強度の比(Imax)/(Imin)が高い場合の濃度の低い領域では、旧オーステナイト粒径が大きくなる傾向があり、それを反映して、平均粒径も大きくなる傾向が見られた。この傾向は、W添加の場合も同様であった。   Therefore, the inventors of the present invention have some Mo-added steel types (Mo: 0.15 to 0.8% by mass, manufacturing history is the same as in the case of FIG. 1). The relationship between the non-uniform concentration and the non-uniform structure of the prior austenite grains in the corresponding region (evaluated by the standard deviation of the particle size) was investigated. Figure 3 shows the ratio (Imax) / (Imin) of the maximum value (Imax) and minimum value (Imin) of the characteristic X-ray intensity (hereinafter referred to as X-ray intensity) of Mo in EPMA analysis, and the prior austenite grain size. The relationship with the standard deviation value is shown. From this result, it was found that when the ratio (Imax) / (Imin) of the X-ray intensity of Mo exceeds 3, the standard deviation greatly increases and it is difficult to obtain high fatigue strength. Furthermore, in the low concentration region when the X-ray intensity ratio (Imax) / (Imin) of Mo is high, the prior austenite particle size tends to increase, and the average particle size tends to increase reflecting this. It was observed. This tendency was the same when W was added.

従って、素鋼溶製段階もしくは遅くとも最終の高周波焼入れ処理前までの段階において、MoもしくはW等の組織内での均一化を図り、熱延組織における任意の測定場所におけるMoもしくはWの特性X線強度の最大値(Imax)と最小値(Imin)の比(Imax)/(Imin)が3を超えない組織に制御することが重要である。   Therefore, in the raw steel melting stage or the stage before the final induction hardening process at the latest, homogenization within the structure of Mo or W, etc. is attempted, and the characteristic X-rays of Mo or W at any measurement location in the hot rolled structure It is important to control the tissue so that the ratio (Imax) / (Imin) of the maximum value (Imax) and the minimum value (Imin) does not exceed 3.

本発明は、以上の知見に基づいてなされたものであり、その要旨とするところは次の通りである。
(1)質量%で、C:0.3〜0.6%およびMo:0.15〜0.8%を含有する鋼材であって、任意の断面領域におけるMoのX線強度の最大値(Imax)と最小値(Imin)との比Imax / Imin が3以下であることを特徴とする疲労特性に優れた高周波焼入れ用炭素鋼材。
The present invention has been made based on the above knowledge, and the gist thereof is as follows.
(1) Steel material containing C: 0.3 to 0.6% and Mo: 0.15 to 0.8% by mass%, and the maximum value (Imax) and minimum value (Imin) of the X-ray intensity of Mo in any cross-sectional area A carbon steel material for induction hardening excellent in fatigue characteristics, characterized by having a ratio Imax / Imin of 3 or less.

(2)質量%で、C:0.3〜0.6%およびW:0.25〜1.6%を含有する鋼材であって、任意の断面領域におけるWのX線強度の最大値(Imax)と最小値(Imin)との比Imax / Imin が3以下であることを特徴とする疲労特性に優れた高周波焼入れ用炭素鋼材。 (2) Steel materials containing C: 0.3 to 0.6% and W: 0.25 to 1.6% by mass%, and the maximum value (Imax) and minimum value (Imin) of the X-ray intensity of W in any cross-sectional area A carbon steel material for induction hardening excellent in fatigue characteristics, characterized by having a ratio Imax / Imin of 3 or less.

(3)鋼材が、さらに質量%で、S:0.05%以下および Mn:0.2〜2%を含むことを特徴とする(1)または(2)に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。 (3) The steel material for induction hardening as described in (1) or (2), wherein the steel material further contains, by mass%, S: 0.05% or less and Mn: 0.2-2%. .

(4)鋼材が、さらに質量%で、S:0.05%以下および Mn:0.2〜2%を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする(1)または(2)に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。 (4) The steel material further comprises, by mass%, S: 0.05% or less and Mn: 0.2-2%, and the balance is composed of Fe and inevitable impurities (1) or (2 ) Carbon steel for induction hardening with excellent fatigue properties as described in (1).

(5)鋼材が、さらに質量%で、Si:1%以下、 P:0.02%以下、 Al:0.5%以下および N:0.01%以下を含有することを特徴とする(3)または(4)に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。 (5) According to (3) or (4), the steel material further contains, by mass, Si: 1% or less, P: 0.02% or less, Al: 0.5% or less, and N: 0.01% or less. Induction quenching carbon steel material with excellent fatigue characteristics.

(6)鋼材が、さらに質量%で、Ti:0.05%未満およびB:0.005%以下を含有することを特徴とする(3)ないし(5)のいずれか1項に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。 (6) The steel material further comprises, by mass%, Ti: less than 0.05% and B: 0.005% or less, and having excellent fatigue properties according to any one of (3) to (5) Carbon steel for induction hardening.

(7)鋼材が、さらに質量%でCa:0.010%未満を含有することを特徴とする(3)ないし(6)のいずれかに記載の疲労特性に優れた高周波焼入れ用炭素鋼。 (7) The carbon steel for induction hardening according to any one of (3) to (6), wherein the steel material further contains Ca: less than 0.010% by mass.

(8)(1)ないし(7)のいずれかに記載の高周波焼入れ用炭素鋼材からなることを特徴とする疲労特性に優れた機械構造用部品。 (8) A machine structural component having excellent fatigue characteristics, comprising the induction-quenched carbon steel material according to any one of (1) to (7).

本発明の高周波焼入れ用鋼材は、鋼材における組成不均一性を高周波焼入れ処理前の段階で解消したことによって、この鋼材を高周波焼入れして得られる硬化層組織は微細かつ均質になるため、疲労特性に代表される機械的特性を改善した高周波焼入れ処理材の提供が可能となる。   The steel material for induction hardening according to the present invention eliminates the compositional non-uniformity in the steel material at the stage before induction hardening treatment, and the hardened layer structure obtained by induction hardening of the steel material becomes fine and homogeneous, so that the fatigue characteristics It is possible to provide an induction hardening material with improved mechanical characteristics represented by

以下、本発明の要件の各限定理由について詳しく説明する。なお、成分に関する「%」表示は特に断らない限り「質量%」を示すものとする。
C:0.3〜0.6%
Cは、焼入れ性への影響が大きい元素であり、焼入れ硬化層の硬さおよび深さを高めて、疲労強度を向上させる上で非常に有用である。しかしながら、C含有量が0.3%に満たないと、疲労強度を維持するための焼入れ深さを確保しにくくなることから、C含有量は0.3%以上とする。一方、C含有量が0.6%を超えると切削性や冷間鍛造性が低下する。さらに、高周波焼入れ前のノルマ処理後の組織が粗いフェライト+パーライト混相となるため、高周波焼入れ処理後の組織が不均一となる。したがって、C含有量は0.3〜0.6%の範囲とする。
Hereinafter, the reasons for limiting the requirements of the present invention will be described in detail. Unless otherwise specified, “%” in relation to ingredients indicates “% by mass”.
C: 0.3-0.6%
C is an element having a great influence on hardenability, and is very useful for improving the fatigue strength by increasing the hardness and depth of the hardened hardened layer. However, if the C content is less than 0.3%, it becomes difficult to secure a quenching depth for maintaining fatigue strength, so the C content is set to 0.3% or more. On the other hand, if the C content exceeds 0.6%, the machinability and the cold forgeability deteriorate. Furthermore, since the structure after the normal treatment before induction hardening becomes a coarse ferrite + pearlite mixed phase, the structure after the induction hardening becomes non-uniform. Therefore, the C content is in the range of 0.3 to 0.6%.

Mo:0.15〜0.8%
Moは、本発明において極めて重要な元素である。MoはCおよびP等の粒界偏析を軽減して素材の粒界強度を高めることで疲労強度等の機械的特性を向上させる働きがある。また、一般的に焼入れ性向上に有用な元素であり、高周波焼入れ前のノルマ処理後の組織においてベイナイト相生成を促進し、セメンタイトの微細分散を実現する。さらに、Moはフェライト安定化元素として高周波焼入れ時の逆変態を遅延させる働きがあると考えられる。こうした効果を得るには、0.15%以上の添加が必要である。
Mo: 0.15-0.8%
Mo is an extremely important element in the present invention. Mo has the function of improving mechanical properties such as fatigue strength by reducing grain boundary segregation such as C and P and increasing the grain boundary strength of the material. In addition, it is generally an element useful for improving hardenability, promotes the formation of a bainite phase in a structure after normalization before induction hardening, and realizes fine dispersion of cementite. Furthermore, Mo is thought to have a function of delaying reverse transformation during induction hardening as a ferrite stabilizing element. In order to obtain such an effect, addition of 0.15% or more is necessary.

一方、Moは素材溶製時のマクロ偏析傾向が極めて強い元素であり、圧延率の低い棒鋼や厚物素材では、後工程によって初期の偏析を解消することが困難である。すなわち、本発明では、高周波焼入れ処理前までの工程において、Moの偏析に起因する濃度不均一を抑制し、組織の均一化を図ることが肝要である。Moの添加量が0.8%を超えると、高周波焼入れ前組織におけるMoの不均一分布がほとんど解消できない上に、コスト上昇を招くことから、上限を0.8%とする。さらに好適には、Moの添加範囲は0.35〜0.65%とする。   On the other hand, Mo is an element that has a very strong macro-segregation tendency at the time of raw material melting, and it is difficult to eliminate the initial segregation by a subsequent process in a steel bar or a thick material having a low rolling rate. That is, in the present invention, it is important to suppress the concentration non-uniformity due to the segregation of Mo and to make the structure uniform in the process before the induction hardening process. If the amount of Mo exceeds 0.8%, the non-uniform distribution of Mo in the structure before induction hardening cannot be almost eliminated, and the cost is increased. Therefore, the upper limit is set to 0.8%. More preferably, the addition range of Mo is 0.35 to 0.65%.

また、本発明においてはMo添加の代わりにWを含有することができる。
W:0.25〜1.6%
Wは、Moとほぼ同様の効果が期待できる重要元素である。Wは、Moに対して質量数でほぼ約2倍弱となるため、Wの添加範囲は0.25〜1.6%とする。上下限の限定理由はMoの場合と同様である。さらに、好適にはWの添加範囲は0.5〜1.2%とする。
In the present invention, W can be contained instead of adding Mo.
W: 0.25-1.6%
W is an important element that can be expected to have almost the same effect as Mo. Since W is approximately a little less than twice the mass number of Mo, the addition range of W is set to 0.25 to 1.6%. The reason for limiting the upper and lower limits is the same as for Mo. Further, the W addition range is preferably 0.5 to 1.2%.

Mn:0.2〜2%
Mnは、焼入性を向上させて焼入れ硬化層を確保する上で有効な元素である。さらに、固溶強化により母相の強度上昇にも有効であるうえ、鋼中SをMnSとして固定し、切削性を向上させる役割も有する。0.2%以下の添加ではこうした効果が得られない。しかしながら、2%を超えて添加すると焼入れ後の残留オーステナイトが増加し、素材軟化による疲労強度低下につながることから、Mn含有量は0.2〜2.0%の範囲とする。
Mn: 0.2-2%
Mn is an element effective in improving the hardenability and securing a hardened hardened layer. Furthermore, it is effective for increasing the strength of the parent phase by solid solution strengthening, and also has a role of fixing S in steel as MnS and improving machinability. Such effects cannot be obtained with addition of 0.2% or less. However, if added over 2%, the retained austenite after quenching increases, leading to a decrease in fatigue strength due to softening of the material, so the Mn content is set to a range of 0.2 to 2.0%.

S:0.05%以下
Sは、鋼中でMnSを形成し切削性を向上させる働きが期待できるが、0.05%を超えて添加するとPと同様に粒界に偏析して疲労強度等の機械的特性の低下を招くため、Sの含有量は0.05%以下に制限する。
S: 0.05% or less S can be expected to improve the machinability by forming MnS in the steel, but if added over 0.05%, it segregates at the grain boundaries like P and mechanical properties such as fatigue strength. Therefore, the S content is limited to 0.05% or less.

本発明においては、上記化学成分の他に必要に応じて以下の元素を含有することができる。
Si:1%以下
Siは、製鋼時の脱酸元素として有用である上に、フェライト中に固溶して鋼強度を向上させる効果を有する。さらには、高強度鋼の破壊形態が粒界破壊へ遷移することを抑制する効果も期待されることから、好ましくは0.01%以上で添加することができる。しかしながら、Si含有量が1%を超えると、硬度が上昇し切削性や冷間鍛造性の低下を招く。従って、Si含有量は1%以下とする。
In the present invention, in addition to the above chemical components, the following elements can be contained as required.
Si: 1% or less
Si is useful as a deoxidizing element during steelmaking, and also has an effect of improving the steel strength by solid solution in ferrite. Furthermore, since the effect of suppressing the transition of the fracture form of high-strength steel to grain boundary fracture is also expected, it can be added preferably at 0.01% or more. However, if the Si content exceeds 1%, the hardness increases, leading to a decrease in machinability and cold forgeability. Therefore, the Si content is 1% or less.

P:0.02%以下
Pは、高温加熱時のオーステナイト粒界に偏析し、粒界強度を低下させることにより疲労強度等の機械的特性を著しく低下させるうえ、製造工程中の焼割れ等も助長することから0.02%以下に制限する。
P: 0.02% or less P segregates at austenite grain boundaries during high-temperature heating, and significantly reduces mechanical properties such as fatigue strength by lowering the grain boundary strength, and also promotes cracking and the like during the manufacturing process. Therefore, it is limited to 0.02% or less.

Al:0.5%以下
Alは、製鋼時の脱酸元素として有用である上に、フェライト中に固溶して鋼強度を向上させることから添加することができる。これらの効果を得るには、好ましくは0.05%以上で添加する。しかしながらAl含有量が0.5%を超えると、粗大なAlN等が素材中に残存しやすくなり疲労強度の低下を招く。従って、Al含有量は0.5%以下とする。
Al: 0.5% or less
Al is useful as a deoxidizing element during steelmaking, and can be added because it dissolves in ferrite and improves steel strength. In order to obtain these effects, 0.05% or more is preferably added. However, if the Al content exceeds 0.5%, coarse AlN or the like tends to remain in the material, resulting in a decrease in fatigue strength. Therefore, the Al content is 0.5% or less.

N:0.01%以下
Nは、過剰に存在すると靭性の低下を招くことがあるため、上限を0.01%以下とする。なお、Ti等の窒化物形成能の大きな元素と共存すると、MN型析出物を形成してオーステナイト域での粒成長抑制に効果を発揮することから、0.01%以下であれば無添加にする必要はない。
N: 0.01% or less Since N may cause a decrease in toughness when present in excess, the upper limit is made 0.01% or less. In addition, when coexisting with elements such as Ti, which have a large ability to form nitrides, MN-type precipitates are formed and effective in suppressing grain growth in the austenite region. There is no.

Ti:0.05%未満
Tiは、MN型析出物を形成してオーステナイト域での粒成長抑制に効果を発揮することから、添加することができる。これらの効果を得るには、好ましくは0.01%以上で添加する。しかしながら、0.05%以上添加した場合、Moを含有する(Ti,Mo)(C,N)の析出量が増大し、固溶Moの効果が低減することから0.05%未満とする。
Ti: less than 0.05%
Ti can be added because it forms an MN-type precipitate and exhibits an effect of suppressing grain growth in the austenite region. In order to obtain these effects, 0.01% or more is preferably added. However, when 0.05% or more is added, the amount of precipitation of (Ti, Mo) (C, N) containing Mo increases and the effect of solid solution Mo decreases, so the content is made less than 0.05%.

B:0.005%以下
Bは、焼入れ性向上と粒界強化のために有効な元素であるが、本効果はBが固溶状態で存在する場合に限られる。このため、BNの形成を回避するべくTi量がTi≧3.4Nの関係を満足する場合にのみ、0.001%以上で添加することが望ましい。なお、この条件が満足される場合でも、過剰な添加によってはオーステナイト域でのノルマ処理時等に粗大なM23(C,B)6が形成して、Mo等の有効元素の固溶量低下を引き起こすことから、上限を0.005%とする。
B: 0.005% or less B is an element effective for improving hardenability and strengthening grain boundaries, but this effect is limited to the case where B exists in a solid solution state. For this reason, it is desirable to add 0.001% or more only when the Ti amount satisfies the relationship of Ti ≧ 3.4N in order to avoid the formation of BN. Even when this condition is satisfied, depending on the excessive addition, coarse M23 (C, B) 6 is formed during normal treatment in the austenite region, and the solid solution amount of effective elements such as Mo is reduced. Therefore, the upper limit is set to 0.005%.

Ca:0.010%未満
Caは、鋼中Sを(Mn,Ca)Sの複合形態で固定し、切削性向上する働きがあり、好ましくは0.001%以上で添加する。しかし、0.010%以上添加しても、効果が飽和するため、0.010%未満とする。
Ca: Less than 0.010%
Ca has a function of fixing S in steel in a composite form of (Mn, Ca) S and improving machinability, and is preferably added at 0.001% or more. However, even if 0.010% or more is added, the effect is saturated, so the content is made less than 0.010%.

次に、本発明における高周波焼入れ用鋼の製造方法の一例を説明する。
本発明において最も重要な制御ポイントは、Mo等の濃度不均一を上工程で解消し、短時間の高周波焼入れ処理前の組織を均質化することである。具体的には、MoまたはWについて、上記した比(Imax)/(Imin)を3以下とすることが肝要である。
かような鋼を得るためには、上記した化学成分組成を満足する鋼を溶製して得られた鋼素材について、熱間圧延や熱間鍛造等の熱間加工の前段、すなわちスラブ加熱工程から粗圧延工程において鋳片を例えば1200℃以上の温度域に加熱する熱処理を施すことが有効である。特に、Mo(またはW)濃度が高い場合は、鋼溶製時の凝固偏析が特に顕著となるため、1300℃以上の熱処理が望ましい。
また、鋼素材溶製の製鋼工程において電磁攪拌等を実施することにより、鋳造時の組成不均一性をある程度解消することも有効と考えられる。
Next, an example of the manufacturing method of the steel for induction hardening in this invention is demonstrated.
The most important control point in the present invention is to eliminate the non-uniform concentration of Mo or the like in the upper process, and to homogenize the structure before the short-time induction hardening process. Specifically, it is important that the ratio (Imax) / (Imin) described above is 3 or less for Mo or W.
In order to obtain such steel, the steel material obtained by melting the steel satisfying the chemical composition described above, the first stage of hot working such as hot rolling or hot forging, that is, the slab heating process In the rough rolling process, it is effective to perform a heat treatment for heating the slab to a temperature range of 1200 ° C. or higher, for example. In particular, when the Mo (or W) concentration is high, solidification segregation during steel melting becomes particularly noticeable, and thus heat treatment at 1300 ° C. or higher is desirable.
It is also considered effective to eliminate the compositional non-uniformity during casting to some extent by carrying out electromagnetic stirring or the like in the steel making process of steel material melting.

さらに、熱間加工においては、二相域圧延を回避する850℃以上の仕上げ温度を確保し、加工後の冷却速度としては、5℃/s以下の冷却速度で冷却し、下部ベイナイト(微細炭化物がラス間に析出している)主体の組織とすることが望ましい(一部、フェライト+パーライトを含んでも良い)。冷却速度が5℃/sを超える場合、熱延組織中に下部ベイナイト(微細炭化物がラス内に析出)あるいはマルテンサイトといった極めて硬質な変態相が生成し切削性の著しい低下を招く。熱間加工を経た鋼材は、所定の形状に成形後、必要に応じてA3点以上でのノルマライジング処理を施してから、高周波焼入れ処理に供する。このノルマライジング処理温度の上限は最終組織の粗大化を抑制するために900℃とするのが望ましい。   Furthermore, in hot working, a finishing temperature of 850 ° C. or higher that avoids two-phase rolling is ensured, and the cooling rate after processing is cooled at a cooling rate of 5 ° C./s or lower, and lower bainite (fine carbide It is desirable to have a main structure in which lath is precipitated between the laths (some of which may include ferrite + pearlite). When the cooling rate exceeds 5 ° C./s, an extremely hard transformation phase such as lower bainite (fine carbide precipitates in the lath) or martensite is generated in the hot-rolled structure, and the machinability is significantly reduced. The steel material that has undergone hot working is subjected to an induction hardening process after being formed into a predetermined shape and, if necessary, subjected to a normalizing process at point A3 or higher. The upper limit of the normalizing temperature is desirably 900 ° C. in order to suppress coarsening of the final structure.

なお、本発明において、「任意の断面領域」とは基本的に、高周波焼入れ前組織のMoあるいはWの濃度不均一幅(例えば図1(a)におけるB−B´間の距離参照)に依存し、この濃度不均一幅の最大幅の5倍程度の長さを一辺とする領域を取るとよい。そうすれば、濃度不均一の平均的な情報が取り込める。
さらに本発明においては、高周波焼入れ後の表面硬化層にて粒度不均一を抑えたい事から、少なくとも高周波焼入れ後の表面硬化層となる深さまでにおいて、MoあるいはWのX線強度比が3以下であることが好ましい。
In the present invention, the “arbitrary cross-sectional area” basically depends on the non-uniform Mo or W concentration width (for example, refer to the distance between B and B ′ in FIG. 1A) of the structure before induction hardening. However, it is preferable to take a region having a length of about 5 times the maximum width of the uneven density width as one side. Then, average information with non-uniform density can be captured.
Furthermore, in the present invention, since it is desired to suppress non-uniform particle size in the surface hardened layer after induction hardening, the X-ray intensity ratio of Mo or W is 3 or less at least up to the depth at which the surface hardened layer is obtained after induction hardening. Preferably there is.

また、高周波焼入れ後組織のX線強度比を得る最も簡単な手法としては、前記測定対象となる断面領域における対象元素のマッピング像を取得し(図1(a)参照)、明らかな濃度不均一性が確認された場合には、X線強度の高い領域内で最も高い点と、低い領域内で低い点の強度比を求めれば良い。特に、EPMAやSEMのEDXにおけるX線強度は、対象とする元素の特性X線のピーク高さで評価する。このX線のピーク高さはバックグラウンドを含んでも、バックグラウンドを引いた正味の高さでも良い。   Further, as the simplest method for obtaining the X-ray intensity ratio of the tissue after induction hardening, a mapping image of the target element in the cross-sectional area to be measured is acquired (see FIG. 1 (a)), and the apparent concentration nonuniformity is obtained. In such a case, the intensity ratio between the highest point in the high X-ray intensity region and the low point in the low region may be obtained. In particular, the X-ray intensity in EPMA or SEM EDX is evaluated by the peak height of the characteristic X-ray of the target element. The peak height of this X-ray may include the background or the net height minus the background.

しかし、濃度不均一が僅かな場合は、マッピング像に明らかな強度の不均一を見出すことが出来ない。この場合は、前記測定断面領域中の任意点を選択し、これらの中からX線強度の最大値と最小値を抽出してその比を求めることとする。この場合は、経験的に50点以上測定した中から最大値と最小値を抽出すれば、ほぼ平均化された情報が入手できることがわかっている。
あるいは、前記測定領域中の任意の2点を測定して強度比を求め、それを任意の回数繰り返した際、その各強度比全てが、3以下を満たしていれば良いこととする。この強度比の組は、経験的に25組作ればほぼ平均化された情報が入手できることがわかっている。
何れの場合も、図1および図2で説明した析出物やボイド起因の強度は、強度比算出の為の対象データからは除く。
However, if the density non-uniformity is slight, it is not possible to find a clear non-uniform intensity in the mapping image. In this case, an arbitrary point in the measurement cross-sectional area is selected, the maximum value and the minimum value of the X-ray intensity are extracted from these, and the ratio is obtained. In this case, it is empirically known that if the maximum value and the minimum value are extracted from 50 or more points, almost averaged information can be obtained.
Alternatively, when any two points in the measurement region are measured to obtain an intensity ratio and are repeated an arbitrary number of times, all the intensity ratios should satisfy 3 or less. This set of intensity ratios is empirically found that if 25 sets are made, almost averaged information can be obtained.
In any case, the strength caused by the precipitates and voids described in FIGS. 1 and 2 is excluded from the target data for calculating the strength ratio.

表1に示す化学組成の鋼を転炉にて溶製し、連続鋳造プロセスにより300mm×400mmの鋳片とし、次いでブレークダウン工程を経て150mm角のビレットに粗圧延した後、1000〜1350℃×0.5h保持の後、24mmφの棒鋼に熱間圧延した。熱間圧延時の仕上げ温度は900℃とし、0.5〜1℃/sの冷却速度で室温まで冷却した。かくして得られた棒鋼を所定の長さに切断し、各種評価用試験片を採取した。   Steel with the chemical composition shown in Table 1 is melted in a converter, made into a 300mm x 400mm slab by a continuous casting process, then roughly rolled into a 150mm square billet through a breakdown process, then 1000-1350 ° C x After holding for 0.5 h, it was hot rolled to a 24 mmφ steel bar. The finishing temperature at the time of hot rolling was 900 ° C., and it was cooled to room temperature at a cooling rate of 0.5 to 1 ° C./s. The steel bar thus obtained was cut into a predetermined length, and various test pieces for evaluation were collected.

ここで、高周波焼入れ前組織に関し、各試験片の圧延方向に平行なL断面についてEPMAによる濃度不均一の評価を実施した。具体的には、表面から1mmの深さで、かつ500×500μm2の断面領域でMoもしくはWの特性X線強度によるマッピング像の取得を行った。本実施例においては、高周波焼入れ前組織の濃度不均一幅が最大でも100μm程度であることと、高周波焼入れ後の表面硬化層が1〜2mmの深さまでとなることが経験的に分かっていることから、測定する断面領域の深さと面積とを、前述のとりに決定した。この後、測定視野中の任意の点(50点以上)におけるMoまたはWの特性X線強度の最大値(Imax)と最小値(Imin)とからその比を求めた。この時、スペクトルから判断される明らかな炭化物の測定結果は除外した。 Here, regarding the structure before induction hardening, evaluation of non-uniform concentration by EPMA was performed on the L cross section parallel to the rolling direction of each test piece. Specifically, a mapping image was obtained with a characteristic X-ray intensity of Mo or W at a depth of 1 mm from the surface and a cross-sectional area of 500 × 500 μm 2 . In this example, it is empirically known that the non-uniform width of the structure before induction hardening is about 100 μm at the maximum, and the surface hardened layer after induction hardening reaches a depth of 1 to 2 mm. Thus, the depth and area of the cross-sectional area to be measured were determined as described above. Thereafter, the ratio was determined from the maximum value (Imax) and the minimum value (Imin) of the characteristic X-ray intensity of Mo or W at an arbitrary point (50 points or more) in the measurement visual field. At this time, the measurement result of the obvious carbide judged from the spectrum was excluded.

また、素材棒鋼から、平行部:20mmΦ、応力集中係数α=1.5の切欠きを有するねじり試験片を作製し、周波数:15kHzの高周波焼入れ装置を用いて、昇温速度:600℃/s、加熱温度:880〜1000℃の範囲で1回の高周波焼入れ処理を施した。この試験片を170℃×30分の条件で焼き戻した後、ねじり疲労試験に供した。
ねじり疲労試験は、最大トルク:4900 N・m(=500kgf・m)のねじり疲労試験機を用いて、両振りで応力条件を変えて行い、1×105回の寿命となる応力を疲労強度として評価した。
In addition, a torsion test piece having a notch with a parallel part: 20 mmΦ and a stress concentration factor α = 1.5 is produced from the steel bar, and the heating rate is 600 ° C./s using an induction hardening apparatus with a frequency of 15 kHz. Temperature: Induction hardening was performed once in the range of 880 to 1000 ° C. The specimen was tempered at 170 ° C. for 30 minutes and then subjected to a torsional fatigue test.
Torsional fatigue test, maximum torque: 4900 using N · m (= 500kgf · m ) of the torsional fatigue testing machine, performed by changing the stress conditions in both swing, fatigue strength and stress becomes 1 × 10 5 times the life As evaluated.

さらに、高周波焼入れ処理材の硬化層における旧オーステナイト粒径の平均値を、1000倍の光学顕微鏡視野を5箇所撮影し、画像解析によって求めた。また、顕微鏡視野の全ての旧オーステナイト粒径から粒径の不均一の指標として標準偏差を求めた。なお、上記旧オーステナイト粒径の測定は、各試験片の圧延方向に平行なL方向かつ深さ1mmの断面について、水:500gに対しピクリン酸:50gを溶解させたピクリン酸水溶液に、ドデシルベンゼンスルホン酸ナトリウム:11g、塩化第1鉄:1gおよびシュウ酸:1.5gを添加したものを腐食液として作用させ、旧オーステナイト粒界を現出させて行った。
これらの測定および評価結果を、表2に併記する。
Furthermore, the average value of the prior austenite grain size in the hardened layer of the induction-hardened material was obtained by photographing the optical microscope field of 1000 times at five locations and analyzing the image. In addition, the standard deviation was determined from all prior austenite grain sizes in the microscope field as a non-uniform index of grain size. The prior austenite particle size was measured by measuring dodecylbenzene in an aqueous picric acid solution in which 50 g of picric acid was dissolved in 500 g of water with respect to a cross section of 1 mm in depth in the L direction parallel to the rolling direction of each test piece. What added sodium sulfonate: 11g, ferrous chloride: 1g, and oxalic acid: 1.5g was made to act as a corrosive liquid, and the prior austenite grain boundary was made to appear.
These measurements and evaluation results are also shown in Table 2.

表2に示すように、鋼材No.1−1, 10−1および 20−1は炭素濃度が成分規定をはずれており、高周波焼入れ処理後の疲労強度が不十分である。鋼材No.4−1, 5−1, 13−1および14−1はMoもしくはWが規定成分範囲に満たないため、高周波焼入れ前組織における濃度不均一は小さいものの、充分な疲労強度を確保できてない。鋼材No.8−1および19−1はMoもしくはWが過剰のため、鋳片加熱温度を1300℃としても高周波焼入れ前組織中の濃度不均一性が解消されず、高周波焼入れによる表面硬化層の旧オーステナイト粒径の不均一が大きく疲労強度が低下している。鋼材No.3−1,7−1,9−1および16−1では、鋼成分は規定範囲にあるものの鋳片加熱温度が充分でないため、高周波焼入れ前組織中の濃度不均一性が解消されず、やはり高周波焼入れによる表面硬化層の旧オーステナイト粒径の不均一が大きく疲労強度が低下している。   As shown in Table 2, the steel materials No. 1-1, 10-1 and 20-1 have a carbon concentration that deviates from the component definition, and the fatigue strength after induction hardening is insufficient. Steel materials No. 4-1, 5-1, 13-1, and 14-1 have Mo or W below the specified component range, so the concentration unevenness in the microstructure before induction hardening is small, but sufficient fatigue strength can be secured. Not. Steel Nos. 8-1 and 19-1 contain excessive Mo or W, so even if the slab heating temperature is set to 1300 ° C, the concentration non-uniformity in the structure before induction quenching cannot be resolved, and the surface hardened layer by induction quenching cannot be resolved. The non-uniformity of the prior austenite grain size is large and the fatigue strength is reduced. In steel materials No.3-1, 7-1, 9-1 and 16-1, the steel components are within the specified range, but the slab heating temperature is not sufficient, so the concentration non-uniformity in the structure before induction hardening is eliminated. Furthermore, the non-uniformity of the prior austenite grain size of the surface hardened layer by induction hardening is also large and the fatigue strength is lowered.

(a)は、高周波焼入れ処理前組織中のMo濃度分布を示すEPMAのMoマッピング像であり、(b)は(a)のA−A’線上のラインプロファイルである。(A) is an EPMA Mo mapping image showing the Mo concentration distribution in the tissue before induction hardening, and (b) is a line profile on the A-A ′ line in (a). 析出物の分析事例を示す図である。It is a figure which shows the analysis example of a deposit. 高周波焼入れ処理後の表面硬化層におけるMoのX線強度比と表面硬化層における旧オーステナイト粒径の標準偏差との相関関係を示すグラフである。It is a graph which shows the correlation with the X-ray intensity ratio of Mo in the surface hardening layer after induction hardening processing, and the standard deviation of the prior austenite particle size in a surface hardening layer.

Claims (8)

質量%で、C:0.3〜0.6%およびMo:0.15〜0.8%を含有する鋼材であって、任意の断面領域におけるMoのX線強度の最大値(Imax)と最小値(Imin)との比Imax / Imin が3以下であることを特徴とする疲労特性に優れた高周波焼入れ用炭素鋼材。   The ratio of the maximum value (Imax) and the minimum value (Imin) of the X-ray intensity of Mo in an arbitrary cross-sectional area, which is a steel material containing C: 0.3-0.6% and Mo: 0.15-0.8% in mass% A carbon steel material for induction hardening with excellent fatigue characteristics, characterized in that Imax / Imin is 3 or less. 質量%で、C:0.3〜0.6%およびW:0.25〜1.6%を含有する鋼材であって、任意の断面領域におけるWのX線強度の最大値(Imax)と最小値(Imin)との比Imax / Imin が3以下であることを特徴とする疲労特性に優れた高周波焼入れ用炭素鋼材。   Ratio of the maximum value (Imax) and the minimum value (Imin) of the X-ray intensity of W in an arbitrary cross-sectional area, which is a steel material containing C: 0.3-0.6% and W: 0.25-1.6% in mass% A carbon steel material for induction hardening with excellent fatigue characteristics, characterized in that Imax / Imin is 3 or less. 鋼材が、さらに質量%で、S:0.05%以下および Mn:0.2〜2%を含むことを特徴とする請求項1または2に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。   The carbon steel material for induction hardening according to claim 1 or 2, wherein the steel material further contains, by mass%, S: 0.05% or less and Mn: 0.2-2%. 鋼材が、さらに質量%で、S:0.05%以下および Mn:0.2〜2%を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする請求項1または2に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。   3. The fatigue according to claim 1, wherein the steel material further contains, in mass%, S: 0.05% or less and Mn: 0.2-2%, the balance being composed of Fe and inevitable impurities. Carbon steel material for induction hardening with excellent properties. 鋼材が、さらに質量%で、Si:1%以下、 P:0.02%以下、 Al:0.5%以下および N:0.01%以下を含有することを特徴とする請求項3または4に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。   The steel according to claim 3 or 4, further comprising, by mass%, Si: 1% or less, P: 0.02% or less, Al: 0.5% or less, and N: 0.01% or less. Excellent induction hardening carbon steel. 鋼材が、さらに質量%で、Ti:0.05%未満およびB:0.005%以下を含有することを特徴とする請求項3ないし5のいずれか1項に記載の疲労特性に優れた高周波焼入れ用炭素鋼材。   The steel material for induction hardening according to any one of claims 3 to 5, wherein the steel material further contains, by mass%, Ti: less than 0.05% and B: 0.005% or less. . 鋼材が、さらに質量%でCa:0.010%未満を含有することを特徴とする請求項3ないし6のいずれか1項に記載の疲労特性に優れた高周波焼入れ用炭素鋼。   The carbon steel for induction hardening with excellent fatigue characteristics according to any one of claims 3 to 6, wherein the steel material further contains Ca: less than 0.010% by mass. 請求項1ないし7のいずれかに記載の高周波焼入れ用炭素鋼材からなることを特徴とする疲労特性に優れた機械構造用部品。

A machine structural component having excellent fatigue characteristics, comprising the induction-quenched carbon steel material according to any one of claims 1 to 7.

JP2005235967A 2004-11-09 2005-08-16 Induction hardening carbon steel and machine structural parts Expired - Fee Related JP4677854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235967A JP4677854B2 (en) 2004-11-09 2005-08-16 Induction hardening carbon steel and machine structural parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004325208 2004-11-09
JP2005235967A JP4677854B2 (en) 2004-11-09 2005-08-16 Induction hardening carbon steel and machine structural parts

Publications (2)

Publication Number Publication Date
JP2006161150A true JP2006161150A (en) 2006-06-22
JP4677854B2 JP4677854B2 (en) 2011-04-27

Family

ID=36663495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235967A Expired - Fee Related JP4677854B2 (en) 2004-11-09 2005-08-16 Induction hardening carbon steel and machine structural parts

Country Status (1)

Country Link
JP (1) JP4677854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018893A1 (en) * 2011-08-03 2013-02-07 新日鐵住金株式会社 Untempered steel for hot casting, hot-casted untempered article and method for producing same
EP2383359A4 (en) * 2008-12-19 2017-04-19 Nippon Steel & Sumitomo Metal Corporation Hardfacing steel for machine structure, and steel component for machine structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242989A (en) * 1994-03-01 1995-09-19 Kobe Steel Ltd Steel for induction hardening, excellent in cold forgeability, machinability, and torsional fatigue strength
JPH1161362A (en) * 1997-08-14 1999-03-05 Sanyo Special Steel Co Ltd Tool steel for hot working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242989A (en) * 1994-03-01 1995-09-19 Kobe Steel Ltd Steel for induction hardening, excellent in cold forgeability, machinability, and torsional fatigue strength
JPH1161362A (en) * 1997-08-14 1999-03-05 Sanyo Special Steel Co Ltd Tool steel for hot working

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383359A4 (en) * 2008-12-19 2017-04-19 Nippon Steel & Sumitomo Metal Corporation Hardfacing steel for machine structure, and steel component for machine structure
WO2013018893A1 (en) * 2011-08-03 2013-02-07 新日鐵住金株式会社 Untempered steel for hot casting, hot-casted untempered article and method for producing same
JP5206911B1 (en) * 2011-08-03 2013-06-12 新日鐵住金株式会社 Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
KR101458348B1 (en) * 2011-08-03 2014-11-04 신닛테츠스미킨 카부시키카이샤 Untempered steel for hot casting, hot-casted untempered article and method for producing same

Also Published As

Publication number Publication date
JP4677854B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
TWI592500B (en) Cold rolled steel sheet and manufacturing method thereof
JP6163197B2 (en) High-strength cold-rolled steel sheet and method for producing such a steel sheet
JP6290168B2 (en) High-strength cold-rolled steel sheet and method for producing such a steel sheet
JP4903915B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4712882B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2019009410A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2001240940A (en) Bar wire rod for cold forging and its production method
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2011149062A (en) Method for producing high carbon hot-rolled steel sheet
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN105102659B (en) Nitrogen treatment steel plate and its manufacture method
KR20240000646A (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2021187321A1 (en) High-strength steel sheet and method for manufacturing same
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP4171398B2 (en) High strength and high toughness non-heat treated steel bar and method for producing the same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
WO2021230079A1 (en) Steel sheet, member, and method for manufacturing same
JP4712842B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
WO2020209149A1 (en) Cold rolled steel sheet and method for producing same
JP4677854B2 (en) Induction hardening carbon steel and machine structural parts
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees