JP2006159319A - Actuator and robot hand - Google Patents

Actuator and robot hand Download PDF

Info

Publication number
JP2006159319A
JP2006159319A JP2004351480A JP2004351480A JP2006159319A JP 2006159319 A JP2006159319 A JP 2006159319A JP 2004351480 A JP2004351480 A JP 2004351480A JP 2004351480 A JP2004351480 A JP 2004351480A JP 2006159319 A JP2006159319 A JP 2006159319A
Authority
JP
Japan
Prior art keywords
expansion
elastic member
drive element
contraction
contraction drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004351480A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tadano
宏之 多田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004351480A priority Critical patent/JP2006159319A/en
Publication of JP2006159319A publication Critical patent/JP2006159319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an actuator capable of realizing sufficient carrier performance, simple in structure and suitable for miniaturization in carrying an object by a progressive wave. <P>SOLUTION: A flexible substrate 14 is fixed on an actuator substrate 11 by overlapping it, a plurality of telescopic driving elements 12 are fixed in parallel on the flexible substrate 14, An elastic member 13 is placed and locked on an upper end of each of the telescopic driving elements 12 and a control driving part 15 is connected to each of the telescopic driving elements 12 through the flexible substrate 14. The control driving part 15 forms the progressive wave the progressing direction of which is an X direction by sequentially applying voltage to each of the telescopic driving elements 12 through the flexible substrate 14, sequentially expanding and contracting each of the telescopic driving elements 12 in a Z direction and deforming the elastic member 13 into wavy form. When an object is placed on this elastic member 13, the object is carried in a reverse direction to the X direction by the progressive wave of this elastic member 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、対象物を搬送するアクチュエータ及びロボットハンドに関する。   The present invention relates to an actuator for transporting an object and a robot hand.

周知の様に搬送装置として、ベルトコンベアなどがある。このベルトコンベアは、無端ベルトを複数のローラに掛け渡して支持し、無端ベルトを回転させて、無端ベルト上に置かれた物体を搬送するという装置である。   As is well known, there is a belt conveyor or the like as a conveying device. This belt conveyor is an apparatus that supports an endless belt that is stretched around a plurality of rollers, rotates the endless belt, and conveys an object placed on the endless belt.

しかしながら、このベルトコンベアでは、複数の回転ローラや、各回転ローラの動力源となるモーターなどが必要であり、その構成が複雑であり、また小型化が容易ではなかった。更に、モーターからは電磁波が発生するので、この電磁波を嫌う装置、例えば半導体製造装置等においては、ベルトコンベアは不向きであった。   However, this belt conveyor requires a plurality of rotating rollers and a motor as a power source for each rotating roller, and the configuration thereof is complicated, and downsizing is not easy. Furthermore, since an electromagnetic wave is generated from the motor, a belt conveyor is not suitable for an apparatus that dislikes the electromagnetic wave, such as a semiconductor manufacturing apparatus.

この様なベルトコンベアに対して、電磁波を発生せず、構成が簡単であるとか、小型化が容易であるという搬送装置が提案されている。例えば、特許文献1には、複数の振動子を並設し、各振動子上に弾性材料からなる搬送路を載せて支持し、各振動子を振動させて、搬送路表面に進行波を形成し、この進行波により搬送路上の物体を搬送するという搬送装置が開示されている。   For such a belt conveyor, there has been proposed a conveying device that does not generate electromagnetic waves, has a simple configuration, and is easy to downsize. For example, in Patent Document 1, a plurality of vibrators are arranged side by side, a conveyance path made of an elastic material is placed on and supported by each vibrator, and each vibrator is vibrated to form a traveling wave on the surface of the conveyance path. However, a conveying device that conveys an object on the conveying path by this traveling wave is disclosed.

また、特許文献2には、図18に示す様に板状の弾性部材101に複数の圧力室102を並べて形成し、各圧力室102の圧力を制御し、各圧力室102を順次膨張させて、板状の弾性部材101を変形させ、この板状の弾性部材101の表面101aに進行波を形成し、この板状の弾性部材101の表面101a上の物体を搬送するというアクチュエータが開示されている。   Further, in Patent Document 2, as shown in FIG. 18, a plurality of pressure chambers 102 are formed side by side on a plate-like elastic member 101, the pressure in each pressure chamber 102 is controlled, and each pressure chamber 102 is sequentially expanded. An actuator is disclosed that deforms the plate-like elastic member 101, forms a traveling wave on the surface 101a of the plate-like elastic member 101, and conveys an object on the surface 101a of the plate-like elastic member 101. Yes.

更に、特許文献3には、図19に示す様に複数の固定子111を並設し、各固定子111上に波動弾性板112を載せて支持し、各固定子111の印加電圧を制御し、各固定子111を静電気力により順次撓ませて、波動弾性板112の表面に進行波を形成し、この波動弾性板112上の可動子113を搬送するというアクチュエータが開示されている。
特開昭60−258013号公報 特開平9−79213号公報 特開平9−252585号公報
Furthermore, in Patent Document 3, a plurality of stators 111 are arranged in parallel as shown in FIG. 19, and a wave elastic plate 112 is placed and supported on each stator 111, and the applied voltage of each stator 111 is controlled. In addition, an actuator is disclosed in which each stator 111 is sequentially bent by electrostatic force to form a traveling wave on the surface of the wave elastic plate 112, and the mover 113 on the wave elastic plate 112 is conveyed.
Japanese Patent Laid-Open No. 60-258013 JP-A-9-79213 JP-A-9-252585

しかしながら、特許文献1に記載の搬送装置は、小型化に適しているものの、各振動子の撓み量が小さいので、進行波の振幅が小さくて、搬送速度が遅く、また物体が重くなると、搬送に支障を来たした。   However, although the conveyance device described in Patent Document 1 is suitable for downsizing, since the amount of bending of each vibrator is small, the amplitude of the traveling wave is small, the conveyance speed is slow, and the object is heavy. I was in trouble.

また、特許文献2に記載のアクチュエータは、その構成が簡単であっても、板状の弾性部材の各圧力室に空気を圧送する圧力印加手段、及び各圧力室と圧力印加手段を接続する複数のチューブが必要であり、小型化には不向きであった。また、空気圧を利用しているので、進行波の応答性が悪く、周波数の高い進行波の形成が困難であった。更に、各圧力室間の隔壁が、圧力室の変形を阻む要因になっており、板状の弾性部材が変形し難く、搬送速度を上昇させることができなかった。また、アクチュエータの端部と中央部では厚みが異なり、端部の方が厚くて、その剛性が高いので、端部と中央部では進行波の振幅に差異が生じ、搬送性能にムラが生じるという問題があった。   Moreover, even if the structure of the actuator described in Patent Document 2 is simple, there are a plurality of pressure applying means for pumping air to each pressure chamber of the plate-like elastic member, and a plurality of pressure chambers connecting the pressure applying means. This tube was necessary and was not suitable for miniaturization. In addition, since air pressure is used, the response of traveling waves is poor and it is difficult to form a traveling wave having a high frequency. Furthermore, the partition between the pressure chambers is a factor that hinders the deformation of the pressure chambers, the plate-like elastic member is not easily deformed, and the conveyance speed cannot be increased. Also, since the thickness is different at the end and the center of the actuator, the end is thicker and the rigidity is higher, the difference in the amplitude of the traveling wave occurs at the end and the center, resulting in uneven transport performance. There was a problem.

更に、特許文献3に記載のアクチュエータは、小型化に適しているものの、各固定子の撓み量が小さいので、進行波の振幅が小さくて、搬送速度が遅く、また物体が重くなると、搬送に支障を来たした。その上、固定子の端部と中央部では撓み量が異なるので、アクチュエータの端部と中央部では進行波の振幅が異なり、搬送性能にムラが生じるという問題があった。   Furthermore, although the actuator described in Patent Document 3 is suitable for downsizing, since the amount of bending of each stator is small, the amplitude of the traveling wave is small, the conveyance speed is slow, and the object becomes heavy, I was in trouble. In addition, since the bending amount is different between the end portion and the central portion of the stator, there is a problem that the amplitude of the traveling wave is different between the end portion and the central portion of the actuator, and the conveyance performance is uneven.

そこで、本発明は、上記従来の問題に鑑みてなされたものであり、進行波により対象物を搬送する上で、十分な搬送性能を実現することができ、構造が簡単であり、かつ小型化に適したアクチュエータを提供することを目的とする。   Therefore, the present invention has been made in view of the above-described conventional problems, and is capable of realizing sufficient transport performance when transporting an object by traveling waves, has a simple structure, and is downsized. An object of the present invention is to provide an actuator suitable for the above.

また、他の本発明は、上記本発明のアクチュエータを設けたロボットハンドを提供することを目的とする。   Another object of the present invention is to provide a robot hand provided with the actuator of the present invention.

上記課題を解決するために、本発明のアクチュエータは、配列された複数の伸縮駆動素子と、各伸縮駆動素子に載せられて係止された弾性部材と、各伸縮駆動素子の伸縮に追従して弾性部材が変形し、この弾性部材に進行波が形成される様に、各伸縮駆動素子にそれぞれの電圧を印加して、各伸縮駆動素子を伸縮させる制御手段とを備えている。   In order to solve the above-described problems, an actuator according to the present invention includes a plurality of arrayed expansion / contraction drive elements, an elastic member placed on and locked to each expansion / contraction drive element, and the expansion / contraction of each expansion / contraction drive element. The elastic member is deformed, and control means is provided for applying the respective voltages to the expansion / contraction drive elements to expand / contract the expansion / contraction drive elements so that traveling waves are formed in the elastic members.

また、本発明においては、各伸縮駆動素子は、弾性を有する高分子材料を各電極間に挟み込んだ高分子アクチュエータである。   In the present invention, each expansion / contraction drive element is a polymer actuator in which a polymer material having elasticity is sandwiched between electrodes.

更に、本発明においては、各伸縮駆動素子は、行列方向に配列されている。   Furthermore, in the present invention, the expansion / contraction drive elements are arranged in the matrix direction.

また、本発明においては、対象物と弾性部材との接触状態を検出する接触状態検出手段を備え、制御手段は、接触状態検出手段の検出出力に基づいて、各伸縮駆動素子を伸縮させて、弾性部材を対象物の表面に沿う様に変形させ、この状態で各伸縮駆動素子を伸縮させて、弾性部材に進行波を形成させている。   Further, in the present invention, provided with contact state detection means for detecting the contact state between the object and the elastic member, the control means expands and contracts each extension drive element based on the detection output of the contact state detection means, The elastic member is deformed along the surface of the object, and in this state, each expansion / contraction drive element is expanded and contracted to form a traveling wave in the elastic member.

更に、本発明においては、弾性部材の表面に複数の突起を形成している。   Furthermore, in the present invention, a plurality of protrusions are formed on the surface of the elastic member.

また、本発明においては、各伸縮駆動素子にそれぞれ接続された複数の電極パターンを備え、各伸縮駆動素子を複数組に分けて、組毎に、相互に異なる電位に設定される各電極パターンを各伸縮駆動素子に対応させて順次配列し、各組の同一順序に、相互に等しい電位に設定される電極パターンを伸縮駆動素子に対応させて配置している。そして、1組における各電極パターンの電位の位相が異なっている。また、組毎に、各電極パターンに接続されたそれぞれの伸縮駆動素子により1波長分の進行波が形成される。   Further, in the present invention, each electrode pattern is provided with a plurality of electrode patterns respectively connected to each expansion / contraction driving element, and each expansion / contraction driving element is divided into a plurality of groups, and each electrode pattern set to a different potential for each group is provided. The electrodes are sequentially arranged in correspondence with the expansion / contraction driving elements, and electrode patterns set to the same potential are arranged in the same order in the respective groups in correspondence with the expansion / contraction driving elements. And the phase of the potential of each electrode pattern in one set is different. Further, for each set, a traveling wave for one wavelength is formed by each expansion / contraction drive element connected to each electrode pattern.

更に、本発明においては、各伸縮駆動素子は、曲面上に配列されている。   Furthermore, in the present invention, each expansion / contraction drive element is arranged on a curved surface.

一方、他の本発明は、対象物の把持等を行うロボットハンドにおいて、上記発明のアクチュエータを、対象物に接触する該ロボットハンドの部位に設けている。   On the other hand, according to another aspect of the present invention, in a robot hand that grips an object or the like, the actuator of the present invention is provided at a portion of the robot hand that contacts the object.

本発明のアクチュエータによれば、各伸縮駆動素子にそれぞれの電圧を印加して、各伸縮駆動素子を伸縮させ、各伸縮駆動素子上の弾性部材に進行波を形成している。従って、各伸縮駆動素子に電圧を印加する制御手段及び制御手段と各伸縮駆動素子を接続するそれぞれの配線パターンを必要とするものの、構成が簡単であって、かつ小型化を図ることが可能である。また、各伸縮駆動素子は、相互に離間しており、該各伸縮駆動素子の変形を阻む要因を含まないので、弾性部材の進行波の振幅を大きくすることができ、弾性部材による搬送力並びに搬送速度の上昇や、重い対象物の搬送等が可能になる。   According to the actuator of the present invention, a voltage is applied to each expansion / contraction drive element to expand / contract each expansion / contraction drive element, and a traveling wave is formed in the elastic member on each expansion / contraction drive element. Therefore, although the control means for applying a voltage to each expansion / contraction drive element and the wiring pattern for connecting the control means and each expansion / contraction drive element are required, the configuration is simple and the size can be reduced. is there. In addition, since each expansion / contraction drive element is separated from each other and does not include a factor that hinders deformation of each expansion / contraction drive element, the amplitude of the traveling wave of the elastic member can be increased, It is possible to increase the conveyance speed and convey a heavy object.

各伸縮駆動素子は、弾性を有する高分子材料を各電極間に挟み込んだ高分子アクチュエータである。この高分子アクチュエータの伸縮駆動素子は、その伸縮量が大きいので、進行波の振幅を大きくすることができる。また、高分子材料及び各電極のいずれも弾性を有し、それらの加工が容易なため、各伸縮駆動素子の長さを長くすることができる。この場合でも、各伸縮駆動素子の中央部と端部間での伸縮量が同じであり、端部と中央部では進行波の振幅に差異がなく、搬送性能にムラが生じることもない。   Each expansion / contraction drive element is a polymer actuator in which a polymer material having elasticity is sandwiched between electrodes. Since the expansion / contraction driving element of the polymer actuator has a large expansion / contraction amount, the amplitude of the traveling wave can be increased. In addition, since both the polymer material and each electrode have elasticity and can be easily processed, the length of each expansion / contraction drive element can be increased. Even in this case, the amount of expansion / contraction between the central portion and the end portion of each expansion / contraction drive element is the same, there is no difference in the amplitude of the traveling wave between the end portion and the central portion, and there is no unevenness in the conveyance performance.

更に、本発明によれば、各伸縮駆動素子を行列方向に配列している。この場合は、各伸縮駆動素子上の弾性部材に行列方向の進行波は勿論のこと、斜め方向や回転する進行波を形成することができ、対象物の一方向への搬送だけではなく、対象物の前後左右の搬送や回転移動なども可能になる。   Further, according to the present invention, the expansion / contraction drive elements are arranged in the matrix direction. In this case, a traveling wave in the matrix direction as well as a traveling wave in an oblique direction and a rotating direction can be formed on the elastic member on each expansion / contraction drive element, and not only the conveyance of the object in one direction but also the object It is also possible to carry the object forward / backward / left / right and to rotate it.

また、本発明によれば、対象物と弾性部材との接触状態を検出し、各伸縮駆動素子を伸縮させて、弾性部材を対象物の表面に沿う様に変形させ、この状態で各伸縮駆動素子を伸縮させて、弾性部材に進行波を形成している。これにより、対象物の表面に搬送力を均一に作用させることができ、対象物の安定な搬送が可能になる。   Further, according to the present invention, the contact state between the object and the elastic member is detected, each expansion / contraction drive element is expanded / contracted, and the elastic member is deformed along the surface of the object, and in this state, each expansion / contraction drive is performed. The element is expanded and contracted to form a traveling wave in the elastic member. Thereby, a conveyance force can be made to act on the surface of a target object uniformly, and the stable conveyance of a target object is attained.

更に、本発明によれば、弾性部材の表面に複数の突起を形成している。この場合は、各伸縮駆動素子の伸縮に伴う弾性部材の変形に際し、各突起先端の移動量が大きくなり、各突起先端に振幅の大きな進行波が形成される。このため、搬送力並びに搬送速度をより上昇させて、搬送性能を向上させることが可能になる。   Furthermore, according to the present invention, a plurality of protrusions are formed on the surface of the elastic member. In this case, when the elastic member is deformed along with expansion / contraction of each expansion / contraction drive element, the amount of movement of each projection tip increases, and a traveling wave having a large amplitude is formed at each projection tip. For this reason, it becomes possible to raise a conveyance force and a conveyance speed more, and to improve conveyance performance.

また、本発明によれば、各伸縮駆動素子にそれぞれ接続された複数の電極パターンを備え、各電極パターンを適宜の順序で配列している。これにより、各伸縮駆動素子が順次伸縮して、弾性部材に進行波が形成される。   In addition, according to the present invention, a plurality of electrode patterns connected to each expansion / contraction drive element are provided, and the electrode patterns are arranged in an appropriate order. Thereby, each expansion-contraction drive element expands-contracts sequentially, and a traveling wave is formed in an elastic member.

更に、本発明によれば、各伸縮駆動素子を曲面上に配列されている。この場合は、各伸縮駆動素子上の弾性部材表面も曲面となり、対象物を弾性部材の曲面に沿って搬送することができる。   Furthermore, according to the present invention, the expansion / contraction drive elements are arranged on a curved surface. In this case, the surface of the elastic member on each expansion / contraction drive element is also a curved surface, and the object can be conveyed along the curved surface of the elastic member.

一方、他の本発明によれば、上記発明のアクチュエータを、対象物に接触するロボットハンドの部位に設けている。このため、ロボットハンドにより対象物を把持したときには、対象物がアクチュエータに接触することになり、アクチュエータによる対象物の搬送が可能になる。例えば、ロボットハンドの手の平にアクチュエータを設ければ、手の平上で対象物を移動させたり回転させることができ、ロボットハンドによる対象物の微妙な扱いが可能になる。   On the other hand, according to another aspect of the present invention, the actuator of the present invention is provided in a portion of a robot hand that contacts an object. For this reason, when the object is gripped by the robot hand, the object comes into contact with the actuator, and the object can be conveyed by the actuator. For example, if an actuator is provided on the palm of the robot hand, the object can be moved or rotated on the palm of the hand, so that the object can be delicately handled by the robot hand.

以下、本発明の実施形態を添付図面を参照しつつ詳細に説明する。
<実施形態1>
図1は、本発明のアクチュエータの第1実施形態を示す一部分解斜視図である。本実施形態のアクチュエータ10では、アクチュエータ基板11上にフレキシブル基板14を重ね合わせて固定し、フレキシブル基板14上に複数の伸縮駆動素子12を並設して固定し、各伸縮駆動素子12の上端にシート状の弾性部材13を載せて係止し、制御駆動部15をフレキシブル基板14を通じて各伸縮駆動素子12に接続している。制御駆動部15は、フレキシブル基板14を通じて各伸縮駆動素子12に電圧を順次印加し、各伸縮駆動素子12をZ方向に順次伸縮させて、弾性部材13を変形させて波打たせ、弾性部材13に進行方向がX方向の進行波を形成する。この弾性部材13に対象物を載置すると、この弾性部材13の進行波により対象物がX方向とは逆方向に搬送される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Embodiment 1>
FIG. 1 is a partially exploded perspective view showing a first embodiment of the actuator of the present invention. In the actuator 10 of the present embodiment, the flexible substrate 14 is overlaid and fixed on the actuator substrate 11, and a plurality of expansion / contraction drive elements 12 are arranged and fixed on the flexible substrate 14. A sheet-like elastic member 13 is placed and locked, and the control drive unit 15 is connected to each telescopic drive element 12 through the flexible substrate 14. The control drive unit 15 sequentially applies a voltage to each expansion / contraction drive element 12 through the flexible substrate 14, sequentially expands / contracts each expansion / contraction drive element 12 in the Z direction, deforms the elastic member 13, and waves the elastic member 13. A traveling wave whose traveling direction is the X direction is formed. When the object is placed on the elastic member 13, the object is conveyed in the direction opposite to the X direction by the traveling wave of the elastic member 13.

各伸縮駆動素子12は、図2(a)に示す様なシート状の高分子材料21を一対の電極22、23間に挟み込んだ高分子アクチュエータを、図3に示す様にロール状に巻回して角棒状に成型してなる。高分子材料21は、誘電性エラストマ、電歪高分子等とも称され、スピンコーティング法、ディップコーティング法、キャスト法、スプレイ法とにより形成される。また、各電極22は、柔軟性を有しており、高分子材料21と同様の製法により形成される。   Each expansion / contraction drive element 12 is formed by winding a polymer actuator in which a sheet-like polymer material 21 as shown in FIG. 2A is sandwiched between a pair of electrodes 22 and 23 in a roll shape as shown in FIG. It is molded into a square bar shape. The polymer material 21 is also called a dielectric elastomer, an electrostrictive polymer, or the like, and is formed by a spin coating method, a dip coating method, a casting method, or a spray method. Each electrode 22 has flexibility and is formed by a manufacturing method similar to that for the polymer material 21.

各電極22、23間に電圧を印加すると、各電極22、23間に静電力が生じて、この静電力が図2(b)に示す様に高分子材料21を押し広げる様に作用して、高分子材料21及び各電極22、23が延び、伸縮駆動素子が伸長する。   When a voltage is applied between the electrodes 22 and 23, an electrostatic force is generated between the electrodes 22 and 23, and this electrostatic force acts to spread the polymer material 21 as shown in FIG. 2 (b). The polymer material 21 and the electrodes 22 and 23 extend, and the expansion / contraction drive element extends.

また、各電極22、23間への電圧印加を停止すると、各電極22間の静電力が消えて、高分子材料21及び各電極22、23が図2(a)に示す元の状態に戻り、伸縮駆動素子の長さが元に戻る。   When the voltage application between the electrodes 22 and 23 is stopped, the electrostatic force between the electrodes 22 disappears, and the polymer material 21 and the electrodes 22 and 23 return to the original state shown in FIG. The length of the telescopic drive element is restored.

従って、図3に示す様に高分子材料21及び各電極22をロール状に巻回して角棒状に成型した伸縮駆動素子12は、高分子材料21及び各電極22、23が広がるZ方向に伸縮することになる。   Therefore, as shown in FIG. 3, the expansion / contraction drive element 12 in which the polymer material 21 and each electrode 22 are wound in a roll shape and formed into a square bar shape expands and contracts in the Z direction in which the polymer material 21 and each electrode 22, 23 spread. Will do.

尚、高分子アクチュエータは、技術調査会から出版されている「エレクトロニクス実装技術」の2001年1月号のP32〜P38、及びサイエンス社(SCIENCE)から出版されている「SCIENCE」の2000年4月(FEBRUARY)号のVOL287のP836、P837等に詳しく記載されている。   The polymer actuators are P32 to P38 of the January 2001 issue of “Electronic Packaging Technology” published by the Technical Research Committee, and “SCIENCE” April 2000 of “SCIENCE”. (FEBRUARY) VOL287, P836, P837 and the like.

フレキシブル基板14は、周知の可撓性もしくは弾性を有するものであり、図4に示す様な配線パターンを有している。ここでは、各伸縮駆動素子12を、奇数番目と偶数番目を1組として複数組に分け、各組の奇数番目の伸縮駆動素子12の一方の電極22をそれぞれの配線パターン24を通じて制御駆動部15に共通接続し、各組の偶数番目の伸縮駆動素子12の一方の電極22をそれぞれの配線パターン25を通じて制御駆動部15に共通接続している。また、全ての各伸縮駆動素子12の他方の電極23を図示しない配線パターンを通じて接地している。   The flexible substrate 14 has a known flexibility or elasticity and has a wiring pattern as shown in FIG. Here, each of the expansion / contraction drive elements 12 is divided into a plurality of sets, with the odd-numbered and even-numbered sets as one set. Are connected in common, and one electrode 22 of each even-numbered expansion / contraction drive element 12 of each set is connected in common to the control drive unit 15 through each wiring pattern 25. The other electrodes 23 of all the expansion / contraction drive elements 12 are grounded through a wiring pattern (not shown).

制御駆動部15は、各配線パターン24及び各配線パターン25に一定電圧を交互に出力して、各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12に交互に一定電圧を印加し、各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12を交互に伸長させる。より具体的には、各配線パターン24を通じて各組の奇数番目の伸縮駆動素子12の電極22に一定電圧を印加して、各組の奇数番目の伸縮駆動素子12を伸長させ、このときに各組の偶数番目の伸縮駆動素子12の電極22への電圧印加を停止して、各組の偶数番目の伸縮駆動素子12を元の長さに戻す。また、制御駆動部15は、各配線パターン25を通じて各組の偶数番目の伸縮駆動素子12の電極22に一定電圧を印加して、各組の偶数番目の伸縮駆動素子12を伸長させ、このときに各組の奇数番目の伸縮駆動素子12の電極22への電圧印加を停止して、各組の奇数番目の伸縮駆動素子12を元の長さに戻す。これにより、図5(a)及び(b)に示す様に各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12が交互に伸長する。   The control driving unit 15 alternately outputs a constant voltage to each wiring pattern 24 and each wiring pattern 25, and is alternately constant to each pair of odd-numbered expansion / contraction driving elements 12 and each pair of even-numbered expansion / contraction driving elements 12. A voltage is applied, and the odd-numbered expansion / contraction drive elements 12 in each set and the even-numbered expansion / contraction drive elements 12 in each set are alternately expanded. More specifically, a constant voltage is applied to the electrodes 22 of the odd-numbered expansion / contraction driving elements 12 of each group through the wiring patterns 24 to extend the odd-numbered expansion / contraction driving elements 12 of each group. The voltage application to the electrodes 22 of the even-numbered expansion / contraction drive elements 12 of the set is stopped, and the even-numbered expansion / contraction drive elements 12 of each set are returned to their original lengths. Further, the control drive unit 15 applies a constant voltage to the electrodes 22 of the even-numbered expansion / contraction drive elements 12 of each set through the wiring patterns 25 to extend the even-numbered expansion / contraction drive elements 12 of each set. Then, the voltage application to the electrodes 22 of the odd-numbered expansion / contraction driving elements 12 in each group is stopped, and the odd-numbered expansion / contraction driving elements 12 in each group are returned to their original lengths. As a result, as shown in FIGS. 5A and 5B, the odd-numbered expansion / contraction driving elements 12 of each set and the even-numbered expansion / contraction driving elements 12 of each set are alternately expanded.

弾性部材13は、弾性を有する合成樹脂からなり、各伸縮駆動素子12の上端に係止されている。例えば、各伸縮駆動素子12の上端を山形に成型して、各伸縮駆動素子12の上端中央に弾性部材13を接着している。   The elastic member 13 is made of a synthetic resin having elasticity, and is locked to the upper end of each telescopic drive element 12. For example, the upper end of each expansion / contraction drive element 12 is formed in a mountain shape, and the elastic member 13 is bonded to the center of the upper end of each expansion / contraction drive element 12.

従って、図5(a)及び(b)に示す様に各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12が交互に伸長すると、弾性部材13が該各伸縮駆動素子12の上端に追従して変形し、弾性部材13が波打つ。   Accordingly, as shown in FIGS. 5A and 5B, when the odd-numbered expansion / contraction driving elements 12 and the even-numbered expansion / contraction driving elements 12 of each set are alternately expanded, the elastic member 13 is driven by the respective expansion / contraction driving. The elastic member 13 is undulated as it deforms following the upper end of the element 12.

そして、図5(a)及び(b)に示す様に弾性部材13が該各伸縮駆動素子12の上端に追従して波打つ状態で、各組の奇数番目の伸縮駆動素子12の電極22に印加される電圧と各組の偶数番目の伸縮駆動素子12の電極22に印加される電圧との位相をずらすと、弾性部材13に進行波が発生する。例えば、各組の奇数番目の伸縮駆動素子12の電極22に印加される電圧の位相を進ませると、弾性部材13にX方向とは逆方向の進行波が生じて、駆動部材13上の対象物がX方向に搬送され、また各組の偶数番目の伸縮駆動素子12の電極22に印加される電圧の位相を進ませると、弾性部材13にX方向の進行波が生じて、駆動部材13上の対象物がX方向とは逆方向に搬送される。   Then, as shown in FIGS. 5A and 5B, the elastic member 13 is applied to the electrodes 22 of the odd-numbered expansion / contraction drive elements 12 in each set in a state where the elastic member 13 undulates following the upper end of each expansion / contraction drive element 12. When the phases of the applied voltage and the voltage applied to the electrodes 22 of the even-numbered expansion / contraction drive elements 12 of each set are shifted, a traveling wave is generated in the elastic member 13. For example, when the phase of the voltage applied to the electrodes 22 of the odd-numbered expansion / contraction drive elements 12 in each set is advanced, a traveling wave in the direction opposite to the X direction is generated in the elastic member 13, and the object on the drive member 13 is When the object is conveyed in the X direction and the phase of the voltage applied to the electrodes 22 of the even-numbered expansion / contraction drive elements 12 of each set is advanced, a traveling wave in the X direction is generated in the elastic member 13, and the drive member 13 The upper object is conveyed in the direction opposite to the X direction.

ここで、一般に、進行波が伝播する媒質上の一点のみに着目すると、その点は単なる上下運動ではなく楕円運動をしていることが知られている。例えば、図6に示す様に弾性部材13表面の点Pが楕円運動をする。このとき、弾性部材13の進行波の進行方向がX方向である場合は、進行波の頂点近傍の点Pの運動方向P1が、進行波の進行方向Xと逆方向に向く。この弾性部材13に対象物を置くと、対象物は、進行波の頂点近傍の点Pのみに接触して、この頂点近傍の点Pの力を受けるので、進行方向Xと逆方向に搬送される。   Here, in general, when attention is paid to only one point on the medium through which the traveling wave propagates, it is known that the point has an elliptical motion rather than a simple vertical motion. For example, as shown in FIG. 6, the point P on the surface of the elastic member 13 performs an elliptical motion. At this time, when the traveling direction of the traveling wave of the elastic member 13 is the X direction, the motion direction P1 of the point P near the apex of the traveling wave is opposite to the traveling direction X of the traveling wave. When the object is placed on the elastic member 13, the object contacts only the point P near the apex of the traveling wave and receives the force of the point P near the apex, so that the object is conveyed in the direction opposite to the traveling direction X. The

この様に本実施形態のアクチュエータ10では、各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12に交互に一定電圧を印加して、各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12が交互に伸長させ、弾性部材13に進行波を発生させ、駆動部材13上の対象物を進行波とは逆方向に搬送している。   As described above, in the actuator 10 of the present embodiment, a constant voltage is alternately applied to the odd-numbered expansion / contraction driving elements 12 of each set and the even-numbered expansion / contraction driving elements 12 of each set, and the odd-numbered expansion / contraction driving of each set. The elements 12 and the even-numbered expansion / contraction drive elements 12 of each set are alternately extended to generate a traveling wave in the elastic member 13, and the object on the driving member 13 is conveyed in a direction opposite to the traveling wave.

このアクチュエータ10では、各伸縮駆動素子12に電圧を印加する制御駆動部15、アクチュエータ基板11、及びフレキシブル基板14を必要とするものの、その構成が簡単であって、各伸縮駆動素子12の小型化が容易であることから、このアクチュエータ10そのものの小型化を図ることが可能である。また、各伸縮駆動素子12は、相互に離間しており、該各伸縮駆動素子12の変形を阻む要因を含まないので、弾性部材13の進行波の振幅を大きくすることができ、弾性部材13による搬送力並びに搬送速度の上昇や、重い対象物の搬送等が可能になる。   Although this actuator 10 requires a control drive unit 15 that applies a voltage to each expansion / contraction drive element 12, an actuator substrate 11, and a flexible substrate 14, its configuration is simple, and each expansion / contraction drive element 12 is downsized. Therefore, it is possible to reduce the size of the actuator 10 itself. Further, since each expansion / contraction drive element 12 is separated from each other and does not include a factor that prevents the deformation of each expansion / contraction drive element 12, the amplitude of the traveling wave of the elastic member 13 can be increased, and the elastic member 13. It is possible to increase the conveying force and conveying speed due to the movement of the heavy object.

また、伸縮駆動素子12をY方向に長くしても、伸縮行動素子12全体がZ方向に一様に伸縮し、伸長伸縮駆動素子12の中央部と端部間での伸縮量が同じであるので、伸縮駆動素子12の端部と中央部では進行波の振幅に差異がなく、搬送性能にムラが生じることがない。   Further, even if the expansion / contraction driving element 12 is elongated in the Y direction, the entire expansion / contraction action element 12 expands and contracts uniformly in the Z direction, and the expansion / contraction amount between the central portion and the end portion of the expansion / contraction driving element 12 is the same. Therefore, there is no difference in the amplitude of the traveling wave between the end portion and the center portion of the expansion / contraction drive element 12, and the conveyance performance does not vary.

更に、アクチュエータ10は、ベルトコンベアと比較すると、構成が簡単であって、全体を薄くすることができるので、小スペースであっても、搭載することができる。更に、モーター等も必要としないので、電磁波を放出することもなく、電磁波を嫌うような半導体製造装置にも搭載することが可能である。   Furthermore, the actuator 10 has a simple configuration as compared with the belt conveyor and can be thinned as a whole, so that it can be mounted even in a small space. Furthermore, since a motor or the like is not required, it can be mounted on a semiconductor manufacturing apparatus that does not emit electromagnetic waves and hates electromagnetic waves.

尚、フレキシブル基板14をアクチュエータ基板11と各伸縮駆動素子12間に設ける代わりに、フレキシブル基板14を各伸縮駆動素子12と弾性部材13間に設け、各伸縮駆動素子12をフレキシブル基板14の配線パターンを通じて制御駆動部14に接続しても良い。また、フレキシブル基板14を設ける代わりに、複数のラインを各伸縮駆動素子12の側部に引き回して該各伸縮駆動素子12の電極に接続し、該各ラインを通じて、各伸縮駆動素子12と制御駆動部14を接続しても構わない。   Instead of providing the flexible substrate 14 between the actuator substrate 11 and each expansion / contraction drive element 12, the flexible substrate 14 is provided between each expansion / contraction drive element 12 and the elastic member 13, and each expansion / contraction drive element 12 is connected to the wiring pattern of the flexible substrate 14. You may connect to the control drive part 14 through. Further, instead of providing the flexible substrate 14, a plurality of lines are routed to the side of each expansion / contraction drive element 12 and connected to the electrode of each expansion / contraction drive element 12, and each expansion / contraction drive element 12 and the control drive are connected through each line. The unit 14 may be connected.

また、各組の奇数番目の伸縮駆動素子12と各組の偶数番目の伸縮駆動素子12を交互に伸縮させる代わりに、2つ以上の伸縮駆動素子12を1組とし、奇数番目の組の各伸縮駆動素子12と偶数番目の組の各伸縮駆動素子12を交互に伸縮させても良い。あるいは、図7(a)〜(e)に示す様に各伸縮駆動素子12を1つずつ順次伸長させても良い。あるいは、図8に示す様に3つ以上の伸縮駆動素子12を1組とし、組毎に、各伸縮駆動素子12により1波長分の進行波を駆動部材13に生じさせても良い。ただし、各伸縮駆動素子12の電極22を制御駆動部14に別々に接続して、各伸縮駆動素子12を別々に制御する必要がある。   Further, instead of alternately expanding / contracting the odd-numbered expansion / contraction driving elements 12 of each set and the even-numbered expansion / contraction driving elements 12 of each set, two or more expansion / contraction driving elements 12 are used as one set, The expansion / contraction drive element 12 and the even-numbered expansion / contraction drive elements 12 may be alternately expanded and contracted. Alternatively, as shown in FIGS. 7A to 7E, each expansion / contraction drive element 12 may be sequentially extended one by one. Alternatively, as shown in FIG. 8, three or more expansion / contraction drive elements 12 may be used as one set, and a traveling wave for one wavelength may be generated in the drive member 13 by each expansion / contraction drive element 12 for each set. However, it is necessary to separately control the respective expansion / contraction drive elements 12 by connecting the electrodes 22 of the respective expansion / contraction drive elements 12 to the control drive unit 14 separately.

更に、各伸縮駆動素子12を等間隔に並べず、各伸縮駆動素子12の間隔を故意に変更し、これにより搬送性能を調節しても良い。   Furthermore, the expansion / contraction drive elements 12 may not be arranged at equal intervals, but the intervals between the expansion / contraction drive elements 12 may be changed intentionally, thereby adjusting the conveyance performance.

また、図9に示す様に駆動部材13に複数の突起13aを設けても良い。各突起13aは、駆動部材13に対してZ方向に突設され、各伸縮駆動素子12に沿ってY方向に延び、X方向に等間隔で配置され、それらの先端のみが対象物に接触する。これらの突起13aが高くなる程、該各突起13aの先端の上下前後の振幅が大きくなって、該各突起13aのX方向の変位速度が増大する。このため、対象物をより高速で搬送することができ、搬送性能をより向上させることができる。   Further, as shown in FIG. 9, the driving member 13 may be provided with a plurality of protrusions 13a. The protrusions 13a protrude in the Z direction with respect to the drive member 13, extend in the Y direction along the expansion / contraction drive elements 12, are arranged at equal intervals in the X direction, and only their tips contact the object. . As these protrusions 13a become higher, the amplitudes of the front and rear of the tip of each protrusion 13a increase, and the displacement speed of each protrusion 13a in the X direction increases. For this reason, a target object can be conveyed at higher speed and conveyance performance can be improved more.

更に、フレキシブル基板14だけではなく、アクチュエータ基板11として可撓性もしくは弾性を有するものを適用し、アクチュエータ10そのものに可撓性もしくは弾性を持たせても良い。この場合は、アクチュエータ10を曲面に沿って設けたり、アクチュエータ10を相対的に移動する2つの箇所に掛け渡して設けることができる。
<実施形態2>
図10は、本発明のアクチュエータの第2実施形態を示す一部分解斜視図である。本実施形態のアクチュエータ30では、アクチュエータ基板31上にフレキシブル基板34を重ね合わせて固定し、フレキシブル基板34上に複数の伸縮駆動素子32を行列方向に配列して固定し、各伸縮駆動素子32の上端にシート状の弾性部材33を載せて係止し、制御駆動部35をフレキシブル基板34を通じて各伸縮駆動素子32に接続している。制御駆動部34は、フレキシブル基板34を通じて各伸縮駆動素子32に電圧を選択的に順次印加し、各伸縮駆動素子32を選択的に順次伸縮させ、弾性部材33に進行波を形成する。この弾性部材33に対象物を載置すると、この弾性部材33の進行波により対象物が進行波の進行方向とは逆方向に搬送される。
Further, not only the flexible substrate 14 but also the actuator substrate 11 having flexibility or elasticity may be applied, and the actuator 10 itself may have flexibility or elasticity. In this case, the actuator 10 can be provided along a curved surface, or can be provided across two locations where the actuator 10 moves relatively.
<Embodiment 2>
FIG. 10 is a partially exploded perspective view showing a second embodiment of the actuator of the present invention. In the actuator 30 of the present embodiment, the flexible substrate 34 is overlapped and fixed on the actuator substrate 31, and a plurality of expansion / contraction drive elements 32 are arranged and fixed in the matrix direction on the flexible substrate 34. A sheet-like elastic member 33 is placed and locked on the upper end, and the control drive unit 35 is connected to each telescopic drive element 32 through the flexible substrate 34. The control drive unit 34 selectively applies a voltage to each expansion / contraction drive element 32 sequentially through the flexible substrate 34, and selectively expands / contracts each expansion / contraction drive element 32 in order to form a traveling wave on the elastic member 33. When the object is placed on the elastic member 33, the object is conveyed in a direction opposite to the traveling direction of the traveling wave by the traveling wave of the elastic member 33.

各伸縮駆動素子32は、図1の伸縮駆動素子12と同様の構成であり、形状及びサイズのみが異なる。   Each expansion / contraction drive element 32 has the same configuration as the expansion / contraction drive element 12 of FIG.

フレキシブル基板34は、各伸縮駆動素子32の一方の電極を制御駆動部34に接続するそれぞれの配線パターン、及び各伸縮駆動素子32の他方の電極を接地する配線パターンを有している。あるいは、フレキシブル基板34を設ける代わりに、複数のラインを各伸縮駆動素子32の側部に引き回して該各伸縮駆動素子32の電極に接続し、該各ラインを通じて、各伸縮駆動素子32と制御駆動部34を接続しても構わない。   The flexible substrate 34 has a wiring pattern for connecting one electrode of each expansion / contraction drive element 32 to the control drive unit 34 and a wiring pattern for grounding the other electrode of each expansion / contraction drive element 32. Alternatively, instead of providing the flexible substrate 34, a plurality of lines are routed to the side of each expansion / contraction drive element 32 and connected to the electrode of each expansion / contraction drive element 32, and each expansion / contraction drive element 32 and the control drive are connected through each line. The unit 34 may be connected.

制御駆動部35は、フレキシブル基板34の各配線パターンを通じて、電圧を各伸縮駆動素子32に選択的に順次印加して、各伸縮駆動素子32を選択的に順次伸縮させる。   The control driving unit 35 selectively applies a voltage to each expansion / contraction driving element 32 sequentially through each wiring pattern of the flexible substrate 34 to selectively expand / contract each expansion / contraction driving element 32 sequentially.

弾性部材33は、各伸縮駆動素子32の上端に係止されており、各伸縮駆動素子32の伸縮に追従して変形し、その表面に進行波を生じる。   The elastic member 33 is locked to the upper end of each expansion / contraction drive element 32, deforms following the expansion / contraction of each expansion / contraction drive element 32, and generates a traveling wave on the surface thereof.

この様な構成のアクチュエータ30においては、制御駆動部35の制御により各伸縮駆動素子32を選択的に順次伸縮させることができる。例えば、各伸縮駆動素子32の行列において、Y方向の行単位で、各行を選択的に順次伸縮させれば、弾性部材33にX方向又はX方向とは逆方向の進行波を生じさせて、駆動部材33上の対象物をX方向とは逆方向又はX方向に搬送することができる。また、X方向の列単位で、各列を選択的に順次伸縮させれば、弾性部材33にY方向又はY方向とは逆方向の進行波を生じさせて、駆動部材33上の対象物をY方向とは逆方向又はY方向に搬送することができる。   In the actuator 30 having such a configuration, the expansion / contraction drive elements 32 can be selectively expanded and contracted sequentially under the control of the control drive unit 35. For example, in the matrix of each expansion / contraction drive element 32, if each row is selectively expanded / contracted in units of rows in the Y direction, a traveling wave in the X direction or the direction opposite to the X direction is generated in the elastic member 33, The object on the drive member 33 can be conveyed in the direction opposite to the X direction or in the X direction. Further, if each column is selectively expanded and contracted sequentially in units of columns in the X direction, a traveling wave in the Y direction or the direction opposite to the Y direction is generated in the elastic member 33, and the object on the drive member 33 is moved. It can be conveyed in the direction opposite to the Y direction or in the Y direction.

あるいは、X方向及びY方向に対して斜めの方向についても各伸縮駆動素子32を選択的に順次伸縮させ、弾性部材33に斜めの方向又は斜めの方向とは逆方向の進行波を生じさせて、駆動部材33上の対象物を斜めの方向とは逆方向又は斜めの方向に搬送することができる。   Alternatively, the expansion / contraction drive elements 32 are selectively expanded and contracted sequentially in the direction oblique to the X direction and the Y direction, and a traveling wave in the oblique direction or the direction opposite to the oblique direction is generated in the elastic member 33. The object on the drive member 33 can be conveyed in a direction opposite to the oblique direction or in an oblique direction.

また、図11に示す様に各伸縮駆動素子32を2つの領域36、37に割り振り、制御駆動部35の制御により、各領域36、37別に、各伸縮駆動素子32を選択的に順次伸縮させても良い。例えば、領域36においては、各伸縮駆動素子32の伸縮に伴う弾性部材33の進行波の速度N1を速くし、領域37においては、各伸縮駆動素子32の伸縮に伴う弾性部材33の進行波の速度N2を遅くする。これにより、各領域36、37間で対象物39の搬送速度に差が生じ、対象物39が弾性部材33上で搬送されつつ方向Cに回転する。   Further, as shown in FIG. 11, each expansion / contraction drive element 32 is allocated to two regions 36 and 37, and each expansion / contraction drive element 32 is selectively expanded and contracted sequentially for each region 36 and 37 under the control of the control drive unit 35. May be. For example, in the region 36, the traveling wave speed N1 of the elastic member 33 accompanying expansion / contraction of each expansion / contraction drive element 32 is increased, and in the region 37, the traveling wave of the elastic member 33 accompanying expansion / contraction of each expansion / contraction driving element 32 is increased. Decrease the speed N2. Thereby, a difference occurs in the conveyance speed of the object 39 between the regions 36 and 37, and the object 39 rotates in the direction C while being conveyed on the elastic member 33.

あるいは、領域36における進行波の進行方向と領域37における進行波の進行方向を相互に逆にすれば、対象物39が弾性部材33上で回転する。   Alternatively, if the traveling direction of the traveling wave in the region 36 and the traveling direction of the traveling wave in the region 37 are reversed, the object 39 rotates on the elastic member 33.

尚、フレキシブル基板34をアクチュエータ基板31と各伸縮駆動素子32間に設ける代わりに、フレキシブル基板34を各伸縮駆動素子32と弾性部材33間に設け、各伸縮駆動素子32をフレキシブル基板34の配線パターンを通じて制御駆動部34に接続しても良い。   Instead of providing the flexible substrate 34 between the actuator substrate 31 and each expansion / contraction drive element 32, the flexible substrate 34 is provided between each expansion / contraction drive element 32 and the elastic member 33, and each expansion / contraction drive element 32 is connected to the wiring pattern of the flexible substrate 34. You may connect to the control drive part 34 through.

また、図12に示す様に駆動部材33に複数の突起33aを行列方向に設けても良い。各突起33aは、駆動部材33に対してZ方向に突設され、XY方向に等間隔で配置され、それらの先端のみが対象物に接触する。これらの突起33aが高くなる程、該各突起33aの先端の振幅が大きくなって、該各突起33aの先端のXY方向の変位速度が増大する。このため、対象物をより高速で搬送することができ、搬送性能をより向上させることができる。   Further, as shown in FIG. 12, the driving member 33 may be provided with a plurality of protrusions 33a in the matrix direction. Each protrusion 33a protrudes in the Z direction with respect to the drive member 33, is arranged at equal intervals in the XY direction, and only their tips contact the object. As these projections 33a become higher, the amplitude of the tip of each projection 33a increases, and the displacement speed in the XY direction of the tip of each projection 33a increases. For this reason, a target object can be conveyed at higher speed and conveyance performance can be improved more.

更に、フレキシブル基板34だけではなく、アクチュエータ基板31として可撓性もしくは弾性を有するものを適用し、アクチュエータ30そのものに可撓性もしくは弾性を持たせても良い。この場合は、図13に示す様にアクチュエータ30を曲面Sに沿って設けたり、アクチュエータ30を相対的に移動する2つの箇所に掛け渡して設けることができる。あるいは、ロボットハンドの手の平、指の腹にも設けることができる。近年、ロボットハンドの開発が盛んで、ロボットハンドに複雑な動きをさせようとしている。このためには、多自由度を有する機構と複雑な制御が必要となるが、その開発は極めて困難である。そこで、ロボットハンドの手の平や指の腹に、本発明のアクチュエータを搭載し、ロボットハンドにより把持されている対象物の移動もしくは回転等を行えば、ロボットハンドの構成や制御を複雑化せずに、複雑な作業を行うことが可能となる。   Furthermore, not only the flexible substrate 34 but also an actuator substrate 31 having flexibility or elasticity may be applied, and the actuator 30 itself may have flexibility or elasticity. In this case, as shown in FIG. 13, the actuator 30 can be provided along the curved surface S, or the actuator 30 can be provided across two places where the actuator 30 moves relatively. Alternatively, it can be provided on the palm of the robot hand or on the belly of the finger. In recent years, development of robot hands has been active, and robot hands are trying to make complicated movements. This requires a mechanism having multiple degrees of freedom and complicated control, but its development is extremely difficult. Therefore, if the actuator of the present invention is mounted on the palm of the robot hand or the belly of the finger and the object gripped by the robot hand is moved or rotated, the configuration and control of the robot hand are not complicated. It becomes possible to perform complicated work.

また、各伸縮駆動素子32の配列パターンもしくは図12の駆動部材33の各突起33aの配列パターンは、行列方向に限らず、多様に変形しても構わない。また、複数の領域別に、それらの配列パターンを変更しても良い。
<実施形態3>
図14は、本発明のアクチュエータの第3実施形態を示す一部分解斜視図である。尚、図14において、図10と同様の作用を果たす部位には同じ符号を付す。
Further, the arrangement pattern of the expansion / contraction drive elements 32 or the arrangement pattern of the protrusions 33a of the drive member 33 in FIG. 12 is not limited to the matrix direction, and may be variously modified. In addition, the arrangement pattern may be changed for each of a plurality of regions.
<Embodiment 3>
FIG. 14 is a partially exploded perspective view showing a third embodiment of the actuator of the present invention. In FIG. 14, the same reference numerals are given to portions that perform the same operation as in FIG. 10.

本実施形態のアクチュエータ40では、図1における各伸縮駆動素子32と弾性部材33間に、周知のタッチパネル等と同等の座標センサ41を挿入している。この座標センサ41は、タッチパネルの様に透明である必要がなく、感圧ゴム等を用いた可撓性もしくは弾性を有するものであり、対象物が弾性部材33に接触したときに、対象物が接触した位置を弾性部材33を介して検出する。制御駆動部35Aは、座標センサ41の検出出力に基づいて、弾性部材33が対象物の表面に沿う形状に変形する様に各伸縮駆動素子32を伸縮させる。   In the actuator 40 of the present embodiment, a coordinate sensor 41 equivalent to a known touch panel or the like is inserted between each expansion / contraction drive element 32 and the elastic member 33 in FIG. The coordinate sensor 41 does not need to be transparent like a touch panel and has flexibility or elasticity using pressure-sensitive rubber or the like. When the object comes into contact with the elastic member 33, the object is The contacted position is detected via the elastic member 33. Based on the detection output of the coordinate sensor 41, the control drive unit 35A expands and contracts each expansion / contraction drive element 32 so that the elastic member 33 is deformed into a shape along the surface of the object.

例えば、図15(a)に示す様に各伸縮駆動素子32が縮小した状態で、対象物42が弾性部材33に接触すると、制御駆動部35Aは、座標センサ41の検出出力に基づいて、対象物42の接触位置の少なくとも1つの伸縮駆動素子32を判定し、この接触位置の伸縮駆動素子32周りの他の各伸縮駆動素子32を徐々に伸長させる。そして、制御駆動部35Aは、他の各伸縮駆動素子32の伸長に伴い、対象物42の表面に弾性部材33の他の位置が接触すると、座標センサ41の検出出力に基づいて、この接触した他の位置の伸縮駆動素子32を判定し、この接触位置の伸縮駆動素子32の伸長を停止させて、このときの伸縮駆動素子32の長さを維持する。以降同様に、対象物42の表面に弾性部材33のいずれかの位置が接触する度に、座標センサ41の検出出力に基づいて、この接触した位置の伸縮駆動素子32を判定し、この接触位置の伸縮駆動素子32の伸長を停止させて、その長さを維持する。   For example, as shown in FIG. 15A, when the object 42 comes into contact with the elastic member 33 in a state in which each expansion / contraction drive element 32 is contracted, the control drive unit 35 </ b> A detects the target based on the detection output of the coordinate sensor 41. At least one expansion / contraction drive element 32 at the contact position of the object 42 is determined, and each of the other expansion / contraction drive elements 32 around the expansion / contraction drive element 32 at the contact position is gradually extended. Then, the control drive unit 35A comes into contact with the surface of the object 42 when another position of the elastic member 33 comes into contact with the extension of each other expansion / contraction drive element 32 based on the detection output of the coordinate sensor 41. The expansion / contraction drive element 32 at another position is determined, the expansion of the expansion / contraction drive element 32 at this contact position is stopped, and the length of the expansion / contraction drive element 32 at this time is maintained. Similarly, every time any position of the elastic member 33 comes into contact with the surface of the object 42, the expansion / contraction drive element 32 at this contact position is determined based on the detection output of the coordinate sensor 41, and this contact position The extension of the telescopic drive element 32 is stopped and the length thereof is maintained.

これにより、図15(b)に示す様に各伸縮駆動素子32が伸長し、弾性部材33が対象物の表面に沿う形状に変形して、弾性部材33が対象物の表面に広い範囲で接触する。   Thereby, as shown in FIG. 15B, each expansion / contraction drive element 32 expands, the elastic member 33 is deformed into a shape along the surface of the object, and the elastic member 33 contacts the surface of the object in a wide range. To do.

この後、制御駆動部35は、各伸縮駆動素子32を選択的に順次伸縮させ、弾性部材33に進行波を生じさせて、駆動部材33上の対象物を搬送もしくは回転させる。また、この対象物の搬送もしくは回転に際しても、座標センサ41の検出出力に基づいて、弾性部材33が対象物42の表面に沿う形状に変形する様に各伸縮駆動素子32を伸縮させた上で、弾性部材33に進行波を生じさせる。   Thereafter, the control drive unit 35 selectively expands and contracts each expansion / contraction drive element 32 sequentially, generates a traveling wave in the elastic member 33, and conveys or rotates the object on the drive member 33. Further, when the object is transported or rotated, each expansion / contraction drive element 32 is expanded or contracted based on the detection output of the coordinate sensor 41 so that the elastic member 33 is deformed into a shape along the surface of the object 42. A traveling wave is generated in the elastic member 33.

この結果、弾性部材33が対象物42の表面に広い範囲で接触した状態が維持されつつ、弾性部材33の進行波により対象物42が搬送もしくは回転されることになり、対象物42の表面に広い範囲で搬送力が作用して、対象物42が安定的に搬送もしくは回転される。   As a result, the state in which the elastic member 33 is in contact with the surface of the object 42 in a wide range is maintained, and the object 42 is conveyed or rotated by the traveling wave of the elastic member 33, so that the surface of the object 42 is The conveying force acts in a wide range, and the object 42 is stably conveyed or rotated.

尚、座標センサ41として、タッチパネルだけではなく、他の種類のものを適用しても良い。例えば、図16に示す様に伸縮駆動素子32毎に、伸縮駆動素子32先端に電極51を設けると共に、弾性部材33の裏面における該伸縮駆動素子32先端の対向位置に電極52を設け、各電極51、52間にバネ53を介在させたものを適用しても構わない。対象物が弾性部材33に接触したときには、この接触位置の伸縮駆動素子32に力が作用して、該伸縮駆動素子32の各電極51、52が接近し、各電極51、52間の静電容量が変化するので、伸縮駆動素子32毎に、各電極51、52間の静電容量の変化を検出すれば、対象物の表面が弾性部材33のいずれの位置に接触したかを検出して、この位置の伸縮駆動素子32を判定することができる。   As the coordinate sensor 41, not only the touch panel but also other types may be applied. For example, as shown in FIG. 16, for each expansion / contraction drive element 32, an electrode 51 is provided at the distal end of the expansion / contraction drive element 32, and an electrode 52 is provided at a position opposite to the distal end of the expansion / contraction drive element 32 on the back surface of the elastic member 33. A spring 53 interposed between 51 and 52 may be applied. When the object comes into contact with the elastic member 33, a force acts on the expansion / contraction drive element 32 at the contact position so that the electrodes 51 and 52 of the expansion / contraction drive element 32 approach each other, and the electrostatic force between the electrodes 51 and 52 is increased. Since the capacitance changes, if the change in the capacitance between the electrodes 51 and 52 is detected for each of the expansion / contraction drive elements 32, it is detected which position of the elastic member 33 is in contact with the surface of the object. The expansion / contraction drive element 32 at this position can be determined.

図16に示す様な構造のセンサは、MEMS(Microelectoromechanical System)センサとして実現すれば、小型なものを得ることができる。   If the sensor having the structure as shown in FIG. 16 is realized as a MEMS (Microelectoromechanical System) sensor, a small sensor can be obtained.

また、伸縮駆動素子そのものを、センサとしても用いることができる。高分子アクチュエータである伸縮駆動素子は、対象物に接触すると多少の座屈を起こす。この座屈により高分子アクチュエータの伸張が非対称になる。その非対称な伸張を読み取れば、対象物に接触したかどうかを知ることができる。その他にも、高分子アクチュエータそのものを用いたセンシング方法はいろいろと考えられるが、高分子アクチュエータの設置場所や搬送物体に応じて適当な方法を選んでやればよい。   Further, the telescopic drive element itself can be used as a sensor. A telescopic drive element, which is a polymer actuator, causes some buckling when in contact with an object. This buckling makes the extension of the polymer actuator asymmetric. By reading the asymmetric extension, it is possible to know whether or not the object has been touched. There are various other sensing methods using the polymer actuator itself, but an appropriate method may be selected according to the installation location of the polymer actuator and the transported object.

尚、本発明のアクチュエータは、上記各実施形態に限定されるものではなく、多様に変形することができる。例えば、伸縮駆動素子として、図2(a)に示す高分子材料21を一対の電極22、23間に挟み込んだ高分子アクチュエータに限らず、他の種類のものを適用しても良い。この他の種類の伸縮駆動素子としては、高分子材料に電極を設け電圧を加えるとイオンを取り込んで膨張するという性質を利用したものもあり、それを用いても構わない。   The actuator of the present invention is not limited to the above embodiments, and can be variously modified. For example, the expansion / contraction drive element is not limited to the polymer actuator in which the polymer material 21 shown in FIG. 2A is sandwiched between the pair of electrodes 22 and 23, and other types of elements may be applied. As another type of expansion / contraction drive element, there is an element that utilizes the property that an electrode is provided in a polymer material and ions are taken in and expanded when a voltage is applied, and this may be used.

あるいは、電気的に制御することができ、高分子アクチュエータと同様な性質を有するアクチュエータであれば、どのような駆動素子でも用いることができる。   Alternatively, any driving element can be used as long as it is an actuator that can be electrically controlled and has the same properties as the polymer actuator.

また、伸縮駆動素子として、超音波を弾性部材の表面に発生させて、対象物を搬送するというものもある。この場合は、進行波の振幅が小さいので、駆動力を得るために対象物が弾性部材の表面にある程度の力で押さえ付けられるか、弾性部材の表面に対する弾性部材の接触面積が広くなければ、十分な駆動力が得られない。このため、複雑な形状の対象物の搬送には向いていない。搬送速度は、超音波のものが速くなる。ただし、高い搬送速度を要求されない場合は、上記の理由から超音波で進行波を形成するより、高分子アクチュエータで進行波を形成した方が良い。   Further, as an expansion / contraction driving element, there is an element that generates an ultrasonic wave on the surface of an elastic member to convey an object. In this case, since the amplitude of the traveling wave is small, the object is pressed against the surface of the elastic member with a certain amount of force in order to obtain a driving force, or if the contact area of the elastic member with the surface of the elastic member is not wide, A sufficient driving force cannot be obtained. For this reason, it is not suitable for the conveyance of the object of a complicated shape. The conveyance speed is higher for ultrasonic waves. However, when a high conveyance speed is not required, it is better to form a traveling wave with a polymer actuator than to form a traveling wave with ultrasonic waves for the above reason.

更に、搬送される対象物は、特に限定されない。
<実施形態4>
図17(a)及び(b)は、本発明のアクチュエータを適用したロボットハンドの実施形態を概略的に示す側面図及び平面図である。このロボットハンド51は、複数の関節を有する5本の指52と、各指52を支持する手の平部53と、手の平部53の内側に設けられたアクチュエータ30と、手の平部13の甲側に設けられたハンド制御回路55とを備えている。
Furthermore, the object to be conveyed is not particularly limited.
<Embodiment 4>
17A and 17B are a side view and a plan view schematically showing an embodiment of a robot hand to which the actuator of the present invention is applied. The robot hand 51 includes five fingers 52 having a plurality of joints, a palm 53 supporting each finger 52, an actuator 30 provided inside the palm 53, and a back side of the palm 13. The hand control circuit 55 is provided.

各指52の駆動機構としては、プーリとワイヤーを組み合わせたものやギヤを組み合わせたもの等、多種多様なものが既に提案されており、いずれの駆動機構を適用しても構わない。また、各指52の駆動機構は、図示しない信号線を通じてハンド制御回路55により駆動制御される。   Various drive mechanisms for each finger 52 have been proposed, such as a combination of pulleys and wires, a combination of gears, and the like, and any drive mechanism may be applied. The driving mechanism of each finger 52 is driven and controlled by the hand control circuit 55 through a signal line (not shown).

アクチュエータ30は、図10に示すものと同様の構成である。   The actuator 30 has the same configuration as that shown in FIG.

ハンド制御回路55は、各指52の駆動機構を駆動制御し、各指52による対象物の把持等を適確に行わせる。また、ハンド制御回路55は、アクチュエータ30を制御する制御駆動部35を含み、アクチュエータ30の制御駆動も行って、アクチュエータ30の弾性部材33に進行波を生じさせる。   The hand control circuit 55 drives and controls the driving mechanism of each finger 52 so that the target 52 is properly gripped by each finger 52. The hand control circuit 55 includes a control drive unit 35 that controls the actuator 30, and also performs control drive of the actuator 30 to generate a traveling wave in the elastic member 33 of the actuator 30.

この様な構成のロボットハンドにおいては、各指52により対象物を把持すると、対象物がアクチュエータ30の弾性部材33の表面に接触する。この状態で、ハンド制御回路55の制御駆動部35によりアクチュエータ30の弾性部材33に進行波を生じさせると、弾性部材33の進行波により対象物を搬送もしくは回転させることができる。これにより、ロボットハンドの各指52だけでは到底不可能であった対象物の微妙な扱いが可能になる。   In the robot hand having such a configuration, when the object is gripped by each finger 52, the object contacts the surface of the elastic member 33 of the actuator 30. In this state, when a traveling wave is generated in the elastic member 33 of the actuator 30 by the control driving unit 35 of the hand control circuit 55, the object can be conveyed or rotated by the traveling wave of the elastic member 33. As a result, it becomes possible to handle the object delicately, which was impossible with the fingers 52 of the robot hand.

尚、アクチュエータ30に限定されるものではなく、本発明のアクチュエータであれば、これを適用することができる。また、アクチュエータを設ける箇所を変更したり、複数のアクチュエータを設けても構わない。   Note that the present invention is not limited to the actuator 30 and can be applied to any actuator according to the present invention. Further, the location where the actuator is provided may be changed, or a plurality of actuators may be provided.

本発明のアクチュエータの第1実施形態を示す一部分解斜視図である。1 is a partially exploded perspective view showing a first embodiment of an actuator of the present invention. (a)は高分子アクチュエータの構造を示す斜視図であり、(b)は高分子アクチュエータの動作を示す斜視図である。(A) is a perspective view which shows the structure of a polymer actuator, (b) is a perspective view which shows operation | movement of a polymer actuator. 高分子アクチュエータをロール状に巻回して角棒状に成型してなる伸縮駆動素子を示す斜視図である。It is a perspective view which shows the expansion-contraction drive element formed by winding a polymer actuator in roll shape and shape | molding in square-bar shape. 図1のアクチュエータにおけるフレキシブル基板等を示す平面図である。It is a top view which shows the flexible substrate etc. in the actuator of FIG. (a)及び(b)は、図1のアクチュエータにおける各伸縮駆動素子の動作を示す図である。(A) And (b) is a figure which shows operation | movement of each expansion-contraction drive element in the actuator of FIG. 図1のアクチュエータにおける弾性部材の進行波を示す図である。It is a figure which shows the traveling wave of the elastic member in the actuator of FIG. (a)〜(e)は、図1のアクチュエータにおける各伸縮駆動素子の動作の変形例を示す図である。(A)-(e) is a figure which shows the modification of operation | movement of each expansion-contraction drive element in the actuator of FIG. 図1のアクチュエータにおける各伸縮駆動素子の動作の他の変形例を示す図である。It is a figure which shows the other modification of operation | movement of each expansion-contraction drive element in the actuator of FIG. 図1のアクチュエータにおける弾性部材の変形例を示す図である。It is a figure which shows the modification of the elastic member in the actuator of FIG. 本発明のアクチュエータの第2実施形態を示す一部分解斜視図である。It is a partially exploded perspective view which shows 2nd Embodiment of the actuator of this invention. 図10のアクチュエータによる対象物の搬送状態を示す図である。It is a figure which shows the conveyance state of the target object by the actuator of FIG. 図10のアクチュエータにおける弾性部材の変形例を示す図である。It is a figure which shows the modification of the elastic member in the actuator of FIG. 図10のアクチュエータの変形例を示す図である。It is a figure which shows the modification of the actuator of FIG. 本発明のアクチュエータの第3実施形態を示す一部分解斜視図である。It is a partially exploded perspective view which shows 3rd Embodiment of the actuator of this invention. (a)及び(b)は、図14のアクチュエータにおける各伸縮駆動素子の動作を示す図である。(A) And (b) is a figure which shows operation | movement of each expansion-contraction drive element in the actuator of FIG. 図14のアクチュエータにおける座標センサの変形例を示す図である。It is a figure which shows the modification of the coordinate sensor in the actuator of FIG. (a)及び(b)は、本発明のアクチュエータを適用したロボットハンドの実施形態を概略的に示す側面図及び平面図である。(A) And (b) is the side view and top view which show roughly embodiment of the robot hand to which the actuator of this invention is applied. 従来のアクチュエータを示す斜視図である。It is a perspective view which shows the conventional actuator. 従来の他のアクチュエータを示す斜視図である。It is a perspective view which shows the other conventional actuator.

符号の説明Explanation of symbols

10、30、40 アクチュエータ
11、31 アクチュエータ基板
12、32 伸縮駆動素子
13、33 弾性部材
14、34 フレキシブル基板
15、35、35A 制御駆動部
21 高分子材料
22、23 電極
24、25 配線パターン
41 座標センサ
51 ロボットハンド
52 指
53 手の平部
55 ハンド制御回路
10, 30, 40 Actuator 11, 31 Actuator substrate 12, 32 Telescopic drive element 13, 33 Elastic member 14, 34 Flexible substrate 15, 35, 35A Control drive unit 21 Polymer material 22, 23 Electrode 24, 25 Wiring pattern 41 Coordinates Sensor 51 Robot hand 52 Finger 53 Hand flat part 55 Hand control circuit

Claims (10)

配列された複数の伸縮駆動素子と、
各伸縮駆動素子に載せられて係止された弾性部材と、
各伸縮駆動素子の伸縮に追従して弾性部材が変形し、この弾性部材に進行波が形成される様に、各伸縮駆動素子にそれぞれの電圧を印加して、各伸縮駆動素子を伸縮させる制御手段と
を備えることを特徴とするアクチュエータ。
A plurality of arranged telescopic drive elements;
An elastic member placed and locked on each of the telescopic drive elements;
The elastic member is deformed following the expansion / contraction of each expansion / contraction drive element, and control is performed to expand / contract each expansion / contraction drive element by applying a voltage to each expansion / contraction drive element so that a traveling wave is formed in the elastic member. And an actuator.
各伸縮駆動素子は、弾性を有する高分子材料を各電極間に挟み込んだ高分子アクチュエータであることを特徴とする請求項1に記載のアクチュエータ。   2. The actuator according to claim 1, wherein each of the expansion / contraction drive elements is a polymer actuator in which a polymer material having elasticity is sandwiched between the electrodes. 各伸縮駆動素子は、行列方向に配列されていることを特徴とする請求項1に記載のアクチュエータ。   The actuator according to claim 1, wherein the expansion / contraction drive elements are arranged in a matrix direction. 対象物と弾性部材との接触状態を検出する接触状態検出手段を備え、
制御手段は、接触状態検出手段の検出出力に基づいて、各伸縮駆動素子を伸縮させて、弾性部材を対象物の表面に沿う様に変形させ、この状態で各伸縮駆動素子を伸縮させて、弾性部材に進行波を形成させることを特徴とする請求項1に記載のアクチュエータ。
Contact state detecting means for detecting the contact state between the object and the elastic member,
Based on the detection output of the contact state detection means, the control means expands / contracts each expansion / contraction drive element, deforms the elastic member along the surface of the object, and expands / contracts each expansion / contraction drive element in this state, The actuator according to claim 1, wherein a traveling wave is formed on the elastic member.
弾性部材の表面に複数の突起を形成したことを特徴とする請求項1に記載のアクチュエータ。   The actuator according to claim 1, wherein a plurality of protrusions are formed on a surface of the elastic member. 各伸縮駆動素子にそれぞれ接続された複数の電極パターンを備え、
各伸縮駆動素子を複数組に分けて、組毎に、相互に異なる電位に設定される各電極パターンを各伸縮駆動素子に対応させて順次配列し、各組の同一順序に、相互に等しい電位に設定される電極パターンを伸縮駆動素子に対応させて配置したことを特徴とする請求項1に記載のアクチュエータ。
Provided with a plurality of electrode patterns respectively connected to each extension drive element,
Dividing each expansion / contraction drive element into a plurality of sets, each electrode pattern set to a different potential for each set is sequentially arranged corresponding to each expansion / contraction drive element, and each pair has the same potential in the same order. The actuator according to claim 1, wherein the electrode pattern set to 1 is arranged so as to correspond to the expansion / contraction drive element.
1組における各電極パターンの電位の位相が異なることを特徴とする請求項6に記載のアクチュエータ。   The actuator according to claim 6, wherein the phase of the potential of each electrode pattern in one set is different. 組毎に、各電極パターンに接続されたそれぞれの伸縮駆動素子により1波長分の進行波が形成されることを特徴とする請求項6に記載のアクチュエータ。   The actuator according to claim 6, wherein a traveling wave for one wavelength is formed by each expansion / contraction drive element connected to each electrode pattern for each set. 各伸縮駆動素子は、曲面上に配列されたことを特徴とする請求項1に記載のアクチュエータ。   The actuator according to claim 1, wherein the extension / contraction drive elements are arranged on a curved surface. 対象物の把持等を行うロボットハンドにおいて、
請求項1乃至9のいずれかに記載のアクチュエータを、対象物に接触する該ロボットハンドの部位に設けたことを特徴とするロボットハンド。
In a robot hand that grips an object,
A robot hand characterized in that the actuator according to any one of claims 1 to 9 is provided at a portion of the robot hand that contacts an object.
JP2004351480A 2004-12-03 2004-12-03 Actuator and robot hand Pending JP2006159319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351480A JP2006159319A (en) 2004-12-03 2004-12-03 Actuator and robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351480A JP2006159319A (en) 2004-12-03 2004-12-03 Actuator and robot hand

Publications (1)

Publication Number Publication Date
JP2006159319A true JP2006159319A (en) 2006-06-22

Family

ID=36661876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351480A Pending JP2006159319A (en) 2004-12-03 2004-12-03 Actuator and robot hand

Country Status (1)

Country Link
JP (1) JP2006159319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511859A (en) * 2006-11-30 2010-04-15 コーニング インコーポレイテッド Method and apparatus for image distortion measurement
JP2016025777A (en) * 2014-07-22 2016-02-08 オムロン株式会社 Power supply device
WO2023105880A1 (en) * 2021-12-08 2023-06-15 学校法人立命館 Robot hand

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511859A (en) * 2006-11-30 2010-04-15 コーニング インコーポレイテッド Method and apparatus for image distortion measurement
JP2016025777A (en) * 2014-07-22 2016-02-08 オムロン株式会社 Power supply device
WO2023105880A1 (en) * 2021-12-08 2023-06-15 学校法人立命館 Robot hand

Similar Documents

Publication Publication Date Title
JP4732876B2 (en) Actuator, actuator module, and actuator module manufacturing method
US7786648B2 (en) Semi-resonant driving systems and methods thereof
US10522733B2 (en) Microelectromechanical apparatus for generating a physical effect
US20100202253A1 (en) Ultrasonic sensor unit and electronic device
KR101516112B1 (en) MEMS sensor
US7737606B2 (en) Inertial drive actuator
US7679265B2 (en) Drive unit
JP3966704B2 (en) Electrostatic actuator, driving method of electrostatic actuator, and camera module using the same
US20150076966A1 (en) Piezoelectric device and method of manufacturing the same
CN103368455A (en) Piezoelectric motor, robot hand, and robot
EP3691293B1 (en) Ultrasonic sensor
JP4954784B2 (en) Drive device
JP4742277B2 (en) Equivalent capacity actuator drive unit
US9240282B2 (en) Variable capacitor
JP2006159319A (en) Actuator and robot hand
JPWO2002015378A1 (en) Folding type piezoelectric stator, folding type piezoelectric actuator and their applications
US11323046B2 (en) Vibration unit having a piezoelectric element as the vibration source
US20080106168A1 (en) Mems comb device
JP2011176962A (en) Driver
JP2006203982A (en) Polymer actuator and articulated hand robot
JP4804154B2 (en) Ultrasonic drive
JP2001268948A (en) Electrostatic actuator and operation mechanism using the same
JP5168769B2 (en) Conveying device with an actuator
JP5326143B2 (en) Piezoelectric actuator and manufacturing method thereof
CN111130381A (en) Piezoelectric driving device, robot, and printer