JP2006156543A - Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby - Google Patents

Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby Download PDF

Info

Publication number
JP2006156543A
JP2006156543A JP2004342006A JP2004342006A JP2006156543A JP 2006156543 A JP2006156543 A JP 2006156543A JP 2004342006 A JP2004342006 A JP 2004342006A JP 2004342006 A JP2004342006 A JP 2004342006A JP 2006156543 A JP2006156543 A JP 2006156543A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
magnetic
powder
carbon
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004342006A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
正浩 伊東
Kenichi Machida
憲一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004342006A priority Critical patent/JP2006156543A/en
Publication of JP2006156543A publication Critical patent/JP2006156543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing nano complex powder for efficiently absorbing electromagnetic waves at a GHz band in which a utilization range tends to expand following the development of communication equipment by a magnetic medium, such as iron, taken into a matrix, such as carbon. <P>SOLUTION: The nano complex magnetic particle is obtained by mixing amorphous carbon that is a non-good conductor and a magnetic material with a transition metal or its alloy as a base by a physical method. The electromagnetic wave absorber is obtained by adding binder, such as resin, to the nano complex particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、GHz帯域に電磁波吸収特性を有するナノメートルサイズの磁性体が無定形炭素等の非良導体と微細構造組織を形成した複合体粉末の製造方法であり、また、それを用いたおよびこれを用いた電磁波吸収体の製造方法に関する。   The present invention relates to a method for producing a composite powder in which a nanometer-sized magnetic material having electromagnetic wave absorption characteristics in the GHz band forms a fine structure with a non-good conductor such as amorphous carbon. The present invention relates to a method for producing an electromagnetic wave absorber using a slag.

従来、GHz帯域の電磁波吸収体には、導体および誘電体以外にフェライト硬磁性体もしくは形状異方性を付与した金属系磁性体が用いられている。前者は磁化が低く吸収割合は小さいものの、5GHzから20GHzに対応する電磁波吸収体として利用されている(特許文献1、論文文献1)。他方、後者は鉄を中心として扁平化等の加工を施すことで形状による磁気異方性を付与し、GHz領域の電磁波吸収能を有する電磁波吸収体として製造販売されている(特許文献2参照)。   Conventionally, in the GHz band electromagnetic wave absorber, a ferrite hard magnetic material or a metal-based magnetic material imparted with shape anisotropy is used in addition to a conductor and a dielectric. The former is used as an electromagnetic wave absorber corresponding to 5 GHz to 20 GHz although the magnetization is low and the absorption ratio is small (Patent Document 1, Patent Document 1). On the other hand, the latter is manufactured and sold as an electromagnetic wave absorber having an electromagnetic wave absorbing ability in the GHz region by imparting magnetic anisotropy depending on the shape by performing processing such as flattening centering on iron (see Patent Document 2). .

一方で近年、杉本らは、溶融鋳造された希土類-鉄系金属間化合物を粉砕後、水素化および酸化による不均化処理によりナノ複合粒子、すなわちα−Fe/RO(X=1または1.5)とすることで、1〜3GHz帯域に良好な電磁波吸収能を有することを報告している(論文文献2および論文文献3参照)。 On the other hand, in recent years, Sugimoto et al., After pulverizing a melt-cast rare earth-iron-based intermetallic compound, disproportionation treatment by hydrogenation and oxidation, that is, nanocomposite particles, ie, α-Fe / RO X (X = 1 or 1 .5), it has been reported that it has a good electromagnetic wave absorbing ability in the 1 to 3 GHz band (see Paper 2 and Paper 3).

特開2000-331816JP2000-331816

特開平11-354973JP 11-354973

[論文文献1]S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, and M. Homma, Mater. Trans., vol. 39, 1080 (1998).[Papers 1] S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, and M. Homma, Mater. Trans. , vol. 39, 1080 (1998).

〔論文文献2〕T. Maeda, S. Sugimoto, T. Kagotani, D. Book, M. Homma, H. Ota, and Y. Houjou, Mater. Trans., vol. 41, 1172 (2000).[Paper Reference 2] T. Maeda, S. Sugimoto, T. Kagotani, D. Book, M. Homma, H. Ota, and Y. Houjou, Mater. Trans., Vol. 41, 1172 (2000).

〔論文文献3〕S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, J. Alloys Compd., vol. 330-332, 301 (2002).[Papers 3] S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, J. Alloys Compd., Vol. 330-332, 301 (2002).

特許文献1および論文文献1記載のフェライト硬磁性体の場合は、自身の伝導性が低く渦電流による損失は小さい反面、本来の磁化が低く、薄型高性能電磁波吸収体の作製には不向きである。他方、特許文献2に記載されている形状異方化した鉄粉の場合は、高い電磁波吸収能を有するものの、本来導体であるため渦電流に基づく磁化損失に加え、扁平化処理等の加工プロセスが必要であり低コスト化の障害となっている。   In the case of the ferrite hard magnetic material described in Patent Document 1 and Paper Document 1, its own conductivity is low and the loss due to eddy current is small, but the original magnetization is low and it is not suitable for producing a thin high-performance electromagnetic wave absorber. . On the other hand, in the case of the iron powder having an anisotropic shape described in Patent Document 2, although it has a high electromagnetic wave absorption ability, it is a conductor, and therefore, in addition to a magnetization loss based on eddy current, a processing process such as a flattening process This is an obstacle to cost reduction.

一方、希土類金属間化合物を水素化および酸化分解し、金属鉄と希土類酸化物との複合磁性体粉末とすることで、金属磁性体の利点をもつとともに、渦電流損失の欠点を補う電磁波吸収体が報告された(論文文献2および3参照)。しかしながら、遊離する鉄金属の小さい異方性磁界のため吸収できる電磁波周波数が低いこと、また、試料作製の原料として通常の溶融法により得られた金属間化合物のインゴットを使用するため、より微細且つ均一な組織を有する融合体の作製には不適である、さらには、金属磁性体の微細組織を得るためには水素吸蔵による不均一化反応が必要であり、水素吸蔵能を有さない化合物に対しては上記の方法を適用できない、等の欠点があった。   On the other hand, by absorbing and oxidatively decomposing rare earth intermetallic compounds into a composite magnetic material powder of metallic iron and rare earth oxide, the electromagnetic wave absorber has the advantages of metal magnetic material and compensates for the disadvantage of eddy current loss Has been reported (see papers 2 and 3). However, since the electromagnetic wave frequency that can be absorbed is low due to the small anisotropic magnetic field of the free iron metal, and since the ingot of the intermetallic compound obtained by the usual melting method is used as a raw material for sample preparation, It is unsuitable for the production of a fusion body having a uniform structure. Furthermore, in order to obtain a fine structure of a metal magnetic body, a heterogeneous reaction by hydrogen storage is necessary, and a compound having no hydrogen storage capacity is required. On the other hand, there is a drawback that the above method cannot be applied.

鉄等の磁性金属、侵入型化合物および金属間化合物磁性体を非良導体であるマトリックス中に高分散させた複合体とすることで金属磁性体粒子サイズの減少を図り、これにより金属磁性体の磁化低下の原因となる渦電流損を改善する。さらに上記複合体の金属および非良導体の組織を微細且つ均一にすることで、非良導体による絶縁効果の向上が得られる。また、将来的に利用の拡大が予測される数GHz〜数十GHzの帯域の電磁波に対応するため、上記の磁性体粒子の扁平化以外の方法で磁気異方性を付与し電磁波を高効率で吸収する磁性体粉末とする。さらに、本発明の複合体磁性粉末は炭素を含むため、金属磁性体粉末との混合前に予め炭素を表面改質しておくことで、これと磁性体粉末の物理的混合により得られる複合体粉末の樹脂に対する親和性を向上させることができる。その結果、複合体粉末の分散性、充填率の高い電波吸収体の作製が可能となる。   By reducing the size of metal magnetic particles by making a composite in which magnetic metals such as iron, interstitial compounds, and intermetallic compounds are highly dispersed in a matrix that is a poor conductor, the magnetization of the metal magnetic material is reduced. Improve the eddy current loss that causes the drop. Further, by making the structure of the metal and non-good conductor of the above composite fine and uniform, the insulation effect by the non-good conductor can be improved. In addition, in order to cope with electromagnetic waves in the band of several GHz to several tens of GHz, which is expected to expand in the future, magnetic anisotropy is imparted by a method other than the flattening of the magnetic particles described above, and the electromagnetic waves are highly efficient. Magnetic powder to be absorbed in Furthermore, since the composite magnetic powder of the present invention contains carbon, the composite obtained by physical mixing of the carbon powder with the surface of the carbon is previously modified before mixing with the metal magnetic powder. The affinity of the powder for the resin can be improved. As a result, it is possible to produce a radio wave absorber with high dispersibility and filling rate of the composite powder.

具体的には、磁性体である金属粉末を非良導体であるカーボンと遊星型ボールミル等を用いて物理的に粉砕混合し、微細且つ均一な組織を有する複合磁性体粉末を得る。また、数GHz〜数十GHzに対応する電磁波吸収体として、結晶構造に由来する磁気異方性を有する硼化鉄などの侵入型化合物磁性体または金属間化合物磁性体を同様に非良導体と複合化することで、鉄等の立方晶の磁性体に比べ共鳴周波数を高周波域へ移行させることで対応することができる。加えて、磁性体粉末との混合前に、炭素を予め硝酸等の酸で処理することで表面改質を行うことで、これと磁性体粉末の混合により得られる複合体粉末のエポキシ等の樹脂への親和性が向上することにより、複合体粉末の分散性、充填率を高めた電波吸収体の作製が可能となる。また、上記の炭素表面改質以外にも、得られた複合体磁性粉末に対してシランカップリング剤により表面改質を行うことで樹脂に対する親和性(なじみ)の向上および耐久性をも付与させることができる。 Specifically, the metal powder, which is a magnetic material, is physically pulverized and mixed with carbon, which is a non-good conductor, using a planetary ball mill or the like to obtain a composite magnetic material powder having a fine and uniform structure. In addition, as an electromagnetic wave absorber corresponding to several GHz to several tens GHz, an interstitial compound magnetic material such as iron boride having magnetic anisotropy derived from a crystal structure or an intermetallic compound magnetic material is similarly combined with a non-good conductor. Therefore, it is possible to cope with the problem by shifting the resonance frequency to a high frequency region compared to a cubic magnetic material such as iron. In addition, before mixing with magnetic powder, surface modification is performed by treating carbon with an acid such as nitric acid in advance, and resin such as epoxy of composite powder obtained by mixing this with magnetic powder By improving the affinity for the radio wave absorber, it is possible to produce a radio wave absorber with improved dispersibility and filling rate of the composite powder. In addition to the carbon surface modification described above, the surface of the obtained composite magnetic powder is modified with a silane coupling agent to improve the affinity (familiarity) with the resin and provide durability. be able to.

本発明により、GHz帯域に対応できる電磁波吸収体を、簡単なプロセスでかつ安価に製造することができる。特に、Fe格子間への硼素および炭素の導入または鉄とコバルトを合金化することによる異方性磁界の付与から電磁波吸収領域の高周波域への移行により、従来の電磁波吸収体用磁性粉末に比べ高い周波数領域の電磁を効果的に吸収することができる。   According to the present invention, an electromagnetic wave absorber capable of supporting the GHz band can be manufactured by a simple process and at a low cost. In particular, compared to conventional magnetic powders for electromagnetic wave absorbers due to the introduction of boron and carbon between Fe lattices or the application of an anisotropic magnetic field by alloying iron and cobalt to the transition to the high frequency region of the electromagnetic wave absorption region. Electromagnetic waves in a high frequency range can be effectively absorbed.

以下、添付図面を参照して、本発明の実施形態について詳細に説明する。
図1にこの発明に関わる電磁波吸収体の断面図を示す。図1のように吸収体に電磁波が垂直に入射する場合、吸収体表面から金属板を見込む規格化入力インピーダンスZは下記(1)式により表され、このZを用いて反射損失Rは(2)および(3)式より求めた。このように、反射損失はZによって決まるが、(1)式から明らかなように、Zはε、μ、電磁波の波長λ、試験体厚さdの関数であり、20dBを満足する領域の算出法は複雑である。そこで、ε、μの周波数特性をネットワークアナライザーを用いてSパラメータ法により測定し、その測定結果から(1)〜(3)式を用いて試験体の厚さを変えた場合の反射損失を算出し、この値をもとに電磁波吸収体を設計、製造することができる。
すなわち、上述した電磁波吸収用磁性体粉末に対しエポキシ樹脂等の樹脂バインダを混錬し、金属板を基板として所定の厚さのシートあるいはボード状に成型し、これを電磁波吸収体として使用する。この場合は、電磁波が最も良好に吸収される共鳴周波数は電磁波吸収体の厚みに依存し、所望の電磁波の周波数に対応させて厚みは調整することができる。また、図1の形態のほかにも、さらに薄板状としたシートやテープ形態の電磁波吸収体に成形することも可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a cross-sectional view of an electromagnetic wave absorber according to the present invention. As shown in FIG. 1, when electromagnetic waves are incident on the absorber perpendicularly, the normalized input impedance Z for expecting a metal plate from the surface of the absorber is expressed by the following equation (1). Using this Z, the reflection loss R is (2 ) And (3). Thus, although the reflection loss is determined by Z, as is clear from the equation (1), Z is a function of ε, μ, wavelength λ of electromagnetic wave, and specimen thickness d, and calculation of a region satisfying 20 dB. The law is complex. Therefore, the frequency characteristics of ε and μ are measured by the S-parameter method using a network analyzer, and the reflection loss when the thickness of the specimen is changed is calculated from the measurement results using the equations (1) to (3). The electromagnetic wave absorber can be designed and manufactured based on this value.
That is, a resin binder such as an epoxy resin is kneaded with the electromagnetic wave absorbing magnetic powder described above, and a metal plate is used as a substrate to form a sheet or board having a predetermined thickness, which is used as an electromagnetic wave absorber. In this case, the resonance frequency at which electromagnetic waves are best absorbed depends on the thickness of the electromagnetic wave absorber, and the thickness can be adjusted to correspond to the frequency of the desired electromagnetic wave. Further, in addition to the form shown in FIG. 1, it is also possible to form an electromagnetic wave absorber in the form of a thin sheet or tape.

以下、本発明の効果を確認するために行った実験結果について説明する。   Hereinafter, the results of experiments conducted to confirm the effects of the present invention will be described.

(実施例1)
金属鉄に対して加熱脱気により水分を除去した無定形炭素を10重量%添加し、遊星型ボールミルによりアルゴン雰囲気中、回転速度200rpmで30時間、混合することで鉄−無定形炭素複合体粉末を作製した。ここで、ボールミルによる混合時間を本発明では30時間としたが、回転数、使用するボールの種類およびサイズを変更することにより時間を短縮することが可能である。
Example 1
Iron-amorphous carbon composite powder is added by adding 10% by weight of amorphous carbon from which moisture has been removed by heating deaeration to metallic iron, and mixing in an argon atmosphere at a rotational speed of 200 rpm for 30 hours using a planetary ball mill. Was made. Here, the mixing time by the ball mill is 30 hours in the present invention, but the time can be shortened by changing the number of rotations, the type and size of the balls used.

処理前後の粉末のXRDパターンを図2に示す。混合前では鉄に帰属される鋭いピークが観測されたのに対して、混合後では回折位置は変化しなかったもののブロードなピークが観測された。このことから、無定形炭素との物理的な複合化により鉄の一次粒子が微細化されていることが確認された。一方で、鉄との複合化に用いた炭素は無定形のためXRDパターンに回折ピークは見出されなかった。走査電子顕微鏡による直接観察では、粉砕前の鉄の粒子サイズは数十μmであり、粉砕後のそれは数十から数百nmであった。また、粉砕前後でXRDピークにシフトが見られないことから、今回の物理混合条件では炭素の鉄格子間への侵入はなく炭化鉄が生成しないことがわかる。 The XRD pattern of the powder before and after the treatment is shown in FIG. A sharp peak attributed to iron was observed before mixing, whereas a broad peak was observed after mixing, although the diffraction position did not change. From this, it was confirmed that the primary particles of iron were refined by physical combination with amorphous carbon. On the other hand, since the carbon used for complexing with iron was amorphous, no diffraction peak was found in the XRD pattern. In direct observation with a scanning electron microscope, the particle size of iron before pulverization was several tens of μm, and that after pulverization was several tens to several hundreds of nm. Moreover, since there is no shift in the XRD peak before and after pulverization, it can be seen that under the current physical mixing conditions, carbon does not enter between the iron lattices and iron carbide is not generated.

上記で得られた鉄−無定形炭素複合体粉末に対して、25重量%のエポキシ樹脂を混合し成形体を作製し、130℃で30分、その後180℃で30分の条件で硬化処理を行うことで電磁波吸収体を作成した。この吸収体についてネットワークアナライザーにより電磁波吸収特性を評価した。結果を図3に示す。厚さ1.9〜3.4mmの試料において4.5〜9.0GHzの領域に、電波吸収材の性能として要求される−20dB以下の反射損失が見られた。ここで得られた良好な電波吸収特性は、非良導体である炭素との複合化により均一な微細組織を有するナノ複合体が得られ、かつ、磁性金属粒子の微細化により電磁界により誘起される渦電流損が抑制されたためと考えられる。尚、鉄−無定形炭素複合体粉末(樹脂混合なし、圧粉体)の電気抵抗値は200Ωmであった。さらに、上記の鉄−無定形炭素複合体粉末の作製過程において、予め無定形炭素を熱硝酸で1時間処理し表面改質を行い、これと鉄粉末との物理的混合により鉄−無定形炭素(表面改質)複合体粉末を得た。この粉末に対しFT-IR測定を行ったところ、カルボニル基の炭素と酸素の二重結合の伸縮振動に特有なピークが見られた。この複合体粉末に対して、エポキシ樹脂の使用量を低減し成形体を作製した。得られた電波吸収体の特性を評価した結果、改質処理を施さなかった吸収体に比べ、電波吸収域に関してはほぼ同様の傾向を示したが、複合体粉末の分散性、充填率が改善されたことにより反射損失の向上が見られた。   The iron-amorphous carbon composite powder obtained above is mixed with 25% by weight of an epoxy resin to produce a molded body, and cured at 130 ° C. for 30 minutes and then at 180 ° C. for 30 minutes. By doing so, an electromagnetic wave absorber was created. The absorber was evaluated for electromagnetic wave absorption characteristics by a network analyzer. The results are shown in FIG. In a sample having a thickness of 1.9 to 3.4 mm, a reflection loss of −20 dB or less, which is required as a performance of the radio wave absorber, was observed in the region of 4.5 to 9.0 GHz. The good radio wave absorption characteristics obtained here are obtained by a nanocomposite having a uniform microstructure by compounding with carbon, which is a non-good conductor, and induced by an electromagnetic field by miniaturization of magnetic metal particles. It is thought that eddy current loss was suppressed. In addition, the electric resistance value of the iron-amorphous carbon composite powder (no resin mixing, green compact) was 200 Ωm. Further, in the process of producing the above iron-amorphous carbon composite powder, the amorphous carbon is treated with hot nitric acid for 1 hour in advance for surface modification, and the iron-amorphous carbon is physically mixed with this. (Surface modification) Composite powder was obtained. When this powder was subjected to FT-IR measurement, a peak peculiar to the stretching vibration of the carbon-oxygen double bond of the carbonyl group was observed. With respect to this composite powder, the amount of epoxy resin used was reduced to produce a molded product. As a result of evaluating the characteristics of the obtained radio wave absorber, it showed almost the same tendency with respect to the radio wave absorption range compared to the absorber not subjected to the modification treatment, but the dispersibility and filling rate of the composite powder were improved. As a result, the reflection loss was improved.

(実施例2)
金属鉄と硼素を所定量秤量しアーク溶解することでFeBのインゴットを作製した。このインゴットから超急冷装置を用いてFeBの金属薄帯を作製し、これを粉砕することで粒径約3μm以下のFeB粉末を得た。これと上述の無定形炭素から実施例1と同様の物理的混合法によりFeB−無定形炭素複合体粉末を作製した。
(Example 2)
A predetermined amount of metallic iron and boron were weighed and arc-melted to prepare an Fe 2 B ingot. A Fe 2 B metal ribbon was prepared from this ingot using an ultra-quenching device, and this was pulverized to obtain a Fe 2 B powder having a particle size of about 3 μm or less. From this and the above-mentioned amorphous carbon, an Fe 2 B-amorphous carbon composite powder was prepared by the same physical mixing method as in Example 1.

作製したFeB粉末とFeB−無定形炭素複合体粉末のX線回折の結果を図4に示す。超急冷により得られた試料の回折パターン(a)から、単相のFeBが得られていることを確認した。無定形炭素との複合化後の試料(b)では、回折パターンは出発物質であるFeBのピークと一致した。ここでも、混合後の試料のピーク半値幅は増加しており、物理混合により結晶子サイズが減少していることが確認された。ピーク半値幅より見積もった複合体中のFeBの結晶子サイズは約30nmであった。 FIG. 4 shows the results of X-ray diffraction of the produced Fe 2 B powder and Fe 2 B-amorphous carbon composite powder. It was confirmed from the diffraction pattern (a) of the sample obtained by ultra rapid cooling that single-phase Fe 2 B was obtained. In sample (b) after complexing with amorphous carbon, the diffraction pattern coincided with the peak of Fe 2 B which is the starting material. Again, the peak half-width of the sample after mixing was increased, confirming that the crystallite size was decreasing due to physical mixing. The crystallite size of Fe 2 B in the composite estimated from the peak half width was about 30 nm.

上記のFeB−無定形炭素複合体粉末の透過型電子顕微鏡観察の結果を図5に示す。複合体中において数nm〜数十nmの針状FeBが高分散していることが確認された。この結果はXRDで得られた結果とも一致する。 The result of transmission electron microscope observation of the Fe 2 B-amorphous carbon composite powder is shown in FIG. It was confirmed that acicular Fe 2 B of several nm to several tens of nm was highly dispersed in the composite. This result is consistent with the result obtained by XRD.

実施例1で述べた手法で、同様にFeB−無定形炭素/エポキシ樹脂(25重量%)を作製し、ネットワークアナライザーを用いて電磁波吸収特性を評価した。結果を図6に示す。厚さ1.2〜2.2mmの吸収体において、6〜16GHzの領域で−20db以下の良好な反射損失が見られた。ここでも、FeBと比較的電気抵抗値の大きな無定形炭素とを複合化することで渦電流損失を抑え高周波域においても良好な電磁波吸収特性が得られることを確認した。さらに、鉄−無定形炭素複合体に比べFeB−無定形炭素複合体における吸収周波数は高周波側に移行した。これは、立方晶である鉄に対して、侵入型の化合物であるFeBは正方晶であり結晶構造に付随する磁気異方性を有することで共鳴周波数が高周波数側にシフトしたためであり、従来の球状粒子の扁平化による磁気異方性の付与以外にも結晶構造を変化させることで高周波数領域での電磁波を吸収できることを確認した。 Similarly, Fe 2 B-amorphous carbon / epoxy resin (25% by weight) was prepared by the method described in Example 1, and electromagnetic wave absorption characteristics were evaluated using a network analyzer. The results are shown in FIG. In the absorber having a thickness of 1.2 to 2.2 mm, a good reflection loss of −20 db or less was observed in the region of 6 to 16 GHz. Also here, it was confirmed that by combining Fe 2 B and amorphous carbon having a relatively large electric resistance value, eddy current loss was suppressed and good electromagnetic wave absorption characteristics were obtained even in a high frequency range. Furthermore, the absorption frequency in the Fe 2 B-amorphous carbon composite shifted to the high frequency side as compared with the iron-amorphous carbon composite. This is because the interstitial compound Fe 2 B is tetragonal and has magnetic anisotropy associated with the crystal structure, so that the resonance frequency is shifted to the high frequency side compared to cubic iron. In addition to providing magnetic anisotropy by flattening conventional spherical particles, it was confirmed that electromagnetic waves in a high frequency region can be absorbed by changing the crystal structure.

(実施例3)
金属イットリウムと金属鉄を所定量秤量しアーク溶解することでYFe17のインゴットを作製した。このインゴットから超急冷装置を用いてYFe17の金属薄帯を作製し、これを粉砕することで粒径約3μm以下のYFe17粉末を得た。この磁性体粉末から上記と同様の手法でYFe17−無定形炭素複合体粉末を作製した。
(Example 3)
It was prepared an ingot of Y 2 Fe 17 by weighing predetermined amounts of arc melting the metal yttrium and metallic iron. A Y 2 Fe 17 metal ribbon was prepared from this ingot using an ultra-quenching apparatus and pulverized to obtain a Y 2 Fe 17 powder having a particle size of about 3 μm or less. A Y 2 Fe 17 -amorphous carbon composite powder was prepared from this magnetic powder in the same manner as described above.

作製したYFe17粉末とYFe17−無定形炭素複合体粉末のX線回折の結果を図7に示す。混合前後での試料のXRD測定から、YFe17の結晶構造を保持したまま均一かつ微細なYFe17−無定形炭素複合体が得られていることを確認した。また、シェラーの式から見積もった複合体中におけるYFe17の結晶子サイズは約20nmであった。 FIG. 7 shows the results of X-ray diffraction of the produced Y 2 Fe 17 powder and Y 2 Fe 17 -amorphous carbon composite powder. Mixing from XRD measurement of the sample before and after, Y 2 while maintaining the crystal structure of Fe 17 uniform and fine Y 2 Fe 17 - it was confirmed that the amorphous carbon composite is obtained. The crystallite size of Y 2 Fe 17 in the composite estimated from Scherrer's formula was about 20 nm.

Fe17−無定形炭素複合体粉末から上記と同様の手法で電磁波吸収体を作製し電磁波吸収特性を評価した。結果を図8に示す。厚さ1.3〜2.2mmの吸収体において、9〜18GHzの領域で−20db以下の良好な反射損失が見られた。本複合体においても、YFe17を比較的電気抵抗値の大きな無定形炭素と複合化することで電気抵抗値を低減させ、渦電流損が抑制されることが確認された。なお、エポキシ樹脂を添加せずに作製したYFe17−無定形炭素複合体粉末(圧粉体)の電気抵抗値は200Ωmであり、一般的な金属間化合物のそれ(〜10-6 Ωm)と比較しても大きな値を示した。さらに、上記の複合体粉末に対しジフェニルシランを用いて表面改質処理を行い、上述の電波吸収体に比べエポキシ樹脂使用量を低減した電波吸収体を作製した。得られた電波吸収体の特性を評価した結果、未処理の吸収体に比べ、分散性、充填率の向上から反射損失の増加が見られた。また、表面改質した粉末と未処理の粉末について、80℃、大気中での耐久試験を行った結果、未処理の粉末では酸化により酸素含有量の増加が見られたのに対して、改質処理した粉末では表面が疎水性を有する官能基により修飾されていることから大幅な酸素量の増加は見られなかった。 An electromagnetic wave absorber was prepared from the Y 2 Fe 17 -amorphous carbon composite powder by the same method as described above, and the electromagnetic wave absorption characteristics were evaluated. The results are shown in FIG. In the absorber having a thickness of 1.3 to 2.2 mm, a good reflection loss of −20 db or less was observed in the 9 to 18 GHz region. Also in this composite, it was confirmed that Y 2 Fe 17 was combined with amorphous carbon having a relatively large electrical resistance value to reduce the electrical resistance value and suppress eddy current loss. In addition, the electrical resistance value of Y 2 Fe 17 -amorphous carbon composite powder (green compact) prepared without adding an epoxy resin is 200 Ωm, that of a typical intermetallic compound (˜10 −6 Ωm ) Also showed a large value. Further, the composite powder was subjected to a surface modification treatment using diphenylsilane to produce a radio wave absorber in which the amount of epoxy resin used was reduced as compared with the above radio wave absorber. As a result of evaluating the characteristics of the obtained radio wave absorber, an increase in reflection loss was observed due to improvement in dispersibility and filling rate as compared with the untreated absorber. In addition, as a result of an endurance test in the atmosphere at 80 ° C. for the surface-modified powder and the untreated powder, the untreated powder showed an increase in oxygen content due to oxidation. Since the surface of the powder was modified with a functional group having hydrophobicity, no significant increase in oxygen content was observed.

(実施例4)
金属鉄と無定形炭素を3:1(原子比)に秤量し、これを遊星型ボールミルにより500rpmで100時間、混合することでFeC元粉末を調製した。この混合前後の試料についてXRD測定を行った結果(図9)、無定形炭素と混合前の鉄の回折パターン(a)は鋭いピークを示したが、混合後の試料(b)はアモルファス様のブロードなピークを示した。そこで、このアモルファス様試料を400℃で1時間、ヘリウム雰囲気下で加熱することで結晶化処理した。結晶化後の試料のXRDパターン(c)は、ブロードながらも斜方晶のFeCに帰属されるXRDパターンを示した。このことから混合処理条件を最適化することにより、出発物質にFeBなどの化合物を使用せずとも、複合体の混合過程において出発物質間(上記の例では鉄と無定形炭素)での反応により化合物を作製可能であることがわかる。
Example 4
Metallic iron and amorphous carbon were weighed 3: 1 (atomic ratio) and mixed with a planetary ball mill at 500 rpm for 100 hours to prepare Fe 3 C source powder. As a result of XRD measurement on the sample before and after mixing (FIG. 9), the diffraction pattern (a) of amorphous carbon and iron before mixing showed a sharp peak, but the sample (b) after mixing was amorphous. It showed a broad peak. Therefore, the amorphous-like sample was crystallized by heating in a helium atmosphere at 400 ° C. for 1 hour. The XRD pattern (c) of the sample after crystallization showed an XRD pattern attributed to orthorhombic Fe 3 C although being broad. From this, by optimizing the mixing process conditions, it is possible to avoid inter-starting materials (iron and amorphous carbon in the above example) in the composite mixing process without using a compound such as Fe 2 B as the starting material. It can be seen that the compound can be prepared by reaction.

上記で得られたFeC粉末と無定形炭素から実施例1と同様の手法によりFeC−無定形炭素複合体粉末を作製し、X線回折測定を行った。結果を図9(d)に示す。得られた回折パターンは出発物質であるFeCのピークと一致するものの回折ピークの半値幅は増加しており、物理混合によりFeCの結晶子サイズが減少していることが本複合体についても確認された。尚、回折ピーク半値幅より見積もった複合体中のFeCの結晶子サイズは約10nmであった。 Fe 3 C-amorphous carbon composite powder was prepared from the Fe 3 C powder obtained above and amorphous carbon by the same method as in Example 1, and X-ray diffraction measurement was performed. The result is shown in FIG. Although the obtained diffraction pattern coincides with the peak of Fe 3 C as a starting material, the half width of the diffraction peak is increased, and the crystallite size of Fe 3 C is decreased by physical mixing. Was also confirmed. The crystallite size of Fe 3 C in the composite estimated from the half width of the diffraction peak was about 10 nm.

実施例1と同様にFeC−無定形炭素から電磁波吸収体を作製し、その特性を評価した。結果を図10に示す。厚さ1.0〜1.3mmの吸収体において、18〜26GHzの領域で−20db以下の良好な反射損失が見られた。本複合体粉末についても無定形炭素との複合化により良好な電磁波吸収特性が得られることが確認された。 An electromagnetic wave absorber was produced from Fe 3 C-amorphous carbon in the same manner as in Example 1, and its characteristics were evaluated. The results are shown in FIG. In the absorber having a thickness of 1.0 to 1.3 mm, a good reflection loss of −20 db or less was observed in the region of 18 to 26 GHz. It was confirmed that good electromagnetic wave absorption characteristics can be obtained by combining the composite powder with amorphous carbon.

(実施例5)
金属鉄と金属コバルトおよび硼素を所定量秤量し遊星型ボールミルで混合後、得られたアモルファス様の粉末をアニール処理することでFe1.4Co0.6B粉末を得た。これと無定形炭素から実施例1の手法によりFe1.4Co0.6B−無定形炭素複合体粉末を作製した。
(Example 5)
A predetermined amount of metallic iron, metallic cobalt and boron were weighed and mixed with a planetary ball mill, and the obtained amorphous-like powder was annealed to obtain Fe 1.4 Co 0.6 B powder. From this and amorphous carbon, Fe 1.4 Co 0.6 B-amorphous carbon composite powder was prepared by the method of Example 1.

作製したFe1.4Co0.6B粉末とFe1.4Co0.6B−無定形炭素複合体粉末のX線回折の結果を図11に示す。超急冷により得られた試料の回折パターン(a)から、単相のFe1.4Co0.6Bが得られていることを確認した。また、Fe1.4Co0.6B−無定形炭素複合体粉末の回折パターンでは、Fe1.4Co0.6Bに帰属されるブロードな回折ピークを示した。半値幅より見積もった複合体中のFe1.4Co0.6Bの結晶子サイズは約20〜30nmであった。 FIG. 11 shows the results of X-ray diffraction of the prepared Fe 1.4 Co 0.6 B powder and Fe 1.4 Co 0.6 B-amorphous carbon composite powder. It was confirmed from the diffraction pattern (a) of the sample obtained by ultra rapid cooling that single-phase Fe 1.4 Co 0.6 B was obtained. Moreover, the diffraction pattern of Fe 1.4 Co 0.6 B-amorphous carbon composite powder showed a broad diffraction peak attributed to Fe 1.4 Co 0.6 B. The crystallite size of Fe 1.4 Co 0.6 B in the composite estimated from the half width was about 20 to 30 nm.

実施例1と同様にFe1.4Co0.6B−無定形炭素/エポキシ樹脂(25重量%)を作製し、ネットワークアナライザーを用いて電磁波吸収特性を評価した。結果を図12に示す。0.6〜0.8mmの吸収体厚さにおいて、27〜40GHzの領域で−20db以下の良好な反射損失が見られた。ここで、実施例2で作製したFeBに比してFe1.4Co0.6Bでは高周波数帯域での電磁波吸収が得られた。前述したとおり、結晶構造の異方性化により磁気異方性を付与することで、電磁波吸収領域を高周波数域に移行することが可能であるが、ここでは、FeBのFeサイトの一部をCoで置換固溶することで磁気異方性を増加させ、電磁波吸収周波数の高周波化に成功した。 Fe 1.4 Co 0.6 B-Amorphous carbon / epoxy resin (25% by weight) was prepared in the same manner as in Example 1, and the electromagnetic wave absorption characteristics were evaluated using a network analyzer. The results are shown in FIG. In the absorber thickness of 0.6 to 0.8 mm, good reflection loss of −20 db or less was observed in the 27 to 40 GHz region. Here, electromagnetic wave absorption in a high frequency band was obtained with Fe 1.4 Co 0.6 B as compared with Fe 2 B produced in Example 2. As described above, it is possible to shift the electromagnetic wave absorption region to a high frequency region by imparting magnetic anisotropy by making the crystal structure anisotropic, but here, one of the Fe sites of Fe 2 B The magnetic anisotropy was increased by replacing the portion with Co to form a solid solution, and the electromagnetic wave absorption frequency was successfully increased.

本発明に関わる電磁波吸収体に基本構造である。The electromagnetic wave absorber according to the present invention has a basic structure. 鉄と無定形炭素との物理混合前後でのX線回折パターンである。(a)混合前、(b)混合後。It is an X-ray diffraction pattern before and after physical mixing of iron and amorphous carbon. (a) Before mixing, (b) After mixing. 鉄−無定形炭素複合体粉末に樹脂を混合することで得られた電磁波吸収体の吸収特性である。It is the absorption characteristic of the electromagnetic wave absorber obtained by mixing resin with iron-amorphous carbon composite powder. FeBの無定形炭素との物理混合前後でのX線回折パターンである。(a)混合前、(b)混合後。It is an X-ray diffraction pattern before and after physical mixing with amorphous carbon of Fe 2 B. (a) Before mixing, (b) After mixing. FeB−無定形炭素複合体粉末のTEM観察像である。Fe 2 B- is a TEM observation image of amorphous carbon composite powder. FeB−無定形炭素複合体粉末に樹脂を混合することで得られた電磁波吸収体の吸収特性である。Fe 2 B- is the absorption properties of the obtained electromagnetic wave absorber by mixing the resin into amorphous carbon composite powder. Fe17の無定形炭素との物理混合前後でのX線回折パターンである。(a)混合前、(b)混合後。It is an X-ray diffraction pattern before and after physical mixing with amorphous carbon of Y 2 Fe 17 . (a) Before mixing, (b) After mixing. Fe17−無定形炭素複合体粉末に樹脂を混合することで得られた電磁波吸収体の吸収特性である。Y 2 Fe 17 - the absorption properties of the obtained electromagnetic wave absorber by mixing the resin into amorphous carbon composite powder. Feと無定形炭素との物理混合前後でのX線回折パターンである。(a)混合前、(b)混合後、(c)bの試料をヘリウム中400℃で1時間アニール処理後、(d)cの試料と無定形炭素との物理混合後。It is an X-ray diffraction pattern before and after physical mixing of Fe and amorphous carbon. (a) Before mixing, (b) After mixing, (c) After annealing the sample of b in helium at 400 ° C. for 1 hour, (d) After physical mixing of the sample of c and amorphous carbon. FeC−無定形炭素複合体粉末に樹脂を混合することで得られた電磁波吸収体の吸収特性である。Fe 3 C-to amorphous carbon composite powder is the absorption characteristic of the electromagnetic wave absorber obtained by mixing resin. Fe1.4Co0.6Bの無定形炭素との物理混合前後でのX線回折パターンである。(a)混合前、(b)混合後。It is an X-ray diffraction pattern before and after physical mixing with amorphous carbon of Fe 1.4 Co 0.6 B. (a) Before mixing, (b) After mixing. Fe1.4Co0.6B−無定形炭素複合体粉末に樹脂を混合することで得られた電磁波吸収体の吸収特性である。The absorption properties of the obtained electromagnetic wave absorber by mixing the resin into Fe 1.4 Co 0.6 B- amorphous carbon composite powder.

Claims (7)

鉄等の遷移金属磁性体と無定形炭素等の非良導体を物理的に混合することで得られる数十nmから数百nmの磁性金属相が分散したナノ複合組織からなる電磁波吸収用の複合体磁性粉末を作製する方法。   A composite for electromagnetic wave absorption comprising a nanocomposite structure in which a magnetic metal phase of several tens to several hundreds of nanometers is dispersed by physically mixing a transition metal magnetic material such as iron and a non-good conductor such as amorphous carbon. A method for producing magnetic powder. 侵入型化合物である金属ホウ化物、炭化物、窒化物、または金属間化合物などの磁性体粉末と無定形炭素とを物理的に混合することで得られる数nmから数百nmの磁性金属相が分散したナノ複合組織からなる電磁波吸収用の複合体磁性粉末を作製する方法。 Dispersion of magnetic metal phase from several nm to several hundred nm obtained by physically mixing magnetic powder such as interstitial metal boride, carbide, nitride, or intermetallic compound with amorphous carbon Of producing a composite magnetic powder for electromagnetic wave absorption comprising a nanocomposite structure. 請求項1の磁性体粉末の出発物質において、単体の磁性金属と炭素、硼素等の典型元素とを物理的混合により化合させた後、さらに炭素と混合することで得られる電磁波吸収用複合体磁性粉末の作製法。 The starting material of the magnetic powder according to claim 1, wherein a single magnetic metal and a typical element such as carbon or boron are combined by physical mixing, and then mixed with carbon to obtain a composite magnetic material for electromagnetic wave absorption. How to make powder. 請求項3の複合体磁性粉末における磁性体金属材料の出発物質として、少なくとも2種類以上の金属粉末を選択し、これらと炭素、硼素等の典型元素とを物理的に混合することで合金系侵入型化合物とし、これらと炭素とを混合することで得られる電磁波吸収用複合体磁性粉末の作製法。 As a starting material of the magnetic metal material in the composite magnetic powder according to claim 3, at least two kinds of metal powders are selected, and alloy elements enter by physically mixing these with typical elements such as carbon and boron. A method for producing a composite magnetic powder for absorbing electromagnetic waves obtained by mixing a carbon compound with a carbon compound. 請求項1から4の複合体磁性粉末において、使用する無定形炭素を磁性体粉末との複合化前に予め硝酸と反応させることによりアルデヒド基またはカルボキシ基を炭素表面に導入し、これと磁性体粉末とを物理的に混合することで得られるエポキシ等の樹脂との親和性を向上させた電磁波吸収用磁性体粉末。 5. The composite magnetic powder according to claim 1, wherein an amorphous carbon to be used is reacted with nitric acid in advance before being combined with the magnetic powder to introduce an aldehyde group or a carboxy group on the carbon surface, and the magnetic substance. A magnetic powder for electromagnetic wave absorption having improved affinity with a resin such as epoxy obtained by physically mixing the powder. 請求項1から4の複合体磁性粉末において、粉末表面をシランカップリング処理により改質することでエポキシ等の樹脂への親和性を向上させ、且つ、耐久性も付与した電磁波吸収用磁性体粉末。   5. The magnetic powder for electromagnetic wave absorption according to claim 1, wherein the powder surface is modified by silane coupling treatment to improve the affinity to a resin such as epoxy and to provide durability. . 請求項1から6において製造される複合粒子型磁性体粉末を有機樹脂等のバインダを用いて、ボード、シート、テープもしくはコード被覆体状に成型加工し、電磁波吸収特性を付与した電磁波吸収材料。
7. An electromagnetic wave absorbing material obtained by molding the composite particle type magnetic substance powder produced in claim 1 into a board, sheet, tape, or cord cover using a binder such as an organic resin and imparting electromagnetic wave absorption characteristics.
JP2004342006A 2004-11-26 2004-11-26 Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby Pending JP2006156543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342006A JP2006156543A (en) 2004-11-26 2004-11-26 Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342006A JP2006156543A (en) 2004-11-26 2004-11-26 Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby

Publications (1)

Publication Number Publication Date
JP2006156543A true JP2006156543A (en) 2006-06-15

Family

ID=36634460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342006A Pending JP2006156543A (en) 2004-11-26 2004-11-26 Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby

Country Status (1)

Country Link
JP (1) JP2006156543A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059727A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorbing material, and radio wave absorber
JP2009059728A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorber
JP2010275172A (en) * 2009-06-01 2010-12-09 Tokai Univ Method for production of magnetic carbon composite material, and magnetic carbon composite material
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
WO2015068401A1 (en) 2013-11-07 2015-05-14 株式会社 東芝 Magnetic material, permanent magnet, motor, and power generator
RU2561453C2 (en) * 2012-10-23 2015-08-27 Павел Евгеньевич Александров Material absorbing electromagnetic waves

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059727A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorbing material, and radio wave absorber
JP2009059728A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorber
JP2010275172A (en) * 2009-06-01 2010-12-09 Tokai Univ Method for production of magnetic carbon composite material, and magnetic carbon composite material
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
RU2561453C2 (en) * 2012-10-23 2015-08-27 Павел Евгеньевич Александров Material absorbing electromagnetic waves
WO2015068401A1 (en) 2013-11-07 2015-05-14 株式会社 東芝 Magnetic material, permanent magnet, motor, and power generator
CN104769685A (en) * 2013-11-07 2015-07-08 株式会社东芝 Magnetic material, permanent magnet, motor, and power generator
CN104769685B (en) * 2013-11-07 2017-05-10 株式会社东芝 Magnetic material, permanent magnet, motor, and power generator
US10361020B2 (en) 2013-11-07 2019-07-23 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, motor, and power generator
US11114224B2 (en) 2013-11-07 2021-09-07 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, motor, and power generator

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
WO2012131872A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
Yang et al. Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites
WO2011077601A1 (en) Dust core and process for producing same
WO2013108735A1 (en) Dust core, coil component, and method for producing dust core
KR20130142169A (en) Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
CN102969109A (en) Magnetic material, manufacturing method thereof and inductor element using magnetic material
CN109273185B (en) Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder
KR20140078625A (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP2006077264A (en) METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
Vural et al. Nanostructured flexible magneto-dielectrics for radio frequency applications
JP4506989B2 (en) Ferrite magnetic material, ferrite sintered magnet and manufacturing method thereof
KR101232222B1 (en) A composite film for absorption emi and the method for preparation of the same
JP2005005286A (en) FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL
WO2015152048A1 (en) Fe-co alloy powder, manufacturing method therefor, antenna, inductor, and emi filter
JP2004259807A (en) Dust core and magnetic powder therefor
JP2006156543A (en) Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby
JP2005002463A (en) Recycling method of rare earth-transition metal scrap, magnetic substance powder for wave absorption and wave absorber using the same
CN109215916B (en) Soft magnetic alloy powder, method for producing same, and dust core using same
JP2021141267A (en) Magnetic powder, magnetic powder compact, and manufacturing method of magnetic powder
CN109741931A (en) A kind of preparation method of iron based nano crystal powder core magnet ring
KR102155542B1 (en) Noise suppression sheet for near field
JP2006219714A (en) Fe-Ni-(Nb, V, Ta) BASED FLAT METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL COMPRISING THE SOFT MAGNETIC POWDER
JP7576881B2 (en) High frequency magnetic materials and their manufacturing methods