JP2006158112A - Piezoelectric power generation mechanism and wireless switch utilizing it - Google Patents

Piezoelectric power generation mechanism and wireless switch utilizing it Download PDF

Info

Publication number
JP2006158112A
JP2006158112A JP2004346465A JP2004346465A JP2006158112A JP 2006158112 A JP2006158112 A JP 2006158112A JP 2004346465 A JP2004346465 A JP 2004346465A JP 2004346465 A JP2004346465 A JP 2004346465A JP 2006158112 A JP2006158112 A JP 2006158112A
Authority
JP
Japan
Prior art keywords
power generation
piezoelectric power
piezoelectric
spring
generation mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004346465A
Other languages
Japanese (ja)
Inventor
Tomohito Kajiyama
智史 梶山
Tsunehiro Kitamura
常弘 北村
Kenji Okada
健治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004346465A priority Critical patent/JP2006158112A/en
Publication of JP2006158112A publication Critical patent/JP2006158112A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a piezoelectric power generation mechanism in which energy loss is reduced when an external driving force acts and to generate power with high efficiency for the external driving force. <P>SOLUTION: The piezoelectric power generation mechanism comprises a piezoelectric power generation element 1 including a piezoelectric element 1a and a resiliently deformable supporting plate 1b bonded with the piezoelectric element 1a, and a spring drive section 2 having one fixed end 2a and the other free end 2b. The spring drive section 2 holds the supporting plate 1b of the piezoelectric power generation element 1 fixedly at a fixing point 1c. When an external driving force acts on the free end 2b and then it is released, the spring drive section 2 oscillates. The piezoelectric power generation element 1 oscillates by receiving oscillation from the spring drive section 2, and the supporting plate 1b and the piezoelectric element 1a bend to induce a stress in the piezoelectric element 1a thus generating power. Since oscillation energy is preserves as the potential energy of each spring, self-attenuation of oscillation is retarded and power can be generated efficiently. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電型発電機構と、それを利用した小型薄型ワイヤレススイッチに関するものである。   The present invention relates to a piezoelectric power generation mechanism and a small and thin wireless switch using the same.

従来の圧電素子を用いた発電機構としては、特許文献1に開示されるように、圧電素子と支持プレートが積層され、片端を変位可能な自由端、他端を支持端とした片持ち梁構造の発電素子を備えた圧電型発電機構が知られている。この発電素子は、支持端から外部の機械的エネルギーが伝達されて自由端に設けられた錘の慣性により加振力が作用し、この加振力によって1自由度系の振動を行い、圧電素子が撓むことにより電気エネルギーを発生させる。
特開平11‐136964号公報
As a power generation mechanism using a conventional piezoelectric element, as disclosed in Patent Document 1, a piezoelectric element and a support plate are laminated, and a cantilever structure in which one end is displaceable and the other end is a support end. There is known a piezoelectric power generation mechanism including a power generation element. This power generating element transmits external mechanical energy from the support end, and an excitation force acts due to the inertia of the weight provided at the free end. Generates electric energy by bending.
Japanese Patent Laid-Open No. 11-136964

しかしながら、上記のような片持ち梁構造の圧電型発電素子の振動においては、支持端にてこの振動エネルギーが漏れて損失されるために自己減衰しやすく、振動が長く続かない。このエネルギー損失を少なくするためには、支持端においての支持剛性を高くすれば良いが、支持構造が大型化してしまう。   However, in the vibration of the piezoelectric power generating element having the cantilever structure as described above, this vibration energy leaks and is lost at the support end, so that it tends to self-dampen and the vibration does not last long. In order to reduce this energy loss, the support rigidity at the support end may be increased, but the support structure is increased in size.

本発明は、上記問題点を鑑みてなされたものであり、片持ち梁構造の問題を解消し、外部駆動力が作用したときのエネルギー損失が少なくなり、より長く振動が続き、外部からの駆動力に対して高効率に発電することが可能な圧電型発電機構を提供することを目的とする。   The present invention has been made in view of the above problems, solves the problem of the cantilever structure, reduces energy loss when an external driving force is applied, continues to vibrate longer, and is driven from the outside. An object of the present invention is to provide a piezoelectric power generation mechanism capable of generating power with high efficiency with respect to force.

上記目的を達成するため請求項1の発明は、外部からの駆動入力をもとに弾性振動により発電する圧電型発電素子を備えた圧電型発電機構において、プレート状の圧電素子と、この圧電素子が固着され、弾性変形可能な支持プレートとを有する圧電型発電素子と、一端が固定端となり、他端が自由端となる、バネ性を有する部材からなり、前記他端寄りに前記圧電型発電素子の支持プレートを保持するバネ駆動部とを備え、前記バネ駆動部は、前記自由端に外部駆動力が作用することにより振動し、前記圧電型発電素子は、前記バネ駆動部の振動を受けて発電するように構成したものである。   In order to achieve the above object, a first aspect of the present invention is directed to a piezoelectric power generating mechanism including a piezoelectric power generating element that generates power by elastic vibration based on an external drive input. A piezoelectric power generation element having an elastically deformable support plate and one end having a fixed end and the other end being a free end, and having a spring property. A spring drive unit that holds a support plate of the element, the spring drive unit vibrates when an external drive force acts on the free end, and the piezoelectric power generation element receives vibration of the spring drive unit. Power generation.

請求項2の発明は、請求項1の発明において、前記圧電型発電素子の固有振動数と、前記バネ駆動部の固有振動数が一致しており、前記圧電型発電素子とバネ駆動部とが共振動作するように構成したものである。   According to a second aspect of the present invention, in the first aspect of the invention, the natural frequency of the piezoelectric power generating element and the natural frequency of the spring driving unit are the same, and the piezoelectric power generating element and the spring driving unit are It is configured to resonate.

請求項3の発明は、請求項1又は請求項2の発明において、前記バネ駆動部は、前記圧電型発電素子の中央部を固着保持し、前記圧電型発電素子は、その中央部に対して少なくとも2個以上の振動片が対称系に配置されている構成としたものである。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the spring drive unit holds and holds the central portion of the piezoelectric power generating element, and the piezoelectric power generating element is in contact with the central portion. At least two or more vibrating pieces are arranged in a symmetric system.

請求項4の発明は、請求項3の発明において、前記圧電型発電素子は、前記バネ駆動部が固着されている部位とは他の自由振動部位に、前記振動片の振動の対称性が確保されるように、少なくとも1つの質量を持った錘を有する構成としたものである。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the piezoelectric power generating element ensures the symmetry of vibration of the vibration piece in a free vibration part other than the part where the spring drive unit is fixed. As described above, the configuration has a weight having at least one mass.

請求項5の発明は、請求項1乃至請求項4のいずれかの発明において、前記バネ駆動部はコイルバネからなり、このコイルバネが外部駆動力により圧縮又は伸長された後、この外部駆動力が開放されることで振動して動作するように構成したものである。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the spring drive portion is formed of a coil spring, and the external drive force is released after the coil spring is compressed or extended by the external drive force. By doing so, it is configured to operate with vibration.

請求項6の発明は、被制御機器に信号を送信するワイヤレス通信装置用のワイヤレススイッチを、請求項1乃至請求項5のいずれかの発明における圧電型発電機構により発電した電力を電源として動作するような構成としたものである。   According to a sixth aspect of the present invention, a wireless switch for a wireless communication device that transmits a signal to a controlled device operates using power generated by the piezoelectric power generation mechanism according to any of the first to fifth aspects as a power source. The configuration is as follows.

請求項1の発明によれば、外部駆動力が作用してバネ駆動部が振動すると、この振動は圧電素子が固着された弾性変形可能な支持プレートを振動させるので、二段構えの振動となり、振動のエネルギーはお互いのバネの位置エネルギーとして保存され、自己減衰が少なくなって圧電型発電素子の振動が長く続き、外部からの駆動力に対して高効率に発電することが可能となる。   According to the invention of claim 1, when the external driving force is applied and the spring driving portion vibrates, the vibration vibrates the elastically deformable support plate to which the piezoelectric element is fixed. The energy of vibration is stored as the potential energy of the springs of each other, self-damping is reduced, the vibration of the piezoelectric power generating element continues for a long time, and it becomes possible to generate power with high efficiency with respect to external driving force.

請求項2の発明によれば、バネ駆動部と圧電型発電素子を共振させて発電するので、圧電型発電素子の振動の減衰も少なく、振幅が大きい振動が長く続き、外部からの駆動力に対して高効率に発電することが可能となる。   According to the invention of claim 2, since the spring drive unit and the piezoelectric power generating element are resonated to generate power, the vibration of the piezoelectric power generating element is less attenuated, the vibration having a large amplitude continues for a long time, and the driving force from the outside is increased. On the other hand, it is possible to generate power with high efficiency.

請求項3の発明によれば、圧電型発電素子は少なくとも2個以上の振動片が対称系に配置され、この中央部にバネ駆動部が固着されるので、より効率良く、大きな発電力を得ることが可能となる。   According to the invention of claim 3, since the piezoelectric power generating element has at least two or more vibrating pieces arranged in a symmetric system and the spring drive portion is fixed to the center portion, more efficient and large power generation can be obtained. It becomes possible.

請求項4の発明によれば、圧電型発電素子の自由振動部位に錘を設けるので、圧電型発電素子の大きさに関わらず、この錘の重さを調節することによって圧電型発電素子の固有振動数を設定可能となり、圧電型発電機構を小型化することが可能となる。   According to the invention of claim 4, since the weight is provided at the free vibration portion of the piezoelectric power generating element, the weight of the piezoelectric power generating element is adjusted by adjusting the weight of the weight regardless of the size of the piezoelectric power generating element. The frequency can be set, and the piezoelectric power generation mechanism can be reduced in size.

請求項5の発明によれば、バネ駆動部をコイルバネとするので、振動エネルギーの損失が少なく、圧電型発電素子の振動が長く続き、外部からの駆動力に対して高効率に発電することが可能となる。また、バネ駆動部を収納するのに必要なスペースが小さくなり、圧電型発電機構の小型化が可能となる。   According to the invention of claim 5, since the spring drive part is a coil spring, the loss of vibration energy is small, the vibration of the piezoelectric power generation element continues for a long time, and power can be generated with high efficiency with respect to the drive force from the outside. It becomes possible. In addition, the space required for housing the spring drive unit is reduced, and the piezoelectric power generation mechanism can be reduced in size.

請求項6の発明によれば、入力される外部駆動力に対して効率良く発電可能な圧電型発電機構をワイヤレススイッチの電源として用いるので、電池の交換などが不要となり、ワイヤレススイッチの使い勝手が良くなる。   According to the invention of claim 6, since the piezoelectric power generation mechanism capable of generating power efficiently with respect to the input external driving force is used as the power source of the wireless switch, it is not necessary to replace the battery and the convenience of the wireless switch is improved. Become.

以下、本発明の第1乃至第5の実施形態について図面を参照しながら説明する。図1は第1の実施形態における圧電型発電機構の概略構成の一例を示す。この圧電型発電機構は、圧電型発電素子1とバネ駆動部2とを備えている。圧電型発電素子1は、プレート状の圧電素子1aと、圧電素子1aが固着され、弾性変形可能な支持プレート1bと、圧電素子1aに設けられた電極(図示なし)とを有している。バネ駆動部2は、一端が固定された固定端2a、他端が自由端2bとなり、バネ性を有する部材からなる。圧電型発電素子1の支持プレート1bは固着点1cにおいてバネ駆動部2と固着され、バネ駆動部2は圧電型発電素子1を保持する。   Hereinafter, first to fifth embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a schematic configuration of the piezoelectric power generation mechanism according to the first embodiment. This piezoelectric power generation mechanism includes a piezoelectric power generation element 1 and a spring drive unit 2. The piezoelectric power generation element 1 includes a plate-like piezoelectric element 1a, a support plate 1b to which the piezoelectric element 1a is fixed and elastically deformable, and an electrode (not shown) provided on the piezoelectric element 1a. The spring drive unit 2 is a fixed end 2a with one end fixed, and the other end is a free end 2b. The support plate 1 b of the piezoelectric power generating element 1 is fixed to the spring driving unit 2 at the fixing point 1 c, and the spring driving unit 2 holds the piezoelectric power generating element 1.

圧電型発電素子1の支持プレート1bは両端部が自由振動部位1dとなり、圧電型発電素子1において、固着点1cから両端の自由振動部位1dまでのそれぞれが、振動可能な振動片A(図の2点鎖線で示す部分)となる。バネ駆動部2は、自由端2bに外部駆動力が作用することによって変位し、外部駆動力の向きと反対方向の復元力を発生する。その後、この外部駆動力が開放されると、この復元力を以て図の矢印の方向に振動する。このバネ駆動部2の振動は圧電型発電素子1に伝達され、圧電型発電素子1の振動片Aはこの振動を受けて図の矢印の方向に振動する。このとき、圧電型発電素子1は支持プレート1bと圧電素子1aとが撓んで圧電素子1aに応力が生じることにより電力を発生し、この電力は電極を通じて引き出される。   Both ends of the support plate 1b of the piezoelectric power generating element 1 become free vibration parts 1d. In the piezoelectric power generating element 1, each of the vibrating plate A from the fixing point 1c to the free vibration parts 1d at both ends can vibrate (see the figure). Part indicated by a two-dot chain line). The spring drive unit 2 is displaced by the external drive force acting on the free end 2b, and generates a restoring force in a direction opposite to the direction of the external drive force. Thereafter, when the external driving force is released, the restoring force vibrates in the direction of the arrow in the figure. The vibration of the spring drive unit 2 is transmitted to the piezoelectric power generation element 1, and the vibration piece A of the piezoelectric power generation element 1 receives this vibration and vibrates in the direction of the arrow in the figure. At this time, the piezoelectric power generating element 1 generates electric power when the support plate 1b and the piezoelectric element 1a are bent and stress is generated in the piezoelectric element 1a, and this electric power is drawn through the electrodes.

本実施形態における圧電型発電機構は、外部駆動力が自由端2bに作用してバネ駆動部2が振動し、この振動が圧電型発電素子1の支持プレート1bを振動させる、二段構えの振動により動作する。このようにすることで、支持プレート1b及びバネ駆動部2の振動のエネルギーはお互いのバネの位置エネルギーとして保存されるため、バネ駆動部2の固定端2aにおいての振動エネルギーの損失量が少なくなり、自己減衰が少なくなって圧電型発電素子1の振動が長く続き、外部駆動力に対して高効率に発電することが可能となる。   In the piezoelectric power generation mechanism according to this embodiment, the external driving force acts on the free end 2b to vibrate the spring drive unit 2, and this vibration vibrates the support plate 1b of the piezoelectric power generation element 1. It works by. By doing so, the vibration energy of the support plate 1b and the spring drive unit 2 is stored as the positional energy of the springs, so that the amount of vibration energy loss at the fixed end 2a of the spring drive unit 2 is reduced. The self-attenuation is reduced, and the vibration of the piezoelectric power generating element 1 continues for a long time, so that power can be generated with high efficiency with respect to the external driving force.

ここで、この圧電型発電機構を、圧電型発電素子1の固有振動数とバネ駆動部2の固有振動数とが一致するように構成することができる。このように固有振動数が一致するように構成すると、圧電型発電素子1とバネ駆動部2とが共振するので、圧電型発電素子1は、振幅が大きい振動を長く続け、効率良く大きな発電力を得ることができる。   Here, the piezoelectric power generation mechanism can be configured such that the natural frequency of the piezoelectric power generation element 1 and the natural frequency of the spring drive unit 2 coincide. When configured so that the natural frequencies coincide with each other, the piezoelectric power generating element 1 and the spring drive unit 2 resonate. Therefore, the piezoelectric power generating element 1 continues to vibrate with a large amplitude for a long time and efficiently generates large power. Can be obtained.

図2は、第2の実施形態における圧電型発電機構の概略構成を示す。以下、上述の実施形態と同一の構成要素については、同一の参照符号を付して説明を省略し、相違点を説明する。本実施形態においては、圧電型発電素子1は、中央部に対して4個の振動片Aが対称系に1つの平面状に配置された構成である。この圧電型発電機構においては、バネ駆動部2が圧電型発電素子1の中央部を固着点1cとして支持プレート1bを固着し、保持する。この圧電型発電機構は、上記第1の実施形態における圧電型発電機構と同様に動作して効率良く発電可能であり、また、4個の振動片Aで発電を行うことにより、大きな発電力を得ることができる。ここで、このような効果を得るために圧電型発電素子1において対称系に配置される振動片は少なくとも2個以上であればよく、適宜設定することが可能である。   FIG. 2 shows a schematic configuration of the piezoelectric power generation mechanism according to the second embodiment. Hereinafter, the same components as those of the above-described embodiment will be denoted by the same reference numerals, description thereof will be omitted, and differences will be described. In the present embodiment, the piezoelectric power generating element 1 has a configuration in which four vibrating pieces A are arranged in a single plane in a symmetrical system with respect to the central portion. In this piezoelectric power generation mechanism, the spring drive unit 2 fixes and holds the support plate 1b with the central portion of the piezoelectric power generation element 1 as the fixing point 1c. This piezoelectric power generation mechanism operates in the same manner as the piezoelectric power generation mechanism in the first embodiment and can generate power efficiently. By generating power with the four vibration pieces A, a large amount of power is generated. Obtainable. Here, in order to obtain such an effect, it is sufficient that at least two resonator elements are arranged in a symmetrical system in the piezoelectric power generating element 1, and can be set as appropriate.

図3は、第3の実施形態における圧電型発電機構の概略構成を示す。この圧電型発電機構は、圧電型発電素子1の支持プレート1bの両端の自由振動部位1dに、質量を持った錘1eをそれぞれ有する。圧電型発電素子1は中央部に対して2個の振動片Aが対称系に配置された構成であり、この錘1eは、振動片Aの振動の対称性が確保されるように設けられている。このように、自由振動部位1dに錘1eを設けることで、圧電型発電素子1の大きさに関わらず、この錘1eの重さを調節することによって圧電型発電素子1の固有振動数を設定することができる。例えば、圧電型発電機構の小型化を目的として圧電型発電素子1を小さくすると固有振動数は高くなり、上記のようにバネ駆動部2と共振させるにはバネ駆動部2の固有振動数も高くなるように構成する必要がある。しかし、錘1eを設けることにより、この錘1eの質量を大きくすることにより圧電型発電素子1及びバネ駆動部2の固有振動数を低く調節することができる。つまり、上記のように錘1eを設けて、この錘1eを適切な質量に調整することで、固有振動数や共振の条件を保ちつつ圧電型発電機構を小型化することが可能となる。   FIG. 3 shows a schematic configuration of the piezoelectric power generation mechanism according to the third embodiment. This piezoelectric power generation mechanism has weights 1e having masses at free vibration portions 1d at both ends of the support plate 1b of the piezoelectric power generation element 1, respectively. The piezoelectric power generating element 1 has a configuration in which two vibrating pieces A are arranged in a symmetrical system with respect to the central portion, and the weight 1e is provided so as to ensure the symmetry of vibration of the vibrating piece A. Yes. In this way, by providing the weight 1e in the free vibration portion 1d, the natural frequency of the piezoelectric power generation element 1 is set by adjusting the weight of the weight 1e regardless of the size of the piezoelectric power generation element 1. can do. For example, if the piezoelectric power generating element 1 is made small for the purpose of downsizing the piezoelectric power generating mechanism, the natural frequency increases, and the natural frequency of the spring driving unit 2 is also high in order to resonate with the spring driving unit 2 as described above. It is necessary to configure so that However, by providing the weight 1e, the natural frequency of the piezoelectric power generation element 1 and the spring drive unit 2 can be adjusted to be low by increasing the mass of the weight 1e. That is, by providing the weight 1e as described above and adjusting the weight 1e to an appropriate mass, the piezoelectric power generation mechanism can be reduced in size while maintaining the natural frequency and resonance conditions.

図4は、第4の実施形態における圧電型発電機構の概略構成を示す。本実施形態において、バネ駆動部2はコイルバネからなる。このバネ駆動部2(コイルバネ2)は、自由端2bが圧電型発電素子1の支持プレート1bに固着される固着点1cとされ、この自由端2bに外部駆動力が入力されることでコイルバネ2が図の矢印方向に圧縮又は伸長し、外部駆動力の向きと反対方向の復元力を発生する。そして、外部駆動力が開放されると、コイルバネ2はこの復元力を以て図の矢印方向に振動し、圧電型発電素子1はこの振動により加振されて発電する。このように、バネ駆動部2を振動エネルギーの損失が少ないコイルバネとすることで、圧電型発電素子1の振動が長く続き、外部から入力された駆動力に対し、効率良く発電することが可能となる。また、バネ駆動部2を収納するのに必要なスペースが小さくなり、圧電型発電機構の小型化が可能となる。   FIG. 4 shows a schematic configuration of the piezoelectric power generation mechanism according to the fourth embodiment. In this embodiment, the spring drive part 2 consists of a coil spring. The spring drive unit 2 (coil spring 2) has a free end 2b as a fixing point 1c where the free end 2b is fixed to the support plate 1b of the piezoelectric power generating element 1, and an external driving force is input to the free end 2b, thereby the coil spring 2 Compresses or extends in the direction of the arrow in the figure, and generates a restoring force in the direction opposite to the direction of the external driving force. When the external driving force is released, the coil spring 2 vibrates in the direction of the arrow in the figure with this restoring force, and the piezoelectric power generating element 1 is vibrated by this vibration to generate electric power. Thus, by making the spring drive unit 2 a coil spring with little loss of vibration energy, the vibration of the piezoelectric power generation element 1 continues for a long time, and it is possible to generate power efficiently with respect to the drive force input from the outside. Become. Further, the space necessary for housing the spring drive unit 2 is reduced, and the piezoelectric power generation mechanism can be reduced in size.

図5は、第5の実施形態における圧電型発電機構の概略構成を示す。本実施形態において、バネ駆動部2は第4の実施形態と同様にコイルバネからなり、コイルバネ2が圧電型発電素子1の中央部を固着点1cとして圧電型発電素子1の支持プレート1bを保持し、圧電型発電素子1は、この中央部に対して4個の振動片Aが対称系に配置された構成である。このように構成することで、圧電型発電機構は上記と同様に動作して効率良く発電することができ、また、4個の振動片Aで発電を行うことで大きな発電力を得ることができる。このとき、このような効果を得るために圧電型発電素子1において対称系に配置される振動片Aは少なくとも2個以上であればよく、適宜設定することが可能である。   FIG. 5 shows a schematic configuration of the piezoelectric power generation mechanism according to the fifth embodiment. In the present embodiment, the spring driving unit 2 is formed of a coil spring as in the fourth embodiment, and the coil spring 2 holds the support plate 1b of the piezoelectric power generating element 1 with the central portion of the piezoelectric power generating element 1 as a fixing point 1c. The piezoelectric power generating element 1 has a configuration in which four vibration pieces A are arranged in a symmetric system with respect to the central portion. With this configuration, the piezoelectric power generation mechanism can operate in the same manner as described above to generate power efficiently, and can generate large power by generating power with the four vibrating bars A. . At this time, in order to obtain such an effect, the number of vibrating pieces A arranged in a symmetric system in the piezoelectric power generation element 1 may be at least two, and can be set as appropriate.

次に、図6を参照して、上記第1乃至第5の実施形態の圧電型発電機構を備えたワイヤレス通信装置用のワイヤレススイッチの実施形態を説明する。このワイヤレススイッチは、圧電型発電機構により発電した電力を電源として動作し、被制御機器に信号を送信する。図6は、上記第4の実施形態と同様の構成でなる、バネ駆動部2がコイルバネとされた圧電型発電機構を備えるワイヤレススイッチを示す。このワイヤレススイッチにおいて、圧電型発電機構の固定端2aと、ワイヤレス通信装置50とが筐体51に固定され、圧電型発電素子1に設けられた電極1fとワイヤレス通信装置50とは配線55で接続される。筐体51にはスイッチハンドル52がヒンジ54を介して図の矢印の方向に回転移動可能に設けられる。スイッチハンドル52には圧電型発電素子1の押圧手段53が固着されており、スイッチハンドル52が図の白抜き矢印の方向に押下されると、押圧手段53は圧電型発電機構の自由端2bを押圧する。   Next, with reference to FIG. 6, an embodiment of a wireless switch for a wireless communication apparatus provided with the piezoelectric power generation mechanism of the first to fifth embodiments will be described. This wireless switch operates using power generated by the piezoelectric power generation mechanism as a power source, and transmits a signal to the controlled device. FIG. 6 shows a wireless switch including a piezoelectric power generation mechanism in which the spring drive unit 2 is a coil spring, which has the same configuration as that of the fourth embodiment. In this wireless switch, the fixed end 2a of the piezoelectric power generation mechanism and the wireless communication device 50 are fixed to the casing 51, and the electrode 1f provided on the piezoelectric power generation element 1 and the wireless communication device 50 are connected by a wire 55. Is done. A switch handle 52 is provided on the casing 51 via a hinge 54 so as to be rotatable in the direction of the arrow in the figure. The pressing means 53 of the piezoelectric power generating element 1 is fixed to the switch handle 52. When the switch handle 52 is pressed in the direction of the white arrow in the figure, the pressing means 53 pushes the free end 2b of the piezoelectric power generating mechanism. Press.

スイッチハンドル52に外部からの操作荷重が加えられて押下されることで、圧電型発電機構の自由端2bが押圧手段53に押圧されると、バネ駆動部2(コイルバネ2)が図の白抜き矢印方向に圧縮し、これと反対方向の復元力を発生する。そして、スイッチハンドル52に加えられた操作荷重がなくなり自由端2bに加えられた外部駆動力が開放されると、コイルバネ2はこの復元力を以て黒矢印方向に振動する。圧電型発電素子1はこのコイルバネ2の振動を受けて振動し、支持プレート1bと圧電素子1aとが撓んで圧電素子1aに応力が発生することで発電する。このように圧電型発電機構が発電した電力は、電極1fから配線55を通じてワイヤレス通信装置50に供給される。ワイヤレス通信装置50は電力が供給されると、被制御機器に、例えば被制御機器の動作をオン・オフさせるような反転信号を送信する。このように、ワイヤレススイッチの電源を、入力される外部駆動力に対して効率力発電可能な圧電型発電機構とすることにより、電池の交換などが不要となるため、ワイヤレススイッチの使い勝手を良くすることが可能となる。   When the operation load from the outside is applied to the switch handle 52 and is pressed down, when the free end 2b of the piezoelectric power generation mechanism is pressed by the pressing means 53, the spring drive unit 2 (coil spring 2) is outlined. It compresses in the direction of the arrow and generates a restoring force in the opposite direction. When the operating load applied to the switch handle 52 disappears and the external driving force applied to the free end 2b is released, the coil spring 2 vibrates in the black arrow direction with this restoring force. The piezoelectric power generating element 1 receives the vibration of the coil spring 2 and vibrates, and the support plate 1b and the piezoelectric element 1a are bent to generate power by generating stress in the piezoelectric element 1a. Thus, the electric power generated by the piezoelectric power generation mechanism is supplied from the electrode 1 f to the wireless communication device 50 through the wiring 55. When the wireless communication device 50 is supplied with power, the wireless communication device 50 transmits to the controlled device an inversion signal that turns on / off the operation of the controlled device, for example. In this way, the power supply of the wireless switch is a piezoelectric power generation mechanism that can generate power efficiently with respect to the external driving force that is input, thereby eliminating the need for battery replacement and the like, thus improving the usability of the wireless switch. It becomes possible.

ここで、上述の各実施形態において説明した圧電型発電機構をワイヤレススイッチの電源として備える場合においては、上記のようなワイヤレススイッチの構成において、圧電型発電機構と押圧手段53の配置を変更すればよい。つまり、スイッチハンドル52に操作荷重が加えられたときに、圧電型発電機構の自由端2bを押圧手段53が押圧し、バネ駆動部2が振動する方向に向けて変位するように、圧電型発電機構のバネ駆動部2を筐体51に固定し、また、押圧手段53の位置を変更する。このようにワイヤレススイッチを構成することにより、圧電型発電機構を駆動させることが可能となる。   Here, in the case where the piezoelectric power generation mechanism described in each of the above-described embodiments is provided as a power source for the wireless switch, the arrangement of the piezoelectric power generation mechanism and the pressing unit 53 in the configuration of the wireless switch as described above may be changed. Good. That is, when an operation load is applied to the switch handle 52, the piezoelectric power generation is performed such that the pressing means 53 presses the free end 2b of the piezoelectric power generation mechanism and the spring drive unit 2 is displaced in the vibrating direction. The spring drive unit 2 of the mechanism is fixed to the casing 51, and the position of the pressing means 53 is changed. By configuring the wireless switch in this way, the piezoelectric power generation mechanism can be driven.

なお、本発明は上記各実施形態の構成に限定するものではなく、発明の範囲を変更しない範囲で適宜に種々の変形が可能である。例えば、圧電型発電素子1を保持するバネ駆動部2はトーションスプリングであってもよく、このとき、外部駆動力が作用してバネ駆動部がねじられる方向に振動し、この振動を受けて圧電型発電素子1が振動するように圧電型発電機構が構成される。   In addition, this invention is not limited to the structure of said each embodiment, A various deformation | transformation is suitably possible in the range which does not change the range of invention. For example, the spring drive unit 2 that holds the piezoelectric power generating element 1 may be a torsion spring. At this time, the external drive force acts to vibrate in the direction in which the spring drive unit is twisted, and the vibration is received to receive the piezoelectric element. The piezoelectric power generation mechanism is configured such that the power generation element 1 vibrates.

本発明の第1の実施形態に係る圧電型発電機構の斜視図。1 is a perspective view of a piezoelectric power generation mechanism according to a first embodiment of the present invention. 本発明の第2の実施形態に係る圧電型発電機構の平面図。The top view of the piezoelectric power generation mechanism which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る圧電型発電機構の斜視図。The perspective view of the piezoelectric power generation mechanism which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る圧電型発電機構の斜視図。The perspective view of the piezoelectric power generation mechanism which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る圧電型発電機構の斜視図。The perspective view of the piezoelectric power generation mechanism which concerns on the 5th Embodiment of this invention. 上記第4の実施形態と同様の構成でなる圧電型発電機構を備えたワイヤレススイッチの側断面図。The sectional side view of the wireless switch provided with the piezoelectric type electric power generation mechanism comprised by the same structure as the said 4th Embodiment.

符号の説明Explanation of symbols

1 圧電型発電素子
1a 圧電素子
1b 支持プレート
1c 固着点
1d 自由振動部位
1e 錘
2 バネ駆動部
2a 固定端
2b 自由端
A 振動片
DESCRIPTION OF SYMBOLS 1 Piezoelectric power generation element 1a Piezoelectric element 1b Support plate 1c Fixing point 1d Free vibration part 1e Weight 2 Spring drive part 2a Fixed end 2b Free end A Vibrating piece

Claims (6)

外部からの駆動入力をもとに弾性振動により発電する圧電型発電素子を備えた圧電型発電機構であって、
プレート状の圧電素子と、この圧電素子が固着され、弾性変形可能な支持プレートとを有する圧電型発電素子と、
一端が固定端となり、他端が自由端となる、バネ性を有する部材からなり、前記他端寄りに前記圧電型発電素子の支持プレートを保持するバネ駆動部とを備え、
前記バネ駆動部は、前記自由端に外部駆動力が作用することにより振動し、
前記圧電型発電素子は、前記バネ駆動部の振動を受けて発電することを特徴とする圧電型発電機構。
A piezoelectric power generation mechanism including a piezoelectric power generation element that generates power by elastic vibration based on an external drive input,
A piezoelectric power generation element having a plate-like piezoelectric element and a support plate to which the piezoelectric element is fixed and elastically deformable;
One end is a fixed end, the other end is a free end, and is made of a member having a spring property, and is provided with a spring drive unit that holds the support plate of the piezoelectric power generating element near the other end,
The spring drive unit vibrates when an external drive force acts on the free end,
The piezoelectric power generation mechanism is characterized in that the piezoelectric power generation element generates electric power by receiving vibration of the spring drive unit.
前記圧電型発電素子の固有振動数と、前記バネ駆動部の固有振動数が一致しており、前記圧電型発電素子とバネ駆動部とが共振動作することを特徴とする請求項1記載の圧電型発電機構。   2. The piezoelectric device according to claim 1, wherein a natural frequency of the piezoelectric power generation element matches a natural frequency of the spring driving unit, and the piezoelectric power generation element and the spring driving unit resonate. Type power generation mechanism. 前記バネ駆動部は、前記圧電型発電素子の中央部を固着保持し、
前記圧電型発電素子は、その中央部に対して少なくとも2個以上の振動片が対称系に配置されていることを特徴とする請求項1又は請求項2に記載の圧電型発電機構。
The spring drive unit holds and holds the central portion of the piezoelectric power generation element,
3. The piezoelectric power generation mechanism according to claim 1, wherein the piezoelectric power generation element has at least two vibrating pieces arranged symmetrically with respect to a central portion thereof. 4.
前記圧電型発電素子は、前記バネ駆動部が固着されている部位とは他の自由振動部位に、前記振動片の振動の対称性が確保されるように、少なくとも1つの質量を持った錘を有することを特徴とする請求項3記載の圧電型発電機構。   The piezoelectric power generating element is provided with a weight having at least one mass so as to ensure the symmetry of vibration of the resonator element in a free vibration part other than the part to which the spring drive unit is fixed. 4. The piezoelectric power generation mechanism according to claim 3, further comprising: 前記バネ駆動部はコイルバネからなり、このコイルバネが外部駆動力により圧縮又は伸長された後、この外部駆動力が開放されることで振動して動作することを特徴とする請求項1乃至請求項4のいずれかに記載の圧電型発電機構。   5. The spring drive unit comprises a coil spring, and the coil spring is compressed or extended by an external drive force, and then vibrates and operates by releasing the external drive force. The piezoelectric power generation mechanism according to any one of the above. 請求項1乃至請求項5のいずれかに記載の圧電型発電機構により発電した電力を電源として動作し、被制御機器に信号を送信するワイヤレス通信装置用のワイヤレススイッチ。
A wireless switch for a wireless communication device that operates using the electric power generated by the piezoelectric power generation mechanism according to any one of claims 1 to 5 as a power source and transmits a signal to a controlled device.
JP2004346465A 2004-11-30 2004-11-30 Piezoelectric power generation mechanism and wireless switch utilizing it Withdrawn JP2006158112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346465A JP2006158112A (en) 2004-11-30 2004-11-30 Piezoelectric power generation mechanism and wireless switch utilizing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346465A JP2006158112A (en) 2004-11-30 2004-11-30 Piezoelectric power generation mechanism and wireless switch utilizing it

Publications (1)

Publication Number Publication Date
JP2006158112A true JP2006158112A (en) 2006-06-15

Family

ID=36635719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346465A Withdrawn JP2006158112A (en) 2004-11-30 2004-11-30 Piezoelectric power generation mechanism and wireless switch utilizing it

Country Status (1)

Country Link
JP (1) JP2006158112A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053835A1 (en) * 2006-11-01 2008-05-08 Panasonic Corporation Piezoelectric power generating mechanism
JP2008211925A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Piezoelectric power generation device
JP2008232331A (en) * 2007-03-22 2008-10-02 Railway Technical Res Inst Mounting structure for piezoelectric element on vibration damping object
KR100930458B1 (en) * 2007-11-12 2009-12-08 숭실대학교산학협력단 Portable Generator Using Piezofilm
JP2010016936A (en) * 2008-07-02 2010-01-21 Casio Comput Co Ltd Power generating device
JP2011172351A (en) * 2010-02-17 2011-09-01 Takenaka Komuten Co Ltd Oscillating power generator
JP5097859B1 (en) * 2012-01-11 2012-12-12 浩平 速水 Power generator
WO2013007693A1 (en) * 2011-07-11 2013-01-17 Commissariat à l'énergie atomique et aux énergies alternatives System for converting thermal energy into electrical energy
JP2013099130A (en) * 2011-11-01 2013-05-20 Hiroshima Univ Vibration power generation device
KR101271749B1 (en) 2012-05-14 2013-06-05 (주) 센불 Piezoelectric type wireless switch with excellent portability
WO2014021196A1 (en) * 2012-08-01 2014-02-06 ミツミ電機株式会社 Power generation device
WO2015083339A1 (en) * 2013-12-06 2015-06-11 パナソニックIpマネジメント株式会社 Power generation unit
JP5800345B1 (en) * 2015-02-13 2015-10-28 新川センサテクノロジ株式会社 Wireless sensor, monitoring system and monitoring method using the same
CN105391339A (en) * 2014-09-01 2016-03-09 三星电机株式会社 Piezoelectric energy harvester and wireless switch including the same
JP2016178715A (en) * 2015-03-18 2016-10-06 株式会社リコー Power generation element and power generation device
US9871600B2 (en) 2014-07-14 2018-01-16 Samsung Electro-Mechanics Co., Ltd. Wireless switch
CN107818683A (en) * 2017-11-28 2018-03-20 广东工业大学 A kind of wireless control switch device and system
TWI681370B (en) * 2018-01-05 2020-01-01 日商歐姆龍股份有限公司 wireless switch
JP2022173466A (en) * 2019-12-25 2022-11-18 株式会社デンソー Piezoelectric element and piezoelectric device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053835A1 (en) * 2006-11-01 2008-05-08 Panasonic Corporation Piezoelectric power generating mechanism
US8022600B2 (en) 2006-11-01 2011-09-20 Panasonic Corporation Piezoelectric power generating mechanism with spring material
JP2008211925A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Piezoelectric power generation device
JP2008232331A (en) * 2007-03-22 2008-10-02 Railway Technical Res Inst Mounting structure for piezoelectric element on vibration damping object
KR100930458B1 (en) * 2007-11-12 2009-12-08 숭실대학교산학협력단 Portable Generator Using Piezofilm
JP2010016936A (en) * 2008-07-02 2010-01-21 Casio Comput Co Ltd Power generating device
JP2011172351A (en) * 2010-02-17 2011-09-01 Takenaka Komuten Co Ltd Oscillating power generator
WO2013007693A1 (en) * 2011-07-11 2013-01-17 Commissariat à l'énergie atomique et aux énergies alternatives System for converting thermal energy into electrical energy
US9528502B2 (en) 2011-07-11 2016-12-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for conversing thermal energy into electrical energy
FR2977983A1 (en) * 2011-07-11 2013-01-18 Commissariat Energie Atomique SYSTEM FOR CONVERTING THERMAL ENERGY IN ELECTRICAL ENERGY
JP2013099130A (en) * 2011-11-01 2013-05-20 Hiroshima Univ Vibration power generation device
JP5097859B1 (en) * 2012-01-11 2012-12-12 浩平 速水 Power generator
KR101271749B1 (en) 2012-05-14 2013-06-05 (주) 센불 Piezoelectric type wireless switch with excellent portability
WO2014021196A1 (en) * 2012-08-01 2014-02-06 ミツミ電機株式会社 Power generation device
WO2015083339A1 (en) * 2013-12-06 2015-06-11 パナソニックIpマネジメント株式会社 Power generation unit
US10211703B2 (en) 2013-12-06 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Power generating unit
JPWO2015083339A1 (en) * 2013-12-06 2017-03-16 パナソニックIpマネジメント株式会社 Power generation unit
US9871600B2 (en) 2014-07-14 2018-01-16 Samsung Electro-Mechanics Co., Ltd. Wireless switch
CN105391339A (en) * 2014-09-01 2016-03-09 三星电机株式会社 Piezoelectric energy harvester and wireless switch including the same
WO2016129131A1 (en) * 2015-02-13 2016-08-18 新川センサテクノロジ株式会社 Wireless sensor, and monitor system and monitor method using same
JP2016148628A (en) * 2015-02-13 2016-08-18 新川センサテクノロジ株式会社 Wireless sensor, and monitoring system and monitoring method using the same
JP5800345B1 (en) * 2015-02-13 2015-10-28 新川センサテクノロジ株式会社 Wireless sensor, monitoring system and monitoring method using the same
JP2016178715A (en) * 2015-03-18 2016-10-06 株式会社リコー Power generation element and power generation device
US10270369B2 (en) 2015-03-18 2019-04-23 Ricoh Company, Ltd. Electric generating element and electric generator
CN107818683A (en) * 2017-11-28 2018-03-20 广东工业大学 A kind of wireless control switch device and system
CN107818683B (en) * 2017-11-28 2024-03-26 广东工业大学 Wireless control switch device and system
TWI681370B (en) * 2018-01-05 2020-01-01 日商歐姆龍股份有限公司 wireless switch
JP2022173466A (en) * 2019-12-25 2022-11-18 株式会社デンソー Piezoelectric element and piezoelectric device
JP7447958B2 (en) 2019-12-25 2024-03-12 株式会社デンソー Piezoelectric element, piezoelectric device

Similar Documents

Publication Publication Date Title
JP2006158112A (en) Piezoelectric power generation mechanism and wireless switch utilizing it
JP5461381B2 (en) Vibration generator
JP2011091719A (en) Flexural oscillating actuator
US20050007342A1 (en) Haptic devices having multiple operational modes including at least one resonant mode
JP3387101B2 (en) Actuator, clock and alarm device using the same
KR101539044B1 (en) Sound generator
KR20140071184A (en) vibratior
US20130241211A1 (en) Power generator, electronic device, and power generating device
US6016231A (en) Drive mechanism employing electromechanical transducer and apparatus employing the mechanism
JPWO2004077652A1 (en) Piezoelectric generator
JP6331677B2 (en) Vibration power generator
JP6422248B2 (en) Driving device and lens driving device having the same
CN104184359B (en) Vibration generating apparatus
KR101607949B1 (en) Vibrator
JP2019041548A (en) Linear oscillation motor and electronic equipment
KR20140115235A (en) Vibrator
JP3529559B2 (en) Electromechanical sound transducer and portable terminal device using the same
JPH07143770A (en) Ultrasonic motor
WO2020230509A1 (en) Vibration power generation device
JP6479557B2 (en) Linear vibration motor
KR102003372B1 (en) vibrator
KR100683934B1 (en) Micro piezoelectric linear motor
KR20180017542A (en) Piezo Actuator
JP2019009872A (en) Linear vibration motor and electronic apparatus
KR20140135085A (en) vibrator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205