JP2006156878A - Deposition film formation apparatus - Google Patents

Deposition film formation apparatus Download PDF

Info

Publication number
JP2006156878A
JP2006156878A JP2004348432A JP2004348432A JP2006156878A JP 2006156878 A JP2006156878 A JP 2006156878A JP 2004348432 A JP2004348432 A JP 2004348432A JP 2004348432 A JP2004348432 A JP 2004348432A JP 2006156878 A JP2006156878 A JP 2006156878A
Authority
JP
Japan
Prior art keywords
substrate
exhaust
shield member
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004348432A
Other languages
Japanese (ja)
Inventor
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004348432A priority Critical patent/JP2006156878A/en
Publication of JP2006156878A publication Critical patent/JP2006156878A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress in a plasma CVD apparatus local deposition of by-products on the wall surface of the exhaust port of a shield member, thereby forming a deposition film having stable properties for a long time. <P>SOLUTION: Deposition film formation apparatus generates plasma in a discharge space between a power application electrode 206 and a substrate 201 within a vacuum chamber to decompose a source gas introduced into the vacuum chamber, so that a deposition film is formed on the substrate. In the apparatus, a shield member 215 is provided in at least part of circumference of the electrode 206, and the shape of the member 215 is changed in the direction of an exhaust downstream side, and a region is provided in which an exhaust channel formed by the shield member and an opposing wall surface has an area that is continuously reduced in its section from an exhaust upstream side to the exhaust downstream side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板に例えばシリコン系薄膜太陽電池等を形成するための堆積膜形成装置に関する。   The present invention relates to a deposited film forming apparatus for forming, for example, a silicon-based thin film solar cell on a substrate.

光起電力を利用した電子デバイスの代表的なものとしては、例えば太陽電池が知られている。太陽電池は、太陽エネルギーあるいはその他の光エネルギーを電気エネルギーに変換するものであり、クリーンなエネルギー源として、今後のエネルギー対策の一環として注目されている。   As a typical electronic device using photovoltaic power, for example, a solar cell is known. Solar cells convert solar energy or other light energy into electrical energy, and are attracting attention as part of future energy measures as a clean energy source.

今後の新エネルギー対策の一環として重要視されている太陽電池において、低価格化、高性能化が当面の重大な研究、開発の課題となっている。これまで、低価格化や高性能化を実現させる太陽電池の1つとして微結晶シリコン薄膜太陽電池が検討されている。微結晶薄膜太陽電池はCVD装置により成膜されることにより、バルク成長による単結晶あるいは多結晶シリコンウエハを用いた結晶系太陽電池では難しい大面積化が容易に可能であり、薄膜化が可能であるため、原料ガスなどの倹約が可能であることが知られている。また、太陽光を効率よく吸収するために、太陽光のエネルギー分布に合わせる様に、光を吸収する波長帯域の異なる微結晶シリコン薄膜やアモルファスシリコン膜を光吸収層とし、各々堆積した積層型太陽電池など高効率太陽電池が検討されてきた。   In solar cells, which are regarded as important as a part of measures for new energy in the future, low cost and high performance are the major research and development issues for the time being. Until now, a microcrystalline silicon thin film solar cell has been studied as one of the solar cells that realize low cost and high performance. Microcrystalline thin-film solar cells can be formed with a CVD system, which makes it possible to easily increase the area, which is difficult for crystalline solar cells using single-crystal or polycrystalline silicon wafers by bulk growth. Therefore, it is known that it is possible to save the raw material gas. In addition, in order to absorb sunlight efficiently, a microcrystalline silicon thin film or an amorphous silicon film with a different wavelength band that absorbs light is used as a light absorption layer so as to match the energy distribution of sunlight, and each of the stacked solar High efficiency solar cells such as batteries have been studied.

また、太陽電池の量産性を向上させる方法として、特許文献1に開示されているようなロール・ツゥー・ロール(Roll To Roll)方式がある。この方式は、複数のシリコンを成膜する放電室と、それら放電室を接続しながらも放電室内の雰囲気を分離するために設けられたガスゲートを貫通する帯状基板で構成され、シリコンなどの機能性薄膜を帯状基板に連続的に堆積させ、順次巻き上げる方式であり、量産性に優れている。   As a method for improving the mass productivity of solar cells, there is a roll-to-roll system as disclosed in Patent Document 1. This method consists of a discharge chamber for forming a plurality of silicon films and a band-shaped substrate that penetrates the gas gate provided to separate the atmosphere in the discharge chamber while connecting these discharge chambers. This is a method in which a thin film is continuously deposited on a belt-like substrate and wound up sequentially, and is excellent in mass productivity.

これまで、性能的にはかなり高い変換効率のものが得られるようになってきたが、さらなる低価格化を達成する為には未だ改善の余地がある。その1つに、成膜速度が遅いことが挙げられる。成膜速度向上の対策としてはこれまでさまざまな高速成膜方法が検討されてきた。例えば、電力印加電極と電極となりうる基板との間の距離を縮めることによって、成膜速度を増加させることが可能であることが特許文献2に開示されている。また、電力印加電極と基板との間の距離よりも電力印加電極と開口調整板との間の距離を広く取ることにより原料ガスの流れにおける淀みや溜りなどの乱れが生じず、副生成物の発生を抑制され、良質な薄膜が堆積されることが可能であることが特許文献3に開示されている。   Up to now, it has become possible to obtain a conversion efficiency that is quite high, but there is still room for improvement in order to achieve further price reduction. One of them is that the film forming speed is low. Various countermeasures for increasing the film forming speed have been studied so far. For example, Patent Document 2 discloses that the film formation rate can be increased by reducing the distance between the power application electrode and the substrate that can be an electrode. Also, by making the distance between the power application electrode and the aperture adjustment plate wider than the distance between the power application electrode and the substrate, turbulence such as stagnation and accumulation in the flow of the source gas does not occur, and the by-product It is disclosed in Patent Document 3 that generation can be suppressed and a high-quality thin film can be deposited.

特開平6−23243号公報JP-A-6-23243 特公平5−56850号公報Japanese Patent Publication No. 5-56850 特開2001−214277号公報JP 2001-214277 A

近年、このような高速成膜方法を用いることで、太陽電池の価格は少しずつ低下してきているが、更なる低価格な太陽電池の作成を目指し、様々な方法が模索されている。   In recent years, the use of such a high-speed film formation method has gradually reduced the price of solar cells, but various methods are being sought for the creation of further inexpensive solar cells.

低価格化の1つの方法として上記で示したように更なる成膜速度の高速化が考えらる。その方法として、より大きな電力を電極に印加したり、放電空間の圧力を増加することで印加電力密度を増加させ、原料ガスの分解率を向上させる方法や、原料ガスを増加させることで、原料ガスの分解量を増加させる方法や、電力印加電極と基板との間の距離を縮めることで、放電空間を広げる方法などが考えられる。以下に図5を用いて説明する。   As one method for reducing the cost, it is conceivable to further increase the film forming speed as described above. As the method, a larger power is applied to the electrode, or the pressure in the discharge space is increased to increase the applied power density and the decomposition rate of the raw material gas is improved, or the raw material gas is increased to increase the raw material gas. A method of increasing the amount of gas decomposition or a method of expanding the discharge space by reducing the distance between the power application electrode and the substrate can be considered. This will be described below with reference to FIG.

図5は一般的な平行平板容量結合型の堆積膜形成装置の断面図を模式的に示すものであり、直方体の真空容器502(但し、全体は図示されていない。)と該真空容器502の内部に設けられた放電室505と該放電室505に導入された帯状基板501とで構成されている。また原料ガス導入管507よりSiH4やH2などの原料ガスを導入し、電源504より電極506に電力を印加することで前記放電室505にプラズマを生起させ、前記帯状基板501に半導体膜を成膜する。前記放電室505内に残った残留ガスは板状部材(以後、開口調整板とする)509とシールド壁515の間から排気され、排気管508により外部へ排気される。また(A)は排気口を形成するシールド壁の位置を示す。 FIG. 5 schematically shows a cross-sectional view of a general parallel plate capacitively-coupled deposited film forming apparatus. A rectangular parallelepiped vacuum vessel 502 (not shown in its entirety) and the vacuum vessel 502 are shown in FIG. A discharge chamber 505 provided in the interior and a belt-like substrate 501 introduced into the discharge chamber 505 are configured. Further, a raw material gas such as SiH 4 or H 2 is introduced from the raw material gas introduction tube 507, and power is applied to the electrode 506 from the power source 504 to generate plasma in the discharge chamber 505, and a semiconductor film is formed on the strip substrate 501. Form a film. Residual gas remaining in the discharge chamber 505 is exhausted between a plate-like member (hereinafter referred to as an opening adjusting plate) 509 and the shield wall 515, and is exhausted to the outside through an exhaust pipe 508. (A) shows the position of the shield wall forming the exhaust port.

しかしながら、この方法を用いて長時間成膜を行なうと、排気口を形成するシールド壁515の(A)付近に副生成物が局所的に堆積され、排気能力の低下から、成膜条件が大きく変化し、堆積膜の性能が大きく低下するという新たな問題が発生した。   However, when a film is formed for a long time using this method, by-products are locally deposited in the vicinity of (A) of the shield wall 515 that forms the exhaust port, and the film formation conditions are greatly increased due to a decrease in exhaust capability. As a result, a new problem has occurred that the performance of the deposited film is greatly reduced.

本発明の目的は、上記従来技術の問題点に鑑み、開口調整板とシールド壁で形成する排気口を有する成膜装置において、特に上記シールド壁の(A)付近に副生成物が局所的に堆積することを抑制し、長時間にわたり性能の安定した堆積膜を形成し得る堆積膜形成装置を提供することにある。   An object of the present invention is to provide a film forming apparatus having an exhaust port formed by an opening adjusting plate and a shield wall in view of the problems of the prior art, and in particular, by-products are locally generated near (A) of the shield wall. An object of the present invention is to provide a deposited film forming apparatus capable of suppressing deposition and forming a deposited film having stable performance over a long period of time.

上述の目的を達成するために本発明は、真空室内で、電力印加電極と、該電力印加電極に対向して配置された電極となりうる基板との間の放電空間にプラズマを発生させて、真空室内に導入される原料ガスを分解し、基板上に堆積膜を形成させる堆積膜形成装置において、前記電力印加電極の周囲の少なくとも一部にシールド部材を有し、該シールド部材が排気下流側方向に形状が変化しており、前記シールド部材と対向する壁面とで構成される排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を有することを特徴とする。
また、前記シールド部材の厚みが変化していることを特徴とする。
さらに、前記シールド部材が、折り曲げ形状であることを特徴とする。
In order to achieve the above-mentioned object, the present invention generates a plasma in a discharge space between a power application electrode and a substrate that can be disposed opposite to the power application electrode in a vacuum chamber, thereby generating a vacuum. In a deposited film forming apparatus for decomposing a source gas introduced into a chamber and forming a deposited film on a substrate, a shield member is provided on at least a part of the periphery of the power application electrode, and the shield member is disposed in the exhaust downstream direction. The cross-sectional area of the exhaust path composed of the shield member and the wall surface facing the shield member has a region that continuously decreases from the exhaust upstream side to the exhaust downstream side.
Further, the thickness of the shield member is changed.
Furthermore, the shield member has a bent shape.

本発明によれば、シールド部材と対向する壁面とで構成される排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を有することで、長時間成膜を行なってもシールド部材の排気経路に面する領域に副生成物が局所的に堆積するのを抑制することができ、性能の安定した堆積膜を形成することができる。これにより、例えば太陽電池などの薄膜デバイスの量産性を高めることができ、低コスト化が可能になる。   According to the present invention, since the cross-sectional area of the exhaust path formed by the wall surface facing the shield member has a region that continuously decreases from the exhaust upstream side to the exhaust downstream side, even when film formation is performed for a long time. By-products can be prevented from being locally deposited in the region facing the exhaust path of the shield member, and a deposited film with stable performance can be formed. Thereby, the mass productivity of thin film devices, such as a solar cell, can be improved and cost reduction is attained.

本発明の堆積膜形成装置として、図1に示すような平行平板容量結合型の堆積膜形成装置の形態が挙げられる。図1は本発明の実施の形態による堆積膜形成装置の概略断面図を示している。この図で示す装置は、ガスゲート103で隣接する他の真空容器と結合された長方体の真空容器102と、該真空容器102の内部に設けられた放電室105と、ガスゲート103を貫通して放電室105に導入された帯状基板101とで構成される。ガスゲート103に、ゲートガス導入管117を介してH2やHeなどのガスを導入することで、隣り合う真空容器内の雰囲気ガスや圧力を分離することが可能である。 An example of the deposited film forming apparatus of the present invention is a parallel plate capacitively coupled deposited film forming apparatus as shown in FIG. FIG. 1 is a schematic sectional view of a deposited film forming apparatus according to an embodiment of the present invention. The apparatus shown in this figure includes a rectangular vacuum vessel 102 coupled to another vacuum vessel adjacent by a gas gate 103, a discharge chamber 105 provided inside the vacuum vessel 102, and a gas gate 103. It is composed of a strip-like substrate 101 introduced into the discharge chamber 105. By introducing a gas such as H 2 or He into the gas gate 103 via the gate gas introduction pipe 117, it is possible to separate the atmospheric gas and pressure in the adjacent vacuum vessel.

真空容器102の内部に設けられた放電室105は、該放電室の一面が開口部となった中空の直方体形状であり、前記開口部が帯状基板101に近接して設けられている。帯状基板101は、放電室105の中に導入された後、ランプヒーター113で加熱され、熱電対114を用いて温度調節される。放電中の帯状基板101の温度は100℃から500℃の範囲で温度調節される。放電室105内には、平行平板型の電力印加電極106が設けられており、不図示の高周波電源から電力を供給され、放電室内にてプラズマを生起させることができる。   The discharge chamber 105 provided inside the vacuum vessel 102 has a hollow rectangular parallelepiped shape in which one surface of the discharge chamber is an opening, and the opening is provided close to the belt-like substrate 101. After the strip substrate 101 is introduced into the discharge chamber 105, it is heated by the lamp heater 113 and the temperature is adjusted using the thermocouple 114. The temperature of the strip-shaped substrate 101 during discharge is adjusted in the range of 100 ° C. to 500 ° C. A parallel plate type power application electrode 106 is provided in the discharge chamber 105, and power can be supplied from a high-frequency power source (not shown) to generate plasma in the discharge chamber.

なお、本明細書の中では、電力を印加する電極あるいは基板と対向した電極を電力印加電極と称しているが、この電力印加電極に、直流電力、5kHzから500kHzまでの低周波、500kHzから30MHzまでの高周波あるいは30MHzから500MHzまでのVHFなどの電力を印加することで、それぞれ、直流プラズマ、低周波プラズマ、高周波プラズマ、VHFプラズマを発生させることができ、ガスなどを分解し、半導体などの薄膜を基板に堆積させるものである。   In the present specification, an electrode to which power is applied or an electrode facing the substrate is referred to as a power application electrode. The power application electrode has a DC power, a low frequency from 5 kHz to 500 kHz, and a frequency from 500 kHz to 30 MHz. DC power, low frequency plasma, high frequency plasma, VHF plasma can be generated by applying high frequency up to 30MHz or power of VHF from 30MHz to 500MHz, respectively, and gas etc. can be decomposed and thin films such as semiconductors Is deposited on the substrate.

原料ガスは不図示のガス供給源から、真空容器102の壁を貫通した原料ガス導入管107により放電室105内に導入され、ブロックヒーター109により加熱される。放電室105には原料ガスを排気するための排気管108が設けられており、原料ガスは帯状基板101の搬送方向(図の右から左)に対して平行に流れ、放電室105の電力印加電極106の上を流れた後、排気管108で放電室外、さらに真空容器外へと排気される。真空容器内のガスゲートガスや原料ガスの一部は排気管108の一部に設けられた放電室外部排気口110から排気される。   The source gas is introduced from the gas supply source (not shown) into the discharge chamber 105 by the source gas introduction tube 107 penetrating the wall of the vacuum vessel 102 and heated by the block heater 109. The discharge chamber 105 is provided with an exhaust pipe 108 for exhausting the source gas. The source gas flows in parallel with the transport direction of the belt-like substrate 101 (from right to left in the figure), and power is applied to the discharge chamber 105. After flowing over the electrode 106, the exhaust pipe 108 exhausts the discharge chamber and the vacuum vessel. Part of the gas gate gas and source gas in the vacuum vessel is exhausted from the discharge chamber external exhaust port 110 provided in a part of the exhaust pipe 108.

原料ガスとしては、SiH4、Si26、SiF4等のシリコン原子を含有したガス化しうる化合物が挙げられる。合金系にする場合にはさらに、GeH4やCH4などのようにGeやCを含有したガス化しうる化合物を原料ガスに添加することが望ましい。希釈ガスとしては、H2やHeなどが挙げられる。さらに窒素、酸素等を含有したガス化しうる化合物を原料ガスの希釈ガスとして添加してもよい。 Examples of the source gas include gasifiable compounds containing silicon atoms such as SiH 4 , Si 2 H 6 , and SiF 4 . In the case of using an alloy system, it is desirable to add a gasifiable compound containing Ge or C such as GeH 4 or CH 4 to the raw material gas. Examples of the dilution gas include H 2 and He. Further, a gasifiable compound containing nitrogen, oxygen or the like may be added as a dilution gas for the source gas.

放電室105内の電力印加電極106と帯状基板101の間で形成される放電空間は、たとえば前記電力印加電極と前記帯状基板との対向する面積が0.005m3〜0.3m3の場合、放電空間の圧力は100Paから5000Paの範囲で使用する。 A discharge space formed between the power application electrode 106 and the strip substrate 101 in the discharge chamber 105, for example, when the area facing between the belt-like substrate and the power application electrode is 0.005m 3 ~0.3m 3, The pressure in the discharge space is used in the range of 100 Pa to 5000 Pa.

基板101は、基板支持具に装着したガラス基板などの透光性絶縁体に導電性薄膜を形成したものやステンレス基板などの非透光性導電体でもよい。また、コイルに巻いた帯状の長尺基板でもよく、高分子フィルムなどの可撓性絶縁体に導電性薄膜を形成したものでも、ステンレスなどの可撓性導電性基板を用いてもよい。   The substrate 101 may be a translucent insulator such as a glass substrate mounted on a substrate support and a non-translucent conductor such as a stainless steel substrate. Further, it may be a strip-like long substrate wound around a coil, a flexible insulating material such as a polymer film formed with a conductive thin film, or a flexible conductive substrate such as stainless steel.

本発明においては、上記の例のような構成を有する堆積膜形成装置において、図5に示したようなシールド部材(シールド壁515)を電力印加電極の周囲の少なくとも一部に設けるにあたり、このシールド部材として排気下流側方向に形状を変化させたものを用いることで、シールド部材と対向する壁面(開口調整板の面)とで構成される排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を設ける。   In the present invention, in the deposited film forming apparatus having the configuration as in the above example, the shield member (shield wall 515) as shown in FIG. 5 is provided on at least part of the periphery of the power application electrode. By using a member whose shape is changed in the exhaust downstream direction, the cross-sectional area of the exhaust path formed by the wall surface (surface of the opening adjustment plate) facing the shield member is changed from the exhaust upstream side to the exhaust downstream side. An area that is continuously reduced is provided.

本発明におけるシールド部材と開口調整板などの位置関係を模式的に表現した形態例を図2乃至図4に示す。   The form example which represented typically the positional relationship of the shield member and opening adjustment board in this invention, etc. is shown in FIG. 2 thru | or FIG.

図2は、シールド部材(シールド壁215)として、開口調整板209に対向する面の途中部分に傾斜を付けて厚みを変化させたものを用い、この傾斜部分において排気経路の断面積が排気上流側から排気下流側に連続的に小さくなるようにした例である。   In FIG. 2, a shield member (shield wall 215) is used in which the thickness is changed by inclining the middle part of the surface facing the opening adjustment plate 209. This is an example of continuously decreasing from the exhaust side to the exhaust downstream side.

図3は、シールド部材(シールド壁315)として、開口調整板309に対向する面の上端部から傾斜を付けて厚みを変化させたものを用い、この傾斜部分において排気経路の断面積が排気上流側から排気下流側に連続的に小さくなるようにした例である。   FIG. 3 shows a shield member (shield wall 315) having a thickness changed from the upper end portion of the surface facing the opening adjustment plate 309, and the cross-sectional area of the exhaust path in the inclined portion is the upstream side of the exhaust. This is an example of continuously decreasing from the exhaust side to the exhaust downstream side.

図4は、シールド部材(シールド壁415)として、くの字状に折り曲げたものを用い、排気経路の断面積が排気上流側から排気下流側に連続的に小さくなるようにした例である。   FIG. 4 shows an example in which a shield member (shield wall 415) bent in a U-shape is used so that the cross-sectional area of the exhaust path continuously decreases from the exhaust upstream side to the exhaust downstream side.

本発明に係るシールド部材は、上記のような直線状の傾斜に限らず例えば曲線状の傾斜を付けることによって形状を変化させたものであっても良い。要するに、排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を設けることができるものであれば特に限定されるものではない。   The shield member according to the present invention is not limited to the linear inclination as described above, and may be a member whose shape is changed by adding a curved inclination, for example. In short, there is no particular limitation as long as it is possible to provide a region where the cross-sectional area of the exhaust path continuously decreases from the exhaust upstream side to the exhaust downstream side.

本発明によれば、上記のようなシールド部材を用いて排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を設けることにより、シールド部材の排気経路に面する領域への副生成物の局部的な堆積を抑制することができる。これはシールド部材の排気経路に面する領域での残留ガスの排気速度の急激な低下を抑制でき、連続的に小さくなることで排気速度が増加したためと考えられる。このため排気口のスペースが常に十分確保されることで、カソード面上の残留ガスがとどこおりなく排気されるようになり、カソード面上の成膜状態を均一にすることができ、放電が安定することで、基板の膜質が向上する。また、シールド壁の形状が変化したことにより、開口調整板付近における放電空間のインピーダンスが変化したと考えられ、これによりカソード端の放電が安定したため、基板の膜質が向上する。   According to the present invention, by using the shield member as described above, by providing a region where the cross-sectional area of the exhaust path continuously decreases from the exhaust upstream side to the exhaust downstream side, the region facing the exhaust path of the shield member can be obtained. It is possible to suppress local accumulation of by-products. This is thought to be due to the fact that the rapid decrease in the exhaust speed of the residual gas in the region facing the exhaust path of the shield member can be suppressed, and the exhaust speed has increased by continuously decreasing. For this reason, by always ensuring a sufficient space for the exhaust port, the residual gas on the cathode surface can be exhausted all the time, the film formation state on the cathode surface can be made uniform, and the discharge is stabilized. As a result, the film quality of the substrate is improved. Further, it is considered that the impedance of the discharge space in the vicinity of the aperture adjusting plate has changed due to the change in the shape of the shield wall, and the discharge at the cathode end is thereby stabilized, so that the film quality of the substrate is improved.

以下実施例により本発明を説明するが、本発明はこれらの実施例により何ら制限されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図2に、本発明の実施例1として用いたシールド壁および基板、開口調整板などの模式的な断面図を示す。直方体の真空容器202(但し、全体は図示されていない。)と該真空容器202の内部に設けられた放電室205と該放電室205に導入された帯状基板201とで構成されている。また原料ガス導入管207よりSiH4やH2などの原料ガスを導入し、電源204より電力印加電極206に電力を印加することで該放電室205にプラズマを生起させ、該帯状基板201に半導体膜を成膜する。該放電室205内に残った残留ガスは開口調整板209とシールド壁215の間から排気され、排気管208により外部へ排気される。
Example 1
FIG. 2 shows a schematic cross-sectional view of a shield wall, a substrate, an aperture adjustment plate, and the like used as Example 1 of the present invention. A rectangular parallelepiped vacuum vessel 202 (not shown in its entirety), a discharge chamber 205 provided inside the vacuum vessel 202, and a belt-like substrate 201 introduced into the discharge chamber 205 are configured. Further, a source gas such as SiH 4 or H 2 is introduced from the source gas introduction pipe 207, and power is applied to the power application electrode 206 from the power source 204, thereby generating plasma in the discharge chamber 205, and generating a semiconductor on the strip substrate 201 A film is formed. The residual gas remaining in the discharge chamber 205 is exhausted from between the opening adjusting plate 209 and the shield wall 215 and exhausted to the outside through the exhaust pipe 208.

本実施例では帯状基板201に垂直な面に対して5mm排気下流側で垂直な面に対して30度の角度で、傾斜の長さを50mmで厚みを変化するシールド壁215を用いた。これによりシールド部材と開口調整板の対向する壁面で構成される排気経路の幅を50mmから25mmに狭めた。   In the present embodiment, a shield wall 215 having a thickness of 50 mm and a change in thickness at an angle of 30 degrees with respect to a surface perpendicular to the surface perpendicular to the belt-like substrate 201 by 5 mm on the exhaust downstream side is used. As a result, the width of the exhaust path constituted by the opposing wall surfaces of the shield member and the opening adjustment plate was reduced from 50 mm to 25 mm.

放電室205内の電力印加電極206と帯状基板201の間で形成される放電空間は0.03m3に設置する。原料ガスのSiH4ガスとSiF4ガスとH2ガスの混合ガスをSiH4ガスとH2ガスの混合ガス比がH2/SiH4=25、SiH4ガスとSiF4ガスの混合ガス比がSiF4/SiH4=1.25で放電室205内に流す。電力は周波数60MHzの高周波電力を電力印加電極206に印加する。放電中の帯状基板の温度は200℃で調整する。この条件のもとでプラズマを生起し、帯状基板201を静止したままシリコン薄膜を成膜した。 The discharge space formed between the power application electrode 206 in the discharge chamber 205 and the strip substrate 201 is set to 0.03 m 3 . The mixed gas ratio of SiH 4 gas, SiF 4 gas and H 2 gas is SiH 4 gas and H 2 gas is H 2 / SiH 4 = 25, and the mixed gas ratio of SiH 4 gas and SiF 4 gas is SiF 4 / SiH 4 = 1.25 flows in the discharge chamber 205. As the power, high frequency power having a frequency of 60 MHz is applied to the power application electrode 206. The temperature of the strip-shaped substrate during discharge is adjusted at 200 ° C. Under this condition, plasma was generated, and a silicon thin film was formed while the strip substrate 201 was stationary.

図6に本実施例によって成膜された帯状基板201上の膜状態の模写図を示す。図6に示すように、本実施例では、帯状基板201上に副生成物の堆積もなく、帯状基板201の幅方向(図の上下方向)で均一な膜厚分布601で成膜された。   FIG. 6 is a copy diagram of the film state on the belt-like substrate 201 formed by the present embodiment. As shown in FIG. 6, in this example, no by-product was deposited on the strip substrate 201, and the film was formed with a uniform film thickness distribution 601 in the width direction (vertical direction in the figure) of the strip substrate 201.

(実施例2)
図3に、本発明の実施例2として用いたシールド壁および基板、開口調整板などの模式的な断面図を示す。直方体の真空容器302(但し、全体は図示されていない。)と該真空容器302の内部に設けられた放電室305と該放電室305に導入された帯状基板301とで構成されている。また原料ガス導入管307よりSiH4やH2などの原料ガスを導入し、電源304より電力印加電極306に電力を印加することで該放電室305にプラズマを生起させ、該帯状基板301に半導体膜を成膜する。該放電室305内に残った残留ガスは開口調整板309とシールド壁315の間から排気され、排気管308により外部へ排気される。
(Example 2)
FIG. 3 shows a schematic cross-sectional view of a shield wall, a substrate, an opening adjusting plate, and the like used as Example 2 of the present invention. A rectangular parallelepiped vacuum vessel 302 (not shown in its entirety), a discharge chamber 305 provided inside the vacuum vessel 302, and a belt-like substrate 301 introduced into the discharge chamber 305 are configured. In addition, a source gas such as SiH 4 or H 2 is introduced from the source gas introduction tube 307, and plasma is generated in the discharge chamber 305 by applying power from the power source 304 to the power application electrode 306. A film is formed. The residual gas remaining in the discharge chamber 305 is exhausted from between the opening adjusting plate 309 and the shield wall 315 and exhausted to the outside through the exhaust pipe 308.

本実施例では帯状基板301に垂直な面に対して30度の角度で、傾斜の長さを50mmで厚みを変化するシールド壁315を用いた。これによりシールド部材と開口調整板の対向する壁面で構成される排気経路の幅を50mmから25mmに狭めた。   In this embodiment, a shield wall 315 having a 30-degree angle with respect to a plane perpendicular to the belt-like substrate 301, an inclination length of 50 mm, and a thickness change is used. As a result, the width of the exhaust path constituted by the opposing wall surfaces of the shield member and the opening adjustment plate was reduced from 50 mm to 25 mm.

そして、実施例1と同じ条件のもとでプラズマを生起し、帯状基板301を静止したままシリコン薄膜を成膜した。その結果、実施例1と同様、帯状基板301上に副生成物の堆積もなく、均一な膜厚分布で成膜された。   Then, plasma was generated under the same conditions as in Example 1, and a silicon thin film was formed while the strip substrate 301 was stationary. As a result, as in Example 1, there was no deposition of by-products on the strip substrate 301, and the film was formed with a uniform film thickness distribution.

(実施例3)
図4に、本発明の実施例3として用いたシールド壁および基板、開口調整板などの模式的な断面図を示す。直方体の真空容器402(但し、全体は図示されていない。)と該真空容器402の内部に設けられた放電室405と該放電室405に導入された帯状基板401とで構成されている。また原料ガス導入管407よりSiH4やH2などの原料ガスを導入し、電源404より電力印加電極406に電力を印加することで該放電室405にプラズマを生起させ、該帯状基板401に半導体膜を成膜する。該放電室405内に残った残留ガスは開口調整板409とシールド壁415の間から排気され、排気管408により外部へ排気される。
(Example 3)
FIG. 4 shows a schematic cross-sectional view of a shield wall, a substrate, an aperture adjustment plate, and the like used as Example 3 of the present invention. It is composed of a rectangular parallelepiped vacuum vessel 402 (not shown in its entirety), a discharge chamber 405 provided inside the vacuum vessel 402, and a strip-like substrate 401 introduced into the discharge chamber 405. In addition, a source gas such as SiH 4 or H 2 is introduced from the source gas introduction tube 407, and plasma is generated in the discharge chamber 405 by applying power to the power application electrode 406 from the power source 404, and the semiconductor substrate is formed on the strip substrate 401. A film is formed. The residual gas remaining in the discharge chamber 405 is exhausted from between the opening adjustment plate 409 and the shield wall 415 and exhausted to the outside through the exhaust pipe 408.

本実施例では帯状基板401に垂直な面に対して30度の角度で、傾斜の長さを50mmに折り曲げた厚さ3mmのSUS304の板をシールド壁415として用いた。これによりシールド部材と開口調整板の対向する壁面で構成される排気経路の幅を50mmから25mmに狭めた。   In this embodiment, a 3 mm thick SUS304 plate bent at an angle of 30 degrees with respect to a plane perpendicular to the belt-like substrate 401 and having an inclination length of 50 mm was used as the shield wall 415. As a result, the width of the exhaust path constituted by the opposing wall surfaces of the shield member and the opening adjustment plate was reduced from 50 mm to 25 mm.

そして、実施例1と同じ条件のもとでプラズマを生起し、帯状基板401を静止したままシリコン薄膜を成膜した。その結果、実施例1と同様、帯状基板401上に副生成物の堆積もなく、均一な膜厚分布で成膜された。   Then, plasma was generated under the same conditions as in Example 1, and a silicon thin film was formed while the strip substrate 401 was stationary. As a result, the film was formed with a uniform film thickness distribution on the belt-like substrate 401 without depositing by-products as in Example 1.

(比較例)
比較例として、図5に示すようにシールド部材と対向する開口調整板とで構成される排気経路の断面積が一定である従来のシールド壁515を用い、実施例1と同様に、帯状基板501にシリコン薄膜を形成した。
(Comparative example)
As a comparative example, as shown in FIG. 5, a conventional shield wall 515 having a constant cross-sectional area of an exhaust path composed of a shield member and an opening adjustment plate facing the shield member 515 is used. A silicon thin film was formed.

図7に本比較例によって成膜された帯状基板501上の膜状態の模写図を示す。図7に示すように、本比較例では、排気口部の近傍には、薄膜が堆積せずに、副生成物702が付着し、また不均一な膜厚分布701が積層された。これはシールド壁の(A)付近に副生成物が局所的に堆積されたために、開口調整板とシールド壁で形成される排気口部が狭まり、カソード上の残留ガスの排気能力が低下したため、カソード上の放電が不安定になったためと考えられる。   FIG. 7 shows a copy diagram of the film state on the belt-like substrate 501 formed by this comparative example. As shown in FIG. 7, in this comparative example, a by-product 702 adhered without depositing a thin film in the vicinity of the exhaust port, and a non-uniform film thickness distribution 701 was laminated. This is because by-products are locally deposited in the vicinity of (A) of the shield wall, the exhaust port formed by the opening adjusting plate and the shield wall is narrowed, and the exhaust capability of residual gas on the cathode is reduced. This is probably because the discharge on the cathode became unstable.

図8は成膜時間に対する太陽電池の良品率について実施例1(実線)と比較例(破線)の比較を示したグラフである。ここで、実施例1で作成した成膜初期時の太陽電池の良品率を1と定義し、比較している。比較例では成膜時間が経過するにつれ、良品率が低下した。しかし実施例1では成膜時間が経過するにつれて低下する良品率を抑制する事が出来た。これはシールド壁の(A)付近に局所的に堆積された副生成物が放電空間に浮遊し、成膜基板へ付着することが減少したためと考えられる。   FIG. 8 is a graph showing a comparison between Example 1 (solid line) and a comparative example (broken line) with respect to the rate of non-defective solar cells against the film formation time. Here, the non-defective product rate at the initial stage of film formation created in Example 1 is defined as 1 for comparison. In the comparative example, the yield rate decreased as the film formation time elapses. However, in Example 1, it was possible to suppress the non-defective product rate which decreases as the film formation time elapses. This is presumably because by-products deposited locally in the vicinity of (A) of the shield wall float in the discharge space and adhere to the deposition substrate.

図9は成膜時間に対する太陽電池の曲線因子について実施例1(実線)と比較例(破線)の比較を示したグラフである。ここで、実施例1で作成した成膜初期時の太陽電池の曲線因子を1と定義し、比較している。成膜初期の曲線因子の差があることから、アースシールド壁に傾斜を有することで開口調整板付近における放電空間のインピーダンスが変化したと考えられ、これによりカソード端の放電が安定したため、基板の膜質が向上したと考えられる。また比較例では成膜時間が経過するにつれ、曲線因子が低下した。しかし実施例1では成膜時間が経過するにつれて低下する曲線因子を抑制する事が出来た。これはシールド壁の(A)付近に副生成物が局所的に堆積されなくなったため、残留ガスの排気能力が向上し、放電が安定したためと考えられる。   FIG. 9 is a graph showing a comparison between Example 1 (solid line) and a comparative example (dashed line) with respect to the fill factor of the solar cell with respect to the film formation time. Here, the curve factor of the solar cell at the initial stage of film formation created in Example 1 is defined as 1 for comparison. Since there is a difference in the fill factor at the initial stage of film formation, it is considered that the slope of the earth shield wall changed the impedance of the discharge space in the vicinity of the aperture adjustment plate. The film quality is considered to have improved. In the comparative example, the fill factor decreased as the film formation time passed. However, in Example 1, it was possible to suppress the curve factor that decreases as the film formation time elapses. This is probably because by-products are no longer deposited locally in the vicinity of (A) of the shield wall, so that the exhaust capability of the residual gas is improved and the discharge is stabilized.

本発明の実施の形態に係る堆積膜形成装置の基本的な構成を示す模式的な断面図である。It is typical sectional drawing which shows the basic composition of the deposited film formation apparatus which concerns on embodiment of this invention. 本発明の実施例1として用いたシールド壁および基板、開口調整板などの模式的な断面図である。It is typical sectional drawing, such as a shield wall used as Example 1 of this invention, a board | substrate, and an opening adjustment board. 本発明の実施例2として用いたシールド壁および基板、開口調整板などの模式的な断面図である。It is typical sectional drawing, such as a shield wall used as Example 2 of this invention, a board | substrate, and an opening adjustment board. 本発明の実施例3として用いたシールド壁および基板、開口調整板などの模式的な断面図である。It is typical sectional drawing, such as a shield wall used as Example 3 of this invention, a board | substrate, and an opening adjustment board. 従来の堆積膜形成装置におけるシールド壁および基板、開口調整板などの模式的な断面図である。It is typical sectional drawing, such as a shield wall in a conventional deposited film formation apparatus, a board | substrate, and an opening adjustment board. 本発明の実施例1で成膜された帯状基板上の膜状態の模写図である。It is a copy figure of the film | membrane state on the strip | belt-shaped board | substrate formed into a film in Example 1 of this invention. 比較例で成膜された帯状基板上の膜状態の模写図である。It is a copy figure of the film | membrane state on the strip | belt-shaped board | substrate formed into a film in the comparative example. 成膜時間に対する太陽電池の良品率について実施例1と比較例の比較を示したグラフである。It is the graph which showed the comparison of Example 1 and a comparative example about the non-defective item rate of the solar cell with respect to film-forming time. 成膜時間に対する太陽電池の曲線因子について実施例1と比較例の比較を示したグラフである。It is the graph which showed the comparison of Example 1 and a comparative example about the curve factor of the solar cell with respect to film-forming time.

符号の説明Explanation of symbols

101、201、301、401、501:帯状基板
102、202、302、402、502:真空容器
103:ガスゲート
105、205、305、405、505:放電室
106、206、306、406、506:電力印加電極
107、207、307、407、507:原料ガス導入管
108、208、308、408、508:排気管
109:ブロックヒーター
110:放電室外部排気口
113:ランプヒーター
114:熱電対
117:ゲートガス導入管
204、304、404、504:電源
209、309、409、509:開口調整板
215、315、415、515:シールド壁(シールド部材)
101, 201, 301, 401, 501: Strip substrate 102, 202, 302, 402, 502: Vacuum vessel 103: Gas gate 105, 205, 305, 405, 505: Discharge chamber 106, 206, 306, 406, 506: Electric power Application electrodes 107, 207, 307, 407, 507: source gas introduction pipes 108, 208, 308, 408, 508: exhaust pipe 109: block heater 110: discharge chamber external exhaust port 113: lamp heater 114: thermocouple 117: gate gas Introducing tubes 204, 304, 404, 504: power sources 209, 309, 409, 509: opening adjustment plates 215, 315, 415, 515: shield walls (shield members)

Claims (3)

真空室内で、電力印加電極と、該電力印加電極に対向して配置された電極となりうる基板との間の放電空間にプラズマを発生させて、真空室内に導入される原料ガスを分解し、基板上に堆積膜を形成させる堆積膜形成装置において、
前記電力印加電極の周囲の少なくとも一部にシールド部材を有し、該シールド部材が排気下流側方向に形状が変化しており、前記シールド部材と対向する壁面とで構成される排気経路の断面積が排気上流側から排気下流側に連続的に小さくなる領域を有することを特徴とする堆積膜形成装置。
In the vacuum chamber, plasma is generated in a discharge space between the power application electrode and a substrate that can be arranged opposite to the power application electrode, to decompose the source gas introduced into the vacuum chamber, In a deposited film forming apparatus for forming a deposited film on the top,
A cross-sectional area of an exhaust path having a shield member at least part of the periphery of the power application electrode, the shield member having a shape that changes in the exhaust downstream direction, and a wall surface facing the shield member Has a region that continuously decreases from the exhaust upstream side to the exhaust downstream side.
前記シールド部材の厚みが変化していることを特徴とする請求項1に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein a thickness of the shield member is changed. 前記シールド部材が、折り曲げ形状であることを特徴とする請求項1に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein the shield member has a bent shape.
JP2004348432A 2004-12-01 2004-12-01 Deposition film formation apparatus Withdrawn JP2006156878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348432A JP2006156878A (en) 2004-12-01 2004-12-01 Deposition film formation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348432A JP2006156878A (en) 2004-12-01 2004-12-01 Deposition film formation apparatus

Publications (1)

Publication Number Publication Date
JP2006156878A true JP2006156878A (en) 2006-06-15

Family

ID=36634744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348432A Withdrawn JP2006156878A (en) 2004-12-01 2004-12-01 Deposition film formation apparatus

Country Status (1)

Country Link
JP (1) JP2006156878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209679A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209679A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Film forming apparatus

Similar Documents

Publication Publication Date Title
US8389389B2 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
US20130295709A1 (en) Method for manufacturing photoelectric conversion elements
US20110308735A1 (en) Vacuum processing apparatus
JP5053595B2 (en) DLC film forming method and DLC film manufacturing apparatus
JP2001214277A (en) Deposited film deposition system and deposited film deposition method
JP2003197536A (en) Plasma enhanced cvd system, amorphous silicon-based thin film, and its manufacturing method
JP2006156878A (en) Deposition film formation apparatus
JP3486590B2 (en) Deposition film forming equipment
JP4510242B2 (en) Thin film formation method
US6436797B1 (en) Apparatus and method for forming a deposited film on a substrate
JP2001323376A (en) Equipment for depositing film
JP2008004815A (en) Plasma processing method and photoelectric conversion element fabricated using the method
JP3347383B2 (en) Microwave plasma processing equipment
JP2846534B2 (en) Plasma CVD apparatus and method for forming functional deposited film using the same
JP2810529B2 (en) Method and apparatus for forming deposited film
JP2001291882A (en) Method of manufacturing thin film
JP2006032800A (en) Plasma treatment device, solar cell and manufacturing method of solar cell
JP4981387B2 (en) Thin film manufacturing apparatus and solar cell manufacturing method
JP3658249B2 (en) Semiconductor layer manufacturing method, photovoltaic device manufacturing method, and semiconductor layer manufacturing apparatus
JP3235896B2 (en) Method and apparatus for continuously forming large-area functional deposited films by microwave plasma CVD
JP2005317855A (en) Method of forming microcrystalline silicon film and photovoltaic element
JP3658165B2 (en) Continuous production equipment for photoelectric conversion elements
JP3787444B2 (en) Method and apparatus for forming semiconductor thin film
JP2001288572A (en) Deposited film forming equipment and the method therefor
JP2515329B2 (en) Thin film formation method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205