JP2006159193A - Gas refining method and method for utilizing refined gas - Google Patents

Gas refining method and method for utilizing refined gas Download PDF

Info

Publication number
JP2006159193A
JP2006159193A JP2005362180A JP2005362180A JP2006159193A JP 2006159193 A JP2006159193 A JP 2006159193A JP 2005362180 A JP2005362180 A JP 2005362180A JP 2005362180 A JP2005362180 A JP 2005362180A JP 2006159193 A JP2006159193 A JP 2006159193A
Authority
JP
Japan
Prior art keywords
gas
activated carbon
dimethylsiloxane
methane
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005362180A
Other languages
Japanese (ja)
Other versions
JP4317546B2 (en
Inventor
Toshinori Inoue
聡則 井上
Hiroyuki Ban
浩之 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005362180A priority Critical patent/JP4317546B2/en
Publication of JP2006159193A publication Critical patent/JP2006159193A/en
Application granted granted Critical
Publication of JP4317546B2 publication Critical patent/JP4317546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas refining method, which can remove dimethylsiloxane from a methane-containing gas over a long period of time, and to provide a method for utilizing refined gas. <P>SOLUTION: When a methane-containing gas generated in the anaerobic fermentation of organic waste such as garbage or sewage sludge is supplied to and passed through a packed bed of activated carbon having pores with a mean pore size of 2.0 to 4.0 nm and a volume of pores with a size of not more than 1.0 nm of not more than 0.2 ml/g, dimethylsiloxane contained in the methane-containing gas is effectively adsorbed by the activated carbon. As a result, even if the methane-containing gas passed through the packed bed of activated carbon is burnt, the amount of SiO<SB>2</SB>generated is small. Therefore, the methane-containing gas can be utilized as fuel for a gas engine or the like, e.g., for power generation which requires long-time stable operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガスの精製方法およびその利用方法に関し、より詳しくは、生ごみや下水汚泥等の有機系廃棄物を嫌気性発酵させたときに発生するメタン含有ガスからジメチルシロキサンを除去し、このジメチルシロキサンを除去したメタン含有ガスを燃料として利用するガスの精製方法およびその利用方法に関する。   The present invention relates to a gas purification method and a method for using the same. More specifically, the present invention removes dimethylsiloxane from methane-containing gas generated when anaerobic fermentation of organic waste such as garbage and sewage sludge. The present invention relates to a gas purification method using a methane-containing gas from which dimethylsiloxane has been removed as a fuel, and a method for using the same.

周知のとおり、生ごみや下水汚泥等の有機系廃棄物が嫌気性発酵するとメタン含有ガスが発生する。このようにして発生したメタン含有ガスを発電用燃料等として利用することが、欧米諸国、特に、ドイツにおいて活発に進められている。しかしながら、このようなメタン含有ガスには、後述するような物質が含まれており、そしてこの物質を経済的に除去する手段の実現が急務になっている。   As is well known, methane-containing gas is generated when anaerobic fermentation of organic waste such as garbage and sewage sludge. The use of the methane-containing gas generated in this way as a fuel for power generation is being actively promoted in Western countries, particularly in Germany. However, such a methane-containing gas contains substances as described later, and there is an urgent need to realize means for economically removing these substances.

即ち、下水汚泥等から発生するメタン含有ガスには、シャンプーやリンスの分解により生じる有機シリコン化合物が微量に含まれていることが知られている。この有機シリコン化合物の中でも、−Si(CH3)2O−の単位構造が3個以上結合して環状化したジメチルシロキサン環状有機化合物(以下、ジメチルシロキサンという。)は、メタン含有ガスを利用する際に、大きな障害を引き起こすことが知られている。メタン含有ガス(原ガス)に含まれているジメチルシロキサンは、高だか100mg/m3以下程度の低濃度である。   That is, it is known that a methane-containing gas generated from sewage sludge or the like contains a trace amount of an organic silicon compound generated by decomposition of shampoo or rinse. Among these organosilicon compounds, a dimethylsiloxane cyclic organic compound (hereinafter referred to as dimethylsiloxane) in which three or more unit structures of —Si (CH 3) 2 O— are bonded and cyclized is used when a methane-containing gas is used. Known to cause major obstacles. Dimethylsiloxane contained in the methane-containing gas (raw gas) has a low concentration of about 100 mg / m3 or less.

しかしながら、ジメチルシロキサンが含まれているメタン含有ガスを燃料として、例えばガスエンジンを駆動して発電すると、ガスエンジン内でジメチルシロキサンが固体のSiO2に変化する。そのため、ガスエンジンを損傷(点火プラグへの付着による点火不良、シリンダライナやピストンの早期磨耗、吸気弁、排気弁、およびエンジン燃焼室ヘッド全体へのSiO2の付着)させるので、ガスエンジンの長期運転が困難になる。ガスエンジン内においてジメチルシロキサンが固体のSiO2に変化するのは、ガスエンジン内でのジメチルシロキサンの有機性部位(メチル基)の燃焼焼失によりSiO2が残り、残ったSiO2がガスエンジン内で次第に生長するためであると考えられている。また、同様の障害はガスタービン等の他の内燃機関にも発生すると考えられる。   However, for example, when power is generated by driving a gas engine using methane-containing gas containing dimethylsiloxane as fuel, dimethylsiloxane changes to solid SiO 2 in the gas engine. As a result, the gas engine is damaged (ignition failure due to adhesion to the spark plug, premature wear of the cylinder liner and piston, intake valve, exhaust valve, and SiO2 adhesion to the entire engine combustion chamber head). Becomes difficult. The reason why dimethylsiloxane changes to solid SiO2 in the gas engine is that the organic part (methyl group) of dimethylsiloxane in the gas engine burns and burns away, and the remaining SiO2 gradually grows in the gas engine. It is thought to be because. It is also considered that the same trouble occurs in other internal combustion engines such as gas turbines.

ジメチルシキロサンに起因する上記のような問題を回避し、ガスエンジン等内燃機関の長期安定運転を達成するために、下記のような種々のジメチルシキロサンの除去方法が提案されている。   In order to avoid the above-mentioned problems caused by dimethyl siloxane and to achieve a long-term stable operation of an internal combustion engine such as a gas engine, the following various dimethyl siloxane removal methods have been proposed.

(1)活性炭等の吸着材によりジメチルシロキサンを吸着して除去する方法
(2)ジメチルシロキサンの吸収能力に富む溶剤により吸収して除去する方法
(3)メタン含有ガスを−30℃程度まで冷却し、ジメチルシロキサンを固化させて分離する方法
ところで、メタン含有ガスからジメチルシロキサンを除去する除去方法の具体例としては、活性炭を用いてジメチルシロキサンを除去する除去方法が、例えば非特許文献1に開示されている。この従来例に係る活性炭によるジメチルシロキサンの除去方法は、活性炭の充填高さ0.3m、ガス空塔速度0.15m/sの条件下において、下水消化ガスを活性炭に供給することにより、活性炭のジメチルシロキサンの除去性能を調べたものである。この場合、下水消化ガスからのジメチルシロキサン除去率は、550時間までは90%以上が維持されており、下水消化ガスからジメチルシロキサンを除去することができているとしている。
第38回下水道研究発表会講演集(695頁参照)
(1) Method of adsorbing and removing dimethylsiloxane with an adsorbent such as activated carbon (2) Method of absorbing and removing dimethylsiloxane with a solvent rich in dimethylsiloxane absorption capacity (3) Cool the methane-containing gas to about -30 ° C By the way, as a specific example of the removal method for removing dimethylsiloxane from a methane-containing gas, a removal method for removing dimethylsiloxane using activated carbon is disclosed in Non-Patent Document 1, for example. ing. The conventional method for removing dimethylsiloxane with activated carbon is to supply activated carbon by supplying sewage digestion gas to activated carbon under the conditions of a filling height of activated carbon of 0.3 m and a gas superficial velocity of 0.15 m / s. The removal performance of dimethylsiloxane was investigated. In this case, the dimethylsiloxane removal rate from the sewage digestion gas is maintained at 90% or more until 550 hours, and dimethylsiloxane can be removed from the sewage digestion gas.
Proceedings of the 38th Sewerage Research Presentation (see page 695)

しかしながら、上記従来例では、上記のとおり、550時間までジメチルシロキサンを除去できているとしているものの、ジメチルシロキサンの除去に関して十分であるといい難いと考えられる。即ち、上記処理条件はガス空間速度(SV)が1800m/hであり、処理するガス量に対して標準的か、やや大きい規模の吸着装置(吸着塔)であると判断される。それにもかかわらず、この吸着装置に用いる吸着材の耐久時間(ジメチルシロキサンの除去可能時間)が短いため、頻繁に活性炭の交換が必要であると考えられ、経済的な手段であるとはいい難いものである。このような従来例に係る吸着装置において、耐久性の問題に対処するためには、活性炭の充填量をより多くする以外に方策がなく、結果として吸着装置の大型化を避けることができない。   However, in the above conventional example, as described above, dimethylsiloxane can be removed up to 550 hours, but it is considered difficult to remove dimethylsiloxane. In other words, the gas space velocity (SV) is 1800 m / h under the above processing conditions, and it is determined that the adsorption apparatus (adsorption tower) has a standard or slightly larger scale for the amount of gas to be processed. Nevertheless, the adsorbent used in this adsorption device has a short endurance time (removable time of dimethylsiloxane), so it is considered that frequent replacement of activated carbon is necessary, and it is difficult to say that it is an economical means. Is. In order to cope with the problem of durability in such an adsorption device according to the conventional example, there is no measure other than increasing the filling amount of activated carbon, and as a result, it is impossible to avoid an increase in the size of the adsorption device.

従って、本発明の目的は、メタン含有ガスからジメチルシロキサンを長期間に亘って除去し得るガスの精製方法およびその利用方法を提供することである。   Accordingly, an object of the present invention is to provide a gas purification method capable of removing dimethylsiloxane from a methane-containing gas over a long period of time, and a method for using the same.

本発明は、上記実情に鑑みてなされたものであって、従って上記課題を解決するために、本発明の請求項1に係るガスの精製方法が採用した手段は、ジメチルシロキサンを含有する原ガスを、平均細孔径が2.0〜4.0nmの細孔を有し、1.0nm以下の細孔の容積が0.2ml/g以下の活性炭の充填層を通過させることにより、前記活性炭にジメチルシロキサンを吸着させることを特徴とするものである。   The present invention has been made in view of the above circumstances. Therefore, in order to solve the above problems, the means adopted by the gas purification method according to claim 1 of the present invention is a raw gas containing dimethylsiloxane. Is passed through a packed bed of activated carbon having pores with an average pore size of 2.0 to 4.0 nm and pores of 1.0 nm or less having a volume of 0.2 ml / g or less. It is characterized by adsorbing dimethylsiloxane.

本発明の請求項2に係るガスの精製方法が採用した手段は、請求項1に記載のガスの精製方法において、前記原ガスは、嫌気性発酵により有機系廃棄物から発生するメタン含有ガスであることを特徴とするものである。   The means adopted by the gas purification method according to claim 2 of the present invention is the gas purification method according to claim 1, wherein the raw gas is a methane-containing gas generated from organic waste by anaerobic fermentation. It is characterized by being.

本発明の請求項3に係るガスの精製方法が採用した手段は、請求項1または2のうちの何れか一つの項に記載のガスの精製方法において、前記活性炭の充填層を通過させる前に、前記原ガスの相対湿度を低下させることを特徴とするものである。   The means adopted by the gas purification method according to claim 3 of the present invention is the gas purification method according to any one of claims 1 and 2, wherein the gas purification method according to any one of claims 1 and 2 is allowed to pass through the packed bed of activated carbon. The relative humidity of the raw gas is lowered.

本発明の請求項4に係るガスの利用方法が採用した手段は、ジメチルシロキサンを含有する原ガスを、平均細孔径が2.0〜4.0nmの細孔を有し、1.0nm以下の細孔の容積が0.2ml/g以下の活性炭の充填層を通過させることにより、前記活性炭にジメチルシロキサンを吸着させ、前記原ガスからジメチルシロキサンが除去された処理ガスを燃料とすることを特徴とするものである。   The means employed by the gas utilization method according to claim 4 of the present invention is that the raw gas containing dimethylsiloxane has pores having an average pore diameter of 2.0 to 4.0 nm and 1.0 nm or less. By passing through a packed bed of activated carbon having a pore volume of 0.2 ml / g or less, dimethylsiloxane is adsorbed on the activated carbon, and a processing gas from which dimethylsiloxane has been removed from the raw gas is used as a fuel. It is what.

以上のとおり、本発明の請求項1乃至3に係るガスの精製方法によれば、平均内径が2.0〜4.0nmの細孔を有し、1.0nm以下の細孔の容積が0.2ml/g以下の活性炭により、従来例よりも長時間に亘ってジメチルシロキサンを効果的に除去し続けることができる。そして、平均内径の小さな細孔が少ないので、H2やCH4等の可燃性物質やO2等の支燃性物質の吸着量が少なく、活性炭が発火する危険性が少なくなるから、活性炭の取扱いが容易になるという効果もある。   As described above, according to the gas purification method according to claims 1 to 3 of the present invention, the average inner diameter is 2.0 to 4.0 nm, and the pore volume of 1.0 nm or less is 0. By using activated carbon of 2 ml / g or less, dimethylsiloxane can be effectively removed for a longer time than in the conventional example. And since there are few pores with a small average inner diameter, the amount of adsorption of flammable substances such as H2 and CH4 and flammable substances such as O2 is small, and the risk of igniting activated carbon is reduced, so the activated carbon is easy to handle. There is also an effect of becoming.

本発明の請求項3に係るガスの精製方法によれば、相対湿度が低下したメタン含有ガスが活性炭の充填層を通過する。従って、活性炭の細孔に捕捉される水分量が減少し、ジメチルシロキサンをより多く捕捉することができるので、活性炭のジメチルシロキサンの除去性能が向上するという効果がある。   According to the gas purification method of the third aspect of the present invention, the methane-containing gas having a reduced relative humidity passes through the packed bed of activated carbon. Therefore, the amount of water trapped in the pores of the activated carbon is reduced, and more dimethylsiloxane can be trapped, so that the dimethylsiloxane removal performance of the activated carbon is improved.

本発明の請求項4に係るガスの利用方法によれば、メタン含有ガスからジメチルシロキサンが確実に除去されているので、ガスエンジンやガスタービン等の内燃機関を長時間支障なく駆動して熱や電気を得ることができ、またボンベに貯蔵して自動車の燃料として活用することもできる等、燃料として有効活用することができる。   According to the gas utilization method according to claim 4 of the present invention, since dimethylsiloxane is reliably removed from the methane-containing gas, an internal combustion engine such as a gas engine or a gas turbine is driven without trouble for a long time. Electricity can be obtained, and it can be effectively used as fuel, such as being stored in a cylinder and used as fuel for automobiles.

以下、本発明のメタン含有ガス(原ガス)からジメチルシロキサンを除去するガス精製方法に係る実施の形態を説明する。即ち、発明者らは、従来の活性炭によるジメチルシロキサンの除去方法が、特に活性炭の耐久性(ジメチルシロキサンの除去可能時間)が短いという問題を抱えている実情に鑑み、ジメチルシロキサンに対して優れた吸着性能と耐久性とを共に具備する活性炭を実現するべく、鋭意研究を重ねてきた。その結果、平均細孔径が2.0〜4.0nmの細孔を有する活性炭が優れた吸着性能と耐久性とを兼ね備えていることを見出した。   Hereinafter, an embodiment according to a gas purification method for removing dimethylsiloxane from a methane-containing gas (raw gas) according to the present invention will be described. That is, the inventors are superior to dimethylsiloxane in view of the fact that the conventional method for removing dimethylsiloxane with activated carbon has a problem that the durability (removable time of dimethylsiloxane) of activated carbon is short. In order to realize activated carbon that has both adsorption performance and durability, we have conducted extensive research. As a result, it was found that activated carbon having pores having an average pore diameter of 2.0 to 4.0 nm has excellent adsorption performance and durability.

下水消化ガスに含まれているジメチルシロキサンは、−Si(CH3)2O−の単位構造の数が3〜6であることが知られており、そして前記単位構造の分子サイズは0.7〜1.1nmであると推定される。それに対して、活性炭の細孔の平均細孔径は、通常、1.0nm以上であるから、平均細孔径がより小さい細孔を有する活性炭が好ましいと考えられる。ところが、耐久性に大きく影響する細孔の容積が同程度である場合、平均細孔径が2.0nm以下の細孔が多い活性炭よりも、平均細孔径が2.0〜4.0nmの比較的大きな細孔を有する活性炭の方がジメチルシロキサンに対して大きな吸着性能を有することが分った。   Dimethylsiloxane contained in the sewage digestion gas is known to have 3 to 6 unit structures of —Si (CH 3) 2 O—, and the molecular size of the unit structure is 0.7 to 1 Estimated to be 1 nm. On the other hand, since the average pore diameter of the pores of the activated carbon is usually 1.0 nm or more, activated carbon having pores with smaller average pore diameters is considered preferable. However, when the volume of the pores that greatly affects the durability is about the same, the average pore diameter of 2.0 to 4.0 nm is relatively larger than the activated carbon with many average pore diameters of 2.0 nm or less. It was found that the activated carbon having large pores has a larger adsorption performance for dimethylsiloxane.

即ち、一般の脱臭等に用いられるガス処理用の活性炭に比較して、細孔の平均細孔径が大きく溶剤回収等に用いられる活性炭の方がジメチルシロキサンの吸着にとって好ましいことが分った。これは、ジメチルシロキサンが活性炭に吸着する際に、数分子のジメチルシロキサンが凝縮して細孔に捕捉されるためであると考えられる。しかしながら、平均細孔径が4.0nmを超える細孔を有する活性炭では、十分なジメチルシロキサンの除去性能が得られないことが分った。また、平均細孔径が3.5nm以下の細孔を有する活性炭が、ジメチルシロキサンの除去性能が最も優れているということも分った。   That is, it has been found that the activated carbon used for solvent recovery or the like has a larger average pore diameter than the activated carbon for gas treatment used for general deodorization and the like, and is preferable for adsorption of dimethylsiloxane. This is presumably because several molecules of dimethylsiloxane are condensed and trapped in the pores when dimethylsiloxane is adsorbed on the activated carbon. However, it has been found that activated carbon having pores with an average pore diameter exceeding 4.0 nm cannot provide sufficient dimethylsiloxane removal performance. It was also found that activated carbon having pores with an average pore diameter of 3.5 nm or less has the best dimethylsiloxane removal performance.

ところで、活性炭の細孔径が1.0nm以下である場合には、H2やCH4等の可燃性物質やO2等の支燃性物質が多く吸着されるので、活性炭の発火危険性が高まる可能性がある。これに対して、本発明が対象とするメタン含有ガスを精製する活性炭の場合には、上記のとおり、平均細孔径が2.0〜4.0nmであって、細孔径の小さな細孔が少ない。従って、H2やCH4等の可燃性物質やO2等の支燃性物質の吸着量が少なく、本発明に係る活性炭は発火危険性が少なくなるから、活性炭の取扱いが容易になるという効果がある。なお、活性炭の発火危険性を少なくするためには、1.0nm以下の細孔の容積は0.2ml/g以下であることが好ましい。   By the way, when the pore diameter of the activated carbon is 1.0 nm or less, flammable substances such as H2 and CH4 and flammable substances such as O2 are adsorbed, which may increase the ignition risk of the activated carbon. is there. On the other hand, in the case of activated carbon that purifies the methane-containing gas targeted by the present invention, as described above, the average pore diameter is 2.0 to 4.0 nm, and there are few pores with small pore diameters. . Therefore, the amount of adsorption of combustible substances such as H2 and CH4 and combustion-supporting substances such as O2 is small, and the activated carbon according to the present invention has an effect of facilitating handling of the activated carbon because the ignition risk is reduced. In order to reduce the ignition risk of activated carbon, the pore volume of 1.0 nm or less is preferably 0.2 ml / g or less.

因みに、1.0nm以下の細孔が多い場合に、発火危険性を高めるH2の吸着量が多くなるのを調べた例を明示する。これは、平均細孔径が同等で、かつ1.0nmの細孔の容積が異なる活性炭を用いて、温度23℃、圧力1MPaの温度・圧力条件下でH2の吸着量を調べたものである。平均細孔径が2.13nmで、1.0nm以下の細孔の容積が0.15ml/gの活性炭Aでは、H2の吸着量が0.18(mol−H2/kg−活性炭)であった。これに対して、平均細孔径が2.06nmで、1.0nm以下の細孔の容積が0.23ml/gの活性炭Bでは、H2の吸着量が0.33(mol−H2/kg−活性炭)であり、この活性炭Bの方が前記活性炭AよりもH2の吸着量が多い。   Incidentally, an example in which the amount of H2 adsorbed that increases the risk of ignition increases when there are many pores of 1.0 nm or less is clearly shown. This is an examination of the adsorption amount of H2 under the temperature and pressure conditions of a temperature of 23 ° C. and a pressure of 1 MPa using activated carbons having the same average pore diameter and different pore volumes of 1.0 nm. In the activated carbon A having an average pore diameter of 2.13 nm and a pore volume of 1.0 nm or less of 0.15 ml / g, the adsorption amount of H2 was 0.18 (mol-H2 / kg-activated carbon). On the other hand, with activated carbon B having an average pore diameter of 2.06 nm and a pore volume of 1.0 nm or less of 0.23 ml / g, the adsorption amount of H2 is 0.33 (mol-H2 / kg-activated carbon. This activated carbon B has a larger amount of adsorption of H2 than the activated carbon A.

本発明に係る活性炭の品種は特に限定されるものではなく、例えば椰子殻系や石炭系の何れであっても良く、細孔の平均内径が本発明の2.0〜4.0nmの範囲以内であれば、優れたジメチルシロキサンの除去性能を得ることができる。また、活性炭の形状や成形方法についても特に限定されるものではなく、ペレット状、粒状品、破砕品、押しだし成形品の何れであっても良く、その使用目的等に応じて適宜選択すれば良いものである。   The type of activated carbon according to the present invention is not particularly limited, and may be, for example, coconut shell or coal, and the average inner diameter of the pores is within the range of 2.0 to 4.0 nm of the present invention. If so, excellent dimethylsiloxane removal performance can be obtained. Further, the shape and molding method of the activated carbon are not particularly limited, and any of a pellet, a granular product, a pulverized product, and an extruded molded product may be selected as appropriate according to the purpose of use. Is.

本発明に係る活性炭を用いてメタン含有ガスからジメチルシロキサンを除去する場合には、この活性炭を充填した吸着塔に、メタン含有ガスを供給することによって目的を達成することができる。但し、メタン含有ガスがスクラバーを通った後の水分飽和ガスである場合には、活性炭の細孔が水で飽和状態となり、十分なジメチルシロキサンの除去性能を得ることができなくなる。そのため、メタン含有ガスを加温や、吸湿剤を通過させる等の方法によって相対湿度を下げた後に、活性炭を充填した吸着塔に供給することが好ましい。また、活性炭に供給するメタン含有ガスの風量は、特に制約を受けるものではなく、その使用目的に応じて適宜選択すれば良いものである。   When dimethylsiloxane is removed from the methane-containing gas using the activated carbon according to the present invention, the object can be achieved by supplying the methane-containing gas to the adsorption tower packed with the activated carbon. However, when the methane-containing gas is a water saturated gas after passing through the scrubber, the pores of the activated carbon are saturated with water, and sufficient dimethylsiloxane removal performance cannot be obtained. Therefore, it is preferable to lower the relative humidity by a method such as heating the methane-containing gas or passing a hygroscopic agent, and then supplying the gas to the adsorption tower packed with activated carbon. Further, the air volume of the methane-containing gas supplied to the activated carbon is not particularly limited, and may be appropriately selected according to the purpose of use.

上記のようにして、ジメチルシロキサンを低濃度にしたメタン含有ガスは、燃料として種々の方法で利用することができる。例えば、ガスエンジンやガスタービン等の内燃機関を長時間に亘って安定的に駆動して熱や電気を得ることも可能であり、またボンベに貯蔵して種々の用途、例えば自動車の燃料として活用することも可能である。つまり、得られるガス量や用途、地域事情などを勘案して、適宜に最適な利用形態を選択すれば良いものである。さらに、メタン含有ガスは非化石燃料系エネルギー、いわゆるバイオマスエネルギーであり、その燃料利用はCO2の排出がないと見なされるため、循環型社会のエネルギー源として好ましい利用形態である。   As described above, the methane-containing gas having a low concentration of dimethylsiloxane can be used as a fuel by various methods. For example, it is possible to obtain heat and electricity by driving an internal combustion engine such as a gas engine or a gas turbine stably for a long time, and it can be stored in a cylinder and used as a fuel for various applications such as automobiles. It is also possible to do. That is, it is only necessary to select an optimal usage form in consideration of the amount of gas obtained, usage, regional conditions, and the like. Furthermore, the methane-containing gas is non-fossil fuel-based energy, so-called biomass energy, and its use of fuel is considered to have no CO2 emission.

(実施例)
以下、本発明の実施例を、ジメチルシロキサン吸着試験装置の模式的構成説明図の図1と、ジメチルシロキサンD4の分子構造説明図の図2とを参照しながら説明する。但し、本実施例は、本発明を限定するものではなく、本発明の技術的思想を逸脱しない範囲内における変更実施は全て本発明の範囲に包含される。
(Example)
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of a schematic configuration diagram of a dimethylsiloxane adsorption test apparatus and FIG. 2 of a molecular structure diagram of dimethylsiloxane D4. However, the present embodiment is not intended to limit the present invention, and all modifications that do not depart from the technical idea of the present invention are included in the scope of the present invention.

本実施例では、平均細孔径が相違する細孔を有する数種の活性炭に対してジメチルシロキサン含有ガスを供給して、平均細孔径とジメチルシロキサンの除去性能との関係を調べたものである。より詳細には、平均細孔径が1.67nmから4.05nm(窒素ガス吸着法により測定した測定値を解析して求めたものである。)の細孔を有する活性炭を用いた。これら活性炭は、何れも1/8インチ径の押し出し成形ペレットで、それぞれの比表面積は1000〜1200m/gであり、また細孔の容積は0.50〜0.60ml/gであって、これら活性炭の間に大きな差異がないものである。   In this example, a dimethylsiloxane-containing gas was supplied to several types of activated carbon having pores with different average pore diameters, and the relationship between the average pore diameter and dimethylsiloxane removal performance was examined. More specifically, activated carbon having pores having an average pore diameter of 1.67 nm to 4.05 nm (obtained by analyzing a measured value measured by a nitrogen gas adsorption method) was used. These activated carbons are all 1/8 inch diameter extruded pellets, each having a specific surface area of 1000 to 1200 m / g and a pore volume of 0.50 to 0.60 ml / g. There is no significant difference between the activated carbons.

図1に示すように、内径30mmの吸着管1に、上記のような活性炭をそれぞれ充填して、それぞれ高さ15cmの充填層2を形成する。そして、この充填層2に風量10.6ノルマルリットル/minで、ジメチルシロキサンを含有する、後述する組成に調整した模擬ガスGを供給した。この模擬ガスGの風量(10.6ノルマルリットル/min)は、空塔空間速度(SV)は6000/hに相当し、単位時間、単位活性炭体積当たりのガス供給量は、空塔空間速度(SV)が1800/hである従来例の約3.3倍である。   As shown in FIG. 1, the above-mentioned activated carbon is filled in the adsorption tube 1 having an inner diameter of 30 mm to form a packed bed 2 having a height of 15 cm. And the simulation gas G adjusted to the composition mentioned later containing dimethylsiloxane was supplied to this packed bed 2 by the air volume 10.6 normal liter / min. The air volume (10.6 normal liters / min) of the simulated gas G corresponds to an empty space velocity (SV) of 6000 / h, and the gas supply amount per unit time and unit activated carbon volume is equal to the empty space velocity ( SV) is about 3.3 times that of the conventional example of 1800 / h.

この充填層2に供給した模擬ガスGは、ジメチルシロキサン4量体(D4)250mg/Nm3、5量体(D5) 250mg/Nm3に相当する量の各ジメチルシロキサンを気化させ、気化させたジメチルシロキサンを、温度30℃、相対湿度80%にした窒素ガスを混合して調整した組成になるものである。なお、本実施例において使用した模擬ガスGに含まれているジメチルシロキサンの濃度は、従来例で用いられたジメチルシロキサン含有ガスに含まれているジメチルシロキサンの濃度の約6倍である。因みに、前記ジメチルシロキサン4量体(D4)の分子構造は、図2に示すとおり、ジメチルシロキサン単位構造が4つ結合した構造になるものである。   The simulated gas G supplied to the packed bed 2 vaporizes and vaporizes each dimethylsiloxane corresponding to 250 mg / Nm3 of dimethylsiloxane tetramer (D4) and 250 mg / Nm3 of pentamer (D5). The composition is adjusted by mixing nitrogen gas at a temperature of 30 ° C. and a relative humidity of 80%. In addition, the density | concentration of the dimethylsiloxane contained in the simulation gas G used in the present Example is about 6 times the density | concentration of the dimethylsiloxane contained in the dimethylsiloxane containing gas used in the prior art example. Incidentally, the molecular structure of the dimethylsiloxane tetramer (D4) is a structure in which four dimethylsiloxane unit structures are bonded as shown in FIG.

本実施例における試験条件は、上記のとおり、単位時間、単位活性炭体積当たりのガス供給量が従来例の約3.3倍であり、ジメチルシロキサンの濃度が約6倍である。これらを単純に乗じると、従来例の約20倍厳しい条件下における活性炭の評価であるといえる。それぞれの活性炭によるジメチルシロキサンの除去性能は、活性炭出口におけるD4、D5濃度を1時間毎に、ガスクロマトグラフで定量することによって調べた。模擬ガス供給開始直後は何れの活性炭の場合にあっても、活性炭出口から流出するガスからジメチルシロキサンを検出することができなかった。   As described above, the test conditions in this example are such that the gas supply amount per unit time and unit activated carbon volume is about 3.3 times that of the conventional example, and the concentration of dimethylsiloxane is about 6 times. When these are simply multiplied, it can be said that the activated carbon is evaluated under conditions that are about 20 times as severe as those of the conventional example. The removal performance of dimethylsiloxane by each activated carbon was examined by quantifying the D4 and D5 concentrations at the activated carbon outlet every hour with a gas chromatograph. Immediately after starting the simulation gas supply, dimethylsiloxane could not be detected from the gas flowing out from the outlet of the activated carbon in any activated carbon.

それぞれの活性炭が有する細孔の平均細孔径(窒素ガス吸着法により測定した測定値を解析して求めたものである。)および、上記試験条件おいてジメチルシロキサン除去率が90%に低下した時間を表1に示す。また、実施例1(平均細孔径2.09nm)の活性炭の処理時間に対するジメチルシロキサン除去率の変化を表2に示す。なお、本実施例におけるジメチルシロキサンの除去率は、下記の算式によって計算したものである。   The average pore diameter of the pores of each activated carbon (obtained by analyzing the measured value measured by the nitrogen gas adsorption method) and the time when the dimethylsiloxane removal rate was reduced to 90% under the above test conditions Is shown in Table 1. Table 2 shows the change in the dimethylsiloxane removal rate with respect to the treatment time of the activated carbon of Example 1 (average pore size 2.09 nm). In addition, the removal rate of dimethylsiloxane in a present Example is computed by the following formula.

ジメチルシロキサンの除去率(%)={1−(出口ガス中のD4、D5濃度の和)/(供給したD4、D5濃度の和)}×100   Removal rate of dimethylsiloxane (%) = {1- (sum of D4 and D5 concentrations in outlet gas) / (sum of supplied D4 and D5 concentrations)} × 100

Figure 2006159193
Figure 2006159193

Figure 2006159193
Figure 2006159193

上記表1によれば、平均細孔径が2.09〜3.73nmの細孔を有する実施例1〜5の活性炭の場合、何れも平均細孔径が1.67nm、4.05nmの細孔を有する比較例1、2の活性炭の場合に比較して、ジメチルシキロサンの除去率が90%に低下するまでにより長時間を要していることが分る。また、上記表2によれば、実施例1(実施例2〜5も同様の傾向を示すので、1例として示したものである。)に係る活性炭により27時間まで100%のジメチルシキロサンが除去されていることが分る。従って、本発明に係る活性炭の耐久性は極めて優れているということができる。なお、本実施例では、ジメチルシキロサンの除去率が90%に低下するまでの時間は29〜44時間であるが、これは従来例のガス供給量、およびジメチルシロキサンの濃度条件に換算すると、580〜880時間に相当し、従来例の550時間を上回っている。   According to Table 1 above, in the case of the activated carbons of Examples 1 to 5 having pores with an average pore diameter of 2.09 to 3.73 nm, all of the pores with an average pore diameter of 1.67 nm and 4.05 nm were obtained. It can be seen that a longer time is required until the removal rate of dimethylcyclosan is reduced to 90% as compared with the case of the activated carbons of Comparative Examples 1 and 2 having. In addition, according to Table 2 above, 100% dimethylcyclosan by activated carbon according to Example 1 (Examples 2 to 5 are also shown as an example since the same tendency is shown) up to 27 hours. Can be seen to have been removed. Therefore, it can be said that the activated carbon according to the present invention is extremely excellent in durability. In this example, the time required for the dimethylcyclosan removal rate to drop to 90% is 29 to 44 hours, but this is converted to the conventional gas supply amount and dimethylsiloxane concentration conditions. 580 to 880 hours, which exceeds 550 hours of the conventional example.

ところで、上記実施例1は、温度30℃、相対湿度80%の模擬ガスGを用いてジメチルシロキサンを除去した例である。これに対して、前記模擬ガスGを加温(絶対湿度が同じ(水蒸気圧3.4kPa)で、温度および相対湿度が異なる場合)した場合を想定し、温度40℃、相対湿度46%の模擬ガスGを、実施例1の活性炭の充填層に通して、ジメチルシロキサンの除去性能を調べた。   By the way, Example 1 is an example in which dimethylsiloxane was removed using a simulation gas G having a temperature of 30 ° C. and a relative humidity of 80%. On the other hand, assuming that the simulation gas G is heated (when the absolute humidity is the same (water vapor pressure 3.4 kPa) and the temperature and relative humidity are different), the simulation is performed at a temperature of 40 ° C. and a relative humidity of 46%. Gas G was passed through the packed bed of activated carbon of Example 1 to examine the removal performance of dimethylsiloxane.

その結果、ジメチルシロキサンの除去率が90%に低下するのに要する時間は39時間であって、上記実施例1の35時間よりも4時間延長されていた。   As a result, the time required for the dimethylsiloxane removal rate to decrease to 90% was 39 hours, which was 4 hours longer than the 35 hours of Example 1 above.

つまり、加温により相対湿度を低下させることは、ジメチルシロキサンの除去性能の向上にとって好ましい。なお、このことは、先に説明したとおり、活性炭の細孔に捕捉される水分量が減少したためであると理解することができる。   That is, lowering the relative humidity by heating is preferable for improving the removal performance of dimethylsiloxane. In addition, this can be understood to be because the amount of water trapped in the pores of the activated carbon is reduced as described above.

ところで、以上では、内径30mmの吸着管に活性炭を充填した試験装置を例として説明したが、吸着管を実用規模の吸着塔にしても、本実施例と同等の効果を得ることが可能である。   In the above description, the test apparatus in which activated carbon is packed in an adsorption tube having an inner diameter of 30 mm has been described as an example. However, even if the adsorption tube is a practical-scale adsorption tower, it is possible to obtain the same effect as the present embodiment. .

本発明の実施例に係り、ジメチルシロキサン吸着試験装置の模式的構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration explanatory diagram of a dimethylsiloxane adsorption test apparatus according to an embodiment of the present invention. ジメチルシロキサンD4の分子構造説明図である。It is molecular structure explanatory drawing of dimethylsiloxane D4.

符号の説明Explanation of symbols

1…吸着管
2…活性炭の充填層
G…模擬ガス。
DESCRIPTION OF SYMBOLS 1 ... Adsorption pipe | tube 2 ... Packing layer of activated carbon G ... Simulated gas.

Claims (4)

ジメチルシロキサンを含有する原ガスを、平均細孔径が2.0〜4.0nmの細孔を有し、1.0nm以下の細孔の容積が0.2ml/g以下の活性炭の充填層を通過させることにより、前記活性炭にジメチルシロキサンを吸着させることを特徴とするガスの精製方法。 The raw gas containing dimethylsiloxane passes through a packed bed of activated carbon having pores with an average pore size of 2.0 to 4.0 nm and a pore size of 1.0 nm or less of 0.2 ml / g or less. A method for purifying a gas, wherein dimethylsiloxane is adsorbed on the activated carbon. 前記原ガスは、嫌気性発酵により有機系廃棄物から発生するメタン含有ガスであることを特徴とする請求項1に記載のガスの精製方法。 The gas purification method according to claim 1, wherein the raw gas is a methane-containing gas generated from organic waste by anaerobic fermentation. 前記活性炭の充填層を通過させる前に、前記原ガスの相対湿度を低下させることを特徴とする請求項1または2のうちの何れか一つの項に記載のガスの精製方法。 3. The gas purification method according to claim 1, wherein a relative humidity of the raw gas is lowered before passing through the packed bed of activated carbon. 4. ジメチルシロキサンを含有する原ガスを、平均細孔径が2.0〜4.0nmの細孔を有し、1.0nm以下の細孔の容積が0.2ml/g以下の活性炭の充填層を通過させることにより、前記活性炭にジメチルシロキサンを吸着させ、前記原ガスからジメチルシロキサンが除去された処理ガスを燃料とすることを特徴とするガスの利用方法。 The raw gas containing dimethylsiloxane passes through a packed bed of activated carbon having pores with an average pore size of 2.0 to 4.0 nm and a pore size of 1.0 nm or less of 0.2 ml / g or less. By using the activated carbon, dimethylsiloxane is adsorbed on the activated carbon, and the process gas from which the dimethylsiloxane has been removed from the raw gas is used as a fuel.
JP2005362180A 2005-12-15 2005-12-15 Gas purification method and method of using the same Expired - Fee Related JP4317546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362180A JP4317546B2 (en) 2005-12-15 2005-12-15 Gas purification method and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362180A JP4317546B2 (en) 2005-12-15 2005-12-15 Gas purification method and method of using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002023790A Division JP3788939B2 (en) 2002-01-31 2002-01-31 Gas purification method and method of using the same

Publications (2)

Publication Number Publication Date
JP2006159193A true JP2006159193A (en) 2006-06-22
JP4317546B2 JP4317546B2 (en) 2009-08-19

Family

ID=36661765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362180A Expired - Fee Related JP4317546B2 (en) 2005-12-15 2005-12-15 Gas purification method and method of using the same

Country Status (1)

Country Link
JP (1) JP4317546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011936A (en) * 2007-07-04 2009-01-22 Cataler Corp Adsorbent and method for treating combustible gas
JP2018176084A (en) * 2017-04-14 2018-11-15 大阪瓦斯株式会社 Siloxane remover, method for removing siloxanes, filter, gas sensor, and gas detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576618A (en) * 1991-09-13 1993-03-30 Japan Organo Co Ltd Purification processing method of earth polluted with organic solvent and purification processing device
JPH05262502A (en) * 1992-01-06 1993-10-12 Shin Etsu Chem Co Ltd Purification of hydrogen chloride containing hydrolyzable organosilicon compound
JPH07115898A (en) * 1993-10-26 1995-05-09 Sanyo Electric Co Ltd Apparatus for removing harmful substance with active carbon
JPH10235317A (en) * 1997-02-27 1998-09-08 Ebara Corp Anaerobic digestion treatment of livestock excretion
JPH1149509A (en) * 1997-06-03 1999-02-23 Tokuyama Corp Production of polycrystalline silicon with little carbon content
JP2001170695A (en) * 1999-12-17 2001-06-26 Shimizu Corp Gaseous methane refining equipment and domestic animal dung treatment facility
JP3788939B2 (en) * 2002-01-31 2006-06-21 株式会社神戸製鋼所 Gas purification method and method of using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576618A (en) * 1991-09-13 1993-03-30 Japan Organo Co Ltd Purification processing method of earth polluted with organic solvent and purification processing device
JPH05262502A (en) * 1992-01-06 1993-10-12 Shin Etsu Chem Co Ltd Purification of hydrogen chloride containing hydrolyzable organosilicon compound
JPH07115898A (en) * 1993-10-26 1995-05-09 Sanyo Electric Co Ltd Apparatus for removing harmful substance with active carbon
JPH10235317A (en) * 1997-02-27 1998-09-08 Ebara Corp Anaerobic digestion treatment of livestock excretion
JPH1149509A (en) * 1997-06-03 1999-02-23 Tokuyama Corp Production of polycrystalline silicon with little carbon content
JP2001170695A (en) * 1999-12-17 2001-06-26 Shimizu Corp Gaseous methane refining equipment and domestic animal dung treatment facility
JP3788939B2 (en) * 2002-01-31 2006-06-21 株式会社神戸製鋼所 Gas purification method and method of using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
長藤雅則,清水明,浜口敬三: "消化ガス中のシロキサン化合物の吸着除去", 第38回下水道研究発表会講演集, JPN6008018274, 25 June 2001 (2001-06-25), JP, pages 695 - 697, ISSN: 0001028448 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011936A (en) * 2007-07-04 2009-01-22 Cataler Corp Adsorbent and method for treating combustible gas
JP2018176084A (en) * 2017-04-14 2018-11-15 大阪瓦斯株式会社 Siloxane remover, method for removing siloxanes, filter, gas sensor, and gas detector

Also Published As

Publication number Publication date
JP4317546B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4534629B2 (en) Gas purification device and method for regenerating removal agent used in the gas purification device
Matsui et al. Removal of siloxane from digestion gas of sewage sludge
EP2168913B1 (en) Hydrogen production method with complete capture of co2 and recycling of non-converted methane
JP2006213544A (en) Granular active carbon and its manufacturing method
KR20080061359A (en) Process and apparatus for the purification of methane rich gas streams
JP2006083156A (en) Method for purification of gas
JP2006083311A (en) Apparatus for refining sewage gas and method for refining the same gas
RU2011116166A (en) BROMINE CHLORIDE COMPOSITIONS FOR THE REMOVAL OF MERCURY FROM FUEL COMBUSTION PRODUCTS
JP2019167424A (en) Gasification apparatus, manufacturing apparatus of organic substance, manufacturing method of syngas and manufacturing method of organic substance
JP4317546B2 (en) Gas purification method and method of using the same
JP4480505B2 (en) Siloxane remover and siloxane removal method
JP3788939B2 (en) Gas purification method and method of using the same
Dicko et al. Adsorption and biomass: Current interconnections and future challenges
JP3972026B2 (en) Gas purification method and gas purification apparatus
US20190201842A1 (en) A process for the removal of siloxanes from landfill gases
JP2000312824A (en) Molecular sieving carbon for separating methane from mixed gas of methane and nitrogen
JP2003286496A (en) Method for purifying gas and method for utilizing the method
JP2002058996A (en) Eigester gas refining agent and method for refining digester gas
JP2012215376A (en) Offgas combustion system and combustion method for the same
JP5030407B2 (en) Fuel gas purification system
AU2010277760B2 (en) Process for removing harmful substances from liquid carbon dioxide and apparatus for performance thereof
WO2011033191A1 (en) Process for the deacidification of a gas by an absorbent solution with removal of cos by hydrolysis
KR20090006357A (en) Purification method of biogas containing the volatile siloxane
JP5688748B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JP4651014B2 (en) Material gasification system and material gasification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R150 Certificate of patent or registration of utility model

Ref document number: 4317546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees