JP2006158813A - Graphical representation of medical digital data - Google Patents

Graphical representation of medical digital data Download PDF

Info

Publication number
JP2006158813A
JP2006158813A JP2004357646A JP2004357646A JP2006158813A JP 2006158813 A JP2006158813 A JP 2006158813A JP 2004357646 A JP2004357646 A JP 2004357646A JP 2004357646 A JP2004357646 A JP 2004357646A JP 2006158813 A JP2006158813 A JP 2006158813A
Authority
JP
Japan
Prior art keywords
data
point
wave
data point
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357646A
Other languages
Japanese (ja)
Inventor
Yasuo Jinno
康夫 神野
Hirobumi Maeda
博文 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ME TEC KK
Original Assignee
ME TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ME TEC KK filed Critical ME TEC KK
Priority to JP2004357646A priority Critical patent/JP2006158813A/en
Publication of JP2006158813A publication Critical patent/JP2006158813A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that when fine pulsing analog potential signals sampled by a specific frequency are represented in a digital graph, the graph has a high probability to become a stepwise incomplete waveform so that it is difficult to observe initial motion of a fine suggestive wave, or a sign of the ventricular fibrillation based on digital bioinformation data of a conventional portable Holter monitor. <P>SOLUTION: An intersection between a straight line connecting a first base point data point of time-series data points obtained by digital-converting cardiac potential analog data to a data point right before it and a straight line connecting a second base point data point to data point right after it is found, and a waveform becoming incomplete in the digital conversion is graphically displayed as novel amplified data point to provide the initial observation graphical representation for finding the suggestive wave of the ventricular fibrillation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、医療行為によって得る生体情報アナログデーターである心電位波をデジタルデーターに変換した際、サンプリング周波数では完全な波形として取得困難な高速微細な電位波の近似的増幅グラフ表示に関する。 The present invention relates to an approximate amplification graph display of a high-speed fine potential wave that is difficult to obtain as a complete waveform at a sampling frequency when a cardiac potential wave, which is biometric information analog data obtained by medical practice, is converted to digital data.

従来、ホルター心電位計から得られる医療アナログデーターを12bitまたは16bitの量子化変換、変換速度2マイクロ秒、サンプル周波数100から250Hzでデジタルデーターに変換している。心房細動、心室細動の原因である異常P波R波の高速微細電位の発生があったか否かは、正常P波、QRS波(R)の挙動変化、及び、心拍変動によって結果的に心臓異常として知り得る。この時は、既に心臓疾患として進行した状態と言わざるを得ない。非特許文献1を参照。
医療アナログデーターである心電位波をデジタルデーターに変換する時、量子化水準によって分割した電位値として変換するサンプリング点間の中間に属する電位値は変換されない。デジタルデーターを再度、グラフ表示をした時の線図は階段状となる。従って、高速微細電位の表示は不明瞭となる。非特許文献2を参照。
一般に自覚症状の発生や既に発病している状況に対し、携帯ホルター心電図計を用い24時間患者心電位計測を行うケースがあるが、心臓疾患に至る初期の心房細動、心室細動の予兆において高速微細電位が計測し難く疑わしい場合、また、患者の心理的不安がある場合には入院によって心内心電位測定を1キロHzから数キロHzのサンプリング周波数で実施し、細動電位のアナログデーターを得て診断を行う。特許文献1を参照。
心電位異常の初期微信号の認識は心臓疾患予防の早期診断のために重要であり、精密なシステムや機器による診断に至るまでに、従来の携帯ホルター心電位計のデーターを元に初動観察を促す必要性がある。
Conventionally, medical analog data obtained from a Holter electrocardiograph is converted into digital data at a 12-bit or 16-bit quantization conversion, a conversion speed of 2 microseconds, and a sample frequency of 100 to 250 Hz. Whether or not a high-speed fine potential of an abnormal P wave R wave that causes atrial fibrillation and ventricular fibrillation has occurred is determined by the behavior change of normal P wave and QRS wave (R) and heart rate variability. You can know as an anomaly. At this time, it must be said that the disease has already progressed as a heart disease. See Non-Patent Document 1.
When converting electrocardiographic waves, which are medical analog data, into digital data, potential values that belong to the middle between sampling points that are converted as potential values divided by the quantization level are not converted. When the digital data is displayed again as a graph, the diagram is stepped. Therefore, the display of the high-speed fine potential is unclear. See Non-Patent Document 2.
Generally, there are cases where patient electrocardiogram is measured using a portable Holter electrocardiograph for the occurrence of subjective symptoms or already illness, but in early signs of atrial fibrillation and ventricular fibrillation leading to heart disease If it is suspicious that high-speed micropotentials are difficult to measure, or if there is psychological anxiety of the patient, intracardiac electrocardiogram measurement is performed by hospitalization at a sampling frequency of 1 to several kilohertz, and analog data of fibrillation potential is obtained. Obtain and diagnose. See US Pat.
Recognizing the initial minute signal of abnormal cardiac potential is important for early diagnosis of heart disease prevention. Before diagnosing with a precise system and equipment, the initial observation is based on the data of a conventional portable Holter electrocardiograph. There is a need to encourage.

従来の技術の図による説明 Prior art illustrations

図1に示す様に、正常な心電図に対し、P波、QRS波(R)、T波、U波の電位量、発生周期が異常を示した波形を観察し頻脈や余脈の診断を行っている。特に、R−R間隔は重要なファクターとして判断する。しかし、これは心臓活動の結果であって、その原因となる心房や心室の心筋付近で発生する異常発電による高速微細電位の測定は携帯ホルター心電位計では表示が難しく手段を示していない。 As shown in FIG. 1, diagnosis of tachycardia and after-pulses is performed by observing waveforms with abnormal P-wave, QRS-wave (R), T-wave, and U-wave potentials and generation periods with respect to a normal ECG. Is going. In particular, the RR interval is determined as an important factor. However, this is a result of cardiac activity, and the measurement of high-speed fine potential due to abnormal power generation near the myocardium of the atrium or ventricle that causes it is difficult to display with a portable Holter electrocardiograph and does not show a means.

図4及び図5に示す様に、デジタルデータ−を元に再度グラフ表示を行った場合、各データー間の形状は階段状となる。 As shown in FIGS. 4 and 5, when the graph is displayed again based on the digital data, the shape between the data is stepped.

図4に示す様に、医療アナログデーターをデジタル変換し更にデーターの圧縮を行なった後に解凍、拡大再グラフ表示を行った場合も同様である。心臓活動の結果ファクターを取得後、微細電位を確認しても初動観察のデーターと確認し難い。 As shown in FIG. 4, the same applies to the case where the medical analog data is converted into digital data, further compressed, and then decompressed and displayed again. After acquiring the result factor of cardiac activity, it is difficult to confirm the initial motion observation data even if the fine potential is confirmed.

以上の様に、医療アナログデーターである微細な心電位データーの初動観察を促すデジタルデーターの取得は、患者の日常の生活時間内では困難な状況であり、今後の心臓疾患の早期発見予防治療に必要かつ重要な課題である。

As described above, it is difficult to acquire digital data that facilitates initial observation of fine electrocardiographic data, which is medical analog data, within the patient's daily life. It is a necessary and important issue.
2

「研究紹介 医療ネットワークとデジタルホルター心電計の心電図データ圧縮」、東京電気大学電子工学科信号処理研究室、小濱隆司"Research Introduction Medical Network and ECG Data Compression of Digital Holter Electrocardiograph", Tokyo Denki University Department of Electronics, Signal Processing Laboratory, Takashi Komine 「非絶縁型アナログ入出力ボードAD12−8(PM)取扱説明書」、株式会社コンテック、2004年、p.46“Non-insulated analog I / O board AD12-8 (PM) instruction manual”, Contec Co., Ltd., 2004, p. 46 特開2002−219109号公報JP 2002-219109 A

以上に述べた携帯ホルター心電位計などの100Hzから250Hzの周波数でサンプリングした医療アナログデーターのデジタル変換をしたとき250Hzより高速微細な電位信号は変換し難いので心臓異常活動における初動観察が困難である。
洞結節発生の電位信号の速度は1m/秒〜1cm/秒であるが、刺激伝導距離が非常に短い場合、心房や心室に発生した異常な発電による電位刺激は発生と同時に瞬時の収縮運動予兆に至る。初期の自覚症状のない異常発電は微細であり顕在化したf波の検出に至らず、初動観察が困難である。
When digital conversion of medical analog data sampled at a frequency of 100 Hz to 250 Hz, such as the portable Holter electrocardiograph described above, it is difficult to convert a high-speed electric potential signal faster than 250 Hz, so it is difficult to observe the initial movement in abnormal cardiac activity. .
The speed of the potential signal for sinus node generation is 1 m / sec to 1 cm / sec. However, when the stimulation conduction distance is very short, potential stimulation due to abnormal power generation in the atria and ventricles is generated at the same time as the sign of instantaneous contraction movement. To. Abnormal power generation without initial subjective symptoms is fine and does not lead to the detection of a manifested f-wave, making initial observation difficult.

本発明は、250Hz以下の周波数でサンプリングしたアナログデーターを従来のデジタル変換技術において、変換データーと変換データーの間に発生している未取得電位信号点を近似的に増幅再現をして心臓異常活動の初動観察を促し心臓疾患発生の早期予防処置医療の実現を目的とするものである。   In the present invention, analog data sampled at a frequency of 250 Hz or less is a conventional digital conversion technique, and amplifying and reproducing an unacquired potential signal point generated between the converted data and the abnormal heart activity. The purpose of this is to realize early preventive treatment for the occurrence of heart disease.

本発明は上記目的を達成するために、医療アナログデーターをデジタル変換の後、X軸を時間軸としY軸を電位量とした直交座標のグラフ表示をしたとき、任意のデーターを第1基点データーとし、第1基点データー点と直前のデーター点を結びそのプラス方向、及び、マイナス方向の延長直線とX軸との角度を求め第1基点データーの角度成分を定める。   In order to achieve the above object, according to the present invention, when medical analog data is converted into digital data and then displayed as a graph of orthogonal coordinates with the X axis as the time axis and the Y axis as the potential amount, the arbitrary data is the first reference point data. Then, the first base point data point is connected to the immediately preceding data point, and the angle between the plus direction and the extended straight line in the negative direction and the X axis is obtained to determine the angle component of the first base point data.

また、第2の課題解決手段は、第1基点データーの直後のデーター点が頂点・谷の変極点を除く点の場合、及び、第1基点データーの延長直線上にない場合は、直後のデーターを第2基点データー点としてその次のデーター点とを結びその延長直線を求め、第1基点データーの延長直線と第2基点データーの延長直線の交点を求め、新たなデーター点としてグラフ表示のプロット点とする。このデーター点はグラフ表示を増幅した結果となる。 Further, the second problem solving means is that when the data point immediately after the first base point data is a point excluding the inflection point of the apex and valley, and when it is not on the extended straight line of the first base point data, Is connected to the next data point as the second base data point, and the extension line is obtained, the intersection of the extension line of the first base data and the extension line of the second base data is obtained, and the graph is plotted as the new data point Let it be a point. This data point is the result of amplifying the graph display.

また、第3の課題解決手段として、解決手段の第1と第2の一連の処理をX軸の時間の経過と共に、次々と各データーにおいて時系列的に繰返すことによってデジタル変換時のサンプリング数より多くのデーターを得て、同時に増幅したグラフ表示を行う様に構成したものである。 Further, as a third problem solving means, the first and second series of processing of the solving means are repeated in time series for each data one after another with the passage of time of the X-axis, so that the number of samples at the time of digital conversion is obtained. It is configured to obtain a lot of data and display the amplified graph at the same time.

上記第1の課題解決手段による作用は次の通りである。電位の大きさを与えるデジタルデーターに角度成分を付加することによって時間軸のX軸に対して傾きを得る。本来、スカラー値であるデジタルデーターに角度成分を与えることによって時間の経過に伴う次データーへの方向性を求めることができる。

The operation of the first problem solving means is as follows. An inclination is obtained with respect to the X axis of the time axis by adding an angle component to the digital data giving the magnitude of the potential. Originally, by giving an angle component to digital data which is a scalar value, the directionality to the next data with the passage of time can be obtained.
3

第2の課題解決手段による作用は、第1基点データーの延長線と第2基点の延長線が交わるか否かを判定することができ、交わる場合は新たなデーター点を求めることができる。このデーター点は250Hz以下のサンプリング周波数により得ることが出来なかったサンプリングデジタルデーターの間に存在するデーターを推定できる効果を発揮する。   The action by the second problem solving means can determine whether or not the extension line of the first base point data and the extension line of the second base point intersect, and if so, a new data point can be obtained. This data point exhibits an effect of estimating data existing between sampling digital data that could not be obtained with a sampling frequency of 250 Hz or less.

第3の課題解決手段による作用は、デジタル変換時にサンプリングデジタルデーターで表示できなかったデジタルデーター間のデーターを時系列連続的に得ることによりサンプリングデジタルデーターの間の電位信号をグラフ表示の新たなデーター点として推定できると同時に微細な信号の増幅表示の効果を発揮する。
本発明で得たグラフ表示と元のデーターによるグラフ表示を重ねて表示することによって各心電波形の変化の確認を促す効果を発揮する。
The action of the third problem solving means is that new potential data between sampled digital data is displayed in graph form by continuously obtaining data between digital data that could not be displayed as sampled digital data during digital conversion. It can be estimated as a point and at the same time exhibits the effect of amplification display of fine signals.
By displaying the graph display obtained in the present invention and the graph display based on the original data in an overlapping manner, the effect of prompting confirmation of the change of each electrocardiographic waveform is exhibited.

上述したように本発明のサンプリングデジタルデーターの間におけるデーターの取得により近似的データー点のグラフ表示を可能とし、心電位の異常を示唆する微細な信号を増幅したグラフ表示を提供できる。   As described above, it is possible to display a graph of approximate data points by acquiring data between the sampling digital data of the present invention, and it is possible to provide a graph display in which a minute signal suggesting an abnormal cardiac potential is amplified.

また、新たに得たデーターの挙動が心電位の異常を示すものであるかどうかを判断する方法として、本発明を実施しない元のデジタルデーターによるグラフを重ね合わせて表示することにより、2種のグラフの比較を行える様にし、初動観察によって疑わしい心電位異常の有無の判断を高める効果を発揮するものである。
さらに、疑わしい心電位の異常が細動電位であるかどうかの医療判断を確実に得る為に更に精密な心内心電位測定の必要性を促し、心臓異常の早期発見に結び付く効果が期待できる。
In addition, as a method for determining whether or not the behavior of newly obtained data indicates an abnormality of electrocardiogram, two types of graphs are displayed by overlaying and displaying original digital data graphs that do not implement the present invention. This makes it possible to compare the graphs, and demonstrates the effect of enhancing the judgment of the presence or absence of suspicious electrocardiographic abnormality by initial observation.
Furthermore, in order to reliably obtain medical judgment as to whether or not the suspicious cardiac potential abnormality is a fibrillation potential, the need for more accurate intracardiac cardiac potential measurement is promoted, and an effect leading to early detection of cardiac abnormalities can be expected.

以下、本発明の実施の形態を図1〜図3に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1の標準的心電図パターンの模式図より実施形態を説明する。P波1、Q点2、R点3、S点4からなるQRS波、T波5、U波6から構成する波形パターンの心房細動の予兆を確認するU波6とP波1の状況、心室細動の予兆を確認するQRS波のQ点2R点3間上の状況において発生している目視困難な予兆波7を示す。   The embodiment will be described with reference to the schematic diagram of the standard electrocardiogram pattern of FIG. Situation of U wave 6 and P wave 1 for confirming an atrial fibrillation predictor of a waveform pattern composed of P wave 1, Q point 2, R point 3, S point 4 and T wave 5, U wave 6 The sign wave 7 that is difficult to visually recognize is shown in the situation between the Q point 2R point 3 of the QRS wave for confirming the sign of ventricular fibrillation.

図2に目視困難な予兆波7を拡大し、グラフ表示を増幅する実施形態を説明する。
X軸を時間軸10、Y軸を電位軸9とし、アナログデーターの心電位波形をデジタルデーターに変換した時のサンプリング周波数によるデーター点毎にX軸Y軸の分割線13を描く。予兆波7付近のデーターを第1基点データー点14とし、直前のデーター点15と直線A16で結びその延長線A17を得る。第1基点データー点14の直後のデーター点が延長線A17上にない場合は第1基点データー点14の直後のデーター点を第2基点データー点18とする。第2基点データー点18の直後のデーター点19と直線B20で結びその延長線B21を得る。延長線17と延長線21の交点を新たなデーター点22として求め、第1基点データー点14と第2基点データー点18の間のグラフ表示点とする。


図1に示す、心電位波形のP波のスタート点11からU波の終点12までの1周期間のデーター点毎にこの処理を繰返す。以降、発生周期毎に同様の処理を繰返す。
FIG. 2 illustrates an embodiment in which the predictive wave 7 that is difficult to view is enlarged and the graph display is amplified.
The X axis is the time axis 10, the Y axis is the potential axis 9, and the X-axis / Y-axis dividing line 13 is drawn for each data point based on the sampling frequency when the cardiac potential waveform of analog data is converted into digital data. Data near the precursory wave 7 is defined as a first base point data point 14 and is connected to the immediately preceding data point 15 by a straight line A16 to obtain an extension line A17. When the data point immediately after the first base point data point 14 is not on the extension line A17, the data point immediately after the first base point data point 14 is set as the second base point data point 18. A data point 19 immediately after the second base data point 18 is connected to the straight line B20 to obtain an extension line B21. The intersection of the extension line 17 and the extension line 21 is obtained as a new data point 22 and is set as a graph display point between the first base point data point 14 and the second base point data point 18.
4

This process is repeated for each data point in one cycle from the start point 11 of the P wave of the electrocardiogram waveform to the end point 12 of the U wave shown in FIG. Thereafter, the same processing is repeated for each generation cycle.

また、新たなグラフ表示点群は本来のデーター群に加えてP波のスタート点11よりU波の終点12までの増幅表示点として新たなデーター点22を得る構成とする。 The new graph display point group is configured to obtain a new data point 22 as an amplified display point from the start point 11 of the P wave to the end point 12 of the U wave in addition to the original data group.

以下、上記構成の動作を説明する。新たなデーター点22の増幅点はX軸の時間軸に対し、図1の本来のデーター群と時系列に表示するもとし、観察困難な予兆波7以外の部分では単にY軸の電位軸に対し膨らんだグラフの形状となる。また、交点を得ることが出来ない。それに対し予兆波7の近辺のデーターは予兆波7の形状を増幅した結果となり観察可能な状態となり得る。   The operation of the above configuration will be described below. The amplification point of the new data point 22 is displayed in time series with the original data group in FIG. 1 with respect to the X-axis time axis, and is simply on the Y-axis potential axis in portions other than the predictive wave 7 that are difficult to observe. The shape of the graph swells. Also, the intersection cannot be obtained. On the other hand, the data in the vicinity of the precursory wave 7 can be observed as a result of amplifying the shape of the precursory wave 7.

更に、図1の本来のデーター群によるグラフと新たなデーター点22の増幅点によるグラフのスタート点11を同じくして表示することによって、2つのグラフの比較が可能となりP波1U波6の付近における表示傾向が顕著に違いのある部分の観察を促すことが可能となる。また、QRS波のQR間の違いについても観察の機会を得る効果が得られるものである。 Further, by displaying the graph of the original data group in FIG. 1 and the start point 11 of the graph of the amplification point of the new data point 22 in the same manner, the two graphs can be compared, and the vicinity of the P wave 1U wave 6 This makes it possible to promote observation of a portion where the display tendency in is significantly different. In addition, the effect of obtaining an opportunity to observe the difference between QRs of QRS waves can be obtained.

本発明は、携帯ホルター心電位測定において得られる心電位波形で明確に観察し得ない微小な波形を増幅表示することによって、診察現場における初動観察を実現し心臓疾患の早期発見治療に至る医療判断を可能とする例を挙げることができる。
また、増幅表示によって得られる心房・心室細動の波形を自動的に抽出するソフトウェアーと連動することによって患者自身が自主的に初動観察データーを医師に提示し診断を得るシステムの構築が対象にあげられる。
The present invention amplifies and displays a minute waveform that cannot be clearly observed in the cardiac potential waveform obtained in the portable Holter cardiac potential measurement, thereby realizing initial motion observation at the examination site and medical judgment leading to early detection treatment of heart disease The example which enables is possible.
In addition, it is intended for the construction of a system in which the patient himself / herself voluntarily presents the initial motion observation data to the doctor by linking with software that automatically extracts the atrial / ventricular fibrillation waveform obtained by amplification display. can give.

現在、心臓疾患は3大疾病とされ増加の一途をたどっている。しかし、心臓疾患の多様性と患者の日常生活における心電位測定電極の着脱の制限があり、常時測定による心臓活動の初動観察による早期不調の適切な診断を得ることは難しいとされている。しかしながら、心臓疾患の減少には早期発見治療による患者の生活・食習慣の改善に期待しなくてはならない。その為には、患者自身に疾患が進行した段階ではなく初期の不整脈傾向が現れた段階で改善治療及び指導を行い、早期治療認識を持つことが必要不可欠となる。本発明を用いて心電位波形の微細な部分の初動観察を可能とすることによって携帯ホルター心電位計による診断が慎重かつ容易となり、心臓疾患のより精密な検査への展開の機会を得ると同時に患者の不安を解消し、心臓疾患の予防医療に貢献できることと、患者自身の医療情報を患者の所有権の下管理することが出来ることにより、患者の医療知識増進と適確な健康管理による医療費削減に貢献できることが期待できる。   At present, heart diseases are considered to be three major diseases and are increasing. However, due to the variety of heart diseases and the limitation of attachment / detachment of the electrocardiographic electrode in daily life of patients, it is considered difficult to obtain an appropriate diagnosis of early malfunctions by observing the initial motion of heart activity by constant measurement. However, in order to reduce heart disease, we must expect to improve the lifestyle and eating habits of patients through early detection and treatment. For that purpose, it is indispensable to give improvement treatment and guidance at the stage when the arrhythmia tendency appears in the patient, not at the stage where the disease has progressed, and to have early treatment recognition. By using the present invention to enable initial observation of a minute portion of a cardiac potential waveform, the diagnosis by a portable Holter electrocardiograph becomes careful and easy, and at the same time an opportunity to develop a more precise examination of heart disease is obtained. Medical care by enhancing medical knowledge of patients and appropriate health management by eliminating patient anxiety, contributing to preventive medical care for heart disease, and managing patient's own medical information under the ownership of patients. It can be expected to contribute to cost reduction.

予兆波の発生がある心電位波形図Electrocardiographic waveform diagram with occurrence of predictive wave 予兆波増幅の説明図Illustration of predictive wave amplification 拡大増幅の条件を示すフローチャート系統図Flowchart system diagram showing conditions for magnification amplification 従来の心電図データーのデジタル化グラフDigitized graph of conventional ECG data デジタル化データーの特性図 5Characteristic diagram of digitized data 5

符号の説明Explanation of symbols

1 P波 2 Q点
3 R点 4 S点
5 T波 6 U波
7 予兆波 8 1周期(1〜1.5Hz)
9 電位軸 10 時間軸
11 スタート点 12 終点
13 分割線 14 第1基点データー点
15 直前のデーター点 16 直線
17 延長線 18 第2基点データー点
19 直後のデーター点 20 直線
21 延長線 22 新たなデーター点(増幅点)
23 正常波部分 24 微細波発生部分
25 電位減少部分
1 P wave 2 Q point 3 R point 4 S point 5 T wave 6 U wave
7 Predictive waves 8 1 period (1 to 1.5 Hz)
9 Potential axis 10 Time axis 11 Start point 12 End point 13 Dividing line 14 First base point data point 15 Previous data point 16 Line 17 Extension line 18 Second base point data point 19 Immediate data point 20 Line 21 Extension line 22 New data Point (amplification point)
23 Normal wave part 24 Fine wave generation part 25 Potential decrease part

Claims (3)

医療アナログデーターをデジタル変換の後X軸を時間軸とし、Y軸を電位量とした直交座標のグラフ表示をしたとき、表示する任意の各データーを第1基点データーとし、第1基点データーと直前のデーターの各点を結びそのプラス方向、及び、マイナス方向の延長直線とX軸との角度を求め各データーの方向成分を定める。 When medical analog data is digitally converted and graph display of Cartesian coordinates with the X axis as the time axis and the Y axis as the electric potential is displayed, each arbitrary data to be displayed is the first base point data, and the first base point data and immediately before Each data point is connected, the plus direction and the angle between the extended straight line in the minus direction and the X axis are determined, and the direction component of each data is determined. 第1基点データーの直後のデーターが請求項1で求めた延長直線1上にない場合は、直後のデーターを第2基点データーとしてその次のデーターとの各点を結びその延長直線2を求め、延長直線1と延長直線2の交点を新たなデーターとしグラフ表示のデーター点とする。 If the data immediately after the first base point data is not on the extended straight line 1 obtained in claim 1, the next straight point data is used as the second base point data to connect each point with the next data to obtain the extended straight line 2; The intersection of the extended straight line 1 and the extended straight line 2 is used as new data and is used as a data point in the graph display. X軸の時間軸の経過と共に、デジタル変換時の各データーを時系列に請求項1と請求項2の処理を繰返すことによって電位量を増幅したデーター点のグラフ表示を行う。   Along with the progress of the time axis of the X axis, a graph display of data points obtained by amplifying the potential amount is performed by repeating the processing of claims 1 and 2 in time series for each data at the time of digital conversion.
JP2004357646A 2004-12-10 2004-12-10 Graphical representation of medical digital data Pending JP2006158813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357646A JP2006158813A (en) 2004-12-10 2004-12-10 Graphical representation of medical digital data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357646A JP2006158813A (en) 2004-12-10 2004-12-10 Graphical representation of medical digital data

Publications (1)

Publication Number Publication Date
JP2006158813A true JP2006158813A (en) 2006-06-22

Family

ID=36661429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357646A Pending JP2006158813A (en) 2004-12-10 2004-12-10 Graphical representation of medical digital data

Country Status (1)

Country Link
JP (1) JP2006158813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782132B2 (en) 2012-10-07 2017-10-10 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
USD921204S1 (en) 2013-03-15 2021-06-01 Rds Health monitoring apparatus
USD931467S1 (en) 2012-10-07 2021-09-21 Rds Health monitoring apparatus
US11903700B2 (en) 2019-08-28 2024-02-20 Rds Vital signs monitoring systems and methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980486B2 (en) 2012-10-07 2021-04-20 Rds Health monitoring systems and methods
US10863947B2 (en) 2012-10-07 2020-12-15 Rds Sas Health monitoring systems and methods
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US9782132B2 (en) 2012-10-07 2017-10-10 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10842391B2 (en) 2012-10-07 2020-11-24 Rds Sas Health monitoring systems and methods
US10080527B2 (en) 2012-10-07 2018-09-25 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10959678B2 (en) 2012-10-07 2021-03-30 Rds Health monitoring systems and methods
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10993671B2 (en) 2012-10-07 2021-05-04 Rds Health monitoring systems and methods
US11937946B2 (en) 2012-10-07 2024-03-26 Rds Wearable cardiac monitor
USD931467S1 (en) 2012-10-07 2021-09-21 Rds Health monitoring apparatus
US11185291B2 (en) 2012-10-07 2021-11-30 Rds Health monitoring systems and methods
US11786182B2 (en) 2012-10-07 2023-10-17 Rds Health monitoring systems and methods
USD921204S1 (en) 2013-03-15 2021-06-01 Rds Health monitoring apparatus
US11903700B2 (en) 2019-08-28 2024-02-20 Rds Vital signs monitoring systems and methods

Similar Documents

Publication Publication Date Title
US8352018B2 (en) Multi-tier system for cardiology and patient monitoring data analysis
JP5236200B2 (en) Method and apparatus for ECG morphology and time series analysis and editing
CA2453504C (en) Real-time, high frequency qrs electrocardiograph
JP3242981B2 (en) Method and apparatus for performing mapping analysis with a limited number of electrodes
US8060193B2 (en) Systems and methods for graphic display of ST-segment deviation
JPH05344957A (en) Non-invasive multi-electrocardiograph and method for evaluating acute ischemia injury
US8868168B2 (en) System for cardiac condition characterization using electrophysiological signal data
JP6251035B2 (en) Operating method of n-lead ECG system
US8396544B2 (en) Systems and methods for graphic display of ST-segment deviation
JP2006158813A (en) Graphical representation of medical digital data
JP5493146B2 (en) ECG abnormality determination support device and ECG abnormality determination support program
US8688207B2 (en) System and methods for graphic display of ST-segment deviation
CN113288156B (en) Method for generating electrocardiographic data of any lead visual angle
US9538930B2 (en) Linear multi-domain electrocardiogram
US20160213333A1 (en) Diagnostic digital data mining of biological waves with spectral electrocardiography (secg)
JP6562443B2 (en) Method of operating electrocardiogram examination apparatus and electrocardiogram examination system
WO2022149307A1 (en) Signal analysis device, signal analysis method, and program
Tara et al. Real-time monitoring of heart conditions via electrocardiogram processing at different lifestyle situations
US20240138744A1 (en) Apparatus and method for analysis and monitoring of high frequency electrograms and electrocardiograms in various physiological conditions
WO2022149382A1 (en) Signal analysis device, signal analysis method, and program
Shen et al. High-pass filter settings and possible mechanism of discrete electrograms in left bundle branch pacing
Low et al. Development of PC-based ECG monitoring system
Shokrollahi et al. Efficacy of noncontact mapping in detecting epicardial activation
London Chapter Electrocardiography