JP2006158546A - Spectrum ocular fundus image data measuring apparatus - Google Patents

Spectrum ocular fundus image data measuring apparatus Download PDF

Info

Publication number
JP2006158546A
JP2006158546A JP2004352092A JP2004352092A JP2006158546A JP 2006158546 A JP2006158546 A JP 2006158546A JP 2004352092 A JP2004352092 A JP 2004352092A JP 2004352092 A JP2004352092 A JP 2004352092A JP 2006158546 A JP2006158546 A JP 2006158546A
Authority
JP
Japan
Prior art keywords
wavelength
light
spectral
optical system
fundus image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352092A
Other languages
Japanese (ja)
Other versions
JP4656924B2 (en
Inventor
Yoko Hirohara
陽子 広原
Tatsuo Yamaguchi
達夫 山口
Toshibumi Mihashi
俊文 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2004352092A priority Critical patent/JP4656924B2/en
Priority to US11/292,277 priority patent/US7850305B2/en
Publication of JP2006158546A publication Critical patent/JP2006158546A/en
Application granted granted Critical
Publication of JP4656924B2 publication Critical patent/JP4656924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To be gentle to the eyes of a subject and to obtain satisfactory spectrum characteristic by reducing fluctuation of light-receiving intensity due to a frequency. <P>SOLUTION: This spectrum ocular fundus image data measuring apparatus 1 is provided with: an illumination optical system 10 having a light source 11 for illumination which emits a beam in a prescribed wavelength range; a light-receiving optical system 20 for forming an eye fundus image on the light-receiving surface of an imaging part 4; a liquid crystal wavelength variable filter 32 by which a wavelength of a translucent beam is selectable in the prescribed wavelength range; a spectrum characteristic correction filter 13 which corrects the wavelength characteristic of light-emitting intensity of the light source 11 and the translucent wavelength characteristic of the filter 32 and which has such wavelength characteristic where the light-receiving intensity on the light-receiving surface is within the prescribed range; and a data measurement part which obtains spectrum ocular fundus image data from the light-receiving surface by varying the wavelength of the translucent beam of the filter 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分光眼底画像データ測定装置に関する。特に、所定の波長範囲で分光特性を均一化する分光眼底画像データ測定装置及び測定方法に関する。また、所定の波長範囲にわたり、取得時間の異なる多数の画像データ間の整合を高精度に行なう分光眼底画像データ測定装置及び測定方法に関する。   The present invention relates to a spectral fundus image data measurement apparatus. In particular, the present invention relates to a spectral fundus image data measuring apparatus and a measuring method for uniforming spectral characteristics in a predetermined wavelength range. The present invention also relates to a spectroscopic fundus image data measuring apparatus and a measuring method that perform high-precision matching between a large number of image data having different acquisition times over a predetermined wavelength range.

眼の診断において眼底観察の重要性は疑うまでもない。現在、眼底カメラのカラー眼底像、蛍光造影像などにより眼底を診断して異常所見が見つけ出されている。眼底での酸素飽和度や、網膜内に分布する物質の成分を画像解析で定量的に測定できれば、網膜細部の機能が分かる可能性があり、臨床的にも大いに役立つと考えられている。また、分光分析により、網膜内の物質の分光分布が分かれば、分光画像から網膜内の成分分析ができる可能性がある。   Needless to say, the importance of fundus observation in eye diagnosis is unquestionable. Currently, abnormal findings are found by diagnosing the fundus using color fundus images, fluorescence contrast images, etc. of the fundus camera. If the oxygen saturation at the fundus and the components of the substance distributed in the retina can be measured quantitatively by image analysis, the function of the retinal details can be understood, and it is thought that it will be very useful clinically. Further, if the spectral distribution of the substance in the retina is known by spectral analysis, there is a possibility that component analysis in the retina can be performed from the spectral image.

しかしながら、これまで行われてきた多くの研究は本格的な分光画像計測とは言えない。本格的な画像計測とは、(a)高画質の画像を得ることが可能、(b)分光画像を広い波長帯にわたって高波長解析度で計測可能、という要件を満たしていることが必要と考える。このような画像計測法のことをハイパースペクトラルイメージング(Hyperspectral Imaging)と呼ぶことがある。液晶波長可変フィルタの登場により、比較的容易に分光画像の取得が行えるようになった。波長の異なる多数の分光画像を用いることにより、物質の分光特性を詳細に検討することができ、また、種々の既知の分光分布を持つ成分の抽出を行うこともできる。   However, many studies that have been conducted so far cannot be said to be full-scale spectral image measurement. With full-scale image measurement, it is necessary to satisfy the requirements that (a) high-quality images can be obtained, and (b) spectral images can be measured over a wide wavelength band with high wavelength resolution. . Such an image measurement method is sometimes referred to as hyperspectral imaging. With the advent of liquid crystal wavelength tunable filters, spectral images can be acquired relatively easily. By using a large number of spectral images having different wavelengths, the spectral characteristics of the substance can be examined in detail, and components having various known spectral distributions can also be extracted.

生体の本格的な測定は今後の課題であるが、本技術が人眼の測定に対応できることを確認するための測定として、これまで、動物をモデルにして、2波長から4波長程度で先行研究が行われている。(例えば非特許文献1参照) また、人眼に応用できる眼底の分光画像を取得する装置として、回折格子を使用して分光し、眼底をスキャンして分光画像を取得することが検討されている。(例えば特許文献1参照)   Although full-scale measurement of living organisms is a topic for the future, as a measurement to confirm that this technology is compatible with human eye measurement, previous studies have been conducted with about 2 to 4 wavelengths using animals as models. Has been done. (For example, refer nonpatent literature 1) Moreover, as an apparatus which acquires the spectroscopic image of the fundus applicable to a human eye, it has been examined to acquire a spectroscopic image by performing spectroscopy using a diffraction grating and scanning the fundus. . (For example, see Patent Document 1)

特表2002−507445号公報(段落0019〜0053、図1〜図9)Japanese translation of PCT publication No. 2002-507445 (paragraphs 0019 to 0053, FIGS. 1 to 9) “Hyperspectral Imaging for Measurement of Oxygen Saturation in the Optic Nerve Head “, Bahram Khoobehi, James M. Beach, and Hiroyuki Kawano1, Investigative Ophthalmology and Visual Science, Vol.45, No.5, p1464−1472, May 2004,“Hyperspectral Imaging for Measurement of Oxygen Saturation in the Optical Nerve Head”, Bahrham Khobehi, James M. Beach, and Hiroyuki Kawano1, Investigative Ophthalmology and Visual Science, Vol. 45, no. 5, p1464-1472, May 2004,

ハイパースペクトラルイメージングは、注目のテクノロジーであり、眼底の分光画像の取得も行えるようになっているが、取得される波長毎の分光画像の光量変化が激しく、正確な解析を行うことが困難であった。また、人に負担なく適用できる光量でのハイパースペクトラル分光がこれまで実現されておらず、それが可能な装置は未だ実現されていない。   Hyperspectral imaging is a notable technology that can also acquire spectroscopic images of the fundus, but the amount of light in the acquired spectroscopic image varies greatly for each wavelength, making accurate analysis difficult. It was. In addition, hyperspectral spectroscopy with a light quantity that can be applied without burden on humans has not been realized so far, and an apparatus capable of doing so has not yet been realized.

主な分光用のデバイスとしては、回折格子、プリズム、エタロン、フィルタなどが挙げられる。従来、可変波長の分光測定では回折格子、プリズムを使用することが多かったが、最近、液晶波長可変フィルタが登場して、分光画像が任意の波長でとれるようになり、容易に分光画像計測が可能になった。液晶波長可変フィルタは、基本的には平行平面板であるため、光学系に組み込むことが簡単で、しかも光学性能を維持しやすい。このため、顕微鏡を使用した分光画像取得などで利用されることも多く、また、分光画像を取得して、それを合成して自然画像を作成する研究などでも使われている。   Main spectroscopic devices include a diffraction grating, a prism, an etalon, and a filter. Conventionally, diffraction gratings and prisms were often used for variable wavelength spectroscopic measurement, but recently, a liquid crystal wavelength tunable filter has appeared, and spectral images can be taken at any wavelength, making it easy to perform spectroscopic image measurement. It became possible. Since the liquid crystal wavelength tunable filter is basically a plane-parallel plate, it can be easily incorporated into an optical system, and the optical performance can be easily maintained. For this reason, it is often used for spectral image acquisition using a microscope, and is also used in research for acquiring a spectral image and synthesizing it to create a natural image.

しかしながら、光源(ハロゲンランプ等)、CCD、液晶波長可変フィルタの分光特性により、短波長側で光量不足、長波長側(500nmから700nmの範囲)で光量過多という問題があった。   However, due to the spectral characteristics of the light source (halogen lamp, etc.), CCD, and liquid crystal wavelength tunable filter, there is a problem that the light amount is insufficient on the short wavelength side and the light amount is excessive on the long wavelength side (range from 500 nm to 700 nm).

本発明は、受光光度の周波数による変動を軽減し、受光面での受光光度を所定の範囲に収めるようにし、被検者の眼にやさしいとともに、良好な分光特性をえることができる分光眼底画像データ測定装置を提供することを目的とする。   The present invention is a spectral fundus image that reduces fluctuations of the received light intensity due to the frequency, keeps the received light intensity on the light receiving surface within a predetermined range, is easy on the subject's eyes, and can provide good spectral characteristics. An object is to provide a data measurement device.

上記課題を解決するために、請求項1に記載の分光眼底画像データ測定装置1は、例えば図1に示すように、所定の波長範囲の光束を発光する照明用光源11を有し、照明用光源11からの光束により被検眼Eの眼底Fを照明する照明光学系10と、照明された眼底Fからの反射光束を受光して、撮像部4の受光面に眼底像を形成する受光光学系20と、照明光学系10又は受光光学系20のいずれかに配置され、所定の波長範囲で透過光束の波長を選択可能である波長可変フィルタ32と、照明光学系10又は受光光学系20のいずれかに配置され、照明用光源11の発光光度の波長特性及び波長可変フィルタ32の透過波長特性を補正し、受光面での受光光度を所定の範囲に収めるような波長特性を有する分光特性補正フィルタ13と、波長可変フィルタ32の透過光束の波長を変化させた際の、受光面からの信号に基づき分光眼底画像データを取得するデータ測定部7とを備える。   In order to solve the above-described problem, the spectral fundus image data measuring apparatus 1 according to claim 1 includes an illumination light source 11 that emits a light beam in a predetermined wavelength range as shown in FIG. An illumination optical system 10 that illuminates the fundus F of the eye E with a light beam from the light source 11, and a light receiving optical system that receives a reflected light beam from the illuminated fundus F and forms a fundus image on the light receiving surface of the imaging unit 4. 20, a wavelength variable filter 32 that is arranged in either the illumination optical system 10 or the light receiving optical system 20 and can select the wavelength of the transmitted light beam in a predetermined wavelength range, and either the illumination optical system 10 or the light receiving optical system 20. A spectral characteristic correction filter having a wavelength characteristic that corrects the wavelength characteristic of the luminous intensity of the illumination light source 11 and the transmission wavelength characteristic of the wavelength tunable filter 32 so that the received light intensity on the light receiving surface falls within a predetermined range. 13 and Upon changing the wavelength of the transmitted light beam of length variable filter 32, and a data measurement section 7 for acquiring spectral fundus image data on the basis of a signal from the light receiving surface.

ここにおいて、受光面はCCDが望ましいが、CMOSでも良い。このように構成すると、波長可変フィルタを使用することにより、分光画像を任意の波長で取得でき、眼底画像についても分光画像計測が可能になる。また、分光特性補正フィルタを採用することにより、被検者の眼にやさしいとともに、受光光度の周波数による変動を補正して、受光面での受光光度を所定の範囲に収めることができ、良好な分光特性をえることができる。   Here, the light receiving surface is preferably a CCD, but may be a CMOS. If comprised in this way, a spectral image can be acquired by arbitrary wavelengths by using a wavelength variable filter, and spectral image measurement is also possible about a fundus image. In addition, by adopting a spectral characteristic correction filter, it is easy on the subject's eyes and can correct fluctuations due to the frequency of received light intensity to keep the received light intensity on the light receiving surface within a predetermined range. Spectral characteristics can be obtained.

また、請求項2に記載の発明は、請求項1に記載の分光眼底画像データ測定装置1において、例えば図1に示すように、波長可変フィルタ32が受光光学系20に、分光特性補正フィルタ13が照明光学系10に配置されている。
このように構成すると、分光特性補正フィルタを照明光学系に配置することにより、比較的均一かつ少ない光量の光で被検眼を照明でき、被検者の眼にやさしい測定ができる。また、波長可変フィルタを受光光学系に配置することにより、眼に入る光の色変化と光量の変化を少なくできる。
Further, according to a second aspect of the present invention, in the spectral fundus image data measuring apparatus 1 according to the first aspect, for example, as shown in FIG. 1, the wavelength variable filter 32 is provided in the light receiving optical system 20, and the spectral characteristic correction filter 13. Is disposed in the illumination optical system 10.
If comprised in this way, by arrange | positioning a spectral characteristic correction filter in an illumination optical system, a to-be-examined eye can be illuminated with the light of a comparatively uniform and few light quantity, and a measurement kind to a subject's eyes can be performed. Further, by arranging the wavelength tunable filter in the light receiving optical system, it is possible to reduce the color change and the light quantity change of the light entering the eye.

また、請求項3に記載の発明は、請求項1又は請求項2に記載の分光眼底画像データ測定装置1において、例えば図5及び図8に示すように、波長可変フィルタ32は液晶波長可変フィルタであり、分光特性補正フィルタ13は、透過率が前記所定の波長範囲において長波長側よりも短波長側が高くなるように構成されている。
このように構成すると、液晶波長可変フィルタを用いて可視光領域で任意の波長を容易に選択でき、また、分光特性補正フィルタでハロゲンランプ、液晶波長可変フィルタの分光特性を補正して、均一性に優れた分光特性を実現できる。
Further, according to a third aspect of the present invention, in the spectral fundus image data measuring apparatus 1 according to the first or second aspect, for example, as shown in FIGS. 5 and 8, the wavelength tunable filter 32 is a liquid crystal wavelength tunable filter. The spectral characteristic correction filter 13 is configured such that the transmittance is higher on the short wavelength side than on the long wavelength side in the predetermined wavelength range.
With this configuration, it is possible to easily select an arbitrary wavelength in the visible light region using the liquid crystal wavelength tunable filter, and to correct the spectral characteristics of the halogen lamp and the liquid crystal wavelength tunable filter with the spectral characteristic correction filter to achieve uniformity. Excellent spectral characteristics can be realized.

また、請求項4に記載の発明は、請求項1乃至請求項3のいずれか1項に記載の分光眼底画像データ測定装置1において、所定の波長範囲が540〜610nmである。
このように構成すると、網膜内物質の分光分析に有用なデータを提供できる。
According to a fourth aspect of the present invention, in the spectral fundus image data measuring apparatus 1 according to any one of the first to third aspects, the predetermined wavelength range is 540 to 610 nm.
If comprised in this way, data useful for the spectroscopic analysis of the substance in a retina can be provided.

また、請求項5に記載の発明は、請求項1乃至請求項4のいずれか1項に記載の分光眼底画像データ測定装置1において、受光面はCCDで形成され、所定の受光光度の範囲が前記CCDのダイナミックレンジ内である。
このように構成すると、分光特性補正フィルタとCCDカメラとを併用することにより、CCDカメラでの撮像を容易にし、露光の自動化が可能になる。
According to a fifth aspect of the present invention, in the spectroscopic fundus image data measuring apparatus 1 according to any one of the first to fourth aspects, the light receiving surface is formed of a CCD, and a predetermined range of received light intensity is obtained. It is within the dynamic range of the CCD.
If comprised in this way, by using together a spectral characteristic correction filter and a CCD camera, imaging with a CCD camera will become easy and automation of exposure will become possible.

また、請求項6に記載の発明は、請求項1乃至請求項5のいずれか1項に記載の分光眼底画像データ測定装置において、例えば図1に示すように、受光面での受光信号レベルに応じて露光時間を自動的に決定するように構成された露光制御部81を備える。
このように構成すると、撮像時の光量に応じてカメラの露光時間をリアルタイムに変更でき、光学系の分光特性を補正して、一層分光特性の優れた画像を取得できる。分光特性補正フィルタと併用することにより、さらに分光特性の優れた画像を取得できる。
The invention according to claim 6 is the spectral fundus image data measuring device according to any one of claims 1 to 5, wherein, for example, as shown in FIG. An exposure control unit 81 configured to automatically determine the exposure time according to the response is provided.
If comprised in this way, the exposure time of a camera can be changed in real time according to the light quantity at the time of imaging, the spectral characteristic of an optical system is correct | amended, and the image which was further excellent in the spectral characteristic can be acquired. By using in combination with the spectral characteristic correction filter, an image with further excellent spectral characteristics can be acquired.

本発明によれば、受光光度の周波数による変動を補正して、受光面での受光光度を所定の範囲に収めることができ、被検者の眼にやさしいとともに、良好な分光特性をえることができる分光眼底画像データ測定装置及び測定方法を提供できる。   According to the present invention, it is possible to correct fluctuations of the received light intensity due to the frequency and keep the received light intensity on the light receiving surface within a predetermined range, which is easy on the subject's eyes and obtains good spectral characteristics. It is possible to provide a spectroscopic fundus image data measuring apparatus and measuring method that can be used.

以下、図面に基き本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施の形態における分光眼底画像データ測定装置1の光学系概要例を示す。図において、分光眼底画像データ測定装置1は、眼底カメラ部2、トップハウジング部3、データ測定部7、制御部8に大別される。眼底カメラ部2は、被検眼Eの眼底Fを照明するための照明光学系10、眼底Fからの反射光束を受光して撮像部4の受光面に眼底像を形成する受光光学系20の前段部、検眼者が眼底Fを観察するファインダー光学系60等を備える。トップハウジング部3は、分光眼底画像を撮像する撮像部4と、照射光の眼底Fへの照射位置をアライメントするためのアライメント光学系50(ただし、光源51は眼底カメラ部2に設けられる)と、眼底カメラ部2から受光した反射光束を整波してカメラリレー部6に導くリレー光学系5と、リレー光学系5経由後の反射光束を撮像部4等の各種受光手段に伝達するカメラリレー部6とから構成され、リレー光学系5、カメラリレー部6、撮像部4とにわたる受光光学系20の後段部を備える。また、カメラリレー部6の上部の拡張部9はモニタTVやハードコピー等の各種受光手段を受光光学系20に接続して拡張的に使用できる部分である。   FIG. 1 shows a schematic example of an optical system of a spectral fundus image data measuring apparatus 1 according to an embodiment of the present invention. In the figure, the spectral fundus image data measuring device 1 is roughly divided into a fundus camera unit 2, a top housing unit 3, a data measuring unit 7, and a control unit 8. The fundus camera unit 2 is a front stage of an illumination optical system 10 for illuminating the fundus F of the eye E to be examined, and a light receiving optical system 20 that receives a reflected light beam from the fundus F and forms a fundus image on the light receiving surface of the imaging unit 4. And a viewfinder optical system 60 for observing the fundus F by the examiner. The top housing unit 3 includes an imaging unit 4 that captures a spectral fundus image, an alignment optical system 50 for aligning the irradiation position of the irradiation light onto the fundus F (the light source 51 is provided in the fundus camera unit 2), and The relay optical system 5 that tunes the reflected light beam received from the fundus camera unit 2 and guides it to the camera relay unit 6, and the camera relay that transmits the reflected light beam after passing through the relay optical system 5 to various light receiving means such as the imaging unit 4. And a rear stage portion of the light receiving optical system 20 extending from the relay optical system 5, the camera relay unit 6, and the imaging unit 4. An extension unit 9 at the top of the camera relay unit 6 is a part that can be used in an expanded manner by connecting various light receiving means such as a monitor TV and a hard copy to the light receiving optical system 20.

眼底カメラ部2において、照明光学系10は、照明光源としてのハロゲンランプ11、コンデンサーレンズ12、分光特性補正フィルタ13、絞り板14、反射鏡15、リレーレンズ16、ビームスプリッター41を照射光軸上に順次配置してなる。ここで、ハロゲンランプ11は、広範な波長範囲の光束を発光し、コンデンサーレンズ12の前側焦点位置付近に配置されている。また、絞り板14はビームスプリッター41と共役となるように配置されている。   In the fundus camera unit 2, the illumination optical system 10 includes a halogen lamp 11 as an illumination light source, a condenser lens 12, a spectral characteristic correction filter 13, a diaphragm plate 14, a reflector 15, a relay lens 16, and a beam splitter 41 on the irradiation optical axis. Are arranged sequentially. Here, the halogen lamp 11 emits a light beam in a wide wavelength range and is disposed near the front focal position of the condenser lens 12. The diaphragm plate 14 is arranged so as to be conjugate with the beam splitter 41.

照明光学系10は、さらに、ビームスプリッター41からの反射光束を対物レンズ42を通して被検眼Eの眼底Fを照明する。このビームスプリッター41と被検眼Eの間は、照明光学系10と受光光学系20との共通光学系40をなしている。
受光光学系20は、眼底カメラ部2内において、被検眼Eを通る反射光軸上に、対物レンズ42、ビームスプリッター41、アイリス絞り板21、合焦レンズ22、結像レンズ23、反射鏡24、切り替えミラー25を順次配置してなり、トップハウジング部3の受光光学系に接続される。アイリス絞り板21は被検眼Eの前眼部と共役な位置に配置されている。分光画像取得時は切り替えミラー25は例えばソレノイドのようにして光路から取り除かれる。
The illumination optical system 10 further illuminates the fundus F of the eye E through the objective lens 42 with the reflected light beam from the beam splitter 41. A common optical system 40 of the illumination optical system 10 and the light receiving optical system 20 is formed between the beam splitter 41 and the eye E to be examined.
The light receiving optical system 20 includes an objective lens 42, a beam splitter 41, an iris diaphragm plate 21, a focusing lens 22, an imaging lens 23, and a reflecting mirror 24 on the reflection optical axis passing through the eye E within the fundus camera unit 2. The switching mirror 25 is sequentially arranged and connected to the light receiving optical system of the top housing portion 3. The iris diaphragm plate 21 is disposed at a position conjugate with the anterior segment of the eye E. When acquiring the spectral image, the switching mirror 25 is removed from the optical path like a solenoid, for example.

アライメント光学系50は、照射光の眼底Fへの照射位置をアライメントするためのものであり、ダイクロイックミラー52、結像レンズ53、モニタ用カメラ54を有し、アライメント光源51(眼底カメラ部2に設けられる)からの光を眼へ投影したときの反射光を見る。アライメント光源51の波長は、近赤外(例えば940nm)とすることで、可視域での分光画像に影響を与えることなく分光画像取得中もアライメントが行える。ダイクロイックミラー52は、可視光(例えば750nm以下)を透過し、長波長側を反射させる。ダイクロイックミラー52を切り替えミラーにして分光画像取得時以外は例えばソレノイドのようにして光路から取り除くことにより拡張部でのカラー眼底観察が可能となる。モニタ用カメラ54には例えばCCDカメラを使用できる。ファインダー光学系60は、検眼者が眼底Fを肉眼で観察するためのものである。   The alignment optical system 50 is for aligning the irradiation position of the irradiation light onto the fundus F, and includes a dichroic mirror 52, an imaging lens 53, and a monitor camera 54, and includes an alignment light source 51 (on the fundus camera unit 2). See the reflected light when the light from (provided) is projected onto the eye. By setting the wavelength of the alignment light source 51 to near infrared (for example, 940 nm), alignment can be performed even during acquisition of a spectral image without affecting the spectral image in the visible region. The dichroic mirror 52 transmits visible light (for example, 750 nm or less) and reflects the long wavelength side. By using the dichroic mirror 52 as a switching mirror and removing it from the optical path, for example, as a solenoid, except for when a spectral image is acquired, color fundus observation can be performed at the extended portion. As the monitor camera 54, for example, a CCD camera can be used. The viewfinder optical system 60 is used by the eye examiner to observe the fundus F with the naked eye.

トップハウジング部3において、受光光学系20は、被検眼Eからの反射光軸上にリレー光学系5が配置され、リレー光学系5により眼底Fから反射光束がカメラリレー部6に導入される。カメラリレー部6内では、反射光軸上にダイクロイックミラー31が配置され、ダイクロイックミラー31は、可視光(例えば750nm以下)を反射し、長波長側を透過させる。ダイクロイックミラー31からの反射光束は撮像部4に導かれる。撮像部4では、ダイクロイックミラー31からの反射光軸上に、液晶波長可変フィルタ32、結像レンズ33、受光面を有するCCDカメラ34が配置されている。また、受光面は眼底像が形成されるように、被検眼Eの眼底Fと共役となるように配置されている。結像レンズ33は液晶波長可変フィルタ32からの射出光をCCDカメラにリレーするためのレンズである。液晶波長可変フィルタ32を用いると、可視光領域で任意の波長を容易に選択できるので、分光特性の解析が容易になる。   In the top housing portion 3, the light receiving optical system 20 has the relay optical system 5 disposed on the reflection optical axis from the eye E, and the reflected light beam is introduced from the fundus F into the camera relay portion 6 by the relay optical system 5. In the camera relay unit 6, a dichroic mirror 31 is disposed on the reflection optical axis, and the dichroic mirror 31 reflects visible light (for example, 750 nm or less) and transmits the long wavelength side. The reflected light beam from the dichroic mirror 31 is guided to the imaging unit 4. In the imaging unit 4, a liquid crystal wavelength tunable filter 32, an imaging lens 33, and a CCD camera 34 having a light receiving surface are arranged on the reflected optical axis from the dichroic mirror 31. In addition, the light receiving surface is disposed so as to be conjugate with the fundus F of the eye E so that a fundus image is formed. The imaging lens 33 is a lens for relaying light emitted from the liquid crystal wavelength tunable filter 32 to the CCD camera. If the liquid crystal wavelength tunable filter 32 is used, an arbitrary wavelength can be easily selected in the visible light region, so that the spectral characteristics can be easily analyzed.

データ測定部7は、CCDカメラ34の受光面からの信号に基づき分光眼底画像データを取得するデータ取得部71、画像位置合わせを行なう画像補正部72、さらに、分光網膜画像解析を行なう画像解析部73、酸化ヘモグロビンの割合等をマップ化するマップ作成部74を有し、画像位置合わせフロー、分光網膜画像解析フローのプログラムを格納する。画像解析部73は、動脈、静脈の強度を算出した部位の血管の径により補正を行い、網膜上の各位置での光学濃度(Optical Density 以下ODという。)を算出し、動脈、静脈のODの分光分布を基に網膜上の各位置でのODの因子分析を行い、酸化ヘモグロビンの網膜上の各位置での割合を算出する。   The data measurement unit 7 includes a data acquisition unit 71 that acquires spectral fundus image data based on a signal from the light receiving surface of the CCD camera 34, an image correction unit 72 that performs image alignment, and an image analysis unit that performs spectral retinal image analysis. 73, a map creation unit 74 that maps the ratio of oxyhemoglobin and the like, and stores programs for an image alignment flow and a spectral retinal image analysis flow. The image analysis unit 73 performs correction based on the diameter of the blood vessel at the site where the strength of the artery and vein is calculated, calculates the optical density at each position on the retina (hereinafter referred to as OD), and calculates the OD of the artery and vein. Based on the spectral distribution of OD, factor analysis of OD at each position on the retina is performed, and the ratio of oxyhemoglobin at each position on the retina is calculated.

制御部8は、分光眼底画像データを測定するために、眼底カメラ部2、トップハウジング部3、データ測定部7の動作、データや信号の流れ等、分光眼底画像データ測定装置1全体を制御する。また、CCDカメラの露光を制御する露光制御部81、液晶波長可変フィルタの波長等を制御する波長制御部82を有し、分光眼底像取得フロー、CCDカメラ露光時間設定フローのプログラムを格納する。なお、制御部8は通常のパーソナルコンピュータで実現できる。   In order to measure spectral fundus image data, the control unit 8 controls the entire spectral fundus image data measurement apparatus 1, such as the operation of the fundus camera unit 2, the top housing unit 3, and the data measurement unit 7 and the flow of data and signals. . Further, it has an exposure control unit 81 for controlling the exposure of the CCD camera and a wavelength control unit 82 for controlling the wavelength of the liquid crystal wavelength tunable filter and the like, and stores programs for the spectral fundus image acquisition flow and the CCD camera exposure time setting flow. The control unit 8 can be realized by a normal personal computer.

次に、本実施の形態における分光眼底画像データ測定装置の光学系の分光特性について説明する。分光特性の解析には、主に波長領域430〜950nmが使用され、この範囲でできるだけ均一な分光特性が望まれる。分光特性に大きく影響を与える要因としてはCCDカメラ34、液晶波長可変フィルタ32、ハロゲンランプ11と考えられる。以下に各デバイスの分光特性を説明する。   Next, spectral characteristics of the optical system of the spectral fundus image data measurement apparatus according to the present embodiment will be described. For analysis of spectral characteristics, a wavelength region of 430 to 950 nm is mainly used, and spectral characteristics that are as uniform as possible within this range are desired. Factors that greatly affect the spectral characteristics are considered to be the CCD camera 34, the liquid crystal wavelength tunable filter 32, and the halogen lamp 11. The spectral characteristics of each device will be described below.

分光方式として分散型分光方式を採用した。分散型以外の分光方式としてはフーリエ分光型が挙げられるが、干渉方式を使用するフーリエ分光型では網膜の画像のノイズが懸念され、分散型分光方式を採用した。なお、フーリエ分光型は瞬間分光が可能であり、光量的にも有利なことがあるので、これを採用しても良い。   A dispersive spectroscopic method was adopted as the spectroscopic method. As a spectral system other than the dispersion type, the Fourier spectroscopic type can be mentioned. However, the Fourier spectroscopic type using the interference method is concerned with the noise of the image of the retina, and the dispersive spectroscopic method is adopted. The Fourier spectroscopic type is capable of instantaneous spectroscopy and may be advantageous in terms of the amount of light.

照明光源11としてハロゲンランプを使用したのは、可視光領域から近赤外領域を含む広範な波長範囲の光を発光し、また、分光を時系列で行うのに10秒程度の連続点灯が必要なためと、CCDの進歩によりフラッシュを使用しなくても画像が取得できるようになったためである。   The use of a halogen lamp as the illumination light source 11 emits light in a wide wavelength range including the visible light region to the near infrared region, and continuous lighting for about 10 seconds is necessary to perform spectroscopy in time series. This is because an image can be acquired without using a flash due to the advance of CCD.

図2に照明光源11としてのハロゲンランプの分光特性の例を示す。横軸に波長(μm)を、縦軸に相対強度(%)を示す。色温度2200〜3400°Kでの分光特性を、3000°Kでの最大強度を100%として示した。図より、ハロゲンランプの照射光は可視光から赤外線領域にわたる波長範囲を連続的にカバーしているので分光分析に有用であり、照明光源11の強度は可視光線領域では波長の増加と共に単調に増加している。   FIG. 2 shows an example of spectral characteristics of a halogen lamp as the illumination light source 11. The horizontal axis represents wavelength (μm), and the vertical axis represents relative intensity (%). The spectral characteristics at a color temperature of 2200 to 3400 ° K. are shown with the maximum intensity at 3000 ° K being 100%. From the figure, the irradiation light of the halogen lamp continuously covers the wavelength range from the visible light to the infrared region, which is useful for spectroscopic analysis, and the intensity of the illumination light source 11 increases monotonously with the increase of the wavelength in the visible light region. is doing.

図3にCCDカメラ34の分光感度特性の例を示す。横軸に波長(nm)を、縦軸に量子効率(%)を示す。CCDカメラ34は可視光から近赤外領域まで幅広い波長に感度があり、例えば130万画素(1344×1024)の高精細画像を得られ、高速(約8フレーム/秒)、低ノイズの読み出しが可能である。450〜600nmにほぼ均一な感度の山があり、その両側で感度が減少している。   FIG. 3 shows an example of the spectral sensitivity characteristic of the CCD camera 34. The horizontal axis represents wavelength (nm) and the vertical axis represents quantum efficiency (%). The CCD camera 34 is sensitive to a wide range of wavelengths from visible light to the near infrared region. For example, a high-definition image of 1.3 million pixels (1344 × 1024) can be obtained, and high-speed (about 8 frames / second) and low-noise readout are possible. Is possible. There is a substantially uniform sensitivity peak at 450 to 600 nm, and the sensitivity decreases on both sides.

図4に液晶波長可変フィルタ32のバンドパス特性の例を示す。横軸に波長(nm)を、縦軸に透過率(%)を示す。液晶波長可変フィルタ32は、液晶への印加電圧を変化させることにより、透過波長を400〜720nmの範囲で選択可能である。図には、透過中心波長を10nmずつ変化させたときの透過光の変化の様子を示す。透過光の波長幅は約20nmであり、透過光量のピーク値は波長の増加に伴い、ほぼ単調に増加している。   FIG. 4 shows an example of bandpass characteristics of the liquid crystal wavelength tunable filter 32. The horizontal axis represents wavelength (nm), and the vertical axis represents transmittance (%). The liquid crystal wavelength tunable filter 32 can select the transmission wavelength in the range of 400 to 720 nm by changing the voltage applied to the liquid crystal. The figure shows how the transmitted light changes when the transmission center wavelength is changed by 10 nm. The wavelength width of the transmitted light is about 20 nm, and the peak value of the amount of transmitted light increases almost monotonously with the increase in wavelength.

図5に液晶波長可変フィルタ32の構成例を示す。液晶波長可変フィルタは液晶チューナブルフィルタ(LCTF :Liquid Crystal Tunable Filter)を数段組み合わせることにより波長を選択する。1つのLCTFは図5のように偏光板で固定波長板と液晶可変波長板を挟んで構成され、この固定波長板と液晶可変波長板の偏光板となす角度は、発生する常光線と異常光線の光路長差が液晶可変波長板によりコントロールできるように45度に固定されている。   FIG. 5 shows a configuration example of the liquid crystal wavelength tunable filter 32. The liquid crystal wavelength tunable filter selects a wavelength by combining several stages of liquid crystal tunable filters (LCTF: Liquid Crystal Tunable Filter). As shown in FIG. 5, one LCTF is configured by sandwiching a fixed wavelength plate and a liquid crystal variable wavelength plate with a polarizing plate, and the angle between the fixed wavelength plate and the polarizing plate of the liquid crystal variable wavelength plate is an ordinary ray and an extraordinary ray generated. The optical path length difference is fixed at 45 degrees so that it can be controlled by the liquid crystal variable wavelength plate.

1枚の波長板について、その厚みをdとすると常光線と異常光線の光路長差Rは(式1)で表される。
n(e)は通常光線についての屈折率、n(o)は異常光線についての屈折率である。固定波長板と液晶可変波長板を組み合わせ、液晶可変波長板への印加電圧を変化させることによって光路長差Rが変化する。光路長差Rの光を偏光板により45度方向で取り出して干渉フィルタ化している。
全体の透過率Tは波長をλとして(式2)のようになり、光路長差Rにより変化する。
When the thickness of one wave plate is d, the optical path length difference R between the ordinary ray and the extraordinary ray is expressed by (Equation 1).
n (e) is the refractive index for ordinary light, and n (o) is the refractive index for extraordinary light. The optical path length difference R is changed by combining the fixed wavelength plate and the liquid crystal variable wavelength plate and changing the voltage applied to the liquid crystal variable wavelength plate. Light having an optical path length difference R is extracted by a polarizing plate in the direction of 45 degrees to form an interference filter.
The overall transmittance T is as shown in (Equation 2), where the wavelength is λ, and varies with the optical path length difference R.

図6に液晶波長可変フィルタ32の波長選択方法の例を示す。出力される波長幅を狭める為に厚さの異なる波長板の組み合わせを数段(図の例では6段)重ねて、20nmの波長幅を実現している。図6(a)に6段の各LCTFのフィルタ特性を重ねて示す。図6(b)に6段のLCTFを重ねた液晶波長可変フィルタ32のフィルタ特性を示す。各LCTFの液晶可変波長板への印加電圧を変化することにより透過中心波長を任意に高速で変更でき、任意の波長成分の光を取り出すことができる。
液晶波長可変フィルタ32は、入射光の偏光方向に影響されるので偏光した光を使用するときは、入射光の偏光角に対応したアライメントが必要である。この場合でも、液晶波長可変フィルタ32からの射出光は、入射光と同じ偏光方向に維持される。
FIG. 6 shows an example of the wavelength selection method of the liquid crystal wavelength tunable filter 32. In order to reduce the wavelength width to be output, a combination of wave plates having different thicknesses are stacked in several stages (six stages in the example in the figure) to realize a wavelength width of 20 nm. FIG. 6A shows the filter characteristics of each of the six stages of LCTFs. FIG. 6B shows the filter characteristics of the liquid crystal wavelength tunable filter 32 in which six stages of LCTFs are superimposed. By changing the voltage applied to the liquid crystal variable wavelength plate of each LCTF, the transmission center wavelength can be arbitrarily changed at high speed, and light having an arbitrary wavelength component can be extracted.
Since the liquid crystal wavelength tunable filter 32 is affected by the polarization direction of the incident light, when using polarized light, alignment corresponding to the polarization angle of the incident light is necessary. Even in this case, the light emitted from the liquid crystal wavelength tunable filter 32 is maintained in the same polarization direction as the incident light.

図7に、ハロゲンランプ11、液晶波長可変フィルタ32、CCDカメラ34の分光特性を加味した分光特性の例を示す。横軸に波長(nm)を、縦軸に相対強度(波長700nmの光の強度を1とする)を示す。450〜700nmの範囲で相対強度がほぼ単調に増加していることが解る。このように、各光部品を総合した特性が短波長側の光量が低く、長波長になるに従い急激に高くなっているため、これを打ち消すような分光特性補正フィルタ13が要求される。   FIG. 7 shows an example of spectral characteristics taking into account the spectral characteristics of the halogen lamp 11, the liquid crystal wavelength tunable filter 32, and the CCD camera 34. The horizontal axis represents wavelength (nm), and the vertical axis represents relative intensity (the intensity of light having a wavelength of 700 nm is 1). It can be seen that the relative intensity increases almost monotonically in the range of 450 to 700 nm. As described above, the total characteristic of each optical component has a low light amount on the short wavelength side and abruptly increases as the wavelength becomes longer, so a spectral characteristic correction filter 13 that cancels this is required.

図8に分光特性補正フィルタ13の分光特性の例を示す。横軸に波長(nm)を、縦軸に透過率(%)を示す。本実施の形態では、450〜700nmでの補正を行うために、透過中心波長約460nmのフィルタを選択した。   FIG. 8 shows an example of spectral characteristics of the spectral characteristic correction filter 13. The horizontal axis represents wavelength (nm), and the vertical axis represents transmittance (%). In the present embodiment, a filter having a transmission center wavelength of about 460 nm is selected in order to perform correction at 450 to 700 nm.

図9に分光特性補正フィルタ13を挿入した光学系の分光特性例を示す。横軸に波長(nm)を、縦軸にCCDカメラで34で取得された最大強度を示す。この例では12bit4096を最大値としている。データは分光特性補正フィルタ13挿入後に露光時間一定(例えば200ms)で標準白色板、正常眼の分光画像を取得し、その最大強度を測定したものである。◆は正常眼からの反射光最大強度、■は標準白色板からの反射光最大強度を示す。なお、補正前は同じ光量で分光画像を同じ波長帯で取得することは不可能であった。標準白色板は最小値が829、最大値が3532と差はあるものの、同じ照明光量でサチレーションを起こすことなく画像取得できていることが確認できた。正常眼では最小値416、最大値2217とさらにフラット化された画像を取得することができた。なお、このような光量の差異は十分CCDのダイナミックレンジ内に入り、CCDカメラでの撮像を容易にし、露光の自動化が可能になる。   FIG. 9 shows an example of spectral characteristics of an optical system in which the spectral characteristic correction filter 13 is inserted. The horizontal axis indicates the wavelength (nm), and the vertical axis indicates the maximum intensity acquired at 34 by the CCD camera. In this example, the maximum value is 12 bits 4096. The data is obtained by obtaining a spectral image of a standard white plate and normal eyes with a constant exposure time (for example, 200 ms) after the spectral characteristic correction filter 13 is inserted, and measuring the maximum intensity. ◆ indicates the maximum intensity of reflected light from normal eyes, and ■ indicates the maximum intensity of reflected light from a standard white plate. Prior to correction, it was impossible to acquire a spectral image with the same light amount and the same wavelength band. Although the standard white plate has a difference between the minimum value of 829 and the maximum value of 3532, it was confirmed that images could be acquired without causing saturation with the same amount of illumination. With normal eyes, a flattened image with minimum value 416 and maximum value 2217 could be obtained. Such a difference in the amount of light is sufficiently within the dynamic range of the CCD, facilitating imaging with a CCD camera, and automating exposure.

図10に本発明の実施の形態における分光眼底画像データ測定方法のフローの例を示す。まず、所定の波長範囲の光束を発光する照明用光源11からの光束により人間又は動物の被検眼Eの眼底Fを照明する(ステップS001)。次に、撮像部4の受光面に眼底Fからの反射光束を受光して、人間又は動物の眼底像を形成する(ステップS002)。次に、所定の波長範囲で透過光束の波長を選択可能な液晶波長可変フィルタ32を用い、液晶波長可変フィルタ32の透過光束の波長を変化させて、受光面からの信号に基づき分光眼底画像原データを取得する(ステップS003)。次に、データ測定部7において、所定の波長範囲における分光眼底画像データを順次測定する(ステップS004)。   FIG. 10 shows an example of the flow of the spectral fundus image data measurement method according to the embodiment of the present invention. First, the fundus F of a human or animal eye E is illuminated with a light beam from an illumination light source 11 that emits a light beam in a predetermined wavelength range (step S001). Next, the reflected light beam from the fundus F is received on the light receiving surface of the imaging unit 4 to form a fundus image of a human or an animal (step S002). Next, using the liquid crystal wavelength tunable filter 32 capable of selecting the wavelength of the transmitted light beam within a predetermined wavelength range, the wavelength of the transmitted light beam of the liquid crystal wavelength tunable filter 32 is changed, and the spectral fundus image source is based on the signal from the light receiving surface. Data is acquired (step S003). Next, the data measuring unit 7 sequentially measures spectral fundus image data in a predetermined wavelength range (step S004).

図11に分光眼底像取得フローの例を示す。図10のステップS003に該当する。まず、分光測定する初期波長λs、最終波長λe、一度に変化させる波長間隔(波長の変化量)λdを設定する(ステップS101)。次に、眼底カメラ部2と被検眼Eのアライメントを行う(ステップS102)。次に、測定波長λを初期波長λsに設定し(ステップS103)、液晶波長可変フィルタ32の透過波長が測定波長λになるように調整し(ステップS104)、CCDカメラ34の露光時間を各測定波長λ毎に予め定められた所定の値に自動的に設定しておき(ステップS105)、設定された露光時間で自動露光して分光眼底像を取得する(ステップS106)。測定波長λが最終波長λe以下であれば(ステップS107でNO)、測定波長λに波長間隔λdを加算して(ステップS108)、設定波長を変更し(ステップS104)、露光、画像取得を繰り返す。測定波長λが最終波長λeより大きくなれば(ステップS107でYES)、取得した眼底像を保存する(ステップS109)。この分光眼底像取得フローのうち、眼のアライメント(ステップS002)を除き、ループ処理を含めプログラム制御可能である。プログラムは制御部8に格納され、露光制御部81でCCDカメラ34の露光を制御し、波長制御部82で液晶波長可変フィルタ32の波長等を制御し、また、制御部8でデータ取得部71のデータ取得等を制御する。   FIG. 11 shows an example of a spectral fundus image acquisition flow. This corresponds to step S003 in FIG. First, an initial wavelength λs, a final wavelength λe, and a wavelength interval (amount of change in wavelength) λd to be changed at one time are set (step S101). Next, the fundus camera unit 2 and the eye E to be examined are aligned (step S102). Next, the measurement wavelength λ is set to the initial wavelength λs (step S103), the transmission wavelength of the liquid crystal wavelength tunable filter 32 is adjusted to be the measurement wavelength λ (step S104), and the exposure time of the CCD camera 34 is measured. A predetermined value predetermined for each wavelength λ is automatically set (step S105), and a spectral fundus image is acquired by performing automatic exposure with the set exposure time (step S106). If the measurement wavelength λ is equal to or less than the final wavelength λe (NO in step S107), the wavelength interval λd is added to the measurement wavelength λ (step S108), the set wavelength is changed (step S104), and exposure and image acquisition are repeated. . If the measurement wavelength λ is greater than the final wavelength λe (YES in step S107), the acquired fundus image is stored (step S109). In this spectral fundus image acquisition flow, program control including loop processing is possible except for eye alignment (step S002). The program is stored in the control unit 8, the exposure control unit 81 controls the exposure of the CCD camera 34, the wavelength control unit 82 controls the wavelength of the liquid crystal wavelength tunable filter 32, and the control unit 8 controls the data acquisition unit 71. To control data acquisition.

図12にCCDカメラ露光時間設定フローの例を示す。図11のステップS105に該当する。分光特性補正フィルタ13を挿入してフラット化した分光特性を、さらに、CCDカメラ34の露光時間補正で補うものである。まず、平均化すべきデータ個数avを任意に(例えば5に)設定し(ステップS201)、許容する最大の輝度値の範囲(最大許容値Ihigh、最小許容値Ilow)を設定する(ステップS202)。次に、露光時間Texを任意の値に設定し(ステップS203)、分光眼底像の取得を行う(ステップS204)。得られた分光眼底像についてCCDの各ピクセル(CCD素子番号をk、素子数をkmaxとする)の輝度値Iを求め(ステップS205)、輝度値Iが高い順にav個(設定された個数)を選択してこれらの輝度値Iの合計MALLを求め(ステップS206)、最大輝度平均値M(=MALL/av)を算出する(ステップS207)。 FIG. 12 shows an example of a CCD camera exposure time setting flow. This corresponds to step S105 in FIG. The spectral characteristic flattened by inserting the spectral characteristic correction filter 13 is further supplemented by correcting the exposure time of the CCD camera 34. First, the number of data av to be averaged is arbitrarily set (for example, 5) (step S201), and the allowable maximum luminance value range (maximum allowable value Ihigh , minimum allowable value Ilow ) is set (step S202). ). Next, the exposure time Tex is set to an arbitrary value (step S203), and a spectral fundus image is acquired (step S204). With respect to the obtained spectral fundus image, the luminance value I k of each pixel of the CCD (the CCD element number is k and the number of elements is k max ) is obtained (step S205), and av (set) are set in descending order of the luminance value I k. The total number M ALL of these luminance values I k is obtained (step S206), and the maximum luminance average value M (= M ALL / av) is calculated (step S207).

この最大輝度平均値Mが最大許容値Ihighより大きい場合は(ステップS208でYES)露光時間を短く(この例では1/2に)し(ステップS211)、最小許容値Ilowより小さい場合は(ステップS209でYES)露光時間を長くする。この例では2段階にし所定値I−lowより小さい場合は(ステップS210でNO)露光時間をα倍(例えばα=1.2)にし(ステップS012)、所定値I−lowより大きい場合は(ステップS210でYES)露光時間を2倍にし(ステップS213)、再び像取得(ステップS204)に戻る。最大輝度平均値Mが設定した範囲内に収まったとき(ステップS208及びS209でNO)には露光時間が適切として露光時間をその時のTexに設定し、以後の測定ではこの設定値を用いて分光眼底像の取得を行う(ステップS204)。 If this maximum luminance average value M is larger than the maximum allowable value I high (YES in step S208), the exposure time is shortened (in this example, 1/2) (step S211), and if it is smaller than the minimum allowable value I low (YES in step S209) The exposure time is lengthened. If the predetermined value I -low smaller than the two stages in this example (in step S210 NO) exposure time to alpha times (e.g. alpha = 1.2) (step S012), if greater than the predetermined value I -low ( In step S210 YES, the exposure time is doubled (step S213), and the process returns to image acquisition (step S204) again. When the maximum average brightness value M falls within the set range (NO in steps S208 and S209), the exposure time is set appropriately and the exposure time is set to Tex at that time. A spectral fundus image is acquired (step S204).

新たに取得した分光眼底像について、最大輝度平均値Mが設定した範囲内に収まり続ける限り(ステップS208及びS209でNO)、露光時間の設定値Texを維持し、範囲外に出た時に設定値が更新される。実際には分光眼底像を得るときには、波長の短い方から順次取得すると、波長変化が緩やかで分光眼底像の変化も少ないので、上記ルーチンで露光時間を更新する場合は少なく、効率よく実行され、短時間で良好な画像を得ることが可能である。このCCDカメラ露光時間設定フローを用いることにより分光特性の優れた画像を取得でき、さらに、分光特性補正フィルタ13と併用することにより、分光特性を一層優れたものにできる。また、このCCDカメラ露光時間設定フローは、ループ処理を含めプログラム制御可能である。プログラムは制御部8に格納され、露光制御部81でCCDカメラ34の露光を制御する。 For the newly acquired spectral fundus image, as long as the maximum luminance average value M continues to be within the set range (NO in steps S208 and S209), the exposure time set value Tex is maintained and set when it goes out of range. The value is updated. In fact, when obtaining a spectral fundus image, if the wavelength is acquired sequentially from the shorter wavelength, the change in the spectral fundus image is small, so the exposure time is not updated frequently in the above routine, and is executed efficiently. A good image can be obtained in a short time. By using this CCD camera exposure time setting flow, an image having excellent spectral characteristics can be acquired, and by using the CCD camera in combination with the spectral characteristic correction filter 13, the spectral characteristics can be further improved. The CCD camera exposure time setting flow can be controlled by a program including loop processing. The program is stored in the control unit 8, and the exposure control unit 81 controls the exposure of the CCD camera 34.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で実施の形態に種々変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the embodiments without departing from the spirit of the present invention. It is.

例えば、光学系の構成は本実施の形態に限定されず、所定の波長範囲の光束を発光する照明用光源を有し、照明用光源からの光束により被検眼の眼底を照明する照明光学系と、照明された眼底からの反射光束を受光して、撮像部の受光面に眼底像を形成する受光光学系とを備えれば、光源、撮像手段、光路を任意に選択できる。また、光学系は眼底に固視標を投影させる固視系を備えても良く、照射光の収差を補償する補償光学部を照明光学系に挿入してもよく、照明用光源の発光光度を調節する調節部を設けても良い。   For example, the configuration of the optical system is not limited to the present embodiment, and includes an illumination optical system that includes an illumination light source that emits a light beam in a predetermined wavelength range, and that illuminates the fundus of the eye to be examined with the light beam from the illumination light source. If a light receiving optical system that receives a reflected light beam from the illuminated fundus and forms a fundus image on the light receiving surface of the imaging unit is provided, the light source, imaging means, and optical path can be arbitrarily selected. In addition, the optical system may include a fixation system that projects a fixation target on the fundus, a compensation optical unit that compensates for the aberration of the irradiation light may be inserted into the illumination optical system, and the luminous intensity of the illumination light source is increased. You may provide the adjustment part to adjust.

また、波長可変フィルタ又は分光特性補正フィルタは、照明光学系又は受光光学系のいずれかに配置されれば良い。本実施の形態では、波長可変フィルタには液晶波長可変フィルタを用いる例を説明したが、回折格子やプリズムによる分光器を用いて波長を変化させるものでも良い。また、分光特性補正フィルタの分光特性は、使用する光源、撮像手段、波長可変フィルタの分光特性により変化するもので、青色フィルタに限定されない。また、光源もハロゲンランプに限られず、所定の波長範囲の光束を発光する光源であれば良い。受光面もCCDに限定されず、例えばCMOSを用いても良い。分光測定波長範囲については、可視領域から近赤外領域まで選択可能であり、特に動脈又は静脈の吸収光量の分光分布特性の変化が大きなエリアを選択することが望ましい。   Further, the wavelength variable filter or the spectral characteristic correction filter may be arranged in either the illumination optical system or the light receiving optical system. In this embodiment, an example in which a liquid crystal wavelength tunable filter is used as the wavelength tunable filter has been described. However, a wavelength may be changed using a spectroscope such as a diffraction grating or a prism. The spectral characteristic of the spectral characteristic correction filter changes depending on the spectral characteristics of the light source, imaging means, and wavelength variable filter used, and is not limited to the blue filter. Further, the light source is not limited to the halogen lamp, and any light source that emits a light beam in a predetermined wavelength range may be used. The light receiving surface is not limited to the CCD, and for example, a CMOS may be used. The spectroscopic measurement wavelength range can be selected from the visible region to the near-infrared region, and it is particularly desirable to select an area where the change in the spectral distribution characteristics of the absorbed light quantity of the artery or vein is large.

また、本実施の形態におけるステップの順序を入れ替えることも可能である。例えば図11では、分光測定波長範囲の全ての波長の分光眼底像を取得した後に、一括して眼底像の保存を行なう例を説明したが、各波長の分光眼底像を取得した直後に各眼底像を保存するようなループにしても良い。   In addition, the order of steps in this embodiment can be changed. For example, FIG. 11 illustrates an example in which the fundus image is stored in a lump after acquiring the spectral fundus images of all wavelengths in the spectroscopic measurement wavelength range, but each fundus is acquired immediately after the spectral fundus image of each wavelength is acquired. A loop that preserves the image may be used.

また、分光眼底像取得フロー、CCDカメラ露光時間設定フローのプログラムを制御部に格納する例を説明したが、制御部がこれら全てのプログラムを保持してデータ測定部を含む分光眼底画像データ測定装置全体を制御しても良く、また、制御部がこれらのプログラムを外付けの記録装置やCDROM等から読み込んで分光眼底画像データ測定装置を制御しても良い。   Further, the example in which the program for the spectral fundus image acquisition flow and the CCD camera exposure time setting flow is stored in the control unit has been described, but the control unit holds all these programs and includes the data measurement unit. The control unit may control the spectral fundus image data measurement apparatus by reading these programs from an external recording device or CD ROM.

本発明は、分光眼底画像データの測定に利用される。   The present invention is used for measurement of spectral fundus image data.

本発明の実施の形態における分光眼底画像データ測定装置の構成例を示す図である。It is a figure which shows the structural example of the spectral fundus image data measuring apparatus in the embodiment of the present invention. ハロゲンランプの分光特性の例を示す図である。It is a figure which shows the example of the spectral characteristics of a halogen lamp. CCDカメラの分光感度特性の例を示す図である。It is a figure which shows the example of the spectral sensitivity characteristic of a CCD camera. 液晶波長可変フィルタのバンドパス特性の例を示す図である。It is a figure which shows the example of the band pass characteristic of a liquid crystal wavelength tunable filter. 液晶波長可変フィルタの構成例を示す図である。It is a figure which shows the structural example of a liquid crystal wavelength variable filter. 液晶波長可変フィルタの波長選択方法の例を示す図である。It is a figure which shows the example of the wavelength selection method of a liquid crystal wavelength variable filter. ハロゲンランプ、液晶波長可変フィルタ、CCDカメラの分光特性を加味した分光特性の例を示す図である。It is a figure which shows the example of the spectral characteristic which considered the spectral characteristic of the halogen lamp, the liquid crystal wavelength variable filter, and the CCD camera. 分光特性補正フィルタの分光特性の例を示す図である。It is a figure which shows the example of the spectral characteristic of a spectral characteristic correction filter. 分光特性補正フィルタを挿入した光学系の分光特性の例を示す図である。It is a figure which shows the example of the spectral characteristic of the optical system which inserted the spectral characteristic correction filter. 本発明の実施の形態における分光眼底画像データ測定方法のフローの例を示す図である。It is a figure which shows the example of the flow of the spectral fundus image data measuring method in embodiment of this invention. 分光眼底像取得フローの例を示す図である。It is a figure which shows the example of a spectroscopic fundus image acquisition flow. CCDカメラ露光時間設定フローの例を示す図である。It is a figure which shows the example of a CCD camera exposure time setting flow.

符号の説明Explanation of symbols

1 分光眼底画像データ測定装置
2 眼底カメラ部
3 トップハウジング部
4 撮像部
5 リレー光学系
6 カメラリレー部
7 データ測定部
8 制御部
9 拡張部
10 照明光学系
11 ハロゲンランプ
12 コンデンサーレンズ
13 分光特性補正フィルタ
14 絞り板
15 反射鏡
16 リレーレンズ
20 受光光学系
21 アイリス絞り板
22 合焦レンズ
23 結像レンズ
24 反射鏡
25 切り替えミラー
31 ダイクロイックミラー
32 液晶波長可変フィルタ
33 結像レンズ
34 CCDカメラ
40 共通光学系
41 ビームスプリッター
42 対物レンズ
50 アライメント光学系
51 アライメント光源
52 ダイクロイックミラー
53 結像レンズ
54 モニタ用カメラ
60 ファインダー光学系
71 データ取得部
72 画像補正部
73 画像解析部
74 マップ作成部
81 露光制御部
82 波長制御部
E 被検眼
F 眼底
DESCRIPTION OF SYMBOLS 1 Spectral fundus image data measuring device 2 Fundus camera part 3 Top housing part 4 Imaging part 5 Relay optical system 6 Camera relay part 7 Data measuring part 8 Control part 9 Expansion part 10 Illumination optical system 11 Halogen lamp 12 Condenser lens 13 Spectral characteristic correction Filter 14 Diaphragm 15 Reflecting mirror 16 Relay lens 20 Light receiving optical system 21 Iris diaphragm plate 22 Focusing lens 23 Imaging lens 24 Reflecting mirror 25 Switching mirror 31 Dichroic mirror 32 Liquid crystal wavelength variable filter 33 Imaging lens 34 CCD camera 40 Common optics System 41 Beam splitter 42 Objective lens 50 Alignment optical system 51 Alignment light source 52 Dichroic mirror 53 Imaging lens 54 Camera for monitor 60 Finder optical system 71 Data acquisition unit 72 Image correction unit 73 Image analysis unit 74 Map creation unit 1 exposure control unit 82 wavelength control unit E subject's eye F fundus

Claims (6)

所定の波長範囲の光束を発光する照明用光源を有し、前記照明用光源からの光束により被検眼の眼底を照明する照明光学系と;
前記照明された眼底からの反射光束を受光して、撮像部の受光面に眼底像を形成する受光光学系と;
前記照明光学系又は前記受光光学系のいずれかに配置され、前記所定の波長範囲で透過光束の波長を選択可能である波長可変フィルタと;
前記照明光学系又は前記受光光学系のいずれかに配置され、前記照明用光源の発光光度の波長特性及び前記波長可変フィルタの透過波長特性を補正し、前記受光面での受光光度を所定の範囲に収めるような波長特性を有する分光特性補正フィルタと;
前記波長可変フィルタの透過光束の波長を変化させた際の、前記受光面からの信号に基づき分光眼底画像データを取得するデータ測定部とを備える;
分光眼底画像データ測定装置。
An illumination optical system that includes an illumination light source that emits a light beam in a predetermined wavelength range, and that illuminates the fundus of the subject's eye with the light beam from the illumination light source;
A light receiving optical system that receives a reflected light beam from the illuminated fundus and forms a fundus image on a light receiving surface of an imaging unit;
A wavelength tunable filter disposed in either the illumination optical system or the light receiving optical system and capable of selecting a wavelength of a transmitted light beam in the predetermined wavelength range;
Arranged in either the illumination optical system or the light receiving optical system, the wavelength characteristic of the luminous intensity of the illumination light source and the transmission wavelength characteristic of the wavelength variable filter are corrected, and the received light intensity on the light receiving surface is within a predetermined range. A spectral characteristic correction filter having wavelength characteristics that fall within the range;
A data measurement unit that acquires spectral fundus image data based on a signal from the light receiving surface when the wavelength of the transmitted light beam of the wavelength tunable filter is changed;
Spectral fundus image data measurement device.
前記波長可変フィルタが前記受光光学系に、前記分光特性補正フィルタが前記照明光学系に配置されている;
請求項1に記載の分光眼底画像データ測定装置。
The variable wavelength filter is disposed in the light receiving optical system, and the spectral characteristic correction filter is disposed in the illumination optical system;
The spectral fundus image data measurement apparatus according to claim 1.
前記波長可変フィルタは液晶波長可変フィルタであり、前記分光特性補正フィルタは、透過率が前記所定の波長範囲において長波長側よりも短波長側が高くなるように構成されている;
請求項1又は請求項2に記載の分光眼底画像データ測定装置。
The wavelength tunable filter is a liquid crystal wavelength tunable filter, and the spectral characteristic correction filter is configured such that the transmittance is higher on the short wavelength side than on the long wavelength side in the predetermined wavelength range;
The spectral fundus image data measurement apparatus according to claim 1 or 2.
前記所定の波長範囲が540〜610nmである;
請求項1乃至請求項3のいずれか1項に記載の分光眼底画像データ測定装置。
The predetermined wavelength range is 540 to 610 nm;
The spectroscopic fundus image data measurement apparatus according to any one of claims 1 to 3.
前記受光面はCCDで形成され、前記所定の受光光度の範囲が前記CCDのダイナミックレンジ内である;
請求項1乃至請求項4のいずれか1項に記載の分光眼底画像データ測定装置。
The light receiving surface is formed of a CCD, and the range of the predetermined light receiving light intensity is within the dynamic range of the CCD;
The spectral fundus image data measurement apparatus according to any one of claims 1 to 4.
前記受光面での受光信号レベルに応じて露光時間を自動的に決定するように構成された露光制御部を備える;
請求項1乃至請求項5のいずれか1項に記載の分光眼底画像データ測定装置。
An exposure control unit configured to automatically determine an exposure time according to a light reception signal level on the light receiving surface;
The spectral fundus image data measurement apparatus according to any one of claims 1 to 5.
JP2004352092A 2004-12-03 2004-12-03 Spectral fundus image data measurement device Active JP4656924B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004352092A JP4656924B2 (en) 2004-12-03 2004-12-03 Spectral fundus image data measurement device
US11/292,277 US7850305B2 (en) 2004-12-03 2005-12-02 Apparatus and method for measuring spectrum image data of eyeground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352092A JP4656924B2 (en) 2004-12-03 2004-12-03 Spectral fundus image data measurement device

Publications (2)

Publication Number Publication Date
JP2006158546A true JP2006158546A (en) 2006-06-22
JP4656924B2 JP4656924B2 (en) 2011-03-23

Family

ID=36661182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352092A Active JP4656924B2 (en) 2004-12-03 2004-12-03 Spectral fundus image data measurement device

Country Status (1)

Country Link
JP (1) JP4656924B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330557A (en) * 2006-06-15 2007-12-27 Topcon Corp Spectral fundus measuring apparatus and its measuring method
JP2007330558A (en) * 2006-06-15 2007-12-27 Topcon Corp Spectral fundus measuring apparatus and its measuring method
JP2010512878A (en) * 2006-12-21 2010-04-30 カール ツァイス メディテック アクチエンゲゼルシャフト Optical device for improving the quality of fundus images for various ophthalmic devices
JP2012000266A (en) * 2010-06-17 2012-01-05 Canon Inc Fundus imaging apparatus and control method therefor
JP2016127993A (en) * 2011-09-22 2016-07-14 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity Systems and methods for visualizing ablated tissue
US10143517B2 (en) 2014-11-03 2018-12-04 LuxCath, LLC Systems and methods for assessment of contact quality
US10722301B2 (en) 2014-11-03 2020-07-28 The George Washington University Systems and methods for lesion assessment
US10736512B2 (en) 2011-09-22 2020-08-11 The George Washington University Systems and methods for visualizing ablated tissue
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
US11096584B2 (en) 2013-11-14 2021-08-24 The George Washington University Systems and methods for determining lesion depth using fluorescence imaging
US11457817B2 (en) 2013-11-20 2022-10-04 The George Washington University Systems and methods for hyperspectral analysis of cardiac tissue

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus
JPH0271723A (en) * 1988-09-07 1990-03-12 Topcon Corp Retinal camera
JP2002507445A (en) * 1998-03-26 2002-03-12 ユニベルシテ ドゥ モントリオール On-line real-time reflectance spectroscopy of oxygen supply in the patient's eye
JP2002543863A (en) * 1999-05-07 2002-12-24 アプライド スペクトラル イメイジング リミテッド Spectral biological imaging of the eye
JP2003250764A (en) * 2002-03-05 2003-09-09 Kowa Co Ophthalmologic imaging system
JP2003305009A (en) * 2002-04-16 2003-10-28 Kowa Co Ophthalmologic inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus
JPH0271723A (en) * 1988-09-07 1990-03-12 Topcon Corp Retinal camera
JP2002507445A (en) * 1998-03-26 2002-03-12 ユニベルシテ ドゥ モントリオール On-line real-time reflectance spectroscopy of oxygen supply in the patient's eye
JP2002543863A (en) * 1999-05-07 2002-12-24 アプライド スペクトラル イメイジング リミテッド Spectral biological imaging of the eye
JP2003250764A (en) * 2002-03-05 2003-09-09 Kowa Co Ophthalmologic imaging system
JP2003305009A (en) * 2002-04-16 2003-10-28 Kowa Co Ophthalmologic inspection device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330557A (en) * 2006-06-15 2007-12-27 Topcon Corp Spectral fundus measuring apparatus and its measuring method
JP2007330558A (en) * 2006-06-15 2007-12-27 Topcon Corp Spectral fundus measuring apparatus and its measuring method
JP2010512878A (en) * 2006-12-21 2010-04-30 カール ツァイス メディテック アクチエンゲゼルシャフト Optical device for improving the quality of fundus images for various ophthalmic devices
JP2012000266A (en) * 2010-06-17 2012-01-05 Canon Inc Fundus imaging apparatus and control method therefor
US10716462B2 (en) 2011-09-22 2020-07-21 The George Washington University Systems and methods for visualizing ablated tissue
US10736512B2 (en) 2011-09-22 2020-08-11 The George Washington University Systems and methods for visualizing ablated tissue
US11559192B2 (en) 2011-09-22 2023-01-24 The George Washington University Systems and methods for visualizing ablated tissue
JP7185601B2 (en) 2011-09-22 2022-12-07 ザ・ジョージ・ワシントン・ユニバーシティ Systems and methods for visualizing ablated tissue
JP2016127993A (en) * 2011-09-22 2016-07-14 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity Systems and methods for visualizing ablated tissue
US10076238B2 (en) 2011-09-22 2018-09-18 The George Washington University Systems and methods for visualizing ablated tissue
JP2020116368A (en) * 2011-09-22 2020-08-06 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity Systems and methods for visualizing ablated tissue
US11096584B2 (en) 2013-11-14 2021-08-24 The George Washington University Systems and methods for determining lesion depth using fluorescence imaging
US11457817B2 (en) 2013-11-20 2022-10-04 The George Washington University Systems and methods for hyperspectral analysis of cardiac tissue
US10722301B2 (en) 2014-11-03 2020-07-28 The George Washington University Systems and methods for lesion assessment
US10682179B2 (en) 2014-11-03 2020-06-16 460Medical, Inc. Systems and methods for determining tissue type
US10143517B2 (en) 2014-11-03 2018-12-04 LuxCath, LLC Systems and methods for assessment of contact quality
US11559352B2 (en) 2014-11-03 2023-01-24 The George Washington University Systems and methods for lesion assessment
US11596472B2 (en) 2014-11-03 2023-03-07 460Medical, Inc. Systems and methods for assessment of contact quality
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment

Also Published As

Publication number Publication date
JP4656924B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7850305B2 (en) Apparatus and method for measuring spectrum image data of eyeground
JP4854390B2 (en) Spectral fundus measuring apparatus and measuring method thereof
JP4854389B2 (en) Spectral fundus measuring apparatus and measuring method thereof
JP5773598B2 (en) Image processing apparatus, image processing method, and program
US20090002629A1 (en) Retinal camera filter for macular pigment measurements
US20040085542A1 (en) Hyperspectral retinal imager
JP4656924B2 (en) Spectral fundus image data measurement device
US8132911B2 (en) Fundus photo-stimulation system and method
JP2007313171A (en) Endoscopic system
JP2010259675A (en) Retinal function measuring apparatus
Bartczak et al. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging
JP4756854B2 (en) Spectral fundus image data measuring apparatus and measuring method
CN114414046A (en) Observation support device, information processing method, and program
JP5372540B2 (en) Functional imaging ophthalmic apparatus and mask forming method
Di Cecilia et al. A hyperspectral imaging system for the evaluation of the human iris spectral reflectance
US9808150B2 (en) Image processing apparatus, control method therefor, and storage medium storing program
JPH0436692B2 (en)
JP2023534401A (en) Non-mydriatic hyperspectral retinal camera
Arimoto et al. Retinal blood oxygen saturation mapping by multispectral imaging and morphological angiography
JP7086688B2 (en) Imaging equipment and its control method
Vega et al. Development and characterization of a hyperspectral LCTF-based colposcopic system
JP2023043202A (en) Ophthalmologic apparatus
JP2022059765A (en) Ophthalmologic apparatus, control method of ophthalmologic apparatus and program
JP2012245224A (en) Electronic endoscope apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250