JP2006157994A - Drive method and drive controller for brushless and sensorless dc motor - Google Patents

Drive method and drive controller for brushless and sensorless dc motor Download PDF

Info

Publication number
JP2006157994A
JP2006157994A JP2004340442A JP2004340442A JP2006157994A JP 2006157994 A JP2006157994 A JP 2006157994A JP 2004340442 A JP2004340442 A JP 2004340442A JP 2004340442 A JP2004340442 A JP 2004340442A JP 2006157994 A JP2006157994 A JP 2006157994A
Authority
JP
Japan
Prior art keywords
rotor
energized phase
armature winding
magnetic pole
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340442A
Other languages
Japanese (ja)
Inventor
Takeshi Osada
剛 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2004340442A priority Critical patent/JP2006157994A/en
Publication of JP2006157994A publication Critical patent/JP2006157994A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive method and a drive controller which are so arranged as to smoothly and favorably perform the process from the start to the sensorless drive of a rotor by simply estimating the rotor magnetic pole position of a brushless and sensorless DC motor. <P>SOLUTION: In this drive method, the voltage for detection of the magnetic pole position of a rotor on a level that the rotor 2a, where permanent magnets are arranged around, does not rotate is applied to the armature winding of each energization phase of the brushless and sensorless DC motor 2 in order for a specified time, according to a specified energization pattern, and the magnitude of the armature current flowing to the armature winding of each energization phase is detected for each energization phase, based on the magnetic flux flowing between the magnetic pole of the stator iron core where armature winding of each energization phase is wound and the rotor 2a by the application of the voltage for detection of the magnetic pole position of the rotor, and the energization phase of the armature winding where the maximum current flows is selected, and the selected energization phase is estimated as the magnetic pole position of the rotor, and necessary starting voltage is applied to the armature winding of the next phase of the energization phase estimated as the rotor magnetic pole position so as to drive the rotor 2a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ブラシレス・センサレスDCモータの改良に係り、その目的とするところは、回転子が始動を開始する回転子磁極位置を迅速・確実に推定して前記モータを円滑・良好に駆動させるようにしたブラシレス・センサレスDCモータの駆動方法および駆動制御装置に関するものである。   The present invention relates to an improvement of a brushless and sensorless DC motor, and an object of the present invention is to quickly and reliably estimate a rotor magnetic pole position at which the rotor starts to drive the motor smoothly and satisfactorily. The present invention relates to a driving method and a driving control device for a brushless / sensorless DC motor.

従来からブラシレス・センサレスDCモータにおいては、回転子磁極位置が不明であるため、起動時には回転子の磁極位置を所定の回転開始位置に固定する必要があった。このため、例えば、回転子が正規の回転開始位置に存在していない場合、電機子巻線に通電を行うことにより発生する磁界により、回転子を回転開始位置まで回転させて固定していた。   Conventionally, in a brushless / sensorless DC motor, since the rotor magnetic pole position is unknown, it is necessary to fix the rotor magnetic pole position at a predetermined rotation start position at the time of startup. For this reason, for example, when the rotor does not exist at the normal rotation start position, the rotor is rotated to the rotation start position and fixed by the magnetic field generated by energizing the armature winding.

しかし、回転停止中における回転子の回転位置によっては、固定磁界をかけたとしても、トルクがまったく生じなかったり、また、トルクが発生していたとしても回転子回転開始時の静止摩擦抵抗よりも小さい場合は、回転子を確実に回転開始位置に固定することが困難であった。このため、例え電機子巻線の固定磁界によって回転子の回転が開始されても、回転子の回転は不安定が伴い多くの場合、脱調を引起していた。   However, depending on the rotational position of the rotor while the rotation is stopped, even if a fixed magnetic field is applied, no torque is generated, or even if torque is generated, the static friction resistance at the start of rotor rotation If it is small, it is difficult to reliably fix the rotor at the rotation start position. For this reason, even if the rotation of the rotor is started by the fixed magnetic field of the armature winding, the rotation of the rotor is unstable and often causes a step-out.

前記の問題点に鑑み、ブラシレス・センサレスDCモータの始動時においては、同期モータあるいはステッピングモータとして、予め設定された周波数と電圧とで強制転流し、磁界位置検出に充分な速度起電力が発生する回転領域まで負荷とのバランスを保ちながら徐々に加速するようにしていた。しかしながら、かかるモータ駆動回路においては、モータ起動後の加速時間が必然的に長くなり、しかも、低回転高トルクでの始動や運転が困難であった。   In view of the above-described problems, when a brushless / sensorless DC motor is started, it is forcibly commutated at a preset frequency and voltage as a synchronous motor or a stepping motor, and a speed electromotive force sufficient for magnetic field position detection is generated. While maintaining the balance with the load to the rotation region, it was gradually accelerated. However, in such a motor drive circuit, the acceleration time after starting the motor is inevitably long, and it is difficult to start and operate at low rotation and high torque.

本願出願人は、特許文献1として示す特開平9−37586号公報に記載するブラシレスDCモータのセンサレス駆動回路を発明した。かかるモータ駆動回路は、特許文献1の図4に示すようなモータ各相の電機子電流波形に着目して、各相の通電領域にあらわれる2つの顕著な電流増加領域のうち、第2の電流増加領域を検出して、これを転流タイミングと決定し、転流制御を行うものである。   The applicant of the present application invented a sensorless drive circuit for a brushless DC motor described in Japanese Patent Laid-Open No. 9-37586 shown as Patent Document 1. Such a motor drive circuit pays attention to the armature current waveform of each phase of the motor as shown in FIG. 4 of Patent Document 1, and the second current out of the two significant current increase regions appearing in the energized region of each phase. The increased region is detected, this is determined as the commutation timing, and commutation control is performed.

特開平9−37586号公報JP-A-9-37586

しかし、前記第2の電流増加領域の検出は、モータの電機子電流が、その電機子電流の平均値の所定倍(例えば、1.2倍)となったことを目安として検出するようにしているので、電機子電流の平均値を所定倍に増幅するための増幅器を特別に設けなければならないので、センサレス駆動回路の製造コストが上昇してしまうという問題点があった。   However, the detection of the second current increase region is performed based on the fact that the armature current of the motor is a predetermined multiple (for example, 1.2 times) of the average value of the armature current. As a result, an amplifier for amplifying the average value of the armature currents by a predetermined factor must be provided, which increases the manufacturing cost of the sensorless drive circuit.

また、前記特開平9−37586号公報に示されているセンサレス駆動回路は、ブラシレスモータの始動を円滑に行うための始動補償回路を備えているが、かかる始動補償回路は始動時のみ機能する回路であり、この始動時にのみ機能する回路を独立して設けるためにブラシレスモータ駆動回路全体のコストが上昇してしまうという問題点があった。   Further, the sensorless driving circuit disclosed in Japanese Patent Laid-Open No. 9-37586 includes a start compensation circuit for smoothly starting the brushless motor, and the start compensation circuit functions only at the start. In addition, since the circuit that functions only at the time of starting is provided independently, there is a problem that the cost of the entire brushless motor driving circuit increases.

本発明は、前述した問題点に鑑み、回転子の起動時回転子磁極位置が不明な場合でも迅速・確実にモータ起動を円滑・良好に実現するとともに、回転子磁極位置に応じて転流動作を実現してモータのセンサレス起動を効率よく、しかも確実に実現することを可能としたブラシレス・センサレスDCモータの駆動方法および駆動制御装置を提供することにある。   In view of the above-described problems, the present invention realizes smooth and good motor start-up smoothly and satisfactorily even when the rotor magnetic pole position at the time of starting the rotor is unknown, and commutation operation according to the rotor magnetic pole position. It is an object of the present invention to provide a brushless and sensorless DC motor driving method and a driving control device that can realize sensorless start-up of a motor efficiently and reliably.

請求項1記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線に所要の起動電圧を通電して、回転子を起動させるようにしたことを特徴とする。   According to the first aspect of the present invention, an inverter circuit that energizes an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and the brushless sensorless DC motor is rotated by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate The magnetic pole position detection voltage is sequentially applied for a predetermined time, and the rotor magnetic pole position detection voltage is applied between the stator core magnetic poles and the rotor wound with the armature windings of the respective energized phases. Based on the flowing magnetic flux, the armature current flowing through the armature winding of each energized phase is detected for each energized phase and the energized phase of the armature winding through which the maximum current flows is selected. The selected energized phase is estimated as the rotor magnetic pole position, and the rotor is started by supplying the required starting voltage to the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position. It is characterized by that.

請求項2記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させながら通電して、回転子を駆動させるようにしたことを特徴とする。   According to a second aspect of the present invention, there is provided an inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and the brushless sensorless DC motor is rotated by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate The magnetic pole position detection voltage is sequentially applied for a predetermined time, and the rotor magnetic pole position detection voltage is applied between the stator core magnetic poles and the rotor wound with the armature windings of the respective energized phases. Based on the flowing magnetic flux, the armature current flowing through the armature winding of each energized phase is detected for each energized phase and the energized phase of the armature winding through which the maximum current flows is selected. The selected energized phase is estimated as the rotor magnetic pole position, and the armature winding of each energized phase is preliminarily applied in accordance with a predetermined energization pattern from the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position. The rotor is driven by energizing the energizing time while decreasing the energizing time for a while for a predetermined energizing time after energizing the predetermined start-up voltage set to a predetermined energizing time.

請求項3記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させながら通電して回転子を起動し、更に、前記回転子の起動によりその回転数が事前に設定した回転数に達しているか否かを判定して前記回転数が設定回転数に達している場合は、当該通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過後に検出した電機子電流の所定倍に達した場合に転流指令を出力して通電相の切替を行うことにより回転子の起動をセンサレス駆動に切替えて、回転子を駆動させるようにしたことを特徴とする。   According to a third aspect of the present invention, there is provided an inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and the brushless sensorless DC motor is rotated by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate The magnetic pole position detection voltage is sequentially applied for a predetermined time, and the rotor magnetic pole position detection voltage is applied between the stator core magnetic poles and the rotor wound with the armature windings of the respective energized phases. Based on the flowing magnetic flux, the armature current flowing through the armature winding of each energized phase is detected for each energized phase and the energized phase of the armature winding through which the maximum current flows is selected. The selected energized phase is estimated as the rotor magnetic pole position, and the armature winding of each energized phase is preliminarily applied in accordance with a predetermined energization pattern from the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position. After energizing a predetermined start-up voltage set to a predetermined energization time, the energization time is decreased for each energization phase for a while and the rotor is started by energization. When it is determined whether or not the rotation speed set in advance has been reached and the rotation speed has reached the set rotation speed, the armature current flowing through the armature winding of the current-carrying phase is ½ of the energization time. When the armature current detected after the elapse of time reaches a predetermined multiple, the commutation command is output and the energized phase is switched to switch the start of the rotor to the sensorless drive and drive the rotor. It is characterized by that.

請求項4記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記回転子磁極位置と推定した前記通電相の次相に位置する電機子巻線に所定の起動電圧を通電して回転子を起動させる回転子起動部とによって構成したことを特徴とする。   According to a fourth aspect of the present invention, there is provided an inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and the brushless sensorless DC motor is rotated by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate A rotor starting position detector that sequentially applies a voltage for detecting a magnetic pole position, a current detection circuit that detects an armature current flowing through the armature winding of each energized phase for each energized phase, and each energized phase Based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position applied to the armature winding of The armature current flowing through the armature winding of each energized phase is detected by the current detection circuit, and the magnitude of the armature current is compared with each armature winding of each energized phase and the maximum current flows A rotor magnetic pole position estimating means for selecting an energized phase of the rotor winding and estimating the energized phase as a rotor magnetic pole position; and an armature winding positioned in the next phase of the energized phase estimated as the rotor magnetic pole position. It is characterized by comprising a rotor starting part for starting a rotor by energizing a predetermined starting voltage.

請求項5記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って順次各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させて通電する回転子起動部とによって構成したことを特徴とする。   According to a fifth aspect of the present invention, there is provided an inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and the brushless sensorless DC motor is rotated by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate A rotor starting position detector that sequentially applies a voltage for detecting a magnetic pole position, a current detection circuit that detects an armature current flowing through the armature winding of each energized phase for each energized phase, and each energized phase Based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position applied to the armature winding of The armature current flowing through the armature winding of each energized phase is detected by the current detection circuit, and the magnitude of the armature current is compared with each armature winding of each energized phase and the maximum current flows A rotor magnetic pole position estimating means for selecting an energized phase of the rotor winding and estimating the energized phase as a rotor magnetic pole position, and estimating the selected energized phase as a rotor magnetic pole position to estimate the rotor magnetic pole position. After energizing a predetermined start-up voltage preset in advance to each armature winding of each energized phase in sequence according to a predetermined energization pattern from the armature winding of the next phase of the energized phase, It is characterized by comprising a rotor starting portion that is energized while being decreased for each energized phase for a while.

請求項6記載の発明は、ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って順次各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させて通電する回転子起動部と、更に、前記回転子の起動によりその回転数が所定の設定した回転数に達しているか否かを判定して前記設定回転数に達している場合は、当該通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過した後に検出した電機子電流の所定倍に達した場合に転流指令を出力して通電相を切替えて回転子をセンサレス駆動させるセンサレス駆動部とによって構成したことを特徴とするブラシレス・センサレスDCモータの駆動制御装置。   According to a sixth aspect of the present invention, there is provided an inverter circuit for energizing an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and rotating the brushless sensorless DC motor by causing commutation by the inverter circuit. In a drive control system for a brushless / sensorless DC motor configured to include a drive control circuit for rotating the rotor with a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern so as not to rotate A rotor starting position detector that sequentially applies a voltage for detecting a magnetic pole position, a current detection circuit that detects an armature current flowing through the armature winding of each energized phase for each energized phase, and each energized phase Based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position applied to the armature winding of The armature current flowing through the armature winding of each energized phase is detected by the current detection circuit, and the magnitude of the armature current is compared with each armature winding of each energized phase and the maximum current flows A rotor magnetic pole position estimating means for selecting an energized phase of the rotor winding and estimating the energized phase as a rotor magnetic pole position, and estimating the selected energized phase as a rotor magnetic pole position to estimate the rotor magnetic pole position. After energizing a predetermined start-up voltage preset in advance to each armature winding of each energized phase in sequence according to a predetermined energization pattern from the armature winding of the next phase of the energized phase, A rotor starting unit that is energized while decreasing for each energizing phase, and further, it is determined whether or not the rotational speed has reached a predetermined set rotational speed by starting the rotor and reaches the set rotational speed. The current flowing through the armature winding of the current-carrying phase A sensorless drive unit that outputs a commutation command and switches the energized phase to drive the rotor sensorlessly when the current reaches a predetermined multiple of the armature current detected after ½ hour of the energization time has elapsed. A drive control apparatus for a brushless / sensorless DC motor.

請求項7記載の発明は、請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置において、前記起動位置検出部は、回転子が回転しない程度の電圧を各通電相の電機子巻線に印加する起動位置検出用電圧印加手段と、前記起動位置検出用の電圧を所定の通電パターンに従って各通電相の電機子巻線に順次印加する電圧印加相切替手段とを具備して構成したことを特徴とする。   According to a seventh aspect of the present invention, in the drive control device for a brushless / sensorless DC motor according to the fourth, fifth, and sixth aspects, the starting position detecting unit applies a voltage at which the rotor does not rotate to each armature of each energized phase. A starting position detecting voltage applying means for applying to the winding; and a voltage applying phase switching means for sequentially applying the starting position detecting voltage to the armature winding of each energized phase according to a predetermined energizing pattern. It is characterized by that.

請求項8記載の発明は、請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置において、前記回転子磁極位置推定手段は、前記電流検出回路により検出した各通電相の電機子巻線に流れる電機子電流を比較して最大の電機子電流が流れる通電相を選択する機能と、前記選択した通電相を回転子磁極位置と推定する機能とを具備して構成したことを特徴とする。   According to an eighth aspect of the present invention, in the drive control device for a brushless sensorless DC motor according to the fourth, fifth, and sixth aspects, the rotor magnetic pole position estimating means is an armature of each energized phase detected by the current detection circuit. Comparing the armature currents flowing through the windings and selecting a current-carrying phase through which the maximum armature current flows, and a function for estimating the selected current-carrying phase as a rotor magnetic pole position And

請求項9記載の発明は、請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置において、前記回転子起動部は、前記回転子磁極位置推定手段により推定された回転子磁極位置の通電相の次相に位置する通電相を最初に起動電圧を通電する通電相と設定するための起動電圧通電相設定手段と、前記設定された通電相に所定の起動電圧を通電する起動電圧通電手段とを具備して構成したことを特徴とする。   According to a ninth aspect of the present invention, in the drive control device for a brushless sensorless DC motor according to the fourth, fifth, and sixth aspects, the rotor starting portion is a rotor magnetic pole position estimated by the rotor magnetic pole position estimating means. A starting voltage energizing phase setting means for setting the energizing phase positioned next to the energizing phase as an energizing phase that first energizes the starting voltage, and a starting voltage that energizes the set energizing phase with a predetermined starting voltage It is characterized by comprising an energizing means.

請求項10記載の発明は、請求項6記載のブラシレス・センサレスDCモータの駆動制御装置において、前記センサレス駆動部は、回転子の起動によりその回転数が事前に設定した回転数に達しているか否かを判定して所定の回転数に達している場合は回転子の起動をセンサレス駆動に切替えるセンサレス駆動切替手段と、前記センサレス駆動に切替えたときの通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過した後に検出した電機子電流の所定倍に達している場合に転流指令を出力して通電相を切替えるための転流指令手段とを具備して構成したことを特徴とする。   A tenth aspect of the present invention is the brushless / sensorless DC motor drive control apparatus according to the sixth aspect, wherein the rotation speed of the sensorless drive unit reaches a preset rotation speed by starting the rotor. If the motor reaches a predetermined number of revolutions, the sensorless drive switching means for switching the rotor activation to the sensorless drive, and the armature current flowing through the armature winding in the energized phase when the sensorless drive is switched Comprising a commutation command means for outputting a commutation command and switching the energized phase when the armature current reaches a predetermined multiple of the armature current detected after ½ hour of the energization time has elapsed. It is characterized by.

請求項1記載の発明においては、ブラシレス・センサレスDCモータの回転子を起動させる場合、最初に、複数相の電機子巻線に回転子が回転しない程度の回転子磁極位置検出用の電圧(例えば、交流電圧12V)を、事前に設定した通電パターンに従って所定時間順次印加し、前記電圧を印加した各相の電機子巻線に流れる電機子電流の大・小を検出して前記電機子巻線に最大の電機子電流が流れる通電相を選択し、前記選択した通電相から回転子磁極位置を推定し、前記回転子磁極位置と推定された通電相の次相に位置する電機子巻線から回転子起動用の起動電圧(例えば、交流電圧5V)を各通電相毎に順次通電して回転子を起動させるようにしたので、ブラシレス・センサレスDCモータの回転子磁極位置は回転子を揺動させたりすることなく、ほぼ瞬時に推定して所定の通電相の電機子巻線に前記起動電圧を通電させることができるため、この種モータを迅速、かつ、円滑に起動させることができる。しかも、前記回転子磁極位置の推定に当たっては、各通電相の電機子巻線に所定の通電パターンに従って順次回転子磁極位置検出用の電圧を印加すると、各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間において流れる磁束の多・少に基き、各相の電機子巻線に流れる電機子電流が微妙に変化することに着目し、最大の電機子電流が流れる電機子巻線を検出した通電相(前記最大の電機子電流が流れる通電相の電機子巻線が存在する固定子鉄心の磁極と回転子との間においては、通電による反発力が少ないので、電機子巻線には電機子電流が他相(磁極と回転子との間に強い反発力が作用する通電相)に比べて大きな電機子電流が流れる結果、固定子鉄心の磁極と回転子間においては、磁束が良好に流れて回転子を円滑に回転させようとする固定磁界が生じる)を回転子磁極位置と推定すればよいので、回転子磁極位置の推定がほぼ瞬時に行うことができ利便である。また、回転子を起動させるための起動電圧の通電に際しては、前記回転子磁極位置と推定された通電相の次相に存在する電機子巻線から起動電圧を通電するようにしたので、回転子の起動は回転子をこれまでのように回転子磁極位置と推定した位置に移動させることなく、円滑・良好に起動させることができる。更に、起動電圧の通電を前記回転子磁極位置と推定した通電相の次相から行うことについては、固定子鉄心と回転子との間に流れる磁束が回転子磁極位置と推定された通電相の次によく流れる位置であるという点に着目し、この次相の通電相から順次各相電機子巻線に起動電圧を通電することにより、回転子は最適な回転磁極位置に順次移動することにより、移動途中においてぎくしゃくしたり、左右の回転方向に揺動したり、電機子巻線に固定磁界を掛けることなく、円滑・良好に、かつ、迅速に起動させることができるので、この種モータの低回転高トルクでの起動を円滑に行わせることができる。   According to the first aspect of the present invention, when starting the rotor of the brushless / sensorless DC motor, first, the rotor magnetic pole position detection voltage (for example, the rotor is not rotated in the multi-phase armature winding) (for example, , AC voltage 12V) is sequentially applied for a predetermined time according to a preset energization pattern, and the armature winding is detected by detecting the magnitude of the armature current flowing in the armature winding of each phase to which the voltage is applied. The energized phase through which the maximum armature current flows is selected, the rotor magnetic pole position is estimated from the selected energized phase, and the rotor magnetic pole position is estimated from the armature winding located in the next phase of the estimated energized phase. Since the rotor is started by sequentially energizing the starting voltage (for example, AC voltage 5V) for starting the rotor for each energized phase, the rotor magnetic pole position of the brushless sensorless DC motor swings the rotor. Let Without, it is possible to energize the activation voltage estimated almost instantly to the armature winding of a predetermined conduction phase, this type motor quickly, and can be started smoothly. In addition, in estimating the rotor magnetic pole position, if a voltage for detecting the rotor magnetic pole position is sequentially applied to the armature winding of each energized phase according to a predetermined energization pattern, the armature winding of each energized phase is wound. Focusing on the fact that the armature current flowing in the armature winding of each phase changes slightly based on the amount of magnetic flux flowing between the magnetic pole and rotor of the stator core, the maximum armature current The energized phase in which the flowing armature winding is detected (the repulsive force due to energization is small between the magnetic pole of the stator core where the armature winding of the energized phase in which the maximum armature current flows exists and the rotor) As a result of the armature current flowing in the armature winding is larger than that of the other phase (the energized phase in which a strong repulsive force acts between the magnetic pole and the rotor), the stator core magnetic pole and rotor During this time, the magnetic flux flows well and the rotor rotates smoothly. It is sufficient estimate will and the fixed magnetic field is generated to) case is a rotor magnetic pole position, it is convenient can be done almost instantaneously estimated rotor magnetic pole position. In addition, when the starting voltage for starting the rotor is energized, the starting voltage is supplied from the armature winding existing in the next phase of the energized phase estimated as the rotor magnetic pole position. This can be started smoothly and satisfactorily without moving the rotor to the position estimated as the rotor magnetic pole position as before. Furthermore, the energization of the starting voltage is performed from the next phase of the energized phase estimated as the rotor magnetic pole position, the magnetic flux flowing between the stator iron core and the rotor is the same as the energized phase estimated as the rotor magnetic pole position. Paying attention to the point that it is the next most frequently flowing position, by energizing the starting voltage to each phase armature winding sequentially from this energized phase of the next phase, the rotor moves sequentially to the optimal rotating magnetic pole position. This type of motor can be started smoothly, satisfactorily and quickly without jerky during movement, swinging in the left-right rotation direction, or applying a fixed magnetic field to the armature winding. Start-up with low rotation and high torque can be performed smoothly.

請求項2記載の発明においては、前記のように、回転子の回転子磁極位置と推定した通電相の次相に位置する電機子巻線から所定の通電パターンに従って各相の電機子巻線に起動電圧を通電する場合、前記起動電圧を所定の通電時間だけ各通電相毎に順次減少させながら通電することにより回転子を起動させるようにしたので、回転子は最初の起動電圧の通電から順次通電時間を減少させても、最初の通電によって起動を円滑に行うことができるため、回転子の起動後に起動電圧の通電時間を低減させても回転子の起動(回転)を良好に継続させることが可能となる結果、ブラシレス・センサレスDCモータの起動を迅速・確実に、しかも、省エネ的に行うことができ、利便である。また、回転子の起動に際しても、前記のようにして起動電圧の通電相が設定されているので、回転子自体が起動電圧の通電に伴って従来のように左右方向に揺動するようなことは全くなく安定した状態で起動させることができるので、ブラシレス・センサレスDCモータの脱調等を誘発したり、トルク不足を生じることなく円滑・良好に起動させることができる。   In the invention according to claim 2, as described above, the armature windings of the respective phases are changed from the armature windings located in the next phase of the energized phase estimated as the rotor magnetic pole position of the rotor according to a predetermined energization pattern. When energizing the start-up voltage, the rotor is started by energizing the start-up voltage while decreasing the start-up voltage sequentially for each energized phase for a predetermined energization time. Even if the energization time is reduced, the start-up can be performed smoothly by the initial energization. Therefore, even if the energization time of the start-up voltage is reduced after the rotor is started, the start-up (rotation) of the rotor is continued well. As a result, the startup of the brushless / sensorless DC motor can be performed quickly, reliably and energy-saving, which is convenient. In addition, when starting the rotor, the energization phase of the starting voltage is set as described above, so that the rotor itself swings in the left-right direction as in the past with energization of the starting voltage. Since it can be started in a stable state, it can be started smoothly and satisfactorily without causing a step-out of the brushless / sensorless DC motor or causing insufficient torque.

請求項3記載の発明においては、前記請求項1,2記載の発明において、回転子の回転子磁極位置の推定と、この回転子磁極位置と推定された通電相の次相の電機子巻線から、所定の通電パターンにて各通電相の電機子巻線に起動電圧を順次通電することにより回転子を起動し、その回転数が設定した回転数に達した時点で、当該通電相の電機子巻線に流れる電機子電流が、その電機子巻線に通電される起動電圧の通電時間の1/2時間経過後に検出した電流の所定倍(例えば、1.3倍)に達した場合、通電を次相の通電相に切替えるための転流指令を出力するようにしたので、回転子はその起動時における起動が確実に行えることに加え、回転子の起動開始からセンサレス駆動への切替えが前記のように、回転子の回転数を勘案して迅速・確実に、かつ、容易に切替えることが可能となるため、例えば、立ち上がりの速さが求められるポンプとか、掃除機等の駆動源用のモータを容易に実現することができる。   According to a third aspect of the present invention, in the first and second aspects of the present invention, the rotor magnetic pole position of the rotor is estimated and the armature winding of the next phase of the energized phase estimated to be the rotor magnetic pole position To start the rotor by sequentially energizing the armature winding of each energized phase with a predetermined energization pattern, and when the number of rotations reaches the set number of rotations, When the armature current flowing in the child winding reaches a predetermined multiple (for example, 1.3 times) of the detected current after ½ hour of the energization time of the starting voltage passed through the armature winding, Since the commutation command for switching the energization to the energized phase of the next phase is output, the rotor can be reliably started at the time of starting, and the switching from the start of the rotor to the sensorless drive can be performed. As mentioned above, the speed of the rotor is taken into account quickly. Certainly, and, since it is possible to easily switch, for example, Toka pump speed of rise is required, a motor for driving source of the vacuum cleaner or the like can be easily realized.

請求項4記載の発明においては、各通電相の電機子巻線に所定の通電パターンに従って回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する起動位置検出部と、前記回転子起動位置検出電圧の印加により各相の電機子巻線に流れる電機子電流を検出し、かつ、前記検出した電機子電流のうち最大電流が流れる通電相を選択してその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記回転子磁極位置と推定した通電相の次相に位置する電機子巻線から順次各通電相の電機子巻線に所定の起動電圧を通電して回転子を起動させる回転子起動部とによって、ブラシレス・センサレスDCモータにおける回転子起動手段を構成するようにしたので、この種モータの起動に際しては、従来のように、回転子の回転開始位置が不明なときは電機子巻線に固定磁界をかけて回転子を回転開始位置まで回転させてから起動させるようにしていた場合と全く異なり、本発明は、回転子を揺動させたり、回転させたりして回転子磁極位置を設定する必要は全くなく、固定子鉄心に巻回した各通電相の電機子巻線に所定の通電パターンに従って回転子磁極位置検出用の電圧を印加することにより、電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束の多・少に応じて、各相の電機子巻線に流れる電機子電流に大・小が生じることにより、電機子巻線に流れる電機子電流のうち最大電流が流れる電機子巻線の通電相を回転子磁極位置と推定し、回転子を起動させるための起動電圧を前記回転子磁極位置と推定した通電相の次相の電機子巻線から所定の通電パターンに従って通電して回転子を起動させるようにしたので、回転子はその起動に際して揺動したりすることもなく(この通電相は前記のように、固定子鉄心の磁極と回転子との間で磁束が流れ易い通電相の電機子巻線を選択した結果による)、円滑に、かつ、迅速・確実に起動させることができる。   According to a fourth aspect of the present invention, a starting position detector that sequentially applies a voltage for detecting the rotor magnetic pole position so that the rotor does not rotate in accordance with a predetermined energization pattern to the armature winding of each energized phase, and the rotation The armature current flowing through the armature winding of each phase is detected by applying the child starting position detection voltage, and the energized phase in which the maximum current flows is selected from the detected armature currents, and the energized phase is selected as the rotor. The rotor magnetic pole position estimating means for estimating the magnetic pole position, and a predetermined starting voltage are sequentially applied to the armature winding of each energized phase from the rotor magnetic pole position and the armature winding positioned next to the estimated energized phase. Since the rotor starting unit in the brushless / sensorless DC motor is configured by the rotor starting unit that starts the rotor, the rotation of the rotor is started as before when starting this type of motor. When the position is unknown, it is completely different from the case where the armature winding is started by rotating the rotor to the rotation start position by applying a fixed magnetic field, and the present invention swings the rotor, There is no need to set the rotor magnetic pole position by rotating it, and the rotor magnetic pole position detection voltage is applied to the armature winding of each energized phase wound around the stator core according to a predetermined energization pattern. As a result, depending on the amount of magnetic flux flowing between the magnetic pole of the stator core around which the armature winding is wound and the rotor, the armature current flowing in the armature winding of each phase is large or small. Thus, the energized phase of the armature winding through which the maximum current flows among the armature currents flowing through the armature winding is estimated as the rotor magnetic pole position, and the starting voltage for starting the rotor is defined as the rotor magnetic pole position. Predetermined energization from the armature winding of the next phase of the estimated energization phase Since the rotor is activated by energizing according to the turn, the rotor does not oscillate at the time of activation (this energized phase is between the magnetic pole of the stator core and the rotor as described above. Therefore, it is possible to start up smoothly and quickly and reliably.

請求項5記載の発明においては、複数相の電機子巻線に所定の通電パターンに従って回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する起動位置検出部と、前記回転子起動位置検出電圧の印加により各相の電機子巻線に流れる電機子電流を検出し、かつ、前記検出した電機子電流のうち最大電流が流れる通電相を選択してその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記回転子磁極位置と推定した通電相の次相に位置する電機子巻線から順次各通電相の電機子巻線に所定の起動電圧を所定の通電時間だけ各通電相に暫時減少させて通電させることにより回転子を起動させる回転子起動部とによって、ブラシレス・センサレスDCモータにおける回転子起動手段を構成するようにしたので、回転子の起動に際しては、起動電圧を通電する通電相が前記回転子磁極位置推定手段により推定されている結果、前記起動電圧は回転子を円滑に起動させる起動電圧を順次通電時間を減少させて所要の通電相の電機子巻線に通電するようにしても、各通電相は所定の通電パターンにより通電することにより、回転子を揺動させることなく良好に起動維持を図ることができることはもとより、円滑に起動させることが可能となるため、回転子の起動を簡易な回路構成により少電力にて効率よく起動させることができ、利便である。   According to a fifth aspect of the present invention, a starting position detecting section that sequentially applies a voltage for detecting a rotor magnetic pole position to such an extent that the rotor does not rotate in accordance with a predetermined energization pattern to a plurality of armature windings, and the rotor The armature current flowing in the armature winding of each phase is detected by applying the starting position detection voltage, and the energized phase in which the maximum current flows is selected from the detected armature currents, and the energized phase is selected as the rotor magnetic pole. A rotor magnetic pole position estimating means for estimating the position, and a predetermined starting voltage for each armature winding of each energized phase sequentially from the armature winding positioned in the next phase of the energized phase estimated as the rotor magnetic pole position The rotor starting unit in the brushless / sensorless DC motor is configured by the rotor starting unit that starts the rotor by energizing the energized phase by reducing the energized phase for a certain period of time. In operation, the energized phase for energizing the starting voltage is estimated by the rotor magnetic pole position estimating means. As a result, the starting voltage gradually increases the energizing time for the starting voltage for smoothly starting the rotor, and the required energizing time. Even if the armature windings of the phases are energized, each energized phase is energized according to a predetermined energization pattern, so that the start-up can be maintained satisfactorily without swinging the rotor. Since it is possible to start up the rotor, it is possible to start up the rotor efficiently with low power by a simple circuit configuration, which is convenient.

請求項6記載の発明においては、複数相の電機子巻線に所定の通電パターンに従って回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する起動位置検出部と、前記回転子起動位置検出電圧の印加により各通電相の電機子巻線に流れる電機子電流を検出し、かつ、前記検出した電機子電流のうち最大電流が流れる通電相を選択してその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記回転子磁極位置と推定した通電相の次相に位置する電機子巻線から順次各通電相の電機子巻線に所定の起動電圧を所定の通電時間だけ各通電相毎に暫時減少させて通電することにより回転子を起動させる回転子起動部と、更に、前記回転子の起動により回転子が所定の回転数に達した時点で回転子の起動をセンサレス駆動に切替えるためのセンサレス駆動部とによって構成するようにしたので、この種モータの起動からセンサレス駆動までの切替えとセンサレス駆動を維持するための回転子の起動・センサレス駆動手段の存在により、回転子はその起動時その磁極位置の推定を従前のように回転開始位置に固定することなく、単に、回転を停止した回転子の位置において迅速・容易に回転子磁極位置を推定して回転子を起動させるとともに、起動後は所定の回転数に達した時点でセンサレス駆動(即ち、電機子巻線に流れる電機子電流が直前の通電時間の1/2時間を経過した後に検出した電機子電流値の所定値(1.3倍)に達した時点に転流させる)に切替えるように構成されているため、ブラシレス・センサレスDCモータの駆動を揺動・脱調等を誘発させることなく、円滑・良好に行うことができるので、立ちあがりの早いポンプとか掃除機等の駆動源として良好に使用できる特長を備えている。   According to a sixth aspect of the present invention, a starting position detector for sequentially applying a rotor magnetic pole position detection voltage to a degree that the rotor does not rotate in accordance with a predetermined energization pattern to a plurality of armature windings, and the rotor The armature current flowing through the armature winding of each energized phase is detected by applying the starting position detection voltage, and the energized phase through which the maximum current flows is selected from the detected armature currents, and the energized phase is selected as the rotor. The rotor magnetic pole position estimating means for estimating the magnetic pole position, and the armature winding positioned in the next phase of the energized phase estimated as the rotor magnetic pole position, and sequentially applying a predetermined starting voltage to the armature winding of each energized phase A rotor starting unit that starts the rotor by energizing the energized phase for a period of time less than the energizing time, and when the rotor reaches a predetermined number of rotations by starting the rotor, the rotor Sensor-less drive Since the sensorless drive unit for switching is used, switching from the start-up of this type of motor to sensorless drive and the start of the rotor to maintain the sensorless drive and the presence of sensorless drive means, the rotor Without starting the estimation of the magnetic pole position at the time of start-up as usual and simply starting the rotor by estimating the rotor magnetic pole position quickly and easily at the position of the rotor that has stopped rotating. After the start-up, when a predetermined number of revolutions is reached, sensorless driving (that is, a predetermined value of the armature current value detected after the armature current flowing in the armature winding has passed 1/2 hour of the immediately preceding energization time) (The commutation is performed when the current reaches 1.3 times), and the drive of the brushless / sensorless DC motor is caused to oscillate / step out. It not, it is possible to ensure a smooth-good, has a feature that can be satisfactorily used as a driving source of the fast pump Toka vacuum cleaner, such as the rise.

請求項7記載の発明においては、起動位置検出部を、回転子が回転しない程度の電圧を印加する起動位置検出用電圧印加手段と、前記起動位置検出用電圧を所定の通電パターンによって所定の通電相に順次印加する電圧印加相切替手段とによって構成したので、回転子の磁極位置を推定するための通電相への電圧の印加は、回転子が回転しない程度の電圧を所定の通電パターンに従って印加するだけでよいので、各通電相への電圧の印加は回転子を揺動させることなく、円滑・確実に印加できる結果、各通電相の電機子巻線に流れる電流を正確に検出することが可能となる。   According to the seventh aspect of the present invention, the starting position detecting unit includes a starting position detecting voltage applying unit that applies a voltage that does not rotate the rotor, and the starting position detecting voltage is supplied to the starting position by a predetermined energization pattern. Since the voltage application phase switching means that sequentially applies to the phase, the voltage applied to the energized phase for estimating the magnetic pole position of the rotor is applied according to a predetermined energization pattern so that the rotor does not rotate. As a result, the voltage applied to each energized phase can be applied smoothly and reliably without swinging the rotor. As a result, the current flowing in the armature winding of each energized phase can be accurately detected. It becomes possible.

請求項8記載の発明においては、回転子磁極位置推定手段が、各通電相の電機子巻線に流れる電機子電流の検出と最大電流が流れる電機子巻線を判定する機能と、その判定した通電相を回転子磁極位置と推定する機能とによって構成されているので、回転子磁極位置の推定が単純な機能によって迅速・確実に推定することができるため、利便である。   In the invention according to claim 8, the rotor magnetic pole position estimating means has the function of detecting the armature current flowing in the armature winding of each energized phase and determining the armature winding through which the maximum current flows. This is convenient because the energized phase is constituted by the function of estimating the rotor magnetic pole position as the rotor magnetic pole position, and the rotor magnetic pole position can be estimated quickly and reliably by a simple function.

請求項9記載の発明においては、回転子起動部を、回転子の起動に際して起動電圧を最初に通電する通電相を設定するための起動電圧通電相設定手段と、前記設定された通電相と所定の起動電圧を通電させる起動電圧通電手段とによって構成するようにしたので、回転子の起動に際しては、常に起動電圧を通電するための通電相が事前に設定されているため、回転子はその起動時揺動したり脱調することなく、円滑に起動させることができ利便である。   According to the ninth aspect of the present invention, the rotor starting unit includes a starting voltage energized phase setting means for setting an energized phase for initially energizing the starting voltage when starting the rotor, the set energized phase and the predetermined phase. Since the starting voltage energizing means for energizing the starting voltage is configured in advance, the energizing phase for energizing the starting voltage is always set in advance when starting the rotor. This is convenient because it can be started smoothly without rocking or stepping out.

請求項10記載の発明においては、センサレス駆動部を、回転子が起動してその回転数が所定の回転数に達した時点で回転子をセンサレス駆動に切替えるセンサレス切替駆動手段と、センサレス駆動に切替えたときその相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過した後に検出した電機子電流の所定倍(1.3倍)に達したとき転流指令を出力する転流指令手段とによって構成するようにしたので、回転子はその起動からセンサレス駆動への切替えは、起動時の回転数が所定の回転数、即ち、電流検出手段によって、電機子巻線に流れる電機子電流が検出できる時点でセンサレス駆動に切替えることができるため、回転子の起動からセンサレス駆動への切替えとセンサレス駆動の維持は簡易な手段の組み合わせによって円滑に行うことができるため、ブラシレス・センサレスDCモータの駆動を、特別な回転子磁極位置検出手段とか、回転子を所定の回転開始位置に保持する手段を用いることなく、簡易な手段により円滑・良好に行うことができ利便である。   In a tenth aspect of the invention, the sensorless drive unit is switched to sensorless drive and sensorless switching drive means for switching the rotor to sensorless drive when the rotor is activated and its rotational speed reaches a predetermined rotational speed. When the armature current flowing in the armature winding of that phase reaches a predetermined multiple (1.3 times) of the armature current detected after ½ hour of the energization time has elapsed, a commutation command is output. Since the rotor is configured by the flow command means, the rotor is switched from the start-up to the sensorless drive because the rotation speed at the start-up is a predetermined rotation speed, that is, the electric current flowing in the armature winding by the current detection means. Since it is possible to switch to sensorless driving when the child current can be detected, switching from starting the rotor to sensorless driving and maintaining sensorless driving is smooth by a combination of simple means. Therefore, the brushless and sensorless DC motor can be driven smoothly and satisfactorily by simple means without using special rotor magnetic pole position detection means or means for holding the rotor at a predetermined rotation start position. Convenient to do.

以下、本発明の実施例を図1ないし図7によって説明する。図1は、本発明の好ましい実施例として示すブラシレス・センサレスDCモータの駆動制御装置1のブロック図であり、この駆動制御装置1は、例えば、ポンプの駆動源やエアコンを始めとする各種電気機器に取付けられているファンを駆動するための本発明の実施例として説明するPMブラシレスモータ2を、センサレス駆動させるための駆動制御装置1として使用される。そして、前記駆動対象のPMブラシレスモータ2は、永久磁石の界磁を備えた回転子と、3相の電機子巻線(電磁巻線)を固定子鉄心に巻装してなる固定子とによって構成される、表面磁石形のブラシレスモータ(同期電動機)である。なお、界磁を固定子に、電機子巻線を回転子に設けたアウタロータ形のモータや、埋め込み磁石形の回転子を用いるIPM(Interior Permanent Magnet:埋込磁石形)モータにおいて、本発明の駆動制御装置1を用いることも可能である。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram of a drive control device 1 for a brushless / sensorless DC motor shown as a preferred embodiment of the present invention. The drive control device 1 is, for example, various electric devices such as a pump drive source and an air conditioner. A PM brushless motor 2 described as an embodiment of the present invention for driving a fan attached to a motor is used as a drive control device 1 for sensorless driving. The PM brushless motor 2 to be driven includes a rotor having a permanent magnet field and a stator formed by winding a three-phase armature winding (electromagnetic winding) around a stator core. A surface magnet type brushless motor (synchronous motor) configured. In an outer rotor type motor having a field as a stator and an armature winding in a rotor, or an IPM (Interior Permanent Magnet) motor using an embedded magnet type rotor, It is also possible to use the drive control device 1.

前記駆動制御装置1は、図1において大別すると、交流・直流変換回路3と、インバータ回路4と、電流検出回路5と、起動位置検出部6と、回転子磁極位置推定手段7と、回転子起動部8と、センサレス駆動部9と、3相インバータ制御手段10と、センサレス駆動停止部11と、定電圧電源回路12とによって概略構成されている。   The drive control device 1 is roughly divided in FIG. 1. The AC / DC conversion circuit 3, the inverter circuit 4, the current detection circuit 5, the starting position detection unit 6, the rotor magnetic pole position estimation means 7, the rotation A child starting unit 8, a sensorless driving unit 9, a three-phase inverter control means 10, a sensorless driving stopping unit 11, and a constant voltage power supply circuit 12 are roughly configured.

次に、駆動制御装置1の各構成要素の詳細について説明する。最初に、交流・直流変換回路3は、交流電源(例えば、商用電源AC100V)を直流電源(DC140V)に変換するコンバータ(電源装置)である。インバータ回路4は、バイポーラ形トランジスタU,V,W,x,y,zおよび整流素子D1〜D6からなり、PMブラシレスモータ2を駆動させる。前記インバータ回路4において、直流・交流変換回路3のP側に接続されているトランジスタを上アーム部4a、N側に接続されるトランジスタを下アーム部4bと称する。   Next, details of each component of the drive control device 1 will be described. First, the AC / DC conversion circuit 3 is a converter (power supply device) that converts an AC power supply (for example, commercial power supply AC100V) into a DC power supply (DC140V). The inverter circuit 4 includes bipolar transistors U, V, W, x, y, and z and rectifier elements D1 to D6, and drives the PM brushless motor 2. In the inverter circuit 4, a transistor connected to the P side of the DC / AC conversion circuit 3 is referred to as an upper arm portion 4a, and a transistor connected to the N side is referred to as a lower arm portion 4b.

起動位置検出部6は、PMブラシレスモータ2の各通電相(U,V,W相)の各電機子巻線に、2極の永久磁石である場合の例で示す回転子2aが、回転しない程度の回転子磁極位置検出用の電圧(例えば、交流電圧12V)を、インバータ回路4の出力端から印加するための電圧印加手段6aと、前記回転子磁極位置検出用の電圧(以下、検出用電圧という)を各通電相に印加する順序、即ち、検出用電圧の通電パターンを設定した電圧印加相切替手段6bとによって構成されている。   In the starting position detector 6, the rotor 2 a shown in the example in the case of a two-pole permanent magnet in each armature winding of each energized phase (U, V, W phase) of the PM brushless motor 2 does not rotate. A voltage applying means 6a for applying a voltage for detecting the rotor magnetic pole position (for example, an AC voltage of 12V) from the output terminal of the inverter circuit 4, and a voltage for detecting the rotor magnetic pole position (hereinafter referred to as detecting) The voltage application phase switching means 6b sets the order of applying the voltage to each energized phase, that is, the energization pattern of the detection voltage.

そして、前記電圧印加相切替手段6bに具備されている通電パターンは、例えば、図2に示すように、通電パターン0〜通電パターン5まで設定されており、実際に通電する場合も、通電パターン0→1→2→3→4→5の順序で、各通電相の電機子巻線に検出用電圧を印加するものである。なお、前記検出用電圧の印加は、前記通電パターンの順序に拘ることなく任意の順序で印加するようにしてもよく、要は通電パターンの順番ではなく、検出用電圧を各通電相の電機子巻線に遺漏なく印加するために設定したものである。   The energization pattern provided in the voltage application phase switching means 6b is set, for example, from energization pattern 0 to energization pattern 5, as shown in FIG. The detection voltage is applied to the armature windings of the energized phases in the order of 1 → 2 → 3 → 4 → 5. The detection voltage may be applied in any order regardless of the order of the energization patterns. In short, the detection voltage is not the order of the energization patterns, and the detection voltage is applied to the armature of each energization phase. It is set to apply to the winding without omission.

次に、回転子磁極位置推定手段7は、電流検出回路5により検出した各相通電相の電機子巻線に流れる電機子電流を各電機子巻線毎に比較し、最大の電機子電流が流れる電機子巻線の通電相を選択する機能と、前記選択した通電相を回転子磁極位置と推定する機能と、前記回転子磁極位置と推定した通電相であることを示す信号(指令)を後述する回転子起動部8に出力する機能とを備えて構成されている。   Next, the rotor magnetic pole position estimating means 7 compares the armature current flowing through the armature winding of each phase energized phase detected by the current detection circuit 5 for each armature winding, and the maximum armature current is obtained. A function for selecting an energized phase of the flowing armature winding, a function for estimating the selected energized phase as a rotor magnetic pole position, and a signal (command) indicating that the rotor magnetic pole position is an estimated energized phase. And a function of outputting to a rotor starting unit 8 to be described later.

そして、前記各通電相の電機子巻線に検出用電圧を印加(通電)した場合に流れる電機子電流において、回転子2aと電機子巻線を巻回した図示しない固定子鉄心の磁極との位置関係が磁束の流れ易くなる位置、即ち、固定子鉄心の磁極が、例えばN極で、このN極と対応する回転子2a側がS極である場合、磁束は固定子鉄心側から回転子2a側に一番流れ易く、即ち、円滑に流れる(この場合、固定子鉄心の磁極〔N極〕と、回転子2a側の〔S極〕とが相対向して互いに引合う位置に存在している)ため、前記固定子鉄心の磁極が存在する部位に巻回した電機子巻線には、検出用電圧の印加により電機子電流が最も良好に流れることになる。   Then, in the armature current that flows when a detection voltage is applied (energized) to the armature winding of each energized phase, the rotor 2a and the magnetic pole of a stator core (not shown) around which the armature winding is wound If the positional relationship is such that the magnetic flux easily flows, that is, if the magnetic pole of the stator core is, for example, N pole and the rotor 2a side corresponding to this N pole is the S pole, the magnetic flux flows from the stator core side to the rotor 2a. The magnetic pole [N pole] of the stator core and the [S pole] on the rotor 2a side are opposed to each other and attract each other. Therefore, the armature current flows best in the armature winding wound around the portion where the magnetic poles of the stator core exist by applying the detection voltage.

この結果、前記電機子巻線に流れる電機子電流は、他の電機子巻線を巻回した固定子鉄心の磁極が、例えば、N極でこのN極と対峙する回転子2a側もN極である場合、互いに反発して磁束が流れにくい状態となっているので、当該電機子巻線には小電流しか流れず、この場合の電機子巻線に比べれば大きな電機子電流が流れることになる。   As a result, the armature current flowing in the armature winding is such that the magnetic pole of the stator core around which the other armature winding is wound is, for example, N poles on the rotor 2a side facing this N pole. In this case, since the magnetic fluxes hardly repel each other, only a small current flows through the armature winding, and a large armature current flows compared to the armature winding in this case. Become.

このように、検出用電圧を各通電相の電機子巻線に印加することにより、各通電相の電機子巻線には、前記磁束が良好に流れる場合と流れにくい場合が存在することにより、電機子巻線に流れる電機子電流に差異が生じ、これら各電機子巻線に流れる電機子電流は、順次電流検出回路5により検出されて、回転子磁極位置推定手段7に出力される。回転子磁極位置推定手段7は、前記のように、各通電相の電機子巻線に流れる電機子電流の大・小を把握して回転子磁極位置を、最大の電機子電流が流れる電機子巻線を巻回した固定子鉄心の磁極であると推定するものである。これは、前記したように、当該固定子鉄心の磁極と回転子2aとが互いに磁束が一番流れ易い位置に存在しているからに他ならない。   In this way, by applying the detection voltage to the armature winding of each energized phase, the armature winding of each energized phase has a case where the magnetic flux flows well and a case where it is difficult to flow, Differences occur in the armature currents flowing through the armature windings, and the armature currents flowing through these armature windings are sequentially detected by the current detection circuit 5 and output to the rotor magnetic pole position estimating means 7. As described above, the rotor magnetic pole position estimating means 7 grasps the magnitude of the armature current flowing through the armature winding of each energized phase and determines the position of the rotor magnetic pole so that the maximum armature current flows. It is presumed that this is the magnetic pole of the stator core around which the winding is wound. As described above, this is because the magnetic poles of the stator core and the rotor 2a are present at positions where the magnetic flux flows most easily.

つづいて、回転子起動部8は、起動電圧通電相設定手段8aと起動電圧通電手段8bとからなり、起動電圧通電相設定手段8aは、回転子2aを起動させるための起動電圧を通電する通電相を設定する機能を備えており、起動電圧を通電する通電相を設定する場合は、回転子磁極位置推定手段7により設定された通電相に対し、その通電相の次相に位置する通電相を起動電圧を通電する通電相として設定する機能を具備して構成されている。   Subsequently, the rotor starting unit 8 includes a starting voltage energizing phase setting unit 8a and a starting voltage energizing unit 8b. The starting voltage energizing phase setting unit 8a energizes a starting voltage for starting the rotor 2a. When the energized phase for energizing the starting voltage is set, the energized phase positioned next to the energized phase with respect to the energized phase set by the rotor magnetic pole position estimating means 7 is provided. Is configured to have a function of setting the energization phase to energize the starting voltage.

そして、前記起動電圧を通電する通電相の設定に際しては、例えば、回転子2aを図2における右方向(時計方向)に回転させる場合は、回転子磁極位置推定手段7により回転子磁極位置として推定された通電相を基点としてその右側(時計方向側)に位置する次相の通電相を最初に起動電圧を通電する通電相と設定し、逆に、図2における左方向(反時計方向)に回転する場合は、前記回転子磁極位置と推定された通電相の左側(反時計方向側)に位置する次相の通電相を最初に起動電圧を通電する通電相と設定する様に構成されている。これは、固定子鉄心の磁極側のN極に対し回転子のS極が引き寄せられるためである。これは前記回転子2aのS極が、回転子磁極位置と推定した通電相の電機子巻線を巻回した固定子鉄心の磁極のN極に対して、互いに良好に引合う位置で2相対向しておれば回転子磁極位置と推定した通電相の次相に存在する通電相は、その通電相(次相)の電機子巻線を巻回した固定子鉄心の磁極(N極)に対して、回転子2aのS極は、回転子磁極位置と推定した通電相の電機子巻線を巻回した固定子鉄心に比べれば引合う力は少ないものの、磁束は回転子2aと固定子鉄心との間において2番目に流れ易い部位であるため、前記次相の通電相に起動電圧を最初に通電することにより、回転子2aは通電を行った通電相側に円滑・良好に起動することができる。   When setting the energized phase for energizing the starting voltage, for example, when the rotor 2a is rotated in the right direction (clockwise) in FIG. 2, the rotor magnetic pole position estimation means 7 estimates the rotor magnetic pole position. The energized phase of the next phase located on the right side (clockwise side) of the energized phase as a base point is set as the energized phase for energizing the starting voltage first, and conversely in the left direction (counterclockwise direction) in FIG. When rotating, the energized phase of the next phase located on the left side (counterclockwise side) of the energized phase estimated as the rotor magnetic pole position is set as the energized phase for energizing the starting voltage first. Yes. This is because the S pole of the rotor is attracted to the N pole on the magnetic pole side of the stator core. This is because the S pole of the rotor 2a has two relative positions at which it attracts well to the N pole of the magnetic pole of the stator core around which the armature winding of the energized phase estimated as the rotor magnetic pole position is wound. The energized phase present in the next phase of the energized phase that is estimated to be the rotor magnetic pole position is the magnetic pole (N pole) of the stator core around which the armature winding of the energized phase (next phase) is wound. On the other hand, the S pole of the rotor 2a has less attractive force than the stator core around which the armature winding of the energized phase estimated as the rotor magnetic pole position is wound, but the magnetic flux is the rotor 2a and the stator. Since it is the second most easily flowing portion between the core and the energized phase of the next phase, the rotor 2a is smoothly and satisfactorily activated to the energized phase side that has been energized. be able to.

この際、回転子磁極位置と推定された通電相に起動電圧を通電することも考えられるが、この通電相は検出用電圧の印加により磁束が一番よく流れるものの、電機子巻線に起動電圧を通電しても、回転子2aは固定子鉄心との間で良好に引合う関係にあるため、起動電圧の通電により即回転とはならず、ただ引合うのみである。このため、通常は例えば、設定された回転方向に直ちに回転させるべくホールIC等の回転子位置検出センサを用いて、回転子の回転子開始位置を設定するとともに、回転子の回転方向に通電を行うことにより対応していた。   At this time, it is conceivable to apply a starting voltage to the energized phase estimated as the rotor magnetic pole position. In this energized phase, although the magnetic flux flows best when the detection voltage is applied, the starting voltage is applied to the armature winding. Since the rotor 2a is in a good attractive relationship with the stator core even when the current is applied, the rotor is not immediately rotated by the energization of the starting voltage, but only attracts. For this reason, for example, the rotor start position of the rotor is set using a rotor position detection sensor such as a Hall IC in order to immediately rotate in the set rotation direction, and energization is performed in the rotation direction of the rotor. We responded by doing.

然るに、本発明は、ホールIC等の回転子位置検出センサを用いることなく回転子2aを起動させるべく前記のように、回転子磁極位置と推定した通電相を基点として、回転子の回転方向側に位置する次相の通電相に起動電圧を回転子2aが回転することのできる電圧を通電することにより、回転子2aを円滑に起動させることができる。そして、前記回転子2aを回転させる電圧については、回転子起動部8の一方を構成する起動電圧通電手段8bにより設定された電圧を所定の通電相の電機子巻線に設定された時間だけ順次通電するように構成されている。前記起動電圧の各通電相への通電時間は、例えば、最初の通電相に通電した時間(100%)に対して、次相の通電には最初の通電時間の70%に、三番目の通電相への通電時間は前相の通電時間の70%というように、順次低減して通電することができるように構成されている。   However, in the present invention, as described above, in order to start the rotor 2a without using a rotor position detection sensor such as a Hall IC, the rotor magnetic pole position and the energized phase estimated as the base point are used. The rotor 2a can be smoothly started by supplying a voltage that can rotate the rotor 2a to the energized phase of the next phase that is positioned at. And about the voltage which rotates the said rotor 2a, the voltage set by the starting voltage electricity supply means 8b which comprises one side of the rotor starting part 8 is sequentially set for the time set to the armature winding of the predetermined energization phase. It is configured to energize. The energization time of each start-up voltage to each energized phase is, for example, 70% of the first energization time for the energization of the next phase, and the third energization for the energization time of the first energization phase (100%). The energization time to the phase is configured so that the energization can be performed by sequentially reducing the energization time to 70% of the energization time of the previous phase.

つづいて、センサレス駆動部9について説明する。このセンサレス駆動部9は、センサレス駆動切替手段9aと転流指令手段9bとからなり、センサレス駆動切替手段9aは、前記回転子起動部8にて起動した回転子2aの回転数が、事前に設定した回転数に達しているか否かを判定する機能と、前記回転子2aの回転数が所定の回転数に達している場合は、回転子2aの起動をセンサレス駆動に切替える機能とを備えて構成されている。また、転流指令手段9bは、センサレス駆動切替手段9aに回転子2aの起動をセンサレス駆動に切替えた時の通電相の電機子巻線に流れる電機子電流が、通電時間の1/2時間経過した後に検出した電機子電流の所定倍(例えば、1.3倍)に達していることを確認し、かつ、この確認により転流指令を出力して通電相を切替える機能を備えて構成されている。   Next, the sensorless driving unit 9 will be described. The sensorless drive unit 9 includes a sensorless drive switching unit 9a and a commutation command unit 9b. The sensorless drive switching unit 9a sets in advance the rotation speed of the rotor 2a activated by the rotor activation unit 8. And a function for determining whether or not the rotation speed of the rotor 2a has reached a predetermined rotation speed, and a function for switching the activation of the rotor 2a to sensorless drive. Has been. Further, the commutation command means 9b indicates that the armature current flowing through the armature winding in the energized phase when the activation of the rotor 2a is switched to the sensorless drive by the sensorless drive switching means 9a is ½ hour of the energization time. And confirming that it has reached a predetermined multiple (for example, 1.3 times) of the detected armature current, and having the function of switching the energized phase by outputting a commutation command by this confirmation Yes.

前記センサレス駆動部9は、PMブラシレスモータ2の回転子2aが起動後所定の回転数に達し、かつ、電機子巻線に流れる電機子電流が通電時間の1/2時間経過後に検出した電流値の1.3倍以上となった場合に、転流指令を出力する。これは、例えば、図6に示すように、第2の電流増加領域bが、第1の電流増加領域aに比べ1.3倍以上に達した時点で、転流指令が出力され、この領域において転流が行われるので、即ち、センサレス駆動に切替わってPMブラシレスモータ2を回転子磁極位置センサを用いることなく、円滑に駆動することができる。   The sensorless drive unit 9 detects the current value detected after the rotor 2a of the PM brushless motor 2 has reached a predetermined number of rotations after startup, and the armature current flowing through the armature winding has passed half the energization time. Commutation command is output when 1.3 times or more. For example, as shown in FIG. 6, a commutation command is output when the second current increase region b reaches 1.3 times or more than the first current increase region a. Therefore, the PM brushless motor 2 can be smoothly driven without using the rotor magnetic pole position sensor by switching to sensorless driving.

図1において、3相インバータ制御手段10は、インバータ回路4を構成する上アーム部4aと下アーム部4bを構成する各トランジスタU,V,W,x,y,zを起動位置検出部6、回転子起動部8、センサレス駆動部9から出力される指令に基いて、所要時間ON・OFF制御させる機能と、各トランジスタU,V,W,x,y,zを所定の通電パターンおよび転流指令が出力される毎に、所要の通電相に通電を切替えるためにON・OFF制御を行わせる機能とを具備して構成されている。   In FIG. 1, the three-phase inverter control means 10 includes a starting position detector 6, each of the transistors U, V, W, x, y, and z that constitute the upper arm portion 4 a and the lower arm portion 4 b that constitute the inverter circuit 4. Based on commands output from the rotor starting unit 8 and the sensorless driving unit 9, a function for ON / OFF control of the required time, and a predetermined energization pattern and commutation for each transistor U, V, W, x, y, z Each time a command is output, it has a function of performing ON / OFF control in order to switch the energization to a required energization phase.

更に、図1において、センサレス駆動停止部11は、PMブラシレスモータ2の駆動を図示しないスイッチにて停止させた場合、電流検出回路5にて検出される各通電相の電機子巻線に流れる電流が所定の電流値まで降下したとき、回転子ソフト停止手段11aより3相インバータ制御手段10にインバータ回路4の下アーム4bを所定時間毎にONさせて各相の電機子巻線を短絡状態とすることにより、回転子2aを暫時低減させてソフト的に停止させるように構成されている。   Further, in FIG. 1, when the drive of the PM brushless motor 2 is stopped by a switch (not shown), the sensorless drive stopping unit 11 is a current flowing through the armature winding of each energized phase detected by the current detection circuit 5. Is lowered to a predetermined current value, the rotor soft stop means 11a causes the three-phase inverter control means 10 to turn on the lower arm 4b of the inverter circuit 4 every predetermined time so that the armature windings of each phase are short-circuited. By doing so, the rotor 2a is reduced for a while and then stopped in a software manner.

次に、前記のように構成されたPMブラシレスモータ2の駆動制御装置1の動作について説明する。交流電源20から商用電源100Vの交流電圧が交流・直流変換回路3に通電されると、交流・直流変換回路3からは、駆動制御装置1の各部位・手段に、例えば、5Vの安定化した定電圧電源Vccが、定電圧電源回路12を介して供給される。なお、この時点において、交流・直流変換回路3からインバータ回路4を経てPMブラシレスモータ2には、駆動制御装置1からの指令にてPMブラシレスモータ2を駆動する駆動電源(交流電源、例えば、100V)は供給されていない。   Next, the operation of the drive control device 1 for the PM brushless motor 2 configured as described above will be described. When an AC voltage of the commercial power supply 100V is supplied from the AC power supply 20 to the AC / DC conversion circuit 3, the AC / DC conversion circuit 3 stabilizes, for example, 5V to each part / means of the drive control device 1. A constant voltage power supply Vcc is supplied via the constant voltage power supply circuit 12. At this time, the PM brushless motor 2 is supplied from the AC / DC conversion circuit 3 through the inverter circuit 4 to the PM brushless motor 2 in response to a command from the drive control device 1 (AC power supply, for example, 100V). ) Is not supplied.

つづいて、前記PMブラシレスモータ2を起動する場合について説明する。前記PMブラシレスモータ2を起動する場合、前記PMブラシレスモータ2はセンサレス駆動を行なうために回転子2aの回転開始位置、即ち、回転子磁極位置を推定する必要がある。本発明においては、最初に、PMブラシレスモータ2の図示しない固定子鉄心に巻回した各通電相(U,V,W)の電機子巻線に流れる電機子電流を検出して回転子2aの回転子磁極位置を推定するものである。   Next, a case where the PM brushless motor 2 is started will be described. When starting the PM brushless motor 2, the PM brushless motor 2 needs to estimate the rotation start position of the rotor 2a, that is, the rotor magnetic pole position, in order to perform sensorless driving. In the present invention, first, the armature current flowing in the armature winding of each energized phase (U, V, W) wound around the stator core (not shown) of the PM brushless motor 2 is detected to detect the armature current of the rotor 2a. The rotor magnetic pole position is estimated.

各通電相の電機子巻線に流れる電機子電流を検出する場合は、起動位置検出部6に設けた電圧印加手段6aにより、各通電相の電機子巻線に検出用電圧を所定時間印加して検出する。前記回転子磁極位置検出用の電圧は、本例の場合回転子2aが回転しない程度の交流電圧(12V)を、0.01秒間インバータ回路4の所定の出力端から出力して、PMブラシレスモータ2の前記インバータ回路4の出力端と接続する通電相に印加するものである。   When detecting the armature current flowing through the armature winding of each energized phase, a voltage for detecting is applied to the armature winding of each energized phase for a predetermined time by the voltage applying means 6a provided in the starting position detector 6. To detect. As the voltage for detecting the rotor magnetic pole position, an AC voltage (12V) that does not rotate the rotor 2a in this example is output from a predetermined output terminal of the inverter circuit 4 for 0.01 seconds to obtain a PM brushless motor. 2 is applied to the energized phase connected to the output terminal of the inverter circuit 4.

前記交流電圧の印加に当っては、電圧印加相切替手段6bによって、例えば、図2に示すような通電パターンに従って順次交流・直流変換回路3より12Vの直流電圧をインバータ回路4により交流に変換して各通電相の電機子巻線に印加する。図2において、各通電相の電機子巻線への検出用電圧を印加する場合は、図2に示す通電パターンの順序0〜5に従って順次前記検出用電圧を印加する。即ち、通電パターン0は、U相(通電相)の電機子巻線に最初に検出用電圧を印加するパターンを示すもので、この場合は電圧印加相切替手段6bからの指令によりインバータ回路4の上アーム4aのトランジスタUと、下アーム4bのトランジスタyをONさせて前記電圧を0.01秒印加する。   In the application of the AC voltage, the voltage application phase switching means 6b converts the DC voltage of 12V from the AC / DC conversion circuit 3 to the AC by the inverter circuit 4 in accordance with the energization pattern as shown in FIG. Applied to the armature winding of each energized phase. In FIG. 2, when applying the detection voltage to the armature winding of each energized phase, the detection voltage is sequentially applied according to the sequence 0 to 5 of the energization patterns shown in FIG. That is, the energization pattern 0 indicates a pattern in which the detection voltage is first applied to the U-phase (energized phase) armature winding. In this case, the inverter circuit 4 is controlled by a command from the voltage application phase switching means 6b. The transistor U of the upper arm 4a and the transistor y of the lower arm 4b are turned on and the voltage is applied for 0.01 second.

通電パターン0による電圧の印加が終了すると、引き続き電圧印加相切替手段6bからの指令にて、前記通電パターン0にてONしていたインバータ回路4のトランジスタU,yをOFFすると同時に、通電パターン1によりインバータ回路4のトランジスタU,zをONし、U相の電機子巻線に2回目の検出用電圧を印加する。以下同様にして通電パターン2においては、通電パターン1におけるインバータ回路4のトランジスタU,zをOFFし、トランジスタV,zをONさせてV相の電機子巻線に1回目の検出用電圧を印加する。   When the application of the voltage by the energization pattern 0 is completed, the energization pattern 1 is turned off simultaneously with turning off the transistors U and y of the inverter circuit 4 that has been turned on in the energization pattern 0 by the command from the voltage application phase switching means 6b. Thus, the transistors U and z of the inverter circuit 4 are turned ON, and the second detection voltage is applied to the U-phase armature winding. Similarly, in the energization pattern 2, the transistors U and z of the inverter circuit 4 in the energization pattern 1 are turned off, the transistors V and z are turned on, and the first detection voltage is applied to the V-phase armature winding. To do.

通電パターン3においては、インバータ回路4のトランジスタV,zをOFF、V,xをONさせて2回目の電圧をV相の電機子巻線に印加する。通電パターン4では、インバータ回路4のトランジスタV,xをOFF、W,xをONさせてW相の電機子巻線に1回目の検出用電圧を印加し、通電パターン5では、インバータ回路4のトランジスタW,xをOFF、W,yをONさせて2回目の検出用電圧をW相の電機子巻線に印加する。このように、通電相の電機子巻線に所定の通電パターンにより所定の電機子巻線に順次検出用電圧を印加する。   In the energization pattern 3, the transistors V and z of the inverter circuit 4 are turned off and V and x are turned on, and the second voltage is applied to the V-phase armature winding. In the energization pattern 4, the transistors V and x of the inverter circuit 4 are turned off and W and x are turned on to apply the first detection voltage to the W-phase armature winding. The transistors W and x are turned off, W and y are turned on, and the second detection voltage is applied to the W-phase armature winding. In this manner, the detection voltage is sequentially applied to the predetermined armature windings according to the predetermined energization pattern to the armature windings in the energized phase.

前記のように、起動位置検出部6によって各通電相の電機子巻線に検出用電圧を印加することにより、各電機子巻線に電機子電流が流れる。この電機子電流は各通電相の電機子巻線毎に電流検出回路5のシャント抵抗によって検出され、電圧に変換されて回転子磁極位置推定手段7に出力される(図3(a)参照)。   As described above, when the detection voltage is applied to the armature winding of each energized phase by the starting position detection unit 6, an armature current flows through each armature winding. This armature current is detected by the shunt resistance of the current detection circuit 5 for each energized winding of each energized phase, converted into a voltage, and output to the rotor magnetic pole position estimating means 7 (see FIG. 3A). .

電流検出回路5から出力される各通電相の電機子巻線に流れる電機子電流が回転子磁極位置推定手段7に入力されると、回転子磁極位置推定手段7は、最初に入力された各通電相の電機子巻線に流れる電機子電流を通電相毎に比較し、最大の電機子電流が流れる通電相を選択する。本例の場合は、図3(a)の電流波形図で示すように、通電パターン5によりW相の電機子巻線に、2回目の検出用電圧を印加したときに流れる電機子電流が最大となっている(図3(a)の(へ)参照)。   When the armature current flowing through the armature winding of each energized phase output from the current detection circuit 5 is input to the rotor magnetic pole position estimating means 7, the rotor magnetic pole position estimating means 7 The armature current flowing through the armature winding of the energized phase is compared for each energized phase, and the energized phase through which the maximum armature current flows is selected. In the case of this example, as shown in the current waveform diagram of FIG. 3A, the armature current that flows when the second detection voltage is applied to the W-phase armature winding by the energization pattern 5 is the maximum. (See (f) in FIG. 3A).

これは、図2,図3(b),(c)に示すように、回転子2aのS極が,W相の電機子巻線を巻回した固定子鉄心の磁極Nに対して同一線上の位置(図2参照)で対応しているからに他ならない。即ち、回転子2aのS極が前記固定子鉄心のN極と正常な状態で対応していることにより、W相の電機子巻線に電圧を印加したときに生ずる磁束は、2回目に検出用電圧を印加したW相の電機子巻線を巻回した固定子鉄心と、前記回転子2aとの間において何等の抵抗も受けることなく、円滑に流れることによって、電機子電流が多く流れることになるものである。この場合、回転子2aは、図3(b)の(へ)に示すように、回動することなく、停止状態を保持している。これは、回転子2aのS極と固定子鉄心の磁極に生ずるN極とが、お互いに良好にバランスして引合っているためである。   As shown in FIGS. 2, 3B and 3C, the S pole of the rotor 2a is collinear with the magnetic pole N of the stator core around which the W-phase armature winding is wound. This is nothing but the correspondence (see FIG. 2). That is, since the S pole of the rotor 2a corresponds to the N pole of the stator core in a normal state, the magnetic flux generated when a voltage is applied to the W-phase armature winding is detected the second time. A large amount of armature current flows by flowing smoothly without receiving any resistance between the stator iron core wound with the W-phase armature winding to which a voltage is applied and the rotor 2a. It will be. In this case, as shown in (f) of FIG. 3B, the rotor 2a holds the stopped state without rotating. This is because the south pole of the rotor 2a and the north pole generated in the magnetic pole of the stator core attract each other in a well-balanced manner.

因に、図2に示す通電パターン2によってV相の電機子巻線に、1回目の検出用電圧を印加した場合は、回転子2aのN極と固定子鉄心の磁極に生ずるN極とが互いに対応して反発状態にある関係上、V相の電機子巻線に検出用電圧を印加しても、図3(a)の(ハ)に示す電流波形で分るように、通電パターン2におけるV相の電機子巻線には電機子電流はあまり流れない。これは、回転子2a側のN極と固定子鉄心の磁極側のN極とが互いに反発して磁束が流れにくい状況にあるからに他ならない(図3(b)の(ハ)参照)。   Incidentally, when the first detection voltage is applied to the V-phase armature winding by the energization pattern 2 shown in FIG. 2, the N pole of the rotor 2a and the N pole generated at the magnetic pole of the stator core are generated. Because of the repulsive state corresponding to each other, even when a detection voltage is applied to the V-phase armature winding, as shown by the current waveform shown in FIG. In the V-phase armature winding in FIG. This is because the N pole on the rotor 2a side and the N pole on the magnetic pole side of the stator core repel each other and it is difficult for the magnetic flux to flow (see (c) in FIG. 3B).

前記通電パターン5、2の他に、通電パターン0の場合は、回転子2aのS極とU相の1回目に検出用電圧を印加した電機子巻線を巻回した固定子鉄心の磁極側のN極は、回転子2aが図3(b)の(イ)に示すように、時計方向(右側)に移動(引合う)しようとしている。逆に、通電パターン4においては、W相の1回目に検出用電圧を印加した電機子巻線を巻回した固定子鉄心の磁極のN極側に、図3(b)の(ホ)に示す如く、回転子2aのS極が引合う状態で移動(反時計方向(左側))しようとしている。   In addition to the energization patterns 5 and 2, in the case of the energization pattern 0, the magnetic pole side of the stator iron core wound with the armature winding to which the detection voltage is applied for the first time of the S pole and the U phase of the rotor 2a As shown in FIG. 3 (b) (A), the N pole of N is moving (attracting) in the clockwise direction (right side). On the other hand, in the energization pattern 4, on the N pole side of the magnetic pole of the stator core wound with the armature winding to which the detection voltage is applied for the first time in the W phase, As shown, the rotor 2a is about to move (counterclockwise (left side)) with the south pole attracted.

更に、図2に示す通電パターン1,3においては、それぞれ2回目に検出用電圧をU相、V相の電機子巻線に印加した場合、図3(b)の(ロ),(ニ)に示すように、回転子2a側のN極が前記U,V相の電機子巻線を巻回した固定子鉄心の磁極側のN極に対しては、互いに反発して、通電パターン1においては回転子2aが図3(b)の(ロ)に示す如く、時計方向(右側)に、通電パターン3では回転子2aは図3(b)の(ニ)に示す如く、反時計方向(左側)に移動しようとしている。   Further, in the energization patterns 1 and 3 shown in FIG. 2, when the detection voltage is applied to the U-phase and V-phase armature windings for the second time, (b) and (d) of FIG. As shown in FIG. 4, the N pole on the rotor 2a side repels the N pole on the magnetic pole side of the stator core around which the U and V phase armature windings are wound. In FIG. 3B, the rotor 2a is clockwise (right side), and in the energization pattern 3, the rotor 2a is counterclockwise (as shown in FIG. Trying to move to the left).

このように、各相の電機子巻線に検出用電圧を印加した場合、回転子2aのS極と電機子巻線を巻回した固定子鉄心の磁極(N極)とが磁束の流れ易い位置で対応しているか否かによって各電機子巻線に流れる電機子電流の通電量(大・小)が決定されるもので、その通電量は図3(a)によって示す電流波形により、どの通電パターンが一番電流が流れやすいか一目瞭然に判るもので、本例では通電パターン5に示すW相の2回目に検出用電圧を印加した電機子巻線であり、これは前記のように、回転子2aと固定子鉄心の磁極との関係が一番良好な状態に保持されているためであり、この場合、回転子2aのS極が、図2において、通電パターン5以外の他の位置で停止している場合においても、通電パターン5と同様の効能が得られるということは云うまでもない。   As described above, when a detection voltage is applied to the armature winding of each phase, the magnetic flux easily flows between the S pole of the rotor 2a and the magnetic pole (N pole) of the stator core around which the armature winding is wound. The energization amount (large / small) of the armature current flowing through each armature winding is determined depending on whether or not the position corresponds, and the energization amount depends on the current waveform shown in FIG. It can be seen at a glance whether the energization pattern is most likely to cause the current to flow, and in this example, it is the armature winding to which the detection voltage is applied for the second time of the W phase shown in the energization pattern 5, as described above, This is because the relationship between the rotor 2a and the magnetic poles of the stator core is maintained in the best condition. In this case, the S pole of the rotor 2a is located at a position other than the energization pattern 5 in FIG. Even when it is stopped at the same time, the same effect as the energization pattern 5 is obtained. It is needless to say to say.

電機子巻線に最大の電機子電流が流れる通電相を選択したら、回転子磁極位置推定手段7は、前記通電相、本例では通電パターン5により選択されたW相の2回目に検出用電圧を印加した電機子巻線を巻回した固定子鉄心の磁極を回転子磁極位置と推定し、回転子起動部8の起動電圧通電相設定手段8aに前記固定子鉄心に巻回した電機子巻線を有する通電相が回転子磁極位置に推定するという情報を出力する(図3(c)の(へ)参照)。   When the energized phase through which the maximum armature current flows in the armature winding is selected, the rotor magnetic pole position estimating means 7 detects the voltage for the second detection of the energized phase, in this example, the W phase selected by the energization pattern 5. The magnetic pole of the stator core around which the armature winding to which the coil is applied is estimated as the rotor magnetic pole position, and the armature winding wound around the stator core around the starting voltage conduction phase setting means 8a of the rotor starting unit 8 Information that the energized phase having the line is estimated to be the rotor magnetic pole position is output (see (f) in FIG. 3C).

回転子磁極位置を推定した情報が起動電圧通電相設定手段8aに出力されると前記起動電圧通電相設定手段8aは、回転子2aを起動する起動電圧の通電を前記推定した通電相の次相に位置する電機子巻線を備えた通電相、即ち、図2において回転子2aを右方向に回転する場合は、通電パターン0のところに示されているU相の第1回目の検出用電圧を印加する電機子巻線を、また、回転子2aの回転方向が左方向の場合は、通電パターン4に示すW相の第1回目の検出用電圧を印加する電機子巻線をそれぞれ通電相と設定し、3相インバータ制御手段10に出力する。前記通電相の設定は、図3(b)に示す通電パターン(イ),(ホ)において、回転子2aのS極が固定子鉄心の磁極(N極)側に引合うようになっているので、回転子磁極位置と推定した通電相の次相の通電相を起動電圧の通電相と設定するものである。   When the information that estimates the rotor magnetic pole position is output to the starting voltage energized phase setting means 8a, the starting voltage energized phase setting means 8a determines the energization of the starting voltage for starting the rotor 2a as the next phase of the estimated energized phase. When the rotor 2a is rotated in the right direction in FIG. 2 when the rotor 2a is rotated to the right in FIG. If the rotation direction of the rotor 2a is to the left, the armature winding to which the W-phase first detection voltage shown in the energization pattern 4 is applied is the energized phase. Are set and output to the three-phase inverter control means 10. The energization phase is set such that the S pole of the rotor 2a is attracted to the magnetic pole (N pole) side of the stator core in the energization patterns (A) and (E) shown in FIG. Therefore, the energized phase next to the energized phase estimated as the rotor magnetic pole position is set as the energized phase of the starting voltage.

3相インバータ制御手段10は、起動電圧通電相設定手段8aからの出力に対応し、前記の出力が例えば、回転子2aを右方向に回転する場合は、図2に示す通電パターン0に示すU相の最初に検出用電圧を印加した電機子巻線を、起動電圧を最初に通電する通電相とすべく、インバータ回路4のトランジスタU,yをONし、起動電圧をU相の前記電機子巻線に通電させるようにする。なお、回転子2aの回転方向が左方向の場合は、前記したように、通電パターン4のW相の電機子巻線(最初に検出用電圧を印加した電機子巻線)を最初に起動電圧を通電する通電相として設定する。   The three-phase inverter control means 10 corresponds to the output from the starting voltage energization phase setting means 8a. When the output rotates, for example, the rotor 2a in the right direction, the U-phase shown in the energization pattern 0 shown in FIG. In order to set the armature winding to which the detection voltage is applied at the beginning of the phase as the energized phase in which the starting voltage is first supplied, the transistors U and y of the inverter circuit 4 are turned on, and the starting voltage is set to the U-phase armature Energize the windings. When the rotation direction of the rotor 2a is the left direction, as described above, the W-phase armature winding of the energization pattern 4 (the armature winding to which the detection voltage is first applied) is first activated. Is set as the energized phase.

前記のようにして起動電圧を通電する通電相を設定すると、起動電圧通電手段8bが作動し起動電圧(例えば、交流電圧5V)をインバータ回路4の出力端からU相の電機子巻線に通電し回転子2aを起動(回転)させる。   When the energization phase for energizing the start-up voltage is set as described above, the start-up voltage energization means 8b is activated and energizes the start-up voltage (for example, AC voltage 5V) from the output terminal of the inverter circuit 4 to the U-phase armature winding. Then, the rotor 2a is activated (rotated).

そして、前記起動電圧の通電に際しては、最初の通電相(図2に示す通電パターン0に示すU1、即ち、U相の第1回目に検出用電圧を印加した電機子巻線(U1)に5Vの交流電圧を0.1秒間通電する。つづいて、次の通電相(図2に示す通電パターン1のU2、即ち、U相の第2回目に検出用電圧を印加した電機子巻線)への通電は、最初に通電した起動電圧の通電完了後0.02秒間の間隔を保って次の通電相に通電時間を第1回目の通電時間に対して70%として通電する。第3回目の通電相(図2に示す通電パターン2のV1、即ち、V相の1回目に検出用電圧を印加した電機子巻線)には、第2回目の通電時間の70%として通電する(図4,図5参照)。   When energizing the starting voltage, 5 V is applied to the first energized phase (U1 shown in the energization pattern 0 shown in FIG. 2, that is, the armature winding (U1) to which the detection voltage is applied in the first phase of the U phase). Next, to the next energized phase (U2 of the energization pattern 1 shown in FIG. 2, that is, the armature winding to which the detection voltage is applied for the second time of the U phase). In the energization, the energization time is set to 70% with respect to the first energization time in the next energization phase at an interval of 0.02 seconds after completion of energization of the first energized starting voltage. The energization phase (V1 of the energization pattern 2 shown in FIG. 2, that is, the armature winding to which the detection voltage is applied for the first time of the V phase) is energized as 70% of the second energization time (FIG. 4). FIG. 5).

このように、起動電圧を通電する場合は、起動電圧を通電する通電相が設定されたら、前記設定した通電相を基点として、回転子2aを右方向に回転する場合は、図2に示す通電パターンを時計方向に移動する順序で該当する通電相の電機子巻線U1→U2→V1・・・・・に、起動電圧の通電時間を順次30%づつ減らして通電することにより、回転子2aを起動(回転)させる。回転子2aを左方向に回転させる場合は、前記とは逆に通電相の電機子巻線W1→V2→V1・・・・の順序で起動電圧の通電時間を30%づつ暫時減らして通電し、回転子2aを左方向に起動(回転)させる。なお、前記起動電圧を通電した通電相は図2のように、回転子2aのS極が通電パターン0の位置に存在しているので、前記のように通電するか、回転子2aのS極が、例えば、通電パターン0の位置にあれば、その位置の通電相U1(U相の第1回目に検出用電圧を通電する電機子巻線)が回転子磁極位置と推定されるため、起動電圧は回転子2aが右方向に回転する場合は通電パターン1の通電相(U2)、左方向の回転は通電パターン5の通電相(W1)に通電することになる。   Thus, when energizing the starting voltage, when the energizing phase for energizing the starting voltage is set, the energization shown in FIG. 2 is used when the rotor 2a is rotated clockwise with the set energizing phase as a base point. The rotor 2a is energized by sequentially reducing the energization time of the starting voltage by 30% sequentially to the armature windings U1 → U2 → V1... Of the corresponding energized phase in the order of moving the pattern in the clockwise direction. Start (rotate). When rotating the rotor 2a counterclockwise, the energization time of the starting voltage is reduced by 30% for a while in the order of the armature windings W1 → V2 → V1. The rotor 2a is activated (rotated) in the left direction. As shown in FIG. 2, the energization phase in which the starting voltage is energized has the S pole of the rotor 2a located at the position of the energization pattern 0. Therefore, the energization phase may be energized or the S pole of the rotor 2a. However, if, for example, it is at the position of the energization pattern 0, the energized phase U1 at that position (the armature winding that energizes the detection voltage for the first time of the U phase) is estimated as the rotor magnetic pole position. When the rotor 2a rotates in the right direction, the voltage is applied to the energization phase (U2) of the energization pattern 1, and to the left direction, the energization phase (W1) of the energization pattern 5 is energized.

そして、前記のように回転子2aが起動してその回転数が所定の回転数(例えば、500回/分)に達したら回転子の起動をセンサレス駆動に切替える。この場合は、起動電圧を最初の通電相に通電してから3〜5回目の通電、即ち、通電パターン3〜5に示す通電相に起動電圧を通電することにより達成することができる回転数であり、また、通電時間を順次低減するのは、回転子2aが起動を開始すれば、回転トルクが急激に変化しない限り通電時間を減らしても脱調することもなく、円滑に回転することができるからである。なお、起動電圧を通電しても回転子2aの回転数が設定した回転数に達しない場合は、異常と判断して回転子2aの起動を停止し、異常原因を調べ問題なければ再度最初から回転子磁極位置を検出してPMブラシレスモータ2の起動を行うようにする。   Then, as described above, when the rotor 2a is activated and its rotational speed reaches a predetermined rotational speed (for example, 500 times / minute), the activation of the rotor is switched to sensorless driving. In this case, the number of rotations that can be achieved by energizing the starting voltage to the first energized phase and then energizing the third to fifth times, that is, by energizing the starting voltage to the energized phases shown in the energization patterns 3 to 5. In addition, the energization time is sequentially reduced because if the rotor 2a starts to start, the energization time can be reduced smoothly without decreasing even if the energization time is reduced unless the rotational torque changes abruptly. Because it can. If the rotational speed of the rotor 2a does not reach the set rotational speed even when the starting voltage is applied, the rotor 2a is determined to be abnormal and the starting of the rotor 2a is stopped. The rotor magnetic pole position is detected and the PM brushless motor 2 is activated.

前記のように、所定の通電相の電機子巻線に起動電圧を順次通電し、回転子2aが所定の回転数に達したら、回転子2aの起動を即時センサレス駆動に切替える。前記回転子2aの回転数が所定の回転数に達したか否かの判断は、電流検出回路5により検出される起動電圧を通電した通電相の電機子巻線に流れる電機子電流が、回転子2aの回転数が500回/分に達した際に流れる電流を、センサレス駆動部9のセンサレス駆動切替手段9aが検出すると前記センサレス駆動切替手段9aは、センサレス駆動に適した通電電圧(例えば、交流電圧100V)を設定して3相インバータ制御手段10に出力し、センサレス駆動に適した電圧をPMブラシレスモータ2に通電すべくインバータ回路4をON・OFF制御し、常にセンサレス駆動に適した電圧が供給できるようにしている。   As described above, the start-up voltage is sequentially applied to the armature windings of a predetermined energized phase, and when the rotor 2a reaches a predetermined number of rotations, the start-up of the rotor 2a is switched to immediate sensorless drive. Whether or not the rotational speed of the rotor 2a has reached a predetermined rotational speed is determined by whether the armature current flowing through the armature winding of the energized phase energized with the starting voltage detected by the current detection circuit 5 is rotated. When the sensorless drive switching unit 9a of the sensorless drive unit 9 detects a current that flows when the rotation speed of the child 2a reaches 500 times / minute, the sensorless drive switching unit 9a detects an energized voltage suitable for sensorless drive (for example, AC voltage 100V) is set and output to the three-phase inverter control means 10, and the inverter circuit 4 is ON / OFF controlled so as to energize the PM brushless motor 2 with a voltage suitable for sensorless driving, and is always suitable for sensorless driving. Can supply.

そして、前記センサレス駆動切替手段9aにより回転子2aの回転をセンサレス駆動に切替えると、通電相の電機子巻線に流れる電機子電流が、例えば、図6の電流波形図に示すように、前記通電相における通電時間の1/2時間経過した後に電流検出回路5にて検出した電流の1.3倍以上に達している場合は、センサレス駆動部9の転流指令手段9bが作動して転流指令を3相インバータ制御手段10に出力し、インバータ回路4の所要のトランジスタをON・0FF制御して通電相を順次切替えることにより、センサレス駆動を続行するものである。   When the rotation of the rotor 2a is switched to the sensorless drive by the sensorless drive switching means 9a, the armature current flowing in the armature winding of the energized phase is, for example, as shown in the current waveform diagram of FIG. When the current detected by the current detection circuit 5 has reached 1.3 times or more after ½ hour of the energization time in the phase, the commutation command means 9b of the sensorless drive unit 9 is activated and commutated. A command is output to the three-phase inverter control means 10, and a required transistor of the inverter circuit 4 is ON / 0FF controlled to sequentially switch the energized phase, thereby continuing the sensorless drive.

この場合、回転子2aの回転数が負荷との関係で特別に変化しない場合は、図6に示す電流波形図のように、転流周期は暫時短くなり、逆に、回転子2aの回転トルクが負荷との関係で増大するような場合は転流周期は長くなり、回転子2aの回転速度を、負荷のトルクに応じて転流周期を自動調節するすることにより常に一定に維持するようにしている。   In this case, when the rotational speed of the rotor 2a does not change specially in relation to the load, the commutation cycle is shortened for a while as shown in the current waveform diagram of FIG. 6, and conversely, the rotational torque of the rotor 2a Is increased in relation to the load, the commutation cycle becomes longer, and the rotation speed of the rotor 2a is always kept constant by automatically adjusting the commutation cycle according to the torque of the load. ing.

このように、本発明においては、回転子2aの起動に際して検出用電圧を各通電相の電機子巻線に所定の通電パターン(図2参照)に従って印加して、各通電相における電機子電流を検出することにより、回転子磁極位置となる通電相を推定し、所要通電相に起動電圧を通電して回転子2aを起動させる場合は、回転子磁極位置と推定した通電相の前・後に存在する通電相から回転子2aの回転方向に適した位置に存在する通電相を設定し、その通電相に起動電圧を通電することにより回転子2aを起動する(図7のS1〜S4参照)。   As described above, in the present invention, when starting the rotor 2a, the detection voltage is applied to the armature winding of each energized phase according to a predetermined energization pattern (see FIG. 2), and the armature current in each energized phase is applied. By detecting, the energized phase that becomes the rotor magnetic pole position is estimated, and when the rotor 2a is activated by energizing the required energized phase with the start voltage, it exists before and after the estimated energized phase as the rotor magnetic pole position. An energized phase existing at a position suitable for the rotation direction of the rotor 2a is set from the energized phase to be started, and the rotor 2a is activated by energizing the energized phase with a starting voltage (see S1 to S4 in FIG. 7).

回転子2aが起動し、その回転数が設定した回転数に達すると、回転子2aは自動的にセンサレス駆動に移行してセンサレス駆動を行うことができるので、PMブラシレスモータ2は、その起動時からセンサレス駆動に移行するまでに迅速・正確に、かつ、円滑・良好に回転させることが可能となり、回転子2aがその起動時に揺動したり、回転方向が不安定になるという問題を一切排除して、起動時に回転数不足から脱調等を誘発することなく、常に円滑にセンサレス駆動させることができる。なお、このセンサレス駆動に際して、センサレス駆動に切替えることができない場合は、回転子2aの回転を停止し、切替できない原因を調べ問題なければ再度最初から回転子2aの起動を行ってセンサレス駆動を実行する(図7のS5〜S9参照)。   When the rotor 2a is activated and the rotational speed reaches the set rotational speed, the rotor 2a can automatically shift to sensorless driving and perform sensorless driving. Therefore, the PM brushless motor 2 is It is possible to rotate quickly and accurately, smoothly and satisfactorily from the start to the sensorless drive, eliminating any problem of the rotor 2a swinging at the start-up or unstable rotation direction. Thus, it is possible to always perform sensorless driving smoothly without inducing step-out or the like due to insufficient rotation speed at startup. When the sensorless drive cannot be switched to the sensorless drive, the rotation of the rotor 2a is stopped, and if there is no problem in investigating the cause of the switching, the rotor 2a is started again from the beginning to execute the sensorless drive. (See S5 to S9 in FIG. 7).

次に、PMブラシレスモータ2を停止させる場合について説明する。この場合は、PMブラシレスモータ2を図示しないスイッチを操作して各通電相への通電を停止させた後、電流検出回路5により検出される電流が所定の電流値まで降下すると、回転子ソフト停止手段11aが作動し、3相インバータ制御装置10によりインバータ回路4の下アーム4bを所定時間(例えば、0.5秒)ONさせて短絡させる。この回転子ソフト停止手段11aの採用により、電動ポンプとか電動圧縮機等の機器を負荷の影響を受けることなく短時間で減速させることができる(図7のS10〜S11参照)。   Next, the case where the PM brushless motor 2 is stopped will be described. In this case, after the PM brushless motor 2 is operated by a switch (not shown) to stop energization of each energized phase, the rotor soft stops when the current detected by the current detection circuit 5 drops to a predetermined current value. The means 11a is actuated, and the lower arm 4b of the inverter circuit 4 is turned on for a predetermined time (for example, 0.5 seconds) by the three-phase inverter control device 10 to short-circuit. By adopting this rotor soft stop means 11a, it is possible to decelerate a device such as an electric pump or an electric compressor in a short time without being influenced by the load (see S10 to S11 in FIG. 7).

本発明の実施例であるブラシレス・センサレスDCモータの駆動制御装置を概略的に示すブロック図である。It is a block diagram which shows roughly the drive control apparatus of the brushless sensorless DC motor which is an Example of this invention. 本発明のブラシレス・センサレスDCモータの起動時における回転子磁極位置を推定するための通電パターンの過程を示す説明図である。It is explanatory drawing which shows the process of the electricity supply pattern for estimating the rotor magnetic pole position at the time of starting of the brushless sensorless DC motor of this invention. (a)は回転子磁極位置検出用の電圧を各通電相の電機子巻線に印加したとき、各電機子巻線に流れる電機子電流を示す波形図である。(b)は各通電相の電機子巻線に回転子磁極位置検出用の電圧を印加したとき、電機子巻線に流れる電流によって回転子がどの方向に回転しようとしているかを示す説明図である。(c)は回転子磁極位置検出用の電圧を通電パターンに従って各電機子巻線に印加した状況を示すタイミングチャート図である。(A) is a wave form diagram which shows the armature electric current which flows into each armature winding, when the voltage for rotor magnetic pole position detection is applied to the armature winding of each energized phase. (B) is explanatory drawing which shows in which direction a rotor is going to rotate with the electric current which flows into an armature winding, when the voltage for rotor magnetic pole position detection is applied to the armature winding of each energized phase. . (C) is a timing chart showing a state in which a rotor magnetic pole position detection voltage is applied to each armature winding in accordance with an energization pattern. 回転子の起動時、起動電圧を所定の通電パターンに従って通電する状況を示すタイミングチャート図である。It is a timing chart figure which shows the condition which energizes starting voltage according to a predetermined energization pattern at the time of starting of a rotor. 本発明のブラシレス・センサレスDCモータの起動時における通電状況を説明する電流波形図である。It is a current waveform diagram explaining the energization situation at the time of starting of the brushless sensorless DC motor of the present invention. 本発明のブラシレス・センサレスDCモータのセンサレス駆動時における通電状況を説明する電流波形図である。It is a current waveform diagram explaining the energization situation at the time of sensorless drive of the brushless sensorless DC motor of the present invention. 本発明のブラシレス・センサレスDCモータをセンサレス駆動させるまでの過程を説明するフローチャート図である。It is a flowchart explaining the process until the brushless sensorless DC motor of the present invention is driven sensorlessly.

符号の説明Explanation of symbols

1 駆動制御装置
2 PMブラシレスモータ
2a 回転子
3 交流・直流変換回路
4 インバータ回路
5 電流検出回路
6 起動位置検出部
6a 電圧印加手段
6b 電圧印加相切替手段
7 回転子磁極位置推定手段
8 回転子起動部
8a 起動電圧通電相設定手段
8b 起動電圧通電手段
9 センサレス駆動部
9a センサレス駆動切替手段
9b 転流指令手段
10 3相インバータ制御手段
11 センサレス駆動停止部
11a 回転子ソフト停止手段
12 定電圧電源回路
DESCRIPTION OF SYMBOLS 1 Drive control apparatus 2 PM brushless motor 2a Rotor 3 AC / DC conversion circuit 4 Inverter circuit 5 Current detection circuit 6 Starting position detection part 6a Voltage application means 6b Voltage application phase switching means 7 Rotor magnetic pole position estimation means 8 Rotor activation Section 8a Start voltage energization phase setting means 8b Start voltage energization means 9 Sensorless drive section 9a Sensorless drive switching means 9b Commutation command means 10 Three-phase inverter control means 11 Sensorless drive stop section 11a Rotor software stop means 12 Constant voltage power supply circuit

Claims (10)

ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線に所要の起動電圧を通電して、回転子を起動させるようにしたことを特徴とするブラシレス・センサレスDCモータの駆動方法。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Apply sequentially for a predetermined time, and apply each of the energized phases based on the magnetic flux flowing between the magnetic pole and the rotor of the stator core wound with the armature winding of each energized phase by applying the voltage for detecting the rotor magnetic pole position. The armature current flowing through the armature winding is detected for each energized phase to select the energized phase of the armature winding through which the maximum current flows, and the selected energized phase is rotated. The rotor magnetic pole position is estimated, and the rotor is started by supplying a required starting voltage to the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position. A brushless / sensorless DC motor drive method. ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させながら通電して、回転子を駆動させるようにしたことを特徴とするブラシレス・センサレスDCモータの駆動方法。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Apply sequentially for a predetermined time, and apply each of the energized phases based on the magnetic flux flowing between the magnetic pole and the rotor of the stator core wound with the armature winding of each energized phase by applying the voltage for detecting the rotor magnetic pole position. The armature current flowing through the armature winding is detected for each energized phase to select the energized phase of the armature winding through which the maximum current flows, and the selected energized phase is rotated. Predetermined starting voltage set in advance in the armature winding of each energized phase according to a predetermined energization pattern from the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position A method of driving a brushless sensorless DC motor, wherein the rotor is driven by energizing the power supply for a predetermined energizing time and then energizing the energizing time for a while for each energized phase. ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を所定時間順次印加し、前記回転子磁極位置検出用の電圧の印加により各通電相の電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき各通電相の電機子巻線に流れる電機子電流の大・小を各通電相毎に検出して最大電流が流れる電機子巻線の通電相を選択し、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させながら通電して回転子を起動し、更に、前記回転子の起動によりその回転数が事前に設定した回転数に達しているか否かを判定して前記回転数が設定回転数に達している場合は、当該通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過後に検出した電機子電流の所定倍に達した場合に転流指令を出力して通電相の切替を行うことにより回転子の起動をセンサレス駆動に切替えて、回転子を駆動させるようにしたことを特徴とするブラシレス・センサレスDCモータの駆動方法。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Apply sequentially for a predetermined time, and apply each of the energized phases based on the magnetic flux flowing between the magnetic pole and the rotor of the stator core wound with the armature winding of each energized phase by applying the voltage for detecting the rotor magnetic pole position. The armature current flowing through the armature winding is detected for each energized phase to select the energized phase of the armature winding through which the maximum current flows, and the selected energized phase is rotated. Predetermined starting voltage set in advance in the armature winding of each energized phase according to a predetermined energization pattern from the armature winding of the next phase of the energized phase estimated as the rotor magnetic pole position After energizing for a predetermined energizing time, the energizing time is decreased for each energizing phase for a while to energize to start the rotor, and further, the rotation speed is set to a preset rotation speed by starting the rotor. When the rotation speed has reached the set rotation speed by determining whether or not the armature has reached, the armature detected by the armature current flowing through the armature winding of the current-carrying phase after the lapse of 1/2 hour of the current-carrying time A brushless, characterized by outputting a commutation command when the current has reached a predetermined multiple and switching the energized phase to switch the start of the rotor to sensorless drive and drive the rotor. Driving method of sensorless DC motor ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記回転子磁極位置と推定した前記通電相の次相に位置する電機子巻線に所定の起動電圧を通電して回転子を起動させる回転子起動部とによって構成したことを特徴とするブラシレス・センサレスDCモータの駆動制御装置。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Sequentially applied rotor starting position detector, current detection circuit for detecting the armature current flowing in the armature winding of each energized phase for each energized phase, and the armature winding of each energized phase The armature winding of each energized phase is based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position. The armature current flowing in the armature is detected by the current detection circuit, the magnitude of the armature current is compared for each armature winding of each energized phase, and the energized phase of the armature winding through which the maximum current flows is selected. The rotor magnetic pole position estimating means for estimating the energized phase as the rotor magnetic pole position and the armature winding located in the next phase of the energized phase estimated as the rotor magnetic pole position are energized with a predetermined starting voltage to rotate. A drive control device for a brushless / sensorless DC motor, characterized by comprising a rotor starting section for starting a child. ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って順次各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させて通電する回転子起動部とによって構成したことを特徴とするブラシレス・センサレスDCモータの駆動制御装置。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Sequentially applied rotor starting position detector, current detection circuit for detecting the armature current flowing in the armature winding of each energized phase for each energized phase, and the armature winding of each energized phase The armature winding of each energized phase is based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position. The armature current flowing in the armature is detected by the current detection circuit, the magnitude of the armature current is compared for each armature winding of each energized phase, and the energized phase of the armature winding through which the maximum current flows is selected. Rotor magnetic pole position estimating means for estimating the energized phase as the rotor magnetic pole position, and estimating the selected energized phase as the rotor magnetic pole position, and the electrical machine of the next phase of the energized phase estimated as the rotor magnetic pole position. After energizing the armature winding of each energized phase in advance to the armature winding of each energized phase sequentially for a predetermined energizing time in accordance with a predetermined energization pattern from the child winding, the energizing time is decreased for each energized phase for a while to energize A drive control device for a brushless and sensorless DC motor, characterized by comprising a rotor starting unit that performs the above. ブラシレス・センサレスDCモータの各通電相の電機子巻線に交番電圧を通電するインバータ回路と、前記インバータ回路により転流を行わせて前記ブラシレス・センサレスDCモータを回転させる駆動制御回路とを備えて構成したブラシレス・センサレスDCモータの駆動制御システムにおいて、前記各通電相の電機子巻線に所定の通電パターンに従って永久磁石を周設した回転子が回転しない程度の回転子磁極位置検出用の電圧を順次印加する回転子の起動位置検出部と、前記各通電相の電機子巻線に流れる電機子電流を通電相毎に検出する電流検出回路と、前記各通電相の電機子巻線に印加した回転子磁極位置検出用の電圧により電機子巻線を巻回した固定子鉄心の磁極と回転子との間に流れる磁束に基づき、前記各通電相の電機子巻線に流れる電機子電流を前記電流検出回路により検出してその電機子電流の大・小を各通電相の電機子巻線毎に比較して最大電流が流れる電機子巻線の通電相を選択しその通電相を回転子磁極位置と推定する回転子磁極位置推定手段と、前記選択した通電相を回転子磁極位置と推定して、前記回転子磁極位置と推定された通電相の次相の電機子巻線より所定の通電パターンに従って順次各通電相の電機子巻線に事前に設定した所定の起動電圧を所定の通電時間通電した後、前記通電時間を各通電相毎に暫時減少させて通電する回転子起動部と、更に、前記回転子の起動によりその回転数が所定の設定した回転数に達しているか否かを判定して前記設定回転数に達している場合は、当該通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過した後に検出した電機子電流の所定倍に達した場合に転流指令を出力して通電相を切替えて回転子をセンサレス駆動させるセンサレス駆動部とによって構成したことを特徴とするブラシレス・センサレスDCモータの駆動制御装置。   An inverter circuit that supplies an alternating voltage to the armature winding of each energized phase of the brushless sensorless DC motor, and a drive control circuit that causes the inverter circuit to perform commutation and rotate the brushless sensorless DC motor. In the brushless / sensorless DC motor drive control system configured as described above, the rotor magnetic pole position detection voltage is such that the rotor having a permanent magnet around the armature winding of each energized phase according to a predetermined energization pattern does not rotate. Sequentially applied rotor starting position detector, current detection circuit for detecting the armature current flowing in the armature winding of each energized phase for each energized phase, and the armature winding of each energized phase The armature winding of each energized phase is based on the magnetic flux flowing between the magnetic pole of the stator core and the rotor wound with the armature winding by the voltage for detecting the rotor magnetic pole position. The armature current flowing in the armature is detected by the current detection circuit, the magnitude of the armature current is compared for each armature winding of each energized phase, and the energized phase of the armature winding through which the maximum current flows is selected. Rotor magnetic pole position estimating means for estimating the energized phase as the rotor magnetic pole position, and estimating the selected energized phase as the rotor magnetic pole position, and the electrical machine of the next phase of the energized phase estimated as the rotor magnetic pole position. After energizing the armature winding of each energized phase in advance to the armature winding of each energized phase sequentially for a predetermined energizing time in accordance with a predetermined energization pattern from the child winding, the energizing time is decreased for each energized phase for a while to energize A rotor starter that performs the determination, and further, whether or not the rotational speed has reached a predetermined set rotational speed by starting the rotor, and if the rotational speed has reached the set rotational speed, The armature current flowing through the armature winding is 1 / Brushless and sensorless, comprising a sensorless drive unit that outputs a commutation command and switches the energized phase to drive the rotor in a sensorless manner when the armature current detected after a lapse of time is reached. DC motor drive control device. 前記起動位置検出部は、回転子が回転しない程度の電圧を各通電相の電機子巻線に印加する起動位置検出用電圧印加手段と、前記起動位置検出用の電圧を所定の通電パターンに従って各通電相の電機子巻線に順次印加する電圧印加相切替手段とを具備して構成したことを特徴とする請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置。   The starting position detecting unit includes a starting position detecting voltage applying means for applying a voltage at which the rotor does not rotate to the armature winding of each energized phase, and the starting position detecting voltage according to a predetermined energizing pattern. 7. The brushless / sensorless DC motor drive control device according to claim 4, further comprising voltage application phase switching means for sequentially applying to the armature winding of the energized phase. 前記回転子磁極位置推定手段は、前記電流検出回路により検出した各通電相の電機子巻線に流れる電機子電流を比較して最大の電機子電流が流れる通電相を選択する機能と、前記選択した通電相を回転子磁極位置と推定する機能とを具備して構成したことを特徴とする請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置。   The rotor magnetic pole position estimating means compares the armature current flowing through the armature winding of each energized phase detected by the current detection circuit and selects the energized phase through which the maximum armature current flows, and the selection 7. The drive control device for a brushless / sensorless DC motor according to claim 4, 5 or 6, further comprising a function of estimating the energized phase as a rotor magnetic pole position. 前記回転子起動部は、前記回転子磁極位置推定手段により推定された回転子磁極位置の通電相の次相に位置する通電相を最初に起動電圧を通電する通電相と設定するための起動電圧通電相設定手段と、前記設定された通電相に所定の起動電圧を通電する起動電圧通電手段とを具備して構成したことを特徴とする請求項4,5,6記載のブラシレス・センサレスDCモータの駆動制御装置。   The rotor starting unit is a starting voltage for setting a current-carrying phase positioned next to a current-carrying phase of the rotor magnetic pole position estimated by the rotor magnetic pole position estimating means as a current-carrying phase that first supplies a starting voltage. 7. A brushless sensorless DC motor according to claim 4, further comprising: an energized phase setting means; and a starting voltage energizing means for energizing a predetermined starting voltage to the set energized phase. Drive control device. 前記センサレス駆動部は、回転子の起動によりその回転数が事前に設定した回転数に達しているか否かを判定して所定の回転数に達している場合は回転子の起動をセンサレス駆動に切替えるセンサレス駆動切替手段と、前記センサレス駆動に切替えたときの通電相の電機子巻線に流れる電機子電流が通電時間の1/2時間経過した後に検出した電機子電流の所定倍に達している場合に転流指令を出力して通電相を切替えるための転流指令手段とを具備して構成したことを特徴とする請求項6のブラシレス・センサレスDCモータの駆動制御装置。   The sensorless drive unit determines whether or not the rotational speed has reached a preset rotational speed by starting the rotor, and switches the rotor start to sensorless driving if the rotational speed has reached a predetermined rotational speed. When the armature current flowing in the armature winding of the energized phase when switching to the sensorless drive switching means and the sensorless drive has reached a predetermined multiple of the armature current detected after ½ hour of the energization time has elapsed 7. A drive control apparatus for a brushless sensorless DC motor according to claim 6, further comprising a commutation command means for outputting a commutation command to switch the energized phase.
JP2004340442A 2004-11-25 2004-11-25 Drive method and drive controller for brushless and sensorless dc motor Pending JP2006157994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340442A JP2006157994A (en) 2004-11-25 2004-11-25 Drive method and drive controller for brushless and sensorless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340442A JP2006157994A (en) 2004-11-25 2004-11-25 Drive method and drive controller for brushless and sensorless dc motor

Publications (1)

Publication Number Publication Date
JP2006157994A true JP2006157994A (en) 2006-06-15

Family

ID=36635615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340442A Pending JP2006157994A (en) 2004-11-25 2004-11-25 Drive method and drive controller for brushless and sensorless dc motor

Country Status (1)

Country Link
JP (1) JP2006157994A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254563A (en) * 2010-05-31 2011-12-15 Minebea Co Ltd Brushless dc motor, and driving circuit thereof
JP2017506867A (en) * 2013-12-13 2017-03-09 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Method and apparatus for detecting rotation angle and / or rotation speed of motor shaft of motor
JP2017118680A (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Three-phase dc brushless motor controller and image forming apparatus
WO2021212618A1 (en) * 2020-04-20 2021-10-28 天津工业大学 Control system for flexible permanent magnet brushless direct current motor, and control method for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254563A (en) * 2010-05-31 2011-12-15 Minebea Co Ltd Brushless dc motor, and driving circuit thereof
JP2017506867A (en) * 2013-12-13 2017-03-09 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Method and apparatus for detecting rotation angle and / or rotation speed of motor shaft of motor
JP2017118680A (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Three-phase dc brushless motor controller and image forming apparatus
WO2021212618A1 (en) * 2020-04-20 2021-10-28 天津工业大学 Control system for flexible permanent magnet brushless direct current motor, and control method for same
US11962219B2 (en) 2020-04-20 2024-04-16 Tiangong University Control system and control method of flexible permanent magnet brushless DC motor

Similar Documents

Publication Publication Date Title
JP3832257B2 (en) Synchronous motor start control method and control device
JP3888082B2 (en) Motor device and control method thereof
US6362581B1 (en) Device and method for starting a brushless motor
JP2013179833A (en) Electric compressor and household electrical appliance
JP2006136194A (en) Brushless dc motor
JP5644184B2 (en) Single-phase AC synchronous motor
JP2008301588A (en) Driving device for brushless motor
JP6302638B2 (en) Wiper device
KR100774006B1 (en) Three phase bldc motor controller and control method thereof
JP4146748B2 (en) Brushless motor control device
JP2011125079A (en) Drive device for brushless motor and method of starting the same
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
JP2008263665A (en) Driving device of brushless motor and fluid pump
KR101462736B1 (en) Bldc motor drive device and controlling method thereof
JP5369381B2 (en) Brushless DC motor control device and ventilation blower
JP2006157994A (en) Drive method and drive controller for brushless and sensorless dc motor
US20050135794A1 (en) Method and system for negative torque reduction in a brushless DC motor
JP5326948B2 (en) Inverter control device, electric compressor and electrical equipment
JP5292060B2 (en) Brushless motor drive device
JP7056583B2 (en) Motor control device, sensorless brushless motor, blower device and motor control method
JP2012239301A (en) Motor controller
JP6582212B2 (en) Driving method of sensorless / brushless motor and motor control apparatus using the driving method
JP5384908B2 (en) Brushless motor starting method and control device
KR20100071692A (en) Control method of bldc motor
JP2007174747A (en) Sensorless control method for brushless motor, and sensorless controller for brushless motor