JP2006160852A - Liquid sealing resin composition and semiconductor device using the same - Google Patents

Liquid sealing resin composition and semiconductor device using the same Download PDF

Info

Publication number
JP2006160852A
JP2006160852A JP2004352827A JP2004352827A JP2006160852A JP 2006160852 A JP2006160852 A JP 2006160852A JP 2004352827 A JP2004352827 A JP 2004352827A JP 2004352827 A JP2004352827 A JP 2004352827A JP 2006160852 A JP2006160852 A JP 2006160852A
Authority
JP
Japan
Prior art keywords
flux
resin composition
sealing resin
liquid sealing
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352827A
Other languages
Japanese (ja)
Other versions
JP4492326B2 (en
Inventor
Masahiro Kitamura
昌弘 北村
Katsushi Yamashita
勝志 山下
Masahiro Wada
雅浩 和田
Nobuaki Hayashi
伸明 林
Yuji Sakamoto
有史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004352827A priority Critical patent/JP4492326B2/en
Publication of JP2006160852A publication Critical patent/JP2006160852A/en
Application granted granted Critical
Publication of JP4492326B2 publication Critical patent/JP4492326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underfill material capable of effectively dissolving and removing flux residues therein when filling and curing the underfill material in a flip chip type semiconductor element. <P>SOLUTION: The liquid sealing resin composition is composed mainly of (1) a thermosetting resin, (2) an additive capable of dissolving a flux, and (3) a filler, wherein, preferably, the thermosetting resin is composed mainly of an epoxy resin and an aromatic amine, and the additive capable of dissolving a flux is a flux detergent, a surfactant capable of dissolving the flux or a compatibilizer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液状封止樹脂組成物及びそれを用いた半導体装置に関する。   The present invention relates to a liquid sealing resin composition and a semiconductor device using the same.

近年、半導体素子の大型化、半導体装置の多ピン化、多様化に伴い、半導体素子等の周辺に使用される樹脂材料に対する信頼性の要求も厳しくなってきている。従来、リードフレームに半導体素子を接着し、封止樹脂で封止した半導体装置が主流であったが、近年では多ピン化の限界からボールグリッドアレイ(BGA)の様な半導体装置が増えている。BGAに搭載される半導体素子をインターポーザー(基板)に接続する方式には、ワイヤーボンドで半導体素子をインターポーザーに接続する方式、フリップチップをインターポーザーに接続する方式等がある。特に後者の場合、信号応答性、熱放散性等の観点から近年生産量が著しく伸びている。   In recent years, with the increase in the size of semiconductor elements, the increase in the number of pins of semiconductor devices, and the diversification, the requirement for reliability of resin materials used in the periphery of semiconductor elements and the like has become severe. Conventionally, a semiconductor device in which a semiconductor element is bonded to a lead frame and sealed with a sealing resin has been mainstream. However, in recent years, a semiconductor device such as a ball grid array (BGA) is increasing due to the limit of the number of pins. . As a method of connecting a semiconductor element mounted on a BGA to an interposer (substrate), there are a method of connecting a semiconductor element to the interposer by wire bonding, a method of connecting a flip chip to the interposer, and the like. In particular, in the latter case, the production volume has increased remarkably in recent years from the viewpoint of signal response, heat dissipation, and the like.

フリップチップをインターポーザーに接続する方式の半導体装置の組み立て方法は、その接続にはんだ電極が用いられ、
1) 基板またははんだ電極にフラックスを塗布する工程
2) リフロー処理によりはんだ電極を接続させる工程
3) フラックスを洗浄する工程
4) フリップチップと基板との間隙にアンダーフィル材と呼ばれる封止樹脂を充填・硬化する工程
を含む(図1)。3)の工程はフラックス残渣がその不純物による電気的不良を防ぐために必要な工程であり、4)は装置全体の信頼性を向上させるために必須となっている。近年、3)の工程において高純度、低残渣タイプのフラックスが登場し、3)の洗浄工程を省略することも可能となってきている(図2)(例えば特許文献1参照)。
しかし、最近になり電子回路の微細化に伴いフリップチップのはんだ電極間のピッチ、はんだの高さが狭小化、または大型チップ化する傾向に対し、上記改良フラックスを用いた場合でも、フラックス残渣が残りやすくなる問題が生じるようになった。フラックスははんだ電極の接続に用いられるため、リフロー処理後に多くの場合は、はんだ電極の周りに残渣を形成し(図3)、この残渣は、多くの場合、アンダーフィル材の充填・硬化の工程の際にも、アンダーフィル材と相溶すること無く、はんだ電極の周りに引き続き残る事がわかった(図4)。このフラックス残渣は元来基材との密着に乏しく信頼性において剥離を誘発する要因となる恐れがあった。また、フラックス残渣は線膨張係数が一般に非常に高いため、信頼性特に熱衝撃試験においてはんだに対し大きなストレスを与え、はんだクラック等の重大欠陥を招く恐れがあった。これらの問題を防ぐために改良フラックスに対しても3)の洗浄工程を行うことが考えられるが、先に述べたはんだ電極に関する狭小化により、洗浄が細部にまで行き渡らず、部分的にフラックス残渣が引き続き残るという問題があった。
特開平8−288638号公報
In the method of assembling a semiconductor device in which a flip chip is connected to an interposer, solder electrodes are used for the connection,
1) Step of applying flux to substrate or solder electrode 2) Step of connecting solder electrode by reflow process 3) Step of cleaning flux 4) Filling gap between flip chip and substrate with sealing resin called underfill material -The process of hardening is included (FIG. 1). The step 3) is a step necessary for preventing an electrical failure caused by the impurities of the flux residue, and 4) is essential for improving the reliability of the entire apparatus. In recent years, a high-purity, low-residue type flux has appeared in the step 3), and it has become possible to omit the cleaning step 3) (see, for example, Patent Document 1).
However, with the recent trend toward electronic chip miniaturization, the pitch between solder electrodes of flip chips, the height of solder is becoming narrower, or the chip is becoming larger, even when using the above-mentioned improved flux, There is now a problem that tends to remain. Since the flux is used to connect the solder electrode, a residue is often formed around the solder electrode after the reflow process (FIG. 3), and this residue is often a process of filling and curing the underfill material. In this case, it was found that it remained around the solder electrode without being compatible with the underfill material (FIG. 4). The flux residue originally has poor adhesion to the base material, and may cause peeling in reliability. Further, since the flux residue generally has a very high linear expansion coefficient, there is a risk that a large stress is applied to the solder in reliability, particularly in a thermal shock test, and serious defects such as solder cracks may be caused. In order to prevent these problems, it is conceivable to perform the cleaning step 3) for the improved flux. However, due to the narrowing of the solder electrode described above, the cleaning is not performed in detail, and the flux residue is partially removed. There was a problem of continuing.
JP-A-8-288638

本発明の目的は、アンダーフィル材をフリップチップタイプの半導体素子に充填・硬化する際に、フラックス残渣を効果的にアンダーフィル材内に溶解除去させることのできるアンダーフィル材を提供することであり、ひいてはそのアンダーフィル材を用いた半導体装置の信頼性を向上することである。   An object of the present invention is to provide an underfill material capable of effectively dissolving and removing a flux residue in the underfill material when filling and curing the flip chip type semiconductor element with the underfill material. As a result, the reliability of the semiconductor device using the underfill material is improved.

このような目的は、下記[1]〜[7]に記載の本発明により達成される。
[1] 1)熱硬化性樹脂、2)フラックスを溶解し得る添加剤及び3)フィラーを主成分としてなることを特徴とする液状封止樹脂組成物。
[2] 熱硬化性樹脂がエポキシ樹脂及び芳香族アミンを主成分とするものである[1]項記載の液状封止樹脂組成物。
[3] フラックスを溶解し得る添加剤が、フラックス洗浄剤である[1]又は[2]項記載の液状封止樹脂組成物。
[4] フラックスを溶解し得る添加剤が、フラックスを溶解し得る界面活性剤である[1]又は[2]項記載の液状封止樹脂組成物。
[5] フラックスを溶解し得る添加剤が、フラックスを溶解し得る相溶化剤である[1]又は[2]項記載の液状封止樹脂組成物。
[6] 液状封止樹脂組成物100重量部に対するフラックスを溶解し得る添加剤の割合が0.005〜15重量部である[1]〜[5]項のいずれか1項に記載の液状封止樹脂組成物。
[7] はんだ電極が具備された半導体素子と対応する基板を、はんだ電極を介して接続した素子と基板の間隙を[1]〜[6]項のいずれか1項に記載の液状樹脂組成物を用いて封止してなることを特徴とする半導体装置。
Such an object is achieved by the present invention described in the following [1] to [7].
[1] A liquid sealing resin composition comprising as main components 1) a thermosetting resin, 2) an additive capable of dissolving a flux, and 3) a filler.
[2] The liquid sealing resin composition according to [1], wherein the thermosetting resin is mainly composed of an epoxy resin and an aromatic amine.
[3] The liquid sealing resin composition according to [1] or [2], wherein the additive capable of dissolving the flux is a flux cleaning agent.
[4] The liquid sealing resin composition according to [1] or [2], wherein the additive capable of dissolving the flux is a surfactant capable of dissolving the flux.
[5] The liquid sealing resin composition according to [1] or [2], wherein the additive capable of dissolving the flux is a compatibilizing agent capable of dissolving the flux.
[6] The liquid seal according to any one of [1] to [5], wherein the ratio of the additive capable of dissolving the flux with respect to 100 parts by weight of the liquid sealing resin composition is 0.005 to 15 parts by weight. Resin composition.
[7] The liquid resin composition according to any one of items [1] to [6], wherein a gap between the element and the substrate in which the substrate corresponding to the semiconductor element provided with the solder electrode is connected via the solder electrode is provided. A semiconductor device characterized by being sealed using

本発明のアンダーフィル材は、フリップチップタイプの半導体素子に充填・硬化する際に、フラックス残渣を効果的にアンダーフィル材内に溶解除去させることができ、本発明のアンダーフィル材を用いることによって半導体装置の信頼性を向上することである。   The underfill material of the present invention can effectively dissolve and remove the flux residue in the underfill material when filling and curing the flip chip type semiconductor element. By using the underfill material of the present invention, This is to improve the reliability of the semiconductor device.

以下、本発明の液状封止樹脂組成物(アンダーフィル材)および半導体装置について詳細に説明する。
本発明の液状封止樹脂組成物は熱硬化性樹脂、フラックスを溶解し得る添加剤及びフィラーが必須の構成である。
本発明に用いる熱硬化性樹脂の例としてはエポキシ樹脂、アクリレート樹脂、ブタジエン樹脂、マレイミド樹脂、シアネート樹脂、ウレタン樹脂等既存の熱硬化性樹脂を用いることができる。その中でエポキシ樹脂が信頼性、多様性、生産性等において好ましい。エポキシ樹脂は硬化させるためにアミン、酸無水物、フェノール樹脂等の硬化剤を必要とするが、硬化剤として芳香族アミンとの組み合わせが特に本発明を発現させるためには好ましい。より好ましい例としては
下記構造(式1)を有するオリゴマーである。
Hereinafter, the liquid sealing resin composition (underfill material) and the semiconductor device of the present invention will be described in detail.
The liquid sealing resin composition of the present invention is essentially composed of a thermosetting resin, an additive capable of dissolving flux, and a filler.
As an example of the thermosetting resin used in the present invention, an existing thermosetting resin such as an epoxy resin, an acrylate resin, a butadiene resin, a maleimide resin, a cyanate resin, or a urethane resin can be used. Among them, epoxy resin is preferable in terms of reliability, diversity, productivity, and the like. The epoxy resin requires a curing agent such as an amine, an acid anhydride, or a phenol resin in order to be cured, and a combination with an aromatic amine as the curing agent is particularly preferable in order to express the present invention. A more preferable example is an oligomer having the following structure (formula 1).

Figure 2006160852
R:水素、またはアルキル基
X:水素、またはアルキル基
Figure 2006160852
R: hydrogen or alkyl group X: hydrogen or alkyl group

例えば、特開平10−158365(R=H-,X=C2H5-の場合)等に開示されている芳香族アミン、特開2004−35668(R=CH3-,X=Hの場合)等に開示されて芳香族アミンが常温で液状であり信頼性に優れるため好適である。
次に、本発明で用いられるフラックスを溶解し得る添加剤としては例えばフラックス洗浄剤であり、市販のものを使用することができる。たとえば荒川化学社製パインアルファST−100SX、花王社製クリンスルー750H、化研テック社製マイクロクリンWS−1942などが挙げられる。
For example, aromatic amines disclosed in JP-A-10-158365 (in the case of R = H-, X = C2H5-), etc., JP-A 2004-35668 (in the case of R = CH3-, X = H), etc. The aromatic amine is suitable because it is liquid at room temperature and excellent in reliability.
Next, an additive capable of dissolving the flux used in the present invention is, for example, a flux cleaning agent, and a commercially available product can be used. Examples include Pine Alpha ST-100SX manufactured by Arakawa Chemical Co., Ltd., CLEAN THROUGH 750H manufactured by Kao Corporation, and MicroClean WS-1942 manufactured by Kaken Tech.

また、本発明で用いるフラックスを溶解し得る添加剤として、フラックス洗浄剤の他同等の作用を有するものとして、界面活性剤や相溶化剤のような熱硬化性樹脂に相溶し、かつフラックス剤を溶解するような構造を有する化合物を用いることができる。たとえばフラックスの代表例として活性ロジン系フラックスが挙げられるが、この場合はポリオキシアルキレンアルキルエーテル等のノニオン性界面活性剤、ポリオキシアルキレンリン酸エステル系界面活性剤、ポリオキシアルキレンアミン系界面活性剤等のオリゴマー等を用いることが好ましい。一般的には使用するフラックスの内容成分に応じて、溶解し得る構造を有する化合物を添加すればよい。フラックスを溶解し得る化合物の添加量は全液状封止樹脂組成物100重量部に対して0.005〜15重量部であることが好ましい。 0.005重量部を下回ると、本発明の効果が発現しない、15重量部を超えると硬化物の物性の低下、ボイドの発生等を伴い好ましくない。 In addition, as an additive capable of dissolving the flux used in the present invention, as a flux cleaning agent having an equivalent action, it is compatible with a thermosetting resin such as a surfactant or a compatibilizing agent, and the flux agent A compound having a structure that dissolves can be used. For example, a typical example of the flux is an active rosin flux. In this case, a nonionic surfactant such as polyoxyalkylene alkyl ether, a polyoxyalkylene phosphate ester surfactant, a polyoxyalkylene amine surfactant is used. It is preferable to use an oligomer such as In general, a compound having a soluble structure may be added according to the content component of the flux to be used. The amount of the compound capable of dissolving the flux is preferably 0.005 to 15 parts by weight with respect to 100 parts by weight of the total liquid sealing resin composition. When the amount is less than 0.005 parts by weight, the effect of the present invention is not exhibited. When the amount exceeds 15 parts by weight, the physical properties of the cured product are deteriorated, and voids are generated.

次に本発明の液状封止樹脂組成物に用いるフィラーとしては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物等を挙げることができる。これらの中でもシリカ(特に球状溶融シリカ)が好ましい。これにより、流動性および供給安定性を向上することができる。フィラー(特に、球状シリカ)の平均粒子径は、特に限定されないが、10μm以下が好ましく、特に5μm以下が好ましい。平均粒子径が前記範囲内であると、充填性を特に向上することができる。さらに、フィラーは、その表面がカップリング剤により表面処理されていても良い。   Next, as a filler used in the liquid sealing resin composition of the present invention, for example, silicates such as talc, fired clay, unfired clay, mica, glass, oxides such as titanium oxide, alumina, silica, and fused silica, Carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate And borate salts such as barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride. Among these, silica (especially spherical fused silica) is preferable. Thereby, fluidity | liquidity and supply stability can be improved. The average particle diameter of the filler (particularly, spherical silica) is not particularly limited, but is preferably 10 μm or less, and particularly preferably 5 μm or less. When the average particle diameter is within the above range, the filling property can be particularly improved. Furthermore, the surface of the filler may be surface-treated with a coupling agent.

また本発明の液状封止樹脂組成物には、本発明の目的を損なわない範囲で硬化促進剤、カップリング剤、低応力剤、顔料、染料、レベリング剤、消泡剤等の添加剤を混合することができる。製造方法としてはロール、遊星ミキサー等で混合し、真空脱泡することにより作製することができる。   In addition, the liquid sealing resin composition of the present invention is mixed with additives such as a curing accelerator, a coupling agent, a low stress agent, a pigment, a dye, a leveling agent, and an antifoaming agent as long as the object of the present invention is not impaired. can do. As a manufacturing method, it can produce by mixing with a roll, a planetary mixer, etc., and carrying out vacuum defoaming.

本発明の液状封止樹脂組成物を用いてフリップチップタイプの半導体素子を封止し、半導体装置を製作する方法は公知の方法を用いることができる。   A known method can be used as a method of sealing a flip chip type semiconductor element using the liquid sealing resin composition of the present invention and manufacturing a semiconductor device.

以下、本発明の実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
(1)液状封止樹脂組成物の調製
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)28.5重量%と、硬化剤としてジエチルジアミノジフェニルメタン(硬化剤A、活性水素当量63)10.8重量%と、フラックスを溶解し得る成分として市販のフラックス洗浄剤であるパインアルファST−100SX(荒川化学製)5.0重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.6重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
Hereinafter, although it demonstrates in detail based on the Example and comparative example of this invention, this invention is not limited to this.
Example 1
(1) Preparation of liquid sealing resin composition 28.5% by weight of bisphenol F type epoxy resin (Nippon Kayaku, RE-403S, epoxy equivalent 166) as curable resin, and diethyldiaminodiphenylmethane (curing agent) as curing agent A, active hydrogen equivalent 63) 10.8% by weight, commercially available flux detergent Pine Alpha ST-100SX (manufactured by Arakawa Chemical) as a component capable of dissolving the flux, 5.0% by weight, and spherical as an inorganic filler Silica (manufactured by Admatechs, SO-25H, average particle size 0.5 μm) 55.0% by weight, and γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-403) 0.6 weight as a coupling agent % And carbon black (Mitsubishi Chemical, MA-600) 0.1% by weight as a pigment were kneaded at room temperature with three rolls, To obtain a liquid encapsulating resin composition was vacuum defoamed using machine.

(2)封止樹脂の充填(封止)
はんだ接続用のフラックスとしてTSF−6502(Kester製、ロジン系フラックス)またはTSF−6522(Kester製、ロジン系)を基板に基板に塗布し、フリップチップボンダーで予めはんだ電極(はんだ組成:67%Sn33%Pb)が具備された半導体素子(回路保護膜:窒化ケイ素、電極数176個、サイズ:10mm×10mm×0.35mmt、はんだ高さ50μm)を対応する基板(352pBGA(サイズ35mm×35mm×0.56mmtのビスマレイミド・トリアジン樹脂/ガラスクロス基板、レジスト:太陽インキ社製、PSR-4000/AUS308)に設置した後、リフロー炉(温度プロファイル図6 参照)に通しはんだを基板に接合し半導体パッケージを得た。
上述の半導体パッケージを110℃の熱板上で加熱し、半導体素子の一辺に(1)で調製した液状封止樹脂組成物をディスペンスし充填させ、150℃のオーブンで90分間樹脂を硬化し、半導体装置を得た。
(2) Filling with sealing resin (sealing)
TSF-6502 (manufactured by Kester, rosin-based flux) or TSF-6522 (manufactured by Kester, rosin-based) is applied to the substrate as a soldering flux, and the solder electrode (solder composition: 67% Sn33) is applied in advance by a flip chip bonder. % Pb) corresponding to a semiconductor device (circuit protection film: silicon nitride, 176 electrodes, size: 10 mm × 10 mm × 0.35 mmt, solder height 50 μm) (352 pBGA (size 35 mm × 35 mm × 0 .56mmt bismaleimide / triazine resin / glass cloth substrate, resist: PSR-4000 / AUS308, manufactured by Taiyo Ink Co., Ltd., and then soldered to the substrate through a reflow oven (see temperature profile Fig. 6). Got.
The above-mentioned semiconductor package is heated on a hot plate at 110 ° C., and the liquid sealing resin composition prepared in (1) is dispensed and filled on one side of the semiconductor element, and the resin is cured in an oven at 150 ° C. for 90 minutes, A semiconductor device was obtained.

(実施例2)
液状封止樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)23.7重量%と、硬化剤として下記の構造(式2)のアミン系硬化剤(硬化剤B、活性水素当量116)16.6重量%と、フラックスを溶解し得る成分として市販のフラックス洗浄剤であるパインアルファST−100SX(荒川化学製)4.1重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.5重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
得られた液状封止樹脂組成物を用いて、実施例1と同様にして半導体装置を得た。
(Example 2)
The same procedure as in Example 1 was conducted except that the composition of the liquid sealing resin composition was as follows.
Bisphenol F-type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-403S, epoxy equivalent 166) 23.7% by weight as a curable resin, and an amine-based curing agent (curing agent B, Active hydrogen equivalent 116) 16.6% by weight, commercially available flux cleaner Pine Alpha ST-100SX (manufactured by Arakawa Chemical) as a component capable of dissolving flux, 4.1% by weight, and spherical silica (inorganic filler) 55.0% by weight, manufactured by Admatechs, SO-25H, average particle size 0.5 μm), and 0.5% by weight of γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-403) as a coupling agent Then, 0.1% by weight of carbon black (manufactured by Mitsubishi Chemical, MA-600) as a pigment is kneaded at room temperature with three rolls, and then subjected to vacuum defoaming treatment using a vacuum defoamer. It was to obtain a liquid sealing resin composition.
A semiconductor device was obtained in the same manner as in Example 1 using the obtained liquid sealing resin composition.

Figure 2006160852
Figure 2006160852

(実施例3)
液状封止樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)32.0重量%と、硬化剤としてジエチルジアミノジフェニルメタン(硬化剤A,活性水素当量63)12.2重量%と、フラックスを溶解し得る成分としてポリオキシエチレントリデシルエーテル系の界面活性剤であるペグノールT−6(東邦化学工業製)0.1重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.6重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
得られた液状封止樹脂組成物を用いて、実施例1と同様にして半導体装置を得た。
(Example 3)
The same procedure as in Example 1 was conducted except that the composition of the liquid sealing resin composition was as follows.
Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-403S, epoxy equivalent 166) 32.0% by weight as curable resin, and diethyldiaminodiphenylmethane (hardener A, active hydrogen equivalent 63) 12.2% by weight as the curing agent %, Pegnol T-6 (manufactured by Toho Chemical Co., Ltd.) which is a polyoxyethylene tridecyl ether surfactant as a component capable of dissolving flux, and spherical silica (manufactured by Admatechs) as an inorganic filler. SO-25H, average particle size 0.5 μm) 55.0% by weight, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-403) 0.6% by weight as a coupling agent, and pigment Carbon black (Mitsubishi Chemical, MA-600) 0.1% by weight was kneaded at room temperature with three rolls, and then a vacuum defoamer was used. And a vacuum defoaming treatment to obtain a liquid sealing resin composition.
A semiconductor device was obtained in the same manner as in Example 1 using the obtained liquid sealing resin composition.

(実施例4)
液状封止樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)26.1重量%と、硬化剤として式2のアミン系硬化剤(硬化剤B、活性水素当量116)18.2重量%と、フラックスを溶解し得る成分としてポリオキシエチレントリデシルエーテル系の界面活性剤であるペグノールT−6(東邦化学工業製)0.1重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.5重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
得られた液状封止樹脂組成物を用いて、実施例1と同様にして半導体装置を得た。
Example 4
The same procedure as in Example 1 was conducted except that the composition of the liquid sealing resin composition was as follows.
Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-403S, epoxy equivalent 166) as a curable resin, 26.1% by weight, and amine curing agent of formula 2 as a curing agent (curing agent B, active hydrogen equivalent 116) 18.2% by weight, 0.1% by weight of Pegnol T-6 (Toho Chemical Co., Ltd.) which is a polyoxyethylene tridecyl ether surfactant as a component capable of dissolving flux, and spherical silica as an inorganic filler (Manufactured by Admatechs, SO-25H, average particle size 0.5 μm) 55.0% by weight and γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-403) 0.5% by weight as a coupling agent And 0.1% by weight of carbon black (manufactured by Mitsubishi Chemical, MA-600) as a pigment are kneaded at room temperature with three rolls, and then vacuum degassed using a vacuum defoamer. Processing to obtain a liquid sealing resin composition.
A semiconductor device was obtained in the same manner as in Example 1 using the obtained liquid sealing resin composition.

(比較例1)
液状封止樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)32.1重量%と、硬化剤としてジエチルジアミノジフェニルメタン(硬化剤A、活性水素当量63)12.2重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.7重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
得られた液状封止樹脂組成物を用いて、実施例1と同様にして半導体装置を得た。
(Comparative Example 1)
The same procedure as in Example 1 was conducted except that the composition of the liquid sealing resin composition was as follows.
Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-403S, epoxy equivalent 166) 32.1% by weight as curable resin, and diethyldiaminodiphenylmethane (hardener A, active hydrogen equivalent 63) 12.2% by weight as the curing agent %, Spherical silica (manufactured by Admatechs, SO-25H, average particle size 0.5 μm) 55.0% by weight as inorganic filler, and γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., (KBM-403) 0.7% by weight and 0.1% by weight of carbon black (Mitsubishi Chemical, MA-600) as a pigment were kneaded at room temperature with three rolls, and then vacuumed using a vacuum deaerator. A defoaming treatment was performed to obtain a liquid sealing resin composition.
A semiconductor device was obtained in the same manner as in Example 1 using the obtained liquid sealing resin composition.

(比較例2)
液状封止樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。
硬化性樹脂としてビスフェノールF型エポキシ樹脂(日本化薬製、RE−403S、エポキシ当量166)26.1重量%と、硬化剤として式2のアミン系硬化剤(硬化剤B,活性水素当量116)18.3重量%と、無機充填材として球状シリカ(アドマテックス製、SO−25H、平均粒子径0.5μm)55.0重量%と、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学製、KBM−403)0.5重量%と、顔料としてカーボンブラック(三菱化学製、MA−600)0.1重量%とを3本ロールにて室温で混練した後、真空脱泡機を用いて真空脱泡処理をして液状封止樹脂組成物を得た。
得られた液状封止樹脂組成物を用いて、実施例1と同様にして半導体装置を得た。
(Comparative Example 2)
The same procedure as in Example 1 was conducted except that the composition of the liquid sealing resin composition was as follows.
Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-403S, epoxy equivalent 166) as a curable resin, 26.1% by weight, and amine curing agent of formula 2 as a curing agent (curing agent B, active hydrogen equivalent 116) 18.3% by weight, 55.0% by weight of spherical silica (manufactured by Admatechs, SO-25H, average particle size 0.5 μm) as inorganic filler, and γ-glycidoxypropyltrimethoxysilane (as coupling agent) Shin-Etsu Chemical, KBM-403) 0.5% by weight and carbon black (Mitsubishi Chemical, MA-600) 0.1% by weight as a pigment were kneaded at room temperature with three rolls, and then a vacuum defoamer Was subjected to vacuum defoaming treatment to obtain a liquid sealing resin composition.
A semiconductor device was obtained in the same manner as in Example 1 using the obtained liquid sealing resin composition.

各実施例および比較例で得られた半導体装置について、以下の半導体装置の断面観察および信頼性試験を行った。得られた結果を表1に示す。
<半導体の断面観察1>
各実施例および比較例で得られた半導体装置のうち、フラックスにTSF−6502とTSF−6522を用いたものを各々2個ずつ、断面研磨を行い、はんだバンプ周りのフラックス残渣の有無を観察し、フラックス残渣が観察された半導体装置の数を評価した。
<信頼性試験>
各実施例および比較例得られた半導体装置のうち、上記の<半導体の断面観察1>に用いていないものを吸湿処理(30℃/60%/192時間)、耐リフロー試験(JEDEC220℃条件)3回、熱衝撃試験(−55℃/30分〜125℃/30分、1,000サイクル)を行った後に、導通試験を行い、導通しなかった半導体装置の数を評価した。
<半導体の断面観察2>
上記の<信頼性試験>に用いた全ての半導体装置の断面研磨を行い、はんだバンプ周りの観察を行った。
For the semiconductor devices obtained in the respective examples and comparative examples, the following cross-sectional observation and reliability test of the semiconductor devices were performed. The obtained results are shown in Table 1.
<Semiconductor cross-section observation 1>
Of the semiconductor devices obtained in each of the examples and comparative examples, two each using TSF-6502 and TSF-6522 as the flux were subjected to cross-sectional polishing, and the presence or absence of flux residue around the solder bumps was observed. The number of semiconductor devices in which flux residues were observed was evaluated.
<Reliability test>
Of the semiconductor devices obtained in the respective examples and comparative examples, those not used in the above <Semiconductor cross-sectional observation 1> are subjected to moisture absorption treatment (30 ° C./60%/192 hours), reflow resistance test (JEDEC 220 ° C. condition). After conducting a thermal shock test (-55 ° C./30 minutes to 125 ° C./30 minutes, 1,000 cycles) three times, a continuity test was conducted to evaluate the number of semiconductor devices that did not conduct.
<Cross-section observation of semiconductor 2>
All semiconductor devices used in the above <reliability test> were subjected to cross-sectional polishing and observed around the solder bumps.

Figure 2006160852
Figure 2006160852

表から明らかなように、実施例1〜4は、はんだ周りのフラックス残渣がアンダーフィル材内に溶解除去されており(図5)、信頼性試験後も導通が取れており、半導体装置の信頼性が向上していることが示された。
一方、比較例1、2はフラックスを溶解し得る添加剤が添加されていないために、はんだバンプ周りのフラックス残渣が除去されておらず、信頼性試験後にフラックス残渣と基板の間に剥離が生じ、はんだバンプがクラックしたために、半導体装置が導通しなくなったものが存在した。
実施例1〜4は、はんだ周りのフラックス残渣がアンダーフィル材内に溶解除去されており、信頼性試験後も導通が取れており、半導体装置の信頼性が向上していることが示された。
As is clear from the table, in Examples 1 to 4, the flux residue around the solder is dissolved and removed in the underfill material (FIG. 5), and electrical conductivity is obtained even after the reliability test. It was shown that the performance was improved.
On the other hand, in Comparative Examples 1 and 2, since the additive capable of dissolving the flux is not added, the flux residue around the solder bump is not removed, and peeling occurs between the flux residue and the substrate after the reliability test. Some semiconductor devices were not conductive because the solder bumps were cracked.
In Examples 1 to 4, the flux residue around the solder was dissolved and removed in the underfill material, and the continuity was obtained after the reliability test, indicating that the reliability of the semiconductor device was improved. .

フリップチップパッケージの製造工程例を示す。図1(a)は基板またははんだ電極にフラックスを塗布した後の状態図である。図1(b)はリフロー処理によりはんだ電極を接続させた後の状態図である。図1(c)フラックスを洗浄した後の状態図である。図1(d)アンダーフィル材を充填・硬化した後の状態図である。The manufacturing process example of a flip chip package is shown. FIG. 1A is a state diagram after a flux is applied to a substrate or a solder electrode. FIG. 1B is a state diagram after the solder electrodes are connected by the reflow process. FIG. 1C is a state diagram after cleaning the flux. FIG. 1D is a state diagram after filling and curing the underfill material. 洗浄工程を省略したフリップチップパッケージの製造工程例を示す。図2(a)は基板またははんだ電極にフラックスを塗布した後の状態図である。図2(b)はリフロー処理によりはんだ電極を接続させた後の状態図である。図2(c)アンダーフィル材を充填・硬化した後の状態図である。An example of a manufacturing process of a flip chip package in which a cleaning process is omitted will be shown. FIG. 2A is a state diagram after the flux is applied to the substrate or the solder electrode. FIG. 2B is a state diagram after the solder electrodes are connected by the reflow process. FIG. 2C is a state diagram after filling and curing the underfill material. フラックス残渣の状態を示す断面図である。It is sectional drawing which shows the state of a flux residue. フラックス残渣のある状態でアンダーフィル材にて封止された状態を示す断面図である。It is sectional drawing which shows the state sealed with the underfill material in the state with a flux residue. 本発明のアンダーフィル材で封止された状態を示す断面図である。It is sectional drawing which shows the state sealed with the underfill material of this invention. 本発明のはんだ電極をフラックスを介して接合するために用いたリフロー炉の温度プロファイルである。It is a temperature profile of the reflow furnace used in order to join the solder electrode of this invention through a flux.

符号の説明Explanation of symbols

1 半導体素子
2 基板
3 はんだバンプ
4 フラックス
5 フラックス残渣
6 封止樹脂
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Board | substrate 3 Solder bump 4 Flux 5 Flux residue 6 Sealing resin

Claims (7)

1)熱硬化性樹脂、2)フラックスを溶解し得る添加剤及び3)フィラーを主成分としてなることを特徴とする液状封止樹脂組成物。 1. A liquid sealing resin composition comprising 1) a thermosetting resin, 2) an additive capable of dissolving a flux, and 3) a filler as main components. 熱硬化性樹脂がエポキシ樹脂及び芳香族アミンを主成分とするものである請求項1記載の液状封止樹脂組成物。 The liquid sealing resin composition according to claim 1, wherein the thermosetting resin is mainly composed of an epoxy resin and an aromatic amine. フラックスを溶解し得る添加剤が、フラックス洗浄剤である請求項1又は2記載の液状封止樹脂組成物。 The liquid sealing resin composition according to claim 1 or 2, wherein the additive capable of dissolving the flux is a flux cleaning agent. フラックスを溶解し得る添加剤が、フラックスを溶解し得る界面活性剤である請求項1又は2記載の液状封止樹脂組成物。 The liquid sealing resin composition according to claim 1 or 2, wherein the additive capable of dissolving the flux is a surfactant capable of dissolving the flux. フラックスを溶解し得る添加剤が、フラックスを溶解し得る相溶化剤である請求項1又は2記載の液状封止樹脂組成物。 The liquid sealing resin composition according to claim 1 or 2, wherein the additive capable of dissolving the flux is a compatibilizing agent capable of dissolving the flux. 液状封止樹脂組成物100重量部に対するフラックスを溶解し得る添加剤の割合が0.005〜15重量部である請求項1〜5のいずれか1項に記載の液状封止樹脂組成物。 The liquid sealing resin composition according to any one of claims 1 to 5, wherein a ratio of the additive capable of dissolving the flux with respect to 100 parts by weight of the liquid sealing resin composition is 0.005 to 15 parts by weight. はんだ電極が具備された半導体素子と対応する基板を、はんだ電極を介して接続した素子と基板の間隙を請求項1〜6のいずれか1項に記載の液状樹脂組成物を用いて封止してなることを特徴とする半導体装置。 The substrate corresponding to the semiconductor element provided with the solder electrode is sealed with the liquid resin composition according to any one of claims 1 to 6 at a gap between the element connected via the solder electrode and the substrate. A semiconductor device characterized by comprising:
JP2004352827A 2004-12-06 2004-12-06 Liquid encapsulating resin composition and semiconductor device using the same Expired - Fee Related JP4492326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352827A JP4492326B2 (en) 2004-12-06 2004-12-06 Liquid encapsulating resin composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352827A JP4492326B2 (en) 2004-12-06 2004-12-06 Liquid encapsulating resin composition and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2006160852A true JP2006160852A (en) 2006-06-22
JP4492326B2 JP4492326B2 (en) 2010-06-30

Family

ID=36663240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352827A Expired - Fee Related JP4492326B2 (en) 2004-12-06 2004-12-06 Liquid encapsulating resin composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4492326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117476A3 (en) * 2008-03-19 2009-11-19 Henkel Corporation Method of fabricating a semiconductor package or circuit assembly using a fluxing underfill composition applied to solder contact points in a dip process
JP2010111711A (en) * 2008-11-04 2010-05-20 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition for semiconductor encapsulation, and flip chip semiconductor device using cured product of the same as underfill material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152199A (en) * 1989-11-08 1991-06-28 Arakawa Chem Ind Co Ltd Cleaner for rosin-based soldering flux
JPH1046198A (en) * 1996-08-07 1998-02-17 Arakawa Chem Ind Co Ltd Detergent for removing flux of mounted flip-chip and method for cleaning mounted flip-chip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152199A (en) * 1989-11-08 1991-06-28 Arakawa Chem Ind Co Ltd Cleaner for rosin-based soldering flux
JPH1046198A (en) * 1996-08-07 1998-02-17 Arakawa Chem Ind Co Ltd Detergent for removing flux of mounted flip-chip and method for cleaning mounted flip-chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117476A3 (en) * 2008-03-19 2009-11-19 Henkel Corporation Method of fabricating a semiconductor package or circuit assembly using a fluxing underfill composition applied to solder contact points in a dip process
US8273606B2 (en) 2008-03-19 2012-09-25 Henkel Corporation Method of fabricating a semiconductor package using a fluxing underfill composition applied to solder balls in a dip process
JP2010111711A (en) * 2008-11-04 2010-05-20 Shin-Etsu Chemical Co Ltd Liquid epoxy resin composition for semiconductor encapsulation, and flip chip semiconductor device using cured product of the same as underfill material

Also Published As

Publication number Publication date
JP4492326B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4852893B2 (en) Pre-applied sealing resin composition and method for manufacturing semiconductor device using the same
WO2012046636A1 (en) Liquid sealing resin composition and semiconductor package
US9815149B2 (en) Flux composition and techniques for use thereof
CN111500239A (en) High-thermal-conductivity single-component bottom filling adhesive and preparation method thereof
JP4887850B2 (en) Liquid resin composition for underfill, semiconductor device manufacturing method using the same, and semiconductor device
TWI674633B (en) Method for manufacturing flip chip mounted article, flip chip mounted article and resin composition for pre-applied underfill
US9808874B2 (en) Flux composition and techniques for use thereof
JP6094884B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JPWO2019225733A1 (en) Thermosetting resin composition for reinforcing electronic components, semiconductor devices and methods for manufacturing semiconductor devices
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
KR100260390B1 (en) Epoxy resin composition for die attachment
JP4492326B2 (en) Liquid encapsulating resin composition and semiconductor device using the same
KR20200079394A (en) Composition for No-Clean Flux
JP6094885B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP5115900B2 (en) Liquid resin composition and semiconductor device using the same
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP4940768B2 (en) Liquid resin composition and method for manufacturing semiconductor device
JP5092519B2 (en) Underfill composition for flip chip type semiconductor device, flip chip type semiconductor device using the same, and method for manufacturing the same
JP2006219575A (en) Liquid sealing resin and semiconductor device using the same
JP2001093940A (en) Method for assembling semiconductor device
JP4449495B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4211328B2 (en) Curable flux
JP4119356B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4366971B2 (en) Method for designing liquid sealing resin composition and method for manufacturing semiconductor device
JP2006143795A (en) Liquid resin composition, method for producing semiconductor device using the same, and the resultant semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees