JP2006160061A - Fuel cell powered car - Google Patents

Fuel cell powered car Download PDF

Info

Publication number
JP2006160061A
JP2006160061A JP2004353958A JP2004353958A JP2006160061A JP 2006160061 A JP2006160061 A JP 2006160061A JP 2004353958 A JP2004353958 A JP 2004353958A JP 2004353958 A JP2004353958 A JP 2004353958A JP 2006160061 A JP2006160061 A JP 2006160061A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
filling port
water
exhaust air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353958A
Other languages
Japanese (ja)
Inventor
Shinya Kurihara
信也 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004353958A priority Critical patent/JP2006160061A/en
Publication of JP2006160061A publication Critical patent/JP2006160061A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the static electricity charge amount around a fuel filling port. <P>SOLUTION: Discharged air from a fuel cell 3 is cooled in a heat exchanger 15 with hydrogen from a hydrogen tank 1 to condense water contained in the air, and stored in a water storage tank 17. The inside of the water storage tank 17 is filled with discharged air in a high-pressure state. The inside of the water storage tank 17 is connected to a part close to a hydrogen filling port 21 through a water pipe 27. When filling hydrogen in the hydrogen tank 1, it is detected that a filling port opening/closing lid 25 is opened, a spray port opening/closing mechanism of a spray port 29 at a tip of a water pipe 27 is opened, and water in the water storage tank 17 is sprayed toward a part close to the hydrogen filling port 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料充填口周辺の静電気帯電量を減少させる燃料電池自動車に関する。   The present invention relates to a fuel cell vehicle that reduces the amount of electrostatic charge around a fuel filling port.

従来、ガソリン車では、例えば下記特許文献1に記載されているように、給油作業者に帯電した静電気を、燃料充填口を開閉するフィラーキャップを介して車体に導き、放電させるようにしている。
特許第3200732号公報
Conventionally, in a gasoline vehicle, as described in, for example, Patent Document 1 below, static electricity charged to a refueling worker is guided to a vehicle body via a filler cap that opens and closes a fuel filling port, and is discharged.
Japanese Patent No. 3200732

しかしながら、燃料電池自動車の燃料となる水素は、ガソリンに比較して、最小着火エネルギが小さいなど可燃範囲が広いため、ガソリン車に比較して、特に燃料供給時での燃料充填口周辺の静電気帯電量を低減させる必要がある。   However, hydrogen, which is the fuel for fuel cell vehicles, has a wide flammable range, such as a lower minimum ignition energy than gasoline. The amount needs to be reduced.

そこで、本発明は、燃料充填口周辺の静電気帯電量を低減させることを目的としている。   Accordingly, an object of the present invention is to reduce the amount of electrostatic charge around the fuel filling port.

本発明は、燃料電池およびこの燃料電池に供給する水素を貯留する水素容器を車両に搭載し、前記燃料電池で生成した水を、前記水素容器に連通する水素充填口付近に供給することを最も主要な特徴とする。   According to the present invention, a fuel cell and a hydrogen container for storing hydrogen to be supplied to the fuel cell are mounted on a vehicle, and water generated by the fuel cell is supplied to the vicinity of a hydrogen filling port communicating with the hydrogen container. Main features.

本発明によれば、燃料電池で生成した水を、燃料充填口に供給してその周辺の湿度を上昇させることで、空気中への静電気放電を促進させ、燃料充填口周辺の静電気帯電量を低減させることができる。また、水の供給を受けることで燃料充填口周辺の熱容量が増大するので、燃料充填口周辺に発生する熱エネルギを散逸することができる。   According to the present invention, the water generated in the fuel cell is supplied to the fuel filling port to increase the humidity around it, thereby promoting electrostatic discharge into the air and reducing the electrostatic charge amount around the fuel filling port. Can be reduced. Further, since the heat capacity around the fuel filling port is increased by receiving the supply of water, the heat energy generated around the fuel filling port can be dissipated.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す燃料電池自動車のシステム構成図である。この燃料電池自動車の運転時は、燃料電池3に、水素を貯留する水素容器としての水素タンク1から、水素供給配管5を通して水素を供給するとともに、コンプレッサ7から空気供給配管9を通して空気を供給し、燃料電池3を発電させる。燃料電池3に供給する空気は、空気加湿器11によって加湿している。   FIG. 1 is a system configuration diagram of a fuel cell vehicle showing an embodiment of the present invention. During operation of the fuel cell vehicle, hydrogen is supplied to the fuel cell 3 from the hydrogen tank 1 as a hydrogen container for storing hydrogen through the hydrogen supply pipe 5 and air is supplied from the compressor 7 through the air supply pipe 9. Then, the fuel cell 3 is caused to generate power. The air supplied to the fuel cell 3 is humidified by the air humidifier 11.

燃料電池3の発電時に、その内部で水素と酸素とから生成された水は、燃料電池3から排出される排空気と一緒に、排空気配管13に排出される。この排空気配管13には、その上流側から熱交換器15および貯水容器としての貯水タンク17を順次設けている。   During power generation of the fuel cell 3, water generated from hydrogen and oxygen inside the fuel cell 3 is discharged to the exhaust air pipe 13 together with the exhaust air discharged from the fuel cell 3. The exhaust air pipe 13 is sequentially provided with a heat exchanger 15 and a water storage tank 17 as a water storage container from the upstream side.

熱交換器15には前記した水素供給配管5を設置し、水素供給配管5を流れる水素と排空気配管13を流れる水を含む排空気とを熱交換させる。この熱交換時には、熱交換器15内の冷媒として用いる低温の水素により、排空気配管13を流れる排空気中の水分が凝縮され、凝縮した水が排空気とともに貯水タンク17に蓄えられる。   The above-described hydrogen supply pipe 5 is installed in the heat exchanger 15 to exchange heat between hydrogen flowing through the hydrogen supply pipe 5 and exhaust air containing water flowing through the exhaust air pipe 13. During this heat exchange, moisture in the exhaust air flowing through the exhaust air pipe 13 is condensed by low-temperature hydrogen used as a refrigerant in the heat exchanger 15, and the condensed water is stored in the water storage tank 17 together with the exhaust air.

貯水タンク17と熱交換器15との間の排空気配管13には、熱交換器15から貯水タンク17への排空気および水の流入を許容しかつ、その逆の流れを阻止するする流体制御機構としての逆止弁19を設けている。これにより、燃料電池3から排出され熱交換器15および逆止弁19を経て貯水タンク17に入り込んだ排空気は、大気圧を超える高圧に保たれることになる。   The exhaust air pipe 13 between the water storage tank 17 and the heat exchanger 15 allows fluid air and water to flow from the heat exchanger 15 to the water storage tank 17 and prevents the reverse flow. A check valve 19 is provided as a mechanism. Thereby, the exhaust air discharged from the fuel cell 3 and entering the water storage tank 17 through the heat exchanger 15 and the check valve 19 is kept at a high pressure exceeding the atmospheric pressure.

なお、貯水タンク17には図示しないリリーフ弁を設け、貯水タンク17内の排空気の圧力が所定値になると、貯水タンク17内の排空気をその外部に排出する構成とする。   The water storage tank 17 is provided with a relief valve (not shown) so that the exhaust air in the water storage tank 17 is discharged to the outside when the pressure of the exhaust air in the water storage tank 17 reaches a predetermined value.

前記した水素タンク1には、車体20の開口部20a内に設置した水素充填口21に連通する水素導入配管23を接続している。水素充填口21には、開閉可能な充填口開閉蓋25を装着している。24は、開口部20aを開閉するフューエルリッドである。   A hydrogen introduction pipe 23 communicating with a hydrogen filling port 21 installed in the opening 20 a of the vehicle body 20 is connected to the hydrogen tank 1 described above. The hydrogen filling port 21 is provided with a filling port opening / closing lid 25 that can be opened and closed. A fuel lid 24 opens and closes the opening 20a.

上記した水素充填口21付近と、前記した貯水タンク17内とは、水配管27で接続する。水配管27の貯水タンク17内の端部は、貯水した水内に位置するよう、タンク底部に位置させ、また水配管27の水素充填口21側の端部は、水素充填口21付近に向けて水を霧状として供給する噴霧口29を備えている。   The vicinity of the hydrogen filling port 21 and the inside of the water storage tank 17 are connected by a water pipe 27. The end of the water pipe 27 in the water storage tank 17 is located at the bottom of the tank so as to be located in the stored water, and the end of the water pipe 27 on the hydrogen filling port 21 side is directed to the vicinity of the hydrogen filling port 21. And a spray port 29 for supplying water in the form of a mist.

また、図2に示すように、水素充填口21に設けた充填口開閉蓋25を開放したことを検出する蓋開放センサ31を設け、蓋開放センサ31が充填口開閉蓋25の開放を検出したときに、前記した噴霧口29に設けた噴霧口開閉機構33を開放状態とする駆動機構35を設ける。噴霧口開閉機構33としては、例えば電磁弁を用いる。   Further, as shown in FIG. 2, a lid opening sensor 31 is provided to detect that the filling port opening / closing lid 25 provided in the hydrogen filling port 21 is opened, and the lid opening sensor 31 detects the opening of the filling port opening / closing lid 25. In some cases, a drive mechanism 35 that opens the spray port opening / closing mechanism 33 provided in the spray port 29 is provided. As the spray opening / closing mechanism 33, for example, an electromagnetic valve is used.

さらに、水素充填口21周辺に温度センサ37を設け、この温度センサ37の検出値が所定値を超えたときにも、前記した駆動機構35を駆動して噴霧口開閉機構29を開放状態とする。   Further, a temperature sensor 37 is provided around the hydrogen filling port 21, and when the detected value of the temperature sensor 37 exceeds a predetermined value, the driving mechanism 35 is driven to open the spray port opening / closing mechanism 29. .

次に作用を説明する。燃料電池3は、水素タンク1からの水素とコンプレッサ7からの空気の供給を受けて発電し、この発電時に排出される水を含む排空気が排空気配管13に排出される。この排空気は熱交換器15に達し、一方水素供給配管5を流れる水素も熱交換器15に達することで、水を含む排空気が低温の水素によって冷却されて凝縮し、その凝縮水が下流の逆止弁19を経て貯水タンク17に流入する。   Next, the operation will be described. The fuel cell 3 generates power by receiving supply of hydrogen from the hydrogen tank 1 and air from the compressor 7, and exhaust air including water discharged during the power generation is discharged to the exhaust air pipe 13. The exhaust air reaches the heat exchanger 15, while the hydrogen flowing through the hydrogen supply pipe 5 also reaches the heat exchanger 15, whereby the exhaust air containing water is cooled and condensed by low-temperature hydrogen, and the condensed water is downstream. It flows into the water storage tank 17 through the check valve 19.

このとき、凝縮水とともに排空気も逆止弁19を経て貯水タンク17内に流入するので、貯水タンク17内は高圧に保たれることになる。   At this time, exhaust air as well as condensed water flows into the water storage tank 17 through the check valve 19, so that the water storage tank 17 is kept at a high pressure.

そして、水素タンク1内の水素貯蔵量が減少して水素を充填する際に、充填口開閉蓋25を開放すると、この開放を蓋開放センサ31が検出し、さらに駆動機構35を駆動させて噴霧口29に設けた噴霧口開閉機構33を開放状態とする。これにより、噴霧口29からは、高圧となっている排空気を作動源として、貯水タンク17内の水を水配管27を通して水素充填口21付近に噴霧し、水素充填口21周辺の湿度を上昇させる。   When the hydrogen storage amount in the hydrogen tank 1 is reduced and hydrogen is filled, when the filling port opening / closing lid 25 is opened, the opening is detected by the lid opening sensor 31 and the driving mechanism 35 is further driven to spray. The spray port opening / closing mechanism 33 provided at the port 29 is opened. As a result, the water in the water storage tank 17 is sprayed from the spray port 29 to the vicinity of the hydrogen filling port 21 through the water pipe 27 by using high-pressure exhaust air as an operating source, and the humidity around the hydrogen filling port 21 is increased. Let

これにより、水素充填口21周辺における空気中への静電気放電が促進し、水素充填口21周辺の静電気帯電量を低減させることができ、放電現象防止に寄与することができる。また、水噴霧を受ける水素充填口21周辺の熱容量が増大するので、水素充填口21周辺に発生する熱エネルギを散逸させることができる。   As a result, electrostatic discharge into the air around the hydrogen filling port 21 is promoted, the amount of electrostatic charge around the hydrogen filling port 21 can be reduced, and the discharge phenomenon can be prevented. Further, since the heat capacity around the hydrogen filling port 21 that receives water spray increases, the heat energy generated around the hydrogen filling port 21 can be dissipated.

また、水素を水素タンク1に充填すべく、図示しない水素貯蔵設備側の水素充填ノズルを水素充填口21に挿入する際に、水素充填ノズルと水素充填口21との間に電位差があったとしても、水素充填口21周辺の湿度を上昇させていることから静電気の発生を防止することができる。   Further, when a hydrogen filling nozzle (not shown) on the hydrogen storage facility side (not shown) is inserted into the hydrogen filling port 21 in order to fill the hydrogen tank 1 with hydrogen, there is a potential difference between the hydrogen filling nozzle and the hydrogen filling port 21. However, since the humidity around the hydrogen filling port 21 is increased, generation of static electricity can be prevented.

水素充填口21周辺への水噴霧時には、前述したように貯水タンク17内は高圧の排空気が常に充填されているため、水素タンク1に水素を充填する際、安全のために燃料電池システムの運転を停止してコンプレッサ7が作動していない状態で、高圧の排空気を作動源として水素充填口21に水を噴霧することができる。   When water is sprayed around the hydrogen filling port 21, the water storage tank 17 is always filled with high-pressure exhaust air as described above. Therefore, when filling the hydrogen tank 1 with hydrogen, for the sake of safety, the fuel cell system In a state where the operation is stopped and the compressor 7 is not operating, water can be sprayed to the hydrogen filling port 21 using high-pressure exhaust air as an operating source.

また、熱交換器15を用いて排空気を水素により冷却しており、このとき、燃料電池3の運転時に燃料電池3に供給する水素の温度は、高圧の水素タンク1内に対して減圧することで、外気温度よりも低くなるので、排空気を冷却することによる凝縮を促進し、より多くの水を貯水タンク17に溜めることができる。この熱交換時には、高圧の排空気の温度低下が大きく圧力低下が大きくなるため、より大量の凝縮水および高湿度空気を貯水タンク17に導入可能となる。   Further, the exhaust air is cooled with hydrogen using the heat exchanger 15, and at this time, the temperature of hydrogen supplied to the fuel cell 3 during operation of the fuel cell 3 is reduced with respect to the inside of the high-pressure hydrogen tank 1. Thus, since the temperature is lower than the outside air temperature, condensation by cooling the exhaust air can be promoted, and more water can be stored in the water storage tank 17. During this heat exchange, the temperature drop of the high-pressure exhaust air is large and the pressure drop is large, so that a larger amount of condensed water and high-humidity air can be introduced into the water storage tank 17.

さらに、燃料電池1に供給する水素の温度が最低となるときは、燃料電池1への水素供給量が最大となるときで、そのときは燃料電池1への空気供給量も最大で空気圧力も最大となるので、貯水タンク17内の排空気の圧力を水素最低温度で最大とすることができる。これにより、より高圧の排空気を作動源として、水素充填口21付近に供給する水の霧化を促進し、また噴霧の貫通力も高まるので、より確実に水素充填口21周辺を噴霧で満たすことができ、静電気帯電防止効果が高まるものとなる。   Further, when the temperature of hydrogen supplied to the fuel cell 1 becomes the minimum, the hydrogen supply amount to the fuel cell 1 becomes the maximum. At that time, the air supply amount to the fuel cell 1 is also maximum and the air pressure is maximum. Therefore, the pressure of the exhaust air in the water storage tank 17 can be maximized at the minimum hydrogen temperature. As a result, atomization of water supplied to the vicinity of the hydrogen filling port 21 is promoted using higher pressure exhaust air as an operating source, and the penetration force of the spray is increased, so that the vicinity of the hydrogen filling port 21 is more reliably filled with the spray. This increases the antistatic effect.

また、貯水タンク17内の温度が外気温度相当に上昇すると、そのときの貯水タンク17内の排空気の圧力は、温度上昇分高くなり、燃料電池3の運転時に発生する空気圧力より高い圧力とすることができ、この高い圧力を作動源として燃料充填口21に対して確実に水を噴霧することができる。   Further, when the temperature in the water storage tank 17 rises to correspond to the outside air temperature, the pressure of the exhaust air in the water storage tank 17 at that time becomes higher by the temperature rise, and is higher than the air pressure generated during operation of the fuel cell 3. Water can be reliably sprayed onto the fuel filling port 21 using this high pressure as an operating source.

一方、水素充填口21の周辺に設けた温度センサ37が検出する温度が所定値を超えたときにも、駆動機構35が駆動して噴霧口開閉機構33を開閉状態とし、噴霧口29から水素充填口21付近に向けて水を噴霧する。   On the other hand, even when the temperature detected by the temperature sensor 37 provided around the hydrogen filling port 21 exceeds a predetermined value, the drive mechanism 35 is driven to open and close the spray port opening / closing mechanism 33 so that the hydrogen from the spray port 29 Water is sprayed toward the vicinity of the filling port 21.

これにより設備側の要因、例えば水素充填口21付近で誤って火気を取り扱うなどの人的要因などで、万一水素充填口21付近が高温になった場合でも水素充填口21周辺の熱容量を増大することができる。   As a result, the heat capacity around the hydrogen filling port 21 is increased even if the temperature near the hydrogen filling port 21 becomes high due to factors on the equipment side, for example, human factors such as accidental handling of fire near the hydrogen filling port 21. can do.

本発明の一実施形態を示す燃料電池自動車のシステム構成図である。1 is a system configuration diagram of a fuel cell vehicle showing an embodiment of the present invention. 図1の燃料電池自動車における水素充填口への水噴霧を行う際のブロック図である。It is a block diagram at the time of performing water spray to the hydrogen filling port in the fuel cell automobile of FIG.

符号の説明Explanation of symbols

1 水素タンク(水素容器)
3 燃料電池
5 水素供給配管
13 排空気配管
15 熱交換器
19 逆止弁(流体制御機構)
17 貯水タンク(貯水容器)
21 水素充填口
25 充填口開閉蓋
27 水配管
31 蓋開放センサ
37 温度センサ
1 Hydrogen tank (hydrogen container)
3 Fuel Cell 5 Hydrogen Supply Pipe 13 Exhaust Air Pipe 15 Heat Exchanger 19 Check Valve (Fluid Control Mechanism)
17 Water storage tank (water storage container)
21 Hydrogen filling port 25 Filling port opening / closing lid 27 Water piping 31 Lid opening sensor 37 Temperature sensor

Claims (5)

燃料電池およびこの燃料電池に供給する水素を貯留する水素容器を車両に搭載し、前記燃料電池で生成した水を、前記水素容器に連通する水素充填口付近に供給することを特徴とする燃料電池自動車。   A fuel cell and a hydrogen container for storing hydrogen to be supplied to the fuel cell are mounted on a vehicle, and water generated by the fuel cell is supplied in the vicinity of a hydrogen filling port communicating with the hydrogen container. Car. 前記燃料電池から排出される、前記燃料電池で生成した水を含む排空気が流れる排空気配管に貯水容器を設けるとともに、前記燃料電池から前記排空気配管を流れる前記水を含む排空気の前記貯水容器への流入を許容しかつ、その逆の流れを阻止するする流体制御機構を設け、前記燃料電池の運転時に、前記貯水容器に前記水を含む大気圧を超える排空気を貯蔵し、前記貯水容器と前記水素充填口付近とを水配管で接続して前記貯水容器内に貯蔵した水を、前記排空気の圧力を作動源として前記水素充填口付近に供給することを特徴とする請求項1に記載の燃料電池自動車。   A water storage container is provided in an exhaust air pipe through which exhaust air containing water generated by the fuel cell discharged from the fuel cell flows, and the water storage of the exhaust air containing water flowing from the fuel cell through the exhaust air pipe A fluid control mechanism that allows inflow into the container and prevents the reverse flow; and stores the exhaust air exceeding the atmospheric pressure including the water in the water storage container during operation of the fuel cell; 2. The water stored in the water storage container by connecting the container and the vicinity of the hydrogen filling port with water pipes is supplied to the vicinity of the hydrogen filling port using the pressure of the exhaust air as an operating source. The fuel cell vehicle described in 1. 前記燃料電池と前記水素容器とを接続する水素供給配管を流れる水素と、前記排空気配管を流れる水を含む排空気との間で熱交換を行う熱交換器を設けたことを特徴とする請求項2に記載の燃料電池自動車。   2. A heat exchanger for exchanging heat between hydrogen flowing through a hydrogen supply pipe connecting the fuel cell and the hydrogen container and exhaust air containing water flowing through the exhaust air pipe. Item 3. The fuel cell vehicle according to Item 2. 前記水素充填口に着脱可能に設けた充填口開閉蓋の開放を検出する蓋開放センサを設け、この蓋開放センサが前記充填口開閉蓋の開放を検出したときに、前記水素充填口に水を供給することを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池自動車。   A lid opening sensor that detects opening of a filling port opening / closing lid that is detachably provided at the hydrogen filling port is provided, and water is supplied to the hydrogen filling port when the lid opening sensor detects opening of the filling port opening / closing lid. The fuel cell vehicle according to any one of claims 1 to 3, wherein the fuel cell vehicle is supplied. 前記水素充填口付近に温度センサを設け、この温度センサの検出値が所定値を超えたときに、前記水素充填口付近に水を供給することを特徴とする請求項1ないし4のいずれか1項に記載の燃料電池自動車。   5. A temperature sensor is provided near the hydrogen filling port, and water is supplied near the hydrogen filling port when a detection value of the temperature sensor exceeds a predetermined value. The fuel cell vehicle according to Item.
JP2004353958A 2004-12-07 2004-12-07 Fuel cell powered car Pending JP2006160061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353958A JP2006160061A (en) 2004-12-07 2004-12-07 Fuel cell powered car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353958A JP2006160061A (en) 2004-12-07 2004-12-07 Fuel cell powered car

Publications (1)

Publication Number Publication Date
JP2006160061A true JP2006160061A (en) 2006-06-22

Family

ID=36662547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353958A Pending JP2006160061A (en) 2004-12-07 2004-12-07 Fuel cell powered car

Country Status (1)

Country Link
JP (1) JP2006160061A (en)

Similar Documents

Publication Publication Date Title
US9343754B2 (en) High pressure gas supply system and fuel cell system
JP5234898B2 (en) Hydrogen supply device for fuel cell
EP1803620B1 (en) Hydrogen station, hydrogen filling method, and vehicle
US8955444B2 (en) Energy recovery system for a mobile machine
US6360729B1 (en) Active fuel system bladder
US9222446B2 (en) Fuel storage system for a vehicle
CN206541906U (en) Electrokinetic cell bag and vehicle
ES2606908T3 (en) Two stage hydrogen pump and method
US9490509B2 (en) Motor vehicle with battery cooling system
JP2002352824A (en) Fuel cell system
CN111129544A (en) Hydrogen supply system applied to hydrogen fuel cell automobile and hydrogen fuel cell automobile
JP2014088935A (en) Fluid supply system
CN110753817B (en) Method for venting at least one pressure vessel and pressure vessel system
CN109792065B (en) Method for supplying at least one fuel cell with fuel and motor vehicle
US20020094468A1 (en) Fuel cell system, fuel cell, and hydrogen gas supplying tank
KR102481519B1 (en) Movable hydrogen charging station structure with safety device
JP4984991B2 (en) Gas storage system
CN211530087U (en) Hydrogen supply system applied to hydrogen fuel cell automobile and hydrogen fuel cell automobile
JP2009110817A (en) Gas-liquid separator and fuel cell system
JP2006160061A (en) Fuel cell powered car
US10406934B2 (en) Fuel cell system for vehicle
KR20160121983A (en) Canister system using Waste Heat
CN220015354U (en) Fuel vapor recovery system and vehicle
KR102518693B1 (en) The apparatus for gas discharging of fuelcell system having high pressure vessel and the control method for the same
CN115704530A (en) Device for storing gaseous medium