JP2006158103A - Charging device - Google Patents

Charging device Download PDF

Info

Publication number
JP2006158103A
JP2006158103A JP2004345874A JP2004345874A JP2006158103A JP 2006158103 A JP2006158103 A JP 2006158103A JP 2004345874 A JP2004345874 A JP 2004345874A JP 2004345874 A JP2004345874 A JP 2004345874A JP 2006158103 A JP2006158103 A JP 2006158103A
Authority
JP
Japan
Prior art keywords
voltage
output
current
charging
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345874A
Other languages
Japanese (ja)
Inventor
Hirotoshi Kawashima
洋利 川島
Hiroshi Saito
浩 齊藤
Takuya Ishii
卓也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004345874A priority Critical patent/JP2006158103A/en
Publication of JP2006158103A publication Critical patent/JP2006158103A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simultaneously perform preferable charge of a secondary cell and power supply to a load using only a simple circuit constitution and required minimum power supply capability. <P>SOLUTION: This charger consists of a power supply device 1, and a charging portion 2 constituted of a charger 20, a current detecting resistor 21, and a voltage detector 22 to charge the secondary cell 3 and supply output voltage Vo to the load 4. The voltage detector 22 detects the load 4 and a voltage Vo of the secondary cell 3, and outputs a first voltage detecting signal V1 and a second voltage detecting signal V2 to the charger 20. The first voltage detecting signal V1 indicates a compared result between the output voltage Vo and a first prescribed voltage Vo1, and a second voltage detecting signal V2 indicates a compared result between the output voltage Vo and a second prescribed voltage Vo2. In this constitution, the first prescribed voltage Vo1 is set at a cell voltage at the time of full charge of the secondary cell 3, the second voltage detecting signal Vo2 is set to be lower than the first prescribed voltage Vo1 and higher than a driving lower limit voltage of the load 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ACアダプタなどの電源供給手段からの電力を供給されて、負荷に対して電源電圧を供給するとともに、リチウムイオン電池などの2次電池を充電する充電器に関するものである。   The present invention relates to a charger that is supplied with power from a power supply means such as an AC adapter to supply a power supply voltage to a load and charges a secondary battery such as a lithium ion battery.

一般に、携帯機器などの電子機器は、リチウムイオン電池などの2次電池を電源とし、その2次電池を充電する充電器を備えている。そのような充電器は、ACアダプタなどの電源供給手段からの入力電源電圧を電力変換して2次電池を充電するとともに、負荷へ電源電圧を供給する。このような従来の充電器として、例えば特許文献1に記載の充電器がある。   Generally, an electronic device such as a portable device includes a charger that uses a secondary battery such as a lithium ion battery as a power source and charges the secondary battery. Such a charger converts the input power supply voltage from a power supply means such as an AC adapter to charge the secondary battery and supplies the power supply voltage to the load. As such a conventional charger, there is a charger described in Patent Document 1, for example.

図5は特許文献1に記載された充電器の構成図である。   FIG. 5 is a configuration diagram of the charger described in Patent Document 1. In FIG.

図5において、1はACアダプタなどの電源供給手段、5は充電部であり、定電流化手段50と充電電流検出抵抗51と急速充電終了検出手段52とから構成され、2次電池3を充電するとともに負荷4へ電源電圧を供給する。定電流化手段50は、電源供給手段1からの入力電源電圧を電力変換して所望の直流を出力する。充電電流検出抵抗51は、2次電池3に直列接続されて充電電流を検出し、定電流化手段50へ検出信号を出力する。充電電流検出抵抗51には負荷電流は流れず、充電電流のみが流れるので、定電流化手段50は充電電流を定電流化するように出力を制御し、2次電池3は急速充電される。急速充電終了検出手段52は、2次電池3の充電電圧を検出し、この充電電圧が所定値に達すると、定電流化手段50へ検出信号を出力する。これにより定電流化手段50は充電電流を低減する。以上のように、2次電池3への充電電流を負荷4の変動にかかわらず一定に保つことができる。   In FIG. 5, reference numeral 1 denotes a power supply means such as an AC adapter, and 5 denotes a charging unit, which is composed of a constant current means 50, a charging current detection resistor 51, and a quick charge end detection means 52 to charge the secondary battery 3. In addition, the power supply voltage is supplied to the load 4. The constant current converting means 50 converts the input power supply voltage from the power supply means 1 into power and outputs a desired direct current. The charging current detection resistor 51 is connected in series to the secondary battery 3 to detect the charging current, and outputs a detection signal to the constant current converting means 50. Since the load current does not flow through the charging current detection resistor 51 but only the charging current flows, the constant current converting means 50 controls the output so that the charging current is constant, and the secondary battery 3 is rapidly charged. The quick charge end detection means 52 detects the charge voltage of the secondary battery 3 and outputs a detection signal to the constant current means 50 when the charge voltage reaches a predetermined value. As a result, the constant current means 50 reduces the charging current. As described above, the charging current to the secondary battery 3 can be kept constant regardless of the fluctuation of the load 4.

また、特許文献2では、負荷の駆動を制御する制御信号を出力する制御回路と、該制御信号に基づいて2次電池への充電電流を制御する手段を備えた充電器が示されている。   Patent Document 2 discloses a charger that includes a control circuit that outputs a control signal for controlling driving of a load, and means for controlling a charging current to the secondary battery based on the control signal.

図6は特許文献2の充電制御方式を図5に示した充電器に適用した充電器の構成図である。   6 is a configuration diagram of a charger in which the charging control method of Patent Document 2 is applied to the charger shown in FIG.

図6において、61は負荷4の駆動を制御する制御信号Vcを出力する制御回路であり、この制御信号Vcが定電流化手段60に入力される。定電流化手段60は、制御信号Vcに応じて2次電池3への充電電流を調整する。具体的には、負荷4での消費電力が大きいほど、2次電池3への充電電流を小さくするのである。   In FIG. 6, reference numeral 61 denotes a control circuit that outputs a control signal Vc for controlling driving of the load 4, and this control signal Vc is input to the constant current converting means 60. The constant current means 60 adjusts the charging current to the secondary battery 3 according to the control signal Vc. Specifically, the charging current to the secondary battery 3 is reduced as the power consumption at the load 4 is increased.

この構成により、充電部6のように負荷4にかかわらず2次電池3を定電流充電するのではなく、電源供給手段1や充電部6が供給できる電力から、負荷4での消費電力を差し引いた電力が、2次電池3の充電にあてられる。図5の充電部5に比べ、負荷4が重いと定電流による急速充電はできなくなるが、電源供給手段1および充電部6の最大供給電力は小さくてすむ。
実開平2−122540号公報 特開2001−275272号公報
With this configuration, the secondary battery 3 is not charged at a constant current regardless of the load 4 as in the charging unit 6, but the power consumed by the load 4 is subtracted from the power that can be supplied by the power supply means 1 and the charging unit 6. The charged electric power is applied to charge the secondary battery 3. Compared with the charging unit 5 of FIG. 5, if the load 4 is heavy, rapid charging with a constant current cannot be performed, but the maximum supply power of the power supply means 1 and the charging unit 6 can be small.
Japanese Utility Model Publication No. 2-122540 JP 2001-275272 A

しかしながら、前記特許文献1の従来の構成では、電源供給手段および充電部には、2次電池への定電流充電電力と負荷での最大消費電力との和の電力を供給できる能力が必要とされる。このため、電源供給手段および充電部が大型化・高コスト化する。負荷の変動によらず定電流で急速充電することができるという利点より、充電部の小型化を優先させてもよいが、その場合でも充電部には、定電流充電電力は、もちろん、負荷での最大消費電力を供給できる能力が必要とされる。   However, in the conventional configuration of Patent Document 1, the power supply means and the charging unit are required to be capable of supplying the sum of the constant current charging power to the secondary battery and the maximum power consumption at the load. The For this reason, the power supply means and the charging unit are increased in size and cost. You may prioritize the miniaturization of the charging unit from the advantage that it can be charged quickly with a constant current regardless of load fluctuations, but even in that case the constant current charging power in the charging unit is, of course, the load. The ability to supply the maximum power consumption is required.

負荷での最大消費電力が定電流充電電力より大きく、充電部に負荷での最大消費電力を供給することができる能力がない場合、充電部が動作しているにもかかわらず、負荷へ供給する電力不足を補うため2次電池が放電されていくという問題がある。   If the maximum power consumption at the load is greater than the constant current charging power and the charging unit does not have the ability to supply the maximum power consumption at the load, the charging unit is supplied to the load even though it is operating There is a problem that the secondary battery is discharged in order to compensate for the power shortage.

また、特許文献2の充電器によれば、電源供給手段や充電部を大型化することなく、負荷の駆動と同時に2次電池の充電も可能となる。しかし、負荷の駆動状態を知るための制御回路や制御信号が必要であり、回路が複雑化するといった問題がある。   Further, according to the charger of Patent Document 2, the secondary battery can be charged simultaneously with the driving of the load without increasing the size of the power supply means and the charging unit. However, a control circuit and a control signal for knowing the driving state of the load are necessary, and there is a problem that the circuit becomes complicated.

また、前記2つの従来の充電器は、負荷の変動にかかわらず充電電流を定電流化するため、充電電流検出抵抗と2次電池とが直列に接続され、その直列回路と並列に負荷が接続される構成となっている。   In addition, in the two conventional chargers, a charging current detection resistor and a secondary battery are connected in series, and a load is connected in parallel with the series circuit in order to make the charging current constant regardless of the fluctuation of the load. It becomes the composition which is done.

このような構成の場合、電源供給手段からの電力供給がなく、負荷が2次電池からの放電電流によって駆動される時、その放電電流即ち負荷電流が充電電流検出抵抗を流れるため、電力損失が発生するという問題もある。   In such a configuration, when there is no power supply from the power supply means and the load is driven by the discharge current from the secondary battery, the discharge current, that is, the load current flows through the charging current detection resistor. There is also a problem that occurs.

これに対し、図7に示す充電部7の回路構成のように、電源供給手段1からの電力供給がない時に充電電流検出抵抗71に負荷電流を流さない構成にすると、電源供給手段1からの電力供給時に負荷4が駆動された場合、2次電池3への充電電流と負荷電流の和が充電電流検出抵抗71を流れることになる。負荷4が駆動されなければ定電流化手段70が設定する定電流により充電することができるが、負荷4が駆動され、その負荷電流が定電流充電時の充電電流値より大きいと、2次電池3は放電されていくという問題がある。   On the other hand, if the load current does not flow through the charging current detection resistor 71 when there is no power supply from the power supply unit 1 as in the circuit configuration of the charging unit 7 shown in FIG. When the load 4 is driven during power supply, the sum of the charging current and the load current for the secondary battery 3 flows through the charging current detection resistor 71. If the load 4 is not driven, it can be charged with a constant current set by the constant current converting means 70. However, if the load 4 is driven and the load current is larger than the charging current value at the time of constant current charging, the secondary battery 3 has a problem of being discharged.

本発明は、前記従来の問題を解決するものであり、簡易な回路構成、かつ必要最小限の電力供給能力のみでありながら、好適に2次電池の充電と負荷への電源供給を同時に行うことのできる充電器を提供することを目的とする。   The present invention solves the above-described conventional problems, and preferably performs simultaneous charging of a secondary battery and power supply to a load while having only a simple circuit configuration and a necessary minimum power supply capability. An object of the present invention is to provide a battery charger that can be used.

前記目的を達成するため、本発明は、入力直流電圧を供給する電源供給手段と、前記入力直流電圧を出力直流電圧に変換する充電手段と、前記出力直流電圧を検出する電圧検出手段と、前記出力直流電圧が印加される2次電池と直列に接続される電流検出手段とからなり、前記出力直流電圧を負荷へ供給する充電器であって、前記電圧検出手段は、前記2次電池の満充電電圧もしくは満充電電圧近傍の電圧を第1の所定電圧として設定し、前記第1の所定電圧より低くて前記負荷の駆動下限電圧より高い第2の所定電圧を設定し、前記出力直流電圧を前記第1の所定電圧と比較増幅して第1の電圧検出信号を出力し、前記出力直流電圧と前記第2の所定電圧との比較結果を第2の電圧検出信号として出力し、前記充電手段は、前記第1の電圧検出信号と前記第2の電圧検出信号と前記電流検出手段からの電流検出信号を入力され、前記出力直流電圧が前記第2の所定電圧以下の時、入出力短絡状態となり、前記出力直流電圧が前記第2の所定電圧より高く前記第1の所定電圧より低い時、前記電流検出手段を流れる電流が一定となるように出力を制御し、前記出力直流電圧が前記第2の所定電圧に達すると、前記出力直流電圧が前記第2の所定電圧となるように出力を制御する構成とする。   To achieve the above object, the present invention provides power supply means for supplying an input DC voltage, charging means for converting the input DC voltage to an output DC voltage, voltage detection means for detecting the output DC voltage, A charger for supplying the output DC voltage to a load, wherein the voltage detector is a fully charged secondary battery. A charge voltage or a voltage in the vicinity of the full charge voltage is set as the first predetermined voltage, a second predetermined voltage lower than the first predetermined voltage and higher than the drive lower limit voltage of the load is set, and the output DC voltage is set The first predetermined voltage is compared and amplified to output a first voltage detection signal, a comparison result between the output DC voltage and the second predetermined voltage is output as a second voltage detection signal, and the charging means Is the first voltage When an output signal, the second voltage detection signal, and a current detection signal from the current detection means are input, and the output DC voltage is less than or equal to the second predetermined voltage, an input / output short-circuit state is established, and the output DC voltage is When the output is controlled so that the current flowing through the current detection means is constant when the output voltage is higher than the second predetermined voltage and lower than the first predetermined voltage, and the output DC voltage reaches the second predetermined voltage The output is controlled so that the output DC voltage becomes the second predetermined voltage.

ここで、前記電流検出手段は、前記2次電池とのみ直列回路を構成してもよいし、前記負荷とも直列回路を構成してもよい。   Here, the current detection means may form a series circuit only with the secondary battery, or may form a series circuit with the load.

また、前記電圧検出手段は、前記出力直流電圧と前記第2の所定電圧とを比較する手段としてヒステリシス比較器を備えた構成としてもよい。   The voltage detection means may include a hysteresis comparator as means for comparing the output DC voltage with the second predetermined voltage.

さらに、前記電圧検出手段は、前記出力直流電圧と前記第2の所定電圧とを比較する代わりに、前記出力直流電圧の低下を検出して第2の電圧検出信号を出力する構成としてもよい。   Further, the voltage detecting means may be configured to detect a decrease in the output DC voltage and output a second voltage detection signal instead of comparing the output DC voltage with the second predetermined voltage.

さらに、前記充電手段の入出力短絡状態は、前記充電手段の入出力間にスルースイッチを設けることによってなされる構成であってもよいし、電流検出信号による定電流化制御を解除する構成としてもよい。   Furthermore, the input / output short-circuit state of the charging unit may be configured by providing a through switch between the input and output of the charging unit, or may be configured to cancel the constant current control by the current detection signal. Good.

前記構成によって、本発明は、定電流充電時に2次電池の電圧低下を検出した時、充電器が定電流化制御から解放され、入出力短絡状態に切替わることにより、2次電池への充電電流を確保しながら、負荷への電源供給を同時に行うことが可能となる。   With the above configuration, the present invention allows the charging of the secondary battery by detecting the voltage drop of the secondary battery during constant current charging and releasing the charger from the constant current control and switching to the input / output short-circuit state. It is possible to simultaneously supply power to the load while securing a current.

以下、本発明を実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明の第1の実施形態である充電器の構成図である。
(First embodiment)
FIG. 1 is a configuration diagram of a charger according to a first embodiment of the present invention.

図1において、1はACアダプタ等の電源供給手段、2は充電部であり、充電手段20と電流検出抵抗21と電圧検出手段22とから構成され、2次電池3を充電するとともに負荷4へ出力電圧Voを供給する。充電手段20は、例えばスイッチング式の降圧コンバータから構成され、電源供給手段1からの入力電源電圧を電力変換して所望の直流を出力する。   In FIG. 1, reference numeral 1 denotes a power supply means such as an AC adapter, and 2 denotes a charging unit, which comprises a charging means 20, a current detection resistor 21, and a voltage detection means 22, and charges the secondary battery 3 to the load 4. An output voltage Vo is supplied. The charging means 20 is constituted by, for example, a switching type step-down converter, and converts the input power supply voltage from the power supply means 1 to output a desired direct current.

電流検出抵抗21は、抵抗値Rsを有し、2次電池3に直列接続されて充電電流Icを検出し、充電手段20へ電流検出信号Vc=Ic×Rsを出力する。電圧検出手段22は、負荷4および2次電池3の電圧Voを検出し、充電手段20への第1の電圧検出信号V1と第2の電圧検出信号V2を出力する。第1の電圧検出信号V1は出力電圧Voと第1の所定電圧Vo1との比較結果を示し、第2の電圧検出信号V2は出力電圧Voと第2の所定電圧Vo2との比較結果を示す。ここで、第1の所定電圧Vo1は、2次電池3の満充電時における電池電圧に設定され、第2の所定電圧Vo2は、第1の所定電圧Vo1より低く、負荷4の駆動下限電圧より高い電圧に設定される。   The current detection resistor 21 has a resistance value Rs, is connected in series to the secondary battery 3, detects the charging current Ic, and outputs a current detection signal Vc = Ic × Rs to the charging unit 20. The voltage detection means 22 detects the voltage Vo of the load 4 and the secondary battery 3, and outputs the first voltage detection signal V1 and the second voltage detection signal V2 to the charging means 20. The first voltage detection signal V1 indicates a comparison result between the output voltage Vo and the first predetermined voltage Vo1, and the second voltage detection signal V2 indicates a comparison result between the output voltage Vo and the second predetermined voltage Vo2. Here, the first predetermined voltage Vo1 is set to the battery voltage when the secondary battery 3 is fully charged, and the second predetermined voltage Vo2 is lower than the first predetermined voltage Vo1 and lower than the drive lower limit voltage of the load 4. Set to high voltage.

第1の実施の形態において、電源供給手段1は、所定の直流電源電圧Viを出力し、過電流保護機能により、その出力電流は最大値Imaxに至ると定電流化される。電源供給手段1の最大出力電流Imaxは、負荷4で消費される最大電流Iomaxより大きいものとする。   In the first embodiment, the power supply means 1 outputs a predetermined DC power supply voltage Vi, and the output current is made constant when the output current reaches the maximum value Imax by the overcurrent protection function. The maximum output current Imax of the power supply means 1 is assumed to be larger than the maximum current Iomax consumed by the load 4.

また、充電部2の充電手段20は、電流検出信号Vc,第1の電圧検出信号V1、および第2の電圧検出信号V2が入力される。出力電圧Voが第2の所定電圧Vo2より低い状態であることを第2の電圧検出信号V2が示す場合、充電手段20は、入出力間を短絡状態にして、電源供給手段1の出力を直接出力する短絡モード動作を行う。   The charging unit 20 of the charging unit 2 is supplied with the current detection signal Vc, the first voltage detection signal V1, and the second voltage detection signal V2. When the second voltage detection signal V2 indicates that the output voltage Vo is lower than the second predetermined voltage Vo2, the charging unit 20 directly sets the output of the power supply unit 1 by short-circuiting the input and output. Perform output short-circuit mode operation.

また、出力電圧Voが第2の所定電圧Vo2より高く、第1の所定電圧Vo1より低い状態であることを第1の電圧検出信号V1および第2の電圧検出信号V2が示す場合、充電手段20は、電流検出信号が一定値Vsとなるように出力を制御する定電流モード動作を行う。このときの充電電流は、Ic=Vs/Rsとなる。   When the first voltage detection signal V1 and the second voltage detection signal V2 indicate that the output voltage Vo is higher than the second predetermined voltage Vo2 and lower than the first predetermined voltage Vo1, the charging unit 20 Performs a constant current mode operation for controlling the output so that the current detection signal becomes a constant value Vs. The charging current at this time is Ic = Vs / Rs.

出力電圧Voが第1の所定電圧Vo1に達すると、充電手段20は、出力電圧Voを第1の所定電圧Vo1に安定化されるように出力を制御する定電圧モード動作を行う。充電手段20は、出力を制御する定電流モード動作時と定電圧モード動作時において、過電流保護機能によって、その出力電流は最大値Icmに至ると定電流化される。   When the output voltage Vo reaches the first predetermined voltage Vo1, the charging unit 20 performs a constant voltage mode operation for controlling the output so that the output voltage Vo is stabilized at the first predetermined voltage Vo1. In the constant current mode operation and the constant voltage mode operation for controlling the output, the charging unit 20 becomes constant current when the output current reaches the maximum value Icm by the overcurrent protection function.

以上のように構成された第1の実施形態における充電器の動作を、図2(a),(b)を参照して説明する。   The operation of the charger in the first embodiment configured as described above will be described with reference to FIGS.

図2(a)は負荷4が駆動しない、すなわち充電部2の出力が全て2次電池3の充電に費やされる場合における出力電圧Voと充電電流Icの経時変化を示す。充電初期(1)においては、出力電圧Voは第2の所定電圧Vo2より低く、充電手段2は短絡モード動作である。このため、充電電流Icは電源供給手段1の最大電流Imaxで急速充電される。(2)において出力電圧Voが上昇して第2の所定電圧Vo2より高くなると、充電手段2は定電流モード動作となり、2次電池3をIc=Vs/Rsで定電流充電する。さらに(3)において、出力電圧Voが上昇して第1の所定電圧Vo1に達すると、充電手段2は定電圧モード動作となり、充電手段20は出力電圧Voを第1の所定電圧Vo1に安定化制御する。このため充電電流Icは経時的に減少していく。   FIG. 2A shows changes with time of the output voltage Vo and the charging current Ic when the load 4 is not driven, that is, when the output of the charging unit 2 is all consumed for charging the secondary battery 3. In the initial charging stage (1), the output voltage Vo is lower than the second predetermined voltage Vo2, and the charging means 2 is in short-circuit mode operation. For this reason, the charging current Ic is rapidly charged with the maximum current Imax of the power supply means 1. When the output voltage Vo rises and becomes higher than the second predetermined voltage Vo2 in (2), the charging unit 2 enters the constant current mode operation and charges the secondary battery 3 with constant current at Ic = Vs / Rs. Further, in (3), when the output voltage Vo rises and reaches the first predetermined voltage Vo1, the charging means 2 enters the constant voltage mode operation, and the charging means 20 stabilizes the output voltage Vo to the first predetermined voltage Vo1. Control. For this reason, the charging current Ic decreases with time.

次に、図2(b)を参照して、定電流モード動作中に負荷4が駆動して負荷電流Ioが増加し、最大電流Iomaxに至った場合の動作を説明する。定電流モード動作において、電流検出抵抗21には負荷電流は流れず、充電電流のみが流れる。従って、負荷電流Ioが少ない時間領域(1)では、2次電池3はIc=Vs/Rsで定電流充電される。この時、充電手段20の出力電流は、充電電流Ic=Vs/Rsと負荷電流Ioとの和になる。この出力電流が充電手段20の最大出力電流Icmになると、(2)に示すように負荷電流Ioの増加に伴って充電電流Icは減少する。   Next, with reference to FIG. 2B, the operation when the load 4 is driven during the constant current mode operation and the load current Io increases to reach the maximum current Iomax will be described. In the constant current mode operation, the load current does not flow through the current detection resistor 21, but only the charging current flows. Therefore, in the time region (1) where the load current Io is small, the secondary battery 3 is charged with a constant current at Ic = Vs / Rs. At this time, the output current of the charging means 20 is the sum of the charging current Ic = Vs / Rs and the load current Io. When this output current becomes the maximum output current Icm of the charging means 20, as shown in (2), the charging current Ic decreases as the load current Io increases.

さらに負荷電流Ioが増加して、充電手段20の最大出力電流Icmを超えると、(3)に示すように、充電電流Icは負になって2次電池3は放電されるようになり、出力電圧Voも低下する。   When the load current Io further increases and exceeds the maximum output current Icm of the charging means 20, as shown in (3), the charging current Ic becomes negative and the secondary battery 3 starts to be discharged. The voltage Vo also decreases.

低下した出力電圧Voが第2の所定電圧Vo2より低くなると、(4)に示すように、充電手段2は短絡モード動作になり、電源供給手段1からの最大電流Imaxが供給される。このため再び2次電池3は充電されるようになり、その充電電流は電源供給手段1からの最大電流Imaxから負荷電流Ioを差し引いた値(Imax−Io)である。   When the lowered output voltage Vo becomes lower than the second predetermined voltage Vo2, as shown in (4), the charging unit 2 enters a short-circuit mode operation, and the maximum current Imax from the power supply unit 1 is supplied. Therefore, the secondary battery 3 is charged again, and the charging current is a value obtained by subtracting the load current Io from the maximum current Imax from the power supply means 1 (Imax−Io).

負荷電流が最大値Iomaxとなっても、Imax>Iomaxであるので、2次電池3は充電電流が確保される。2次電池3の充電によって出力電圧Voは再び上昇し、第2の所定電圧Vo2より高くなると、充電手段20は定電流モード動作となるが、この時、負荷電流Ioが充電手段20の最大出力電流Icmより大きければ、2次電池3は放電されて出力電圧Voは低下する。すなわち、負荷電流Ioが充電手段20の最大出力電流Icmより大きいと、2次電池3は充放電を繰り返し、出力電圧Voは第2の所定電圧Vo2近傍を上下する。   Even when the load current reaches the maximum value Iomax, since Imax> Iomax, the secondary battery 3 is secured with a charging current. When the secondary battery 3 is charged, the output voltage Vo rises again and becomes higher than the second predetermined voltage Vo2, and the charging means 20 enters the constant current mode operation. At this time, the load current Io is the maximum output of the charging means 20. If it is larger than the current Icm, the secondary battery 3 is discharged and the output voltage Vo decreases. That is, when the load current Io is larger than the maximum output current Icm of the charging means 20, the secondary battery 3 repeats charging / discharging, and the output voltage Vo rises and falls near the second predetermined voltage Vo2.

図3は図1に示した充電部2の回路構成の一例を示す構成図である。   FIG. 3 is a configuration diagram illustrating an example of a circuit configuration of the charging unit 2 illustrated in FIG. 1.

図3において、電圧検出手段22は、基準電圧源220と、出力電圧Voを分圧する抵抗221と抵抗222と抵抗223と、基準電圧源220の出力する基準電圧Vrと抵抗221と抵抗222との接続点電圧とを比較増幅する誤差増幅器224と、基準電圧Vrと抵抗222と抵抗223との接続点電圧とを比較する比較器225とから構成され、誤差増幅器224が第1の電圧検出信号V1を出力し、比較器225が第2の電圧検出信号V2を出力する。   In FIG. 3, the voltage detection means 22 includes a reference voltage source 220, a resistor 221, a resistor 222, a resistor 223 that divides the output voltage Vo, and a reference voltage Vr, a resistor 221, and a resistor 222 that are output from the reference voltage source 220. An error amplifier 224 that compares and amplifies the connection point voltage, and a comparator 225 that compares the reference voltage Vr and the connection point voltage of the resistor 222 and the resistor 223 are included. The error amplifier 224 is the first voltage detection signal V1. And the comparator 225 outputs the second voltage detection signal V2.

ここで、抵抗221と抵抗222と抵抗223の抵抗値をそれぞれ、R1,R2,R3とすると、第1の所定電圧Vo1は、以下の式(数1)で表される。
(数1)
Vo1=(1+R2/R1+R3/R1)×Vr
出力電圧Voが、第1の所定電圧Vo1より高くなろうとすると、第1の電圧検出信号V1は低下し、出力電圧Voが、第1の所定電圧Vo1より低くなろうとすると、第1の電圧検出信号V1は上昇する。
Here, when the resistance values of the resistor 221, the resistor 222, and the resistor 223 are R1, R2, and R3, respectively, the first predetermined voltage Vo1 is expressed by the following equation (Equation 1).
(Equation 1)
Vo1 = (1 + R2 / R1 + R3 / R1) × Vr
When the output voltage Vo is going to be higher than the first predetermined voltage Vo1, the first voltage detection signal V1 is lowered, and when the output voltage Vo is going to be lower than the first predetermined voltage Vo1, the first voltage detection is performed. Signal V1 rises.

また、第2の所定電圧Vo2は、以下の式(数2)で表される。
(数2)
Vo2={1+R3/(R1+R2)}×Vr
出力電圧Voが、第2の所定電圧Vo2より高いと、第2の電圧検出信号V2は“H”、出力電圧Voが、第2の所定電圧Vo2より低いと、第2の電圧検出信号V2は“L”となる。
The second predetermined voltage Vo2 is expressed by the following equation (Equation 2).
(Equation 2)
Vo2 = {1 + R3 / (R1 + R2)} × Vr
When the output voltage Vo is higher than the second predetermined voltage Vo2, the second voltage detection signal V2 is “H”, and when the output voltage Vo is lower than the second predetermined voltage Vo2, the second voltage detection signal V2 is “L”.

図3において、充電手段20は、PチャンネルFET200とダイオード201とインダクタ202とコンデンサ203とからなるスイッチング式の降圧コンバータと、充電手段20の入出間に接続されて第2の電圧検出信号によってオンオフするPチャンネルFET204と、FET200を駆動する駆動信号Vgを出力する制御駆動回路205とから構成される。   In FIG. 3, the charging unit 20 is connected between a switching step-down converter including a P-channel FET 200, a diode 201, an inductor 202, and a capacitor 203, and an input / output of the charging unit 20, and is turned on / off by a second voltage detection signal. It comprises a P-channel FET 204 and a control drive circuit 205 that outputs a drive signal Vg for driving the FET 200.

さらに、制御駆動回路205は、電流検出信号Vcを基準電圧Vsと比較増幅する誤差増幅器206と、誤差増幅器206の出力であるエラー信号Veと第1の電圧検出信号V1の低い方を選択して出力する選択回路207と、三角波信号Vtを出力する三角波発振器208と、選択回路207の出力と三角波信号Vtとの比較結果である駆動信号Vgを出力するPWM回路209と、FET200の両端電圧を検出することにより、オン時の電圧降下からFET200を流れる電流を検知し、充電手段20の出力電流が最大出力電流Icmに制限するように、駆動信号Vgのパルス幅を調整する過電流保護回路210から構成される。   Further, the control drive circuit 205 selects the lower one of the error amplifier 206 that compares and amplifies the current detection signal Vc with the reference voltage Vs, and the error signal Ve that is the output of the error amplifier 206 and the first voltage detection signal V1. A selection circuit 207 that outputs, a triangular wave oscillator 208 that outputs a triangular wave signal Vt, a PWM circuit 209 that outputs a drive signal Vg that is a comparison result between the output of the selection circuit 207 and the triangular wave signal Vt, and a voltage across the FET 200 are detected. From the overcurrent protection circuit 210 that detects the current flowing through the FET 200 from the voltage drop at the time of ON and adjusts the pulse width of the drive signal Vg so that the output current of the charging unit 20 is limited to the maximum output current Icm. Composed.

エラー信号Veは、電流検出信号Vcが基準電圧Vsより高くなろうとすると低下し、電流検出信号Vcが基準電圧Vsより低くなろうとすると上昇する。駆動信号Vgは、選択回路207の出力が上昇すると“L”の期間を広げ、FET200のオン期間を広げることにより充電手段20の出力電力を増大する。逆に、駆動信号Vgは、選択回路207の出力が低下すると“L”の期間を絞り、FET200のオン期間を短くすることにより充電手段20の出力電力を小さくする。   The error signal Ve is lowered when the current detection signal Vc is to be higher than the reference voltage Vs, and is increased when the current detection signal Vc is to be lower than the reference voltage Vs. The drive signal Vg increases the output power of the charging means 20 by extending the “L” period when the output of the selection circuit 207 rises and extending the ON period of the FET 200. Conversely, the drive signal Vg reduces the output power of the charging means 20 by narrowing the “L” period and shortening the ON period of the FET 200 when the output of the selection circuit 207 decreases.

したがって、選択回路207がエラー信号Veを選択して出力している場合、充電手段20は、電流検出信号Vcが基準電圧Vsとなるように、駆動信号Vgのパルス幅を調整して定電流モード動作する。一方、選択回路207が第1の電圧検出信号V1を選択して出力している場合、充電手段20は、出力電圧Voが第1の所定電圧Vo1となるように、駆動信号Vgのパルス幅を調整して定電圧モード動作する。また、第2の電圧検出信号V2をゲートに印加されるFET204は、出力電圧Voが第2の所定電圧Vo2より高いとオフしているが、出力電圧Voが第2の所定電圧Vo2より低くなるとオンして、充電手段20の入出力間を短絡するため、充電手段20は短絡モード動作する。   Therefore, when the selection circuit 207 selects and outputs the error signal Ve, the charging unit 20 adjusts the pulse width of the drive signal Vg so that the current detection signal Vc becomes the reference voltage Vs, and the constant current mode. Operate. On the other hand, when the selection circuit 207 selects and outputs the first voltage detection signal V1, the charging unit 20 sets the pulse width of the drive signal Vg so that the output voltage Vo becomes the first predetermined voltage Vo1. Adjust and operate in constant voltage mode. Further, the FET 204 to which the second voltage detection signal V2 is applied to the gate is turned off when the output voltage Vo is higher than the second predetermined voltage Vo2, but when the output voltage Vo becomes lower than the second predetermined voltage Vo2. In order to short-circuit between the input and output of the charging means 20, the charging means 20 operates in a short-circuit mode.

以上のように、第1の実施形態の充電器によれば、負荷への電力供給と2次電池の充電を同時に行うために、電源供給手段は負荷での最大消費電力より大きい電力供給能力があり、充電手段は2次電池への定電流充電時の充電電流以上の電流供給能力があればよい。負荷電流が少なければ、2次電池への充電電流を負荷の変動にかかわらず一定に保つことができる。また、負荷電流が多くなっても充電動作は維持され、負荷電流が充電手段の電流供給能力を超えても2次電池の充放電を繰り返すことにより、負荷駆動下限電圧以上の所定の電圧を負荷に供給することができる。   As described above, according to the charger of the first embodiment, since the power supply to the load and the charging of the secondary battery are performed simultaneously, the power supply means has a power supply capability larger than the maximum power consumption at the load. The charging means only needs to have a current supply capacity equal to or higher than the charging current at the time of constant current charging to the secondary battery. If the load current is small, the charging current to the secondary battery can be kept constant regardless of the load variation. In addition, the charging operation is maintained even when the load current increases, and even when the load current exceeds the current supply capability of the charging means, the secondary battery is repeatedly charged and discharged, so that a predetermined voltage higher than the load drive lower limit voltage is loaded. Can be supplied to.

(第2の実施形態)
図4は本発明の第2の実施形態である充電器の構成図である。1はACアダプタ等の電源供給手段、2Aは充電部であり、充電手段23と電流検出抵抗24と電圧検出手段25とから構成され、2次電池3を充電するとともに負荷4へ出力電圧Voを供給する。充電手段23は、例えばスイッチング式の降圧コンバータから構成され、電源供給手段1からの入力電源電圧を電力変換して所望の直流を出力する。
(Second Embodiment)
FIG. 4 is a configuration diagram of a charger according to the second embodiment of the present invention. Reference numeral 1 denotes a power supply means such as an AC adapter, and 2A denotes a charging unit, which is composed of a charging means 23, a current detection resistor 24, and a voltage detection means 25. Supply. The charging means 23 is composed of, for example, a switching type step-down converter, and converts the input power supply voltage from the power supply means 1 to output a desired direct current.

電流検出抵抗24は、抵抗値Rsを有し、充電手段23に直列接続されて出力電流Ioを検出し、充電手段23へ電流検出信号Vc=Io×Rsを出力する。電圧検出手段25は、負荷4および2次電池3の電圧Voを検出し、充電手段23へ第1の電圧検出信号V1と第2の電圧検出信号V2を出力する。第1の電圧検出信号V1は出力電圧Voと第1の所定電圧Vo1との比較結果を示し、第2の電圧検出信号V2は出力電圧Voと第2の所定電圧Vo2との比較結果を示す。   The current detection resistor 24 has a resistance value Rs, is connected in series to the charging unit 23, detects the output current Io, and outputs a current detection signal Vc = Io × Rs to the charging unit 23. The voltage detection means 25 detects the voltage Vo of the load 4 and the secondary battery 3 and outputs the first voltage detection signal V1 and the second voltage detection signal V2 to the charging means 23. The first voltage detection signal V1 indicates a comparison result between the output voltage Vo and the first predetermined voltage Vo1, and the second voltage detection signal V2 indicates a comparison result between the output voltage Vo and the second predetermined voltage Vo2.

ここで、第1の所定電圧Vo1は、2次電池3の満充電時における電池電圧に設定され、第2の所定電圧Vo2は、第1の所定電圧Vo1より低く、負荷4の駆動下限電圧より高い電圧に設定される。   Here, the first predetermined voltage Vo1 is set to the battery voltage when the secondary battery 3 is fully charged, and the second predetermined voltage Vo2 is lower than the first predetermined voltage Vo1 and lower than the drive lower limit voltage of the load 4. Set to high voltage.

第2の実施形態において、電源供給手段1は、所定の直流電源電圧Viを出力し、過電流保護機能によりその出力電流は最大値Imaxに至ると定電流化される。電源供給手段1の最大出力電流Imaxは、負荷4で消費される最大電流Iomaxより大きいものとする。   In the second embodiment, the power supply means 1 outputs a predetermined DC power supply voltage Vi, and the output current is constant when the output current reaches the maximum value Imax by the overcurrent protection function. The maximum output current Imax of the power supply means 1 is assumed to be larger than the maximum current Iomax consumed by the load 4.

また、充電部2Aの充電手段23は、電流検出信号Vc、第1の電圧検出信号V1および第2の電圧検出信号V2が入力される。出力電圧Voが第2の所定電圧Vo2より低い状態であることを第2の電圧検出信号V2が示す場合、充電手段23は入出力間を短絡状態にして電源供給手段1の出力を直接出力する短絡モード動作を行う。   The charging unit 23 of the charging unit 2A receives the current detection signal Vc, the first voltage detection signal V1, and the second voltage detection signal V2. When the second voltage detection signal V2 indicates that the output voltage Vo is lower than the second predetermined voltage Vo2, the charging unit 23 directly outputs the output of the power supply unit 1 with the input and output shorted. Performs short-circuit mode operation.

また、出力電圧Voが第2の所定電圧Vo2より高く、第1の所定電圧Vo1より低い状態であることを第1の電圧検出信号V1および第2の電圧検出信号V2が示す場合、充電手段20は電流検出信号が一定値Vsとなるように出力を制御する定電流モード動作を行う。   When the first voltage detection signal V1 and the second voltage detection signal V2 indicate that the output voltage Vo is higher than the second predetermined voltage Vo2 and lower than the first predetermined voltage Vo1, the charging unit 20 Performs a constant current mode operation for controlling the output so that the current detection signal becomes a constant value Vs.

この時の充電手段23の出力電流は、Ic=Vs/Rsとなる。出力電圧Voが第1の所定電圧Vo1に達すると、充電手段23は、出力電圧Voを第1の所定電圧Vo1に安定化されるように出力を制御する定電圧モード動作を行う。   The output current of the charging means 23 at this time is Ic = Vs / Rs. When the output voltage Vo reaches the first predetermined voltage Vo1, the charging unit 23 performs a constant voltage mode operation for controlling the output so that the output voltage Vo is stabilized at the first predetermined voltage Vo1.

以上のように構成された第2の実施形態における充電部2Aの動作が、図1に示した第1の実施形態の充電部2と異なるのは、充電手段23の最大出力電流が定電流モード動作時の出力電流になる点である。負荷4が駆動しない、すなわち、充電部2Aの出力は全て2次電池3の充電に費やされる場合の動作は、第1の実施形態における充電部2と同様となる。   The operation of the charging unit 2A in the second embodiment configured as described above differs from the charging unit 2 of the first embodiment shown in FIG. 1 in that the maximum output current of the charging means 23 is in the constant current mode. The point is the output current during operation. The operation when the load 4 is not driven, that is, when the output of the charging unit 2A is all spent for charging the secondary battery 3, is the same as that of the charging unit 2 in the first embodiment.

次に、第2の実施形態において、定電流モード動作中に負荷4が駆動して負荷電流Ioが増加し、最大電流Iomaxに至った場合の動作を説明する。   Next, in the second embodiment, an operation when the load 4 is driven during the constant current mode operation to increase the load current Io and reach the maximum current Iomax will be described.

定電流モード動作において、電流検出抵抗24には充電電流Icと負荷電流Ioの和の電流が流れる。したがって、負荷電流Ioの増加とともに充電電流Icは減少していく。負荷電流Ioが充電手段23の定電流出力値(Vs/Rs)を超えると、充電電流Icは負になって2次電池3は放電されるようになり、出力電圧Voも低下する。低下した出力電圧Voが第2の所定電圧Vo2より低くなると、充電手段2は短絡モード動作になり、電源供給手段1からの最大電流Imaxが供給される。   In the constant current mode operation, a current that is the sum of the charging current Ic and the load current Io flows through the current detection resistor 24. Therefore, the charging current Ic decreases as the load current Io increases. When the load current Io exceeds the constant current output value (Vs / Rs) of the charging means 23, the charging current Ic becomes negative, the secondary battery 3 is discharged, and the output voltage Vo also decreases. When the reduced output voltage Vo becomes lower than the second predetermined voltage Vo2, the charging unit 2 enters the short-circuit mode operation, and the maximum current Imax from the power supply unit 1 is supplied.

このため、再び2次電池3は充電されるようになり、その充電電流は電源供給手段1からの最大電流Imaxから負荷電流Ioを差し引いた値(Imax−Io)である。負荷電流が最大値Iomaxとなっても、Imax>Iomaxであるため、2次電池3は充電電流が確保される。   For this reason, the secondary battery 3 is charged again, and the charging current is a value obtained by subtracting the load current Io from the maximum current Imax from the power supply means 1 (Imax−Io). Even when the load current reaches the maximum value Iomax, since Imax> Iomax, the secondary battery 3 is ensured with a charging current.

2次電池3の充電によって出力電圧Voは、再び上昇し、第2の所定電圧Vo2より高くなると、充電手段23は定電流モード動作となるが、この時、負荷電流Ioが充電手段23の最大出力電流(Vs/Rs)より大きければ、2次電池3は放電されて出力電圧Voは低下する。すなわち、負荷電流Ioが充電手段23の最大出力電流(Vs/Rs)より大きいと、2次電池3は充放電を繰り返し、出力電圧Voは第2の所定電圧Vo2近傍を上下する。   When the secondary battery 3 is charged, the output voltage Vo rises again and becomes higher than the second predetermined voltage Vo2, and the charging unit 23 enters the constant current mode operation. At this time, the load current Io is the maximum of the charging unit 23. If it is larger than the output current (Vs / Rs), the secondary battery 3 is discharged and the output voltage Vo decreases. That is, when the load current Io is larger than the maximum output current (Vs / Rs) of the charging means 23, the secondary battery 3 repeats charging / discharging, and the output voltage Vo rises and falls near the second predetermined voltage Vo2.

以上のように、第2の実施形態の充電部2Aによれば、負荷4への電力供給と2次電池3の充電を同時に行うために、電源供給手段1は負荷4での最大消費電力より大きい電力供給能力があり、充電手段23は2次電池への定電流充電時の電流供給能力があればよい。負荷電流が流れても充電動作は維持され、負荷電流が充電手段23の電流供給能力を超えても2次電池3の充放電を繰り返すことにより、負荷駆動下限電圧以上の所定の電圧を負荷に供給することができる。   As described above, according to the charging unit 2A of the second embodiment, since the power supply to the load 4 and the charging of the secondary battery 3 are performed at the same time, the power supply means 1 is based on the maximum power consumption at the load 4. There is a large power supply capability, and the charging unit 23 only needs to have a current supply capability during constant current charging of the secondary battery. Even if the load current flows, the charging operation is maintained. Even if the load current exceeds the current supply capability of the charging means 23, the secondary battery 3 is repeatedly charged and discharged, so that a predetermined voltage equal to or higher than the load drive lower limit voltage is applied to the load. Can be supplied.

なお、第1の実施形態の充電部2の充電手段20、および第2の実施形態の充電部2Aの充電手段23において、第2の電圧検出信号に応じて短絡モード動作すると説明したが、この短絡モード動作とは、図3に示したようなスルースイッチを用いたものに限定されない。例えば、過電流保護回路や定電流モードを無効にするなどしてもよい。充電手段による出力電流制限を解除もしくは緩和し、電源供給手段の電力制限機能を有効に使えば本発明の目的は達せられる。   In the charging unit 20 of the charging unit 2 of the first embodiment and the charging unit 23 of the charging unit 2A of the second embodiment, the short-circuit mode is operated according to the second voltage detection signal. The short-circuit mode operation is not limited to that using a through switch as shown in FIG. For example, the overcurrent protection circuit or the constant current mode may be disabled. The object of the present invention can be achieved by canceling or relaxing the output current limitation by the charging means and effectively using the power limiting function of the power supply means.

また、第1の実施形態の充電部2の電圧検出手段22、あるいは第2の実施形態の充電部2Aの電圧検出手段25において、出力電圧Voと第2の所定電圧Vo2とを比較して第2の検出信号を出力する手段として、ヒステリシス比較器を用いることにより、負荷電流が充電手段の電流供給能力を超えた場合に、2次電池3が頻繁に充放電を繰り返すことを防ぐことができる。また、前記のような2次電池3の充電が充分ではない動作状態で、電源供給手段1を取り除かれることを防ぐには、2次電池3の充電状態を表示する表示器を設けるとよい。   Further, in the voltage detection means 22 of the charging unit 2 of the first embodiment or the voltage detection means 25 of the charging unit 2A of the second embodiment, the output voltage Vo is compared with the second predetermined voltage Vo2. By using a hysteresis comparator as means for outputting the detection signal 2, it is possible to prevent the secondary battery 3 from repeatedly charging and discharging when the load current exceeds the current supply capability of the charging means. . In order to prevent the power supply means 1 from being removed in an operation state where the secondary battery 3 is not sufficiently charged as described above, a display for displaying the charge state of the secondary battery 3 may be provided.

さらに、第2の検出信号を出力するために出力電圧Voと第2の所定電圧Vo2とを比較したが、本発明はこの方式に限定されるものでもない。負過電流が充電手段20,23の電流供給能力を超えることによる、出力電圧の低下を検出すればよい。   Further, although the output voltage Vo and the second predetermined voltage Vo2 are compared in order to output the second detection signal, the present invention is not limited to this method. What is necessary is just to detect a decrease in the output voltage due to the negative overcurrent exceeding the current supply capability of the charging means 20 and 23.

本発明は、リチウムイオン電池等の2次電池を電源とし、なおかつ2次電池の充電機能を有する電子機器に実施して有用である。   The present invention is useful when applied to an electronic device that uses a secondary battery such as a lithium ion battery as a power source and has a charging function for the secondary battery.

本発明の第1の実施形態である充電器の構成図The block diagram of the charger which is the 1st Embodiment of this invention 第1の実施形態における充電器の充電電流と出力電圧の経時変化を表す波形図The wave form diagram showing the time-dependent change of the charging current and output voltage of the charger in 1st Embodiment 第1の実施形態における充電器の回路構成図Circuit configuration diagram of the charger in the first embodiment 本発明の第2の実施形態である充電器の構成図The block diagram of the charger which is the 2nd Embodiment of this invention 従来の充電器の構成図Configuration diagram of conventional charger 従来の充電器の構成図Configuration diagram of conventional charger 従来の充電器の構成図Configuration diagram of conventional charger

符号の説明Explanation of symbols

1 電源供給手段
2,2A 充電部
3 2次電池
4 負荷
20,23 充電手段
21,24 電流検出抵抗
22,25 電圧検出手段
DESCRIPTION OF SYMBOLS 1 Power supply means 2, 2A Charging part 3 Secondary battery 4 Load 20, 23 Charging means 21, 24 Current detection resistors 22, 25 Voltage detection means

Claims (7)

入力直流電圧を供給する電源供給手段と、前記入力直流電圧を出力直流電圧に変換する充電手段と、前記出力直流電圧を検出する電圧検出手段と、前記出力直流電圧が印加される2次電池と直列に接続される電流検出手段とからなり、前記出力直流電圧を負荷へ供給する充電器であって、
前記電圧検出手段は、前記2次電池の満充電電圧もしくは満充電電圧近傍の電圧を第1の所定電圧として設定し、前記第1の所定電圧より低くて前記負荷の駆動下限電圧より高い第2の所定電圧を設定し、前記出力直流電圧を前記第1の所定電圧と比較増幅して第1の電圧検出信号を出力し、前記出力直流電圧と前記第2の所定電圧との比較結果を第2の電圧検出信号として出力し、
前記充電手段は、前記第1の電圧検出信号と前記第2の電圧検出信号と前記電流検出手段からの電流検出信号が入力され、
前記出力直流電圧が前記第2の所定電圧以下の時、入出力短絡状態となり、
前記出力直流電圧が前記第2の所定電圧より高くかつ前記第1の所定電圧より低い時、前記電流検出手段を流れる電流が一定となるように出力を制御し、
前記出力直流電圧が前記第2の所定電圧に達すると、前記出力直流電圧が前記第2の所定電圧となるように出力を制御することを特徴とする充電器。
Power supply means for supplying an input DC voltage, charging means for converting the input DC voltage to an output DC voltage, voltage detection means for detecting the output DC voltage, and a secondary battery to which the output DC voltage is applied A charger for supplying the output DC voltage to a load comprising current detection means connected in series;
The voltage detecting means sets a full charge voltage of the secondary battery or a voltage in the vicinity of the full charge voltage as a first predetermined voltage, and is a second lower than the first predetermined voltage and higher than the drive lower limit voltage of the load The output DC voltage is compared and amplified with the first predetermined voltage to output a first voltage detection signal, and the comparison result between the output DC voltage and the second predetermined voltage 2 as a voltage detection signal
The charging means receives the first voltage detection signal, the second voltage detection signal, and the current detection signal from the current detection means,
When the output DC voltage is equal to or lower than the second predetermined voltage, an input / output short-circuit state is established,
When the output DC voltage is higher than the second predetermined voltage and lower than the first predetermined voltage, the output is controlled so that the current flowing through the current detection means is constant,
When the output DC voltage reaches the second predetermined voltage, the output is controlled so that the output DC voltage becomes the second predetermined voltage.
前記電流検出手段は、前記2次電池とのみ直列回路を構成することを特徴とする請求項1記載の充電器。   The charger according to claim 1, wherein the current detection unit forms a series circuit only with the secondary battery. 前記電流検出手段は、前記負荷とも直列回路を構成することを特徴とする請求項1記載の充電器。   The charger according to claim 1, wherein the current detection unit forms a series circuit with the load. 前記電圧検出手段は、前記出力直流電圧と前記第2の所定電圧とを比較する手段としてヒステリシス比較器を備えたことを特徴とする請求項1記載の充電器。   2. The charger according to claim 1, wherein the voltage detecting means includes a hysteresis comparator as means for comparing the output DC voltage with the second predetermined voltage. 前記電圧検出手段は、前記出力直流電圧と前記第2の所定電圧とを比較する代わりに、前記出力直流電圧の低下を検出して第2の電圧検出信号を出力することを特徴とする請求項1記載の充電器。   The voltage detection means detects a decrease in the output DC voltage and outputs a second voltage detection signal instead of comparing the output DC voltage with the second predetermined voltage. 1. The charger according to 1. 前記充電手段の入出力短絡状態では、前記充電手段の入出力間にスイッチを設けて、該スイッチを短絡することを特徴とする請求項1記載の充電器。   The charger according to claim 1, wherein a switch is provided between the input and output of the charging means to short-circuit the switch in the input / output short-circuit state of the charging means. 前記充電手段の入出力短絡状態では、前記電流検出手段からの電流検出信号による制御を解除することを特徴とする請求項1記載の充電器。   2. The charger according to claim 1, wherein control by a current detection signal from the current detection unit is canceled in an input / output short-circuit state of the charging unit.
JP2004345874A 2004-11-30 2004-11-30 Charging device Pending JP2006158103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345874A JP2006158103A (en) 2004-11-30 2004-11-30 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345874A JP2006158103A (en) 2004-11-30 2004-11-30 Charging device

Publications (1)

Publication Number Publication Date
JP2006158103A true JP2006158103A (en) 2006-06-15

Family

ID=36635710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345874A Pending JP2006158103A (en) 2004-11-30 2004-11-30 Charging device

Country Status (1)

Country Link
JP (1) JP2006158103A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124934A (en) * 2007-10-23 2009-06-04 Seiko Instruments Inc Power supply device
JP2010051113A (en) * 2008-08-22 2010-03-04 Ricoh Co Ltd Charging circuit of secondary battery, method for controlling charge of the same, and power supply circuit equipped with the same
US7793116B2 (en) 2006-09-01 2010-09-07 Compal Electronics, Inc. Power supply system with remote control circuit and power supply system operation method
WO2012086788A1 (en) * 2010-12-24 2012-06-28 オリジン電気株式会社 Dc power supply system and control method
JP2015515321A (en) * 2012-04-06 2015-05-28 エレンザ, インコーポレイテッド System and method for power management of an implantable subocular device
JP2015154003A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Power storage device and charge discharge system
WO2016190032A1 (en) * 2015-05-25 2016-12-01 日立オートモティブシステムズ株式会社 Power supply apparatus
CN113300428A (en) * 2021-05-17 2021-08-24 上海擎朗智能科技有限公司 Charging circuit, charging device, charging method, charging system, and robot

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793116B2 (en) 2006-09-01 2010-09-07 Compal Electronics, Inc. Power supply system with remote control circuit and power supply system operation method
JP2009124934A (en) * 2007-10-23 2009-06-04 Seiko Instruments Inc Power supply device
JP2010051113A (en) * 2008-08-22 2010-03-04 Ricoh Co Ltd Charging circuit of secondary battery, method for controlling charge of the same, and power supply circuit equipped with the same
US9780560B2 (en) 2010-12-24 2017-10-03 Origin Electric Company, Limited DC power supply system and control method
WO2012086788A1 (en) * 2010-12-24 2012-06-28 オリジン電気株式会社 Dc power supply system and control method
CN103299508A (en) * 2010-12-24 2013-09-11 欧利生电气株式会社 DC power supply system and control method
JP6047015B2 (en) * 2010-12-24 2016-12-21 オリジン電気株式会社 DC power supply system and control method
JP2015515321A (en) * 2012-04-06 2015-05-28 エレンザ, インコーポレイテッド System and method for power management of an implantable subocular device
JP2018029981A (en) * 2012-04-06 2018-03-01 エレンザ, インコーポレイテッド Systems and methods for power management of implantable ophthalmic devices
JP2015154003A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Power storage device and charge discharge system
WO2015125647A1 (en) * 2014-02-18 2015-08-27 住友電気工業株式会社 Storage device and charging/discharging device
WO2016190032A1 (en) * 2015-05-25 2016-12-01 日立オートモティブシステムズ株式会社 Power supply apparatus
CN107431375A (en) * 2015-05-25 2017-12-01 日立汽车系统株式会社 Supply unit
JP2016220454A (en) * 2015-05-25 2016-12-22 日立オートモティブシステムズ株式会社 Electric power supply
US10541549B2 (en) 2015-05-25 2020-01-21 Hitachi Automotive Systems, Ltd. Power supply apparatus
CN113300428A (en) * 2021-05-17 2021-08-24 上海擎朗智能科技有限公司 Charging circuit, charging device, charging method, charging system, and robot
CN113300428B (en) * 2021-05-17 2023-07-28 上海擎朗智能科技有限公司 Charging circuit, charging device, charging method, charging system, and robot

Similar Documents

Publication Publication Date Title
US11309721B2 (en) Battery charger with segmented power path switch
JP4115501B2 (en) Charger, DC-DC converter provided with the charger, and control circuit thereof
US8829864B2 (en) Current driver circuit
US9018921B2 (en) Battery charger architecture
TWI448042B (en) Power control systems, apparatus, and methods
JP4507191B2 (en) Battery charger
US8035350B2 (en) Battery charger
US7439708B2 (en) Battery charger with control of two power supply circuits
JP6779317B2 (en) Electrical equipment
US7365515B2 (en) Universal battery charger
JP2012191838A (en) Battery pack, electric tool, adapter for connecting battery pack and electric tool, and electric tool system
JP4152413B2 (en) Charger and DC-DC converter provided with the charger
EP2797722A1 (en) Ultra-capacitor based energy storage for appliances
JP2006158103A (en) Charging device
JP4137175B2 (en) DC-DC converter
JP2007135382A (en) Method for controlling charging of secondary battery
JP4832240B2 (en) Multi-output power supply
JP2005176430A (en) Power control system and electronic apparatus using the power control system
JPH11327671A (en) Charging circuit for electronic equipment
JPH11220873A (en) Power-supply circuit