JP2006156055A - Blend-cross-linked polymer electrolyte membrane - Google Patents

Blend-cross-linked polymer electrolyte membrane Download PDF

Info

Publication number
JP2006156055A
JP2006156055A JP2004342906A JP2004342906A JP2006156055A JP 2006156055 A JP2006156055 A JP 2006156055A JP 2004342906 A JP2004342906 A JP 2004342906A JP 2004342906 A JP2004342906 A JP 2004342906A JP 2006156055 A JP2006156055 A JP 2006156055A
Authority
JP
Japan
Prior art keywords
cross
electrolyte membrane
polymer electrolyte
polymer
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004342906A
Other languages
Japanese (ja)
Other versions
JP4452802B2 (en
Inventor
Jinli Qiao
錦麗 喬
Tatsuo Hamaya
健生 浜谷
Tatsuhiro Okada
達弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004342906A priority Critical patent/JP4452802B2/en
Publication of JP2006156055A publication Critical patent/JP2006156055A/en
Application granted granted Critical
Publication of JP4452802B2 publication Critical patent/JP4452802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte membrane that has low methanol permeability and high ionic conductivity suitable for a proton conducting membrane for a fuel cell. <P>SOLUTION: The polymer electrolyte membrane comprises a blend polymer including polyvinyl alcohol (PVA) that is a polymer having a hydroxyl group in a water-soluble polymer having an acid group, cross-linked with two types of difunctional and monofunctional cross linking agents. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池用高分子固体電解質膜として有用な、水溶性ポリマーを原料とするプロトン伝導性ブレンドポリマーの架橋型高分子固体電解質に関するものである。   The present invention relates to a cross-linked polymer solid electrolyte of a proton conductive blend polymer using a water-soluble polymer as a raw material, which is useful as a polymer solid electrolyte membrane for fuel cells.

燃料電池用高分子固体電解質膜として高いプロトン導電率を有すると共に化学的、熱的、電気化学的及び力学的に十分安定なものとしては、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜等が知られている。しかしながら、これら従来のものでは、100℃以上の温度では性能低下が起こり、耐熱性、含水性および高温度でのイオン伝導性という観点では十分な性能を発揮することができず、また、膜のコストが高すぎることが燃料電池技術確立の障害として指摘されている。   As a polymer solid electrolyte membrane for a fuel cell, it has high proton conductivity and is sufficiently stable chemically, thermally, electrochemically and mechanically, mainly “Nafion (registered trademark)” manufactured by DuPont, USA. Perfluorocarbon sulfonic acid membranes and the like are known. However, in these conventional ones, the performance is lowered at a temperature of 100 ° C. or higher, and sufficient performance cannot be exhibited from the viewpoint of heat resistance, water content, and ion conductivity at a high temperature. It is pointed out that the cost is too high as an obstacle to the establishment of fuel cell technology.

一方、最近ポリエーテルケトン、ポリエーテルエーテルケトン、ポリベンズイミダゾールのようなエンプラ系ポリマーにスルホン酸基などの酸性基を導入した、いわゆる炭化水素系ポリマー電解質が盛んに検討されているが、パーフルオロカーボンスルホン酸膜に比べて、低湿度条件下でのイオン伝導性が小さいという問題があり、なおかつコストが高い。   On the other hand, so-called hydrocarbon polymer electrolytes in which acidic groups such as sulfonic acid groups are introduced into engineering plastic polymers such as polyether ketone, polyether ether ketone, and polybenzimidazole have recently been actively studied. Compared to a sulfonic acid membrane, there is a problem that ion conductivity under low humidity conditions is small, and the cost is high.

そこで、本発明は、以上のとおりの背景から、燃料電池用プロトン交換膜に好適な、イオン伝導性と力学的特性に優れ、含水性が良く、低温度から高温度まで広い温度範囲で性能を発揮し、かつコストの安い、新しい高分子電解質膜を提供することを課題としている。   In view of the above, the present invention is suitable for a proton exchange membrane for a fuel cell and has excellent ion conductivity and mechanical properties, good water content, and performance in a wide temperature range from low to high temperatures. The objective is to provide a new polymer electrolyte membrane that is effective and inexpensive.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、酸性基を有する水溶性ポリマーに水酸基を有するポリマー PVA と水溶性ポリマーを加え、混合した後製膜
し、その後役割の違う2種類の架橋剤を用いて化学的に架橋して得られる2成分ブレンド架橋膜が力学的特性、含水性とイオン伝導性に優れた高分子電解質膜を与えることを見出し、本発明の完成に至った。
As a result of intensive studies to solve the above problems, the present inventors have added a polymer PVA having a hydroxyl group to a water-soluble polymer having an acidic group and a water-soluble polymer, mixed them, and then formed a film, and then played a role. It was found that a two-component blend crosslinked membrane obtained by chemically crosslinking using two different types of crosslinking agents gives a polymer electrolyte membrane excellent in mechanical properties, water content and ion conductivity. Completed.

すなわち本発明は、
(1)酸性基を有する水溶性ポリマーと水酸基を有するポリマー PVA に、PVAの水酸基と反応する2種類の架橋剤により架橋構造を導入したことを特徴とするブレンド架橋型高分子電解質膜であり、
(2)酸性基を有する水溶性ポリマーとしては、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)を有する水溶性高分子であることを特徴とする上記の架橋型ポリ
マーブレンド電解質膜であり、
(3)ポリエチレングリコールとその誘導体である水溶性高分子が混合されていることを特徴とする上記架橋型ポリマーブレンド電解質膜であり、
(4)上記のブレンドポリマー電解質膜に作用させる2種類の架橋剤として、1つはテレフタルアルデヒドやグルタルアルデヒドなどの PVA の水酸基と反応する2官能性試薬、
他の1つは種々の鎖長の疎水性鎖を有するアルデヒドなど PVA の水酸基と反応する1官
能性試薬であることを特徴とするブレンド架橋型高分子電解質膜であり、
(5)上記の架橋型高分子電解質膜を用いた燃料電池用膜・電極接合体であり、
(6)上記の架橋型高分子電解質膜を用いた固体高分子型燃料電池であり、
(7)上記の架橋型高分子電解質膜を用いたダイレクトメタノール型燃料電池である。
That is, the present invention
(1) A blend cross-linked polymer electrolyte membrane characterized by introducing a cross-linked structure into a water-soluble polymer having an acidic group and a polymer PVA having a hydroxyl group by using two types of cross-linking agents that react with the hydroxyl group of PVA.
(2) The water-soluble polymer having an acidic group is a water-soluble polymer having poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS). Yes,
(3) The crosslinked polymer blend electrolyte membrane, wherein polyethylene glycol and a water-soluble polymer that is a derivative thereof are mixed,
(4) As two types of cross-linking agents that act on the blend polymer electrolyte membrane, one is a bifunctional reagent that reacts with the hydroxyl group of PVA such as terephthalaldehyde or glutaraldehyde,
Another is a cross-linked polymer electrolyte membrane characterized by being a monofunctional reagent that reacts with hydroxyl groups of PVA such as aldehydes having hydrophobic chains of various chain lengths,
(5) A fuel cell membrane / electrode assembly using the above-mentioned cross-linked polymer electrolyte membrane,
(6) A polymer electrolyte fuel cell using the cross-linked polymer electrolyte membrane,
(7) A direct methanol fuel cell using the cross-linked polymer electrolyte membrane.

以上のとおりの本発明によれば、燃料電池用のプロトン交換膜に好適な、イオン伝導性と力学的特性に優れ、含水性が良く低温度から高温度までの広い範囲で性能を発揮し、かつコストの安い高分子電解質膜が提供され、また、これを用いた燃料電池が実現される。   According to the present invention as described above, it is suitable for proton exchange membranes for fuel cells, has excellent ion conductivity and mechanical properties, has good water content, and exhibits performance in a wide range from low to high temperatures. In addition, a low-cost polymer electrolyte membrane is provided, and a fuel cell using the membrane is realized.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明の酸性基を有するポリマーの基本構造は特に限定されるものではなく、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルリン酸、ポリアクリル酸、ポリメタクリル酸など公知又は
任意の構造で、水溶性など必須要件を満たすものを使用することができる。なかでも他の水溶性ポリマーと相溶性がよく、イオン伝導性に優れたポリマーとして PAMPS が好まし
い。
The basic structure of the polymer having an acidic group of the present invention is not particularly limited. Polyvinylsulfonic acid, polystyrenesulfonic acid, poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinylphosphoric acid, polyacrylic A known or arbitrary structure such as acid or polymethacrylic acid that satisfies essential requirements such as water solubility can be used. Among them, PAMPS is preferable as a polymer having good compatibility with other water-soluble polymers and excellent ion conductivity.

また、本発明でポリビニルアルコール(PVA)の分子量は特に限定されないが、10,0
00〜1,000,000の範囲であることが好ましく、水に対する溶解性の観点から50,000〜200,000の範囲であることがさらに好ましい。
In the present invention, the molecular weight of polyvinyl alcohol (PVA) is not particularly limited.
It is preferably in the range of 00 to 1,000,000, and more preferably in the range of 50,000 to 200,000 from the viewpoint of solubility in water.

本発明の酸性ポリマーの酸性基の量は、多いほど伝導性は高く好ましいが水に対する溶解性が増し、機械的強度も弱くなる。ポリビニルアルコールに対し酸性基を有するポリマーの量は重量比で1:0.5〜2.0の範囲で選ぶことができるが、1:1〜1.5程度が最も望ましい。   The greater the amount of acidic groups in the acidic polymer of the present invention, the higher the conductivity and the better, but the solubility in water increases and the mechanical strength also decreases. The amount of the polymer having an acidic group with respect to polyvinyl alcohol can be selected in the range of 1: 0.5 to 2.0 by weight ratio, but about 1: 1 to 1.5 is most desirable.

本発明の第1の架橋剤の構造は特に限定されるものではなく、テレフタルアルデヒド、グルタルアルデヒドやスベロイルクロライドなど2官能性試薬が好適であって、PVA の水酸基と反応することによりPVA に橋架け構造をもたらすことのできることなど、各種のものを使用することができる。即ち、第1の架橋剤の役割は、橋架けPVA形成により機械的に強固な膜を有する高分子鎖を形成することにある。   The structure of the first cross-linking agent of the present invention is not particularly limited, and bifunctional reagents such as terephthalaldehyde, glutaraldehyde, and suberoyl chloride are suitable, and bridge with PVA by reacting with the hydroxyl group of PVA. Various things can be used, such as the ability to provide a construction. That is, the role of the first crosslinking agent is to form a polymer chain having a mechanically strong film by forming a crosslinked PVA.

本発明の第2の架橋剤の構造は特に限定されるものではなく、種々の鎖長の疎水性鎖を有するアルデヒドなど、PVA の水酸基と反応する1官能性試薬が好適であって、例えば炭素数2〜16の直鎖あるいは分岐構造を有するアルデヒド、など必須要件を満たすものを使用することができる。即ち、第2の架橋剤の役割は、ブレンドポリマーに疎水性領域を設けて柔軟性を与え、かつ含水性を整えることで酸性基を有するポリマーが安定にイオン伝導領域を形成することにある。   The structure of the second cross-linking agent of the present invention is not particularly limited, and monofunctional reagents that react with the hydroxyl groups of PVA, such as aldehydes having hydrophobic chains of various chain lengths, are suitable. Those satisfying the essential requirements such as aldehydes having a linear or branched structure of 2 to 16 can be used. That is, the role of the second cross-linking agent is to provide a hydrophobic region in the blend polymer to give flexibility, and to adjust the water content so that a polymer having an acidic group stably forms an ion conductive region.

本発明の2種類の架橋剤の組み合わせ、および組成は適宜選択し最適化することができる。第1の架橋剤が多すぎると柔軟性のある良好な膜を形成できず、また少なすぎると膜の含水率が高くなりすぎて強度が弱くなる傾向にある。通常第1の架橋剤および第2の架橋剤の組成比は、質量比で1:0.1〜10の範囲で種々で選ばれるが、1:0.5〜4の範囲が最も望ましい。   The combination and composition of the two types of crosslinking agents of the present invention can be appropriately selected and optimized. If the first cross-linking agent is too much, a good flexible film cannot be formed, and if it is too little, the moisture content of the film becomes too high and the strength tends to be weakened. Usually, the composition ratio of the first crosslinking agent and the second crosslinking agent is variously selected in the range of 1: 0.1 to 10 in terms of mass ratio, but the range of 1: 0.5 to 4 is most desirable.

本発明の2種類の架橋剤を作用させる際の溶媒としては、それ自体公知のもの、即ち膜を少しだけ膨潤させることのできる非プロトン溶媒、例えばN,N'-ジメチルホルムアミド(DMF)、ジメチルスルホキサイド(DMSO)、アセトンなどの必須要件を満たすものを使用することができる。   As the solvent for the action of the two kinds of crosslinking agents of the present invention, those known per se, that is, aprotic solvents capable of slightly swelling the membrane, such as N, N′-dimethylformamide (DMF), dimethyl Those satisfying essential requirements such as sulfoxide (DMSO) and acetone can be used.

本発明における2種類の架橋剤の役割は、上記に記述したとおりであるが、添加量が少なすぎると効果はなく、多すぎると効果は低下する。架橋剤の量は酸性基を有する水溶性ポリマーと水酸基を有するポリマーとから形成されるブレンドポリマー膜を2種類の架橋剤を含む溶媒に浸せきするときの架橋剤濃度および反応時間で調節することができる。架橋剤濃度0.1〜20wt%の範囲内で種々選ぶことができるが、1.0〜6.0wt%であることが望ましく、架橋時間は1〜24時間の範囲で選ぶことができるが、1〜3時間程度が最も望ましい。   The role of the two types of crosslinking agents in the present invention is as described above. However, if the addition amount is too small, there is no effect, and if it is too much, the effect is reduced. The amount of the crosslinking agent can be adjusted by the concentration of the crosslinking agent and the reaction time when a blend polymer film formed from a water-soluble polymer having an acidic group and a polymer having a hydroxyl group is immersed in a solvent containing two types of crosslinking agents. it can. Various cross-linking agent concentrations can be selected within the range of 0.1 to 20 wt%, preferably 1.0 to 6.0 wt%, and the cross-linking time can be selected within the range of 1 to 24 hours. About 1 to 3 hours is most desirable.

本発明のポリマー電解質は、たとえば、酸性基を有するポリマーおよびポリビニルアルコールをそれぞれ蒸留水に溶解し、これら2種類の水溶液を混合後キャスト法により製膜し、その後、2種類の架橋剤を用いて架橋することにより、水に不溶性で低含水率の架橋型高分子固体電解質膜とすることができる。   In the polymer electrolyte of the present invention, for example, an acidic group-containing polymer and polyvinyl alcohol are each dissolved in distilled water, and these two types of aqueous solutions are mixed to form a film by a casting method, and then using two types of crosslinking agents. By crosslinking, a crosslinked polymer solid electrolyte membrane insoluble in water and having a low water content can be obtained.

キャストする基板にはガラス板やテフロン(登録商標)板あるいはテフロン(登録商標)シートなどを用いることができる。キャストする際の混合溶液の厚みは特に制限されないが、10〜1000μmであることが好ましい。薄すぎると膜の形態が保てなくなり、厚すぎると不均一な膜ができやすくなる。より好ましくは50〜300μmである。混合溶液のキャスト厚を制御する方法は公知の方法を用いることができる。たとえば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレやテフロン(登録商標)シャーレなどを用いてキャスト面積を一定にして混合溶液の量や濃度で厚みを制御することができる。   As the substrate to be cast, a glass plate, a Teflon (registered trademark) plate, a Teflon (registered trademark) sheet, or the like can be used. The thickness of the mixed solution at the time of casting is not particularly limited, but is preferably 10 to 1000 μm. If it is too thin, the shape of the film cannot be maintained, and if it is too thick, a non-uniform film is likely to be formed. More preferably, it is 50-300 micrometers. As a method for controlling the cast thickness of the mixed solution, a known method can be used. For example, the thickness can be controlled by the amount or concentration of the mixed solution with a constant thickness using an applicator, a doctor blade, or the like, or by using a glass petri dish or a Teflon (registered trademark) petri dish.

本発明の膜は目的に応じて任意の膜厚にすることができるがイオン伝導性の面からはできるだけ薄いことが好ましい。具体的に200μm以下であることが好ましく、30μm〜100μm前後の膜がさらに好ましい。   The film of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, it is preferably 200 μm or less, and more preferably a film having a thickness of about 30 μm to 100 μm.

以下に本発明について、実施例を用いて具体的に説明する。本発明はこれらの実施例に限定されることはない。   Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples.

なお、各種測定は次のように行った。
(イオン伝導度)自作測定用セル(テフロン(登録商標)製)を用い、単一正弦波測定方式による交流インピーダンス測定により伝導度を測定した。5 X 10 mm の穴のあいた2枚のテフロン(登録商標)製ブロック間に膜試料をはさみ、膜の両端を白金箔で接触させ、AC電圧振幅0.02V, 周波数 0.001〜106 Hz における交流インピーダンスを湿潤状態で周波数応答分析器により測定した。
(含水率測定)膜を純水中に24時間浸漬した後、取り出して膜表面をティッシュペーパーで軽く拭いて重量を測定する。その後膜を110℃、24時間真空乾燥した後重量をはかり次式により含水率を計算する。
Various measurements were performed as follows.
(Ionic conductivity) Self-made measurement cell (manufactured by Teflon (registered trademark)) was used, and conductivity was measured by AC impedance measurement by a single sine wave measurement method. The membrane sample is sandwiched between two Teflon (registered trademark) blocks with a 5 x 10 mm hole, and both ends of the membrane are contacted with platinum foil. The AC impedance is 0.02V AC voltage and the frequency is 0.001 to 10 6 Hz. Was measured with a frequency response analyzer in the wet state.
(Measurement of moisture content) After immersing the membrane in pure water for 24 hours, the membrane is taken out and the surface of the membrane is gently wiped with tissue paper to measure the weight. Thereafter, the membrane is vacuum-dried at 110 ° C. for 24 hours, then weighed, and the water content is calculated by the following formula.

含水率(WU) = (純水中浸漬後の重量/真空乾燥後の重量)−1
(イオン交換容量)膜を20 mLの2M NaClに24時間浸漬し取り出した後、溶液を0.1M NaOHでフェノールフタレイン指示薬を用いて中和滴定することにより、乾燥膜重量当たりのスルホン酸基当量(meq/g)として測定する。
〈実施例1〉PVA (Mw = 124,000〜186,000) の6wt% 水溶液、PAMPS (Mw = 2,000,000)の 15 wt% 水溶液をそれぞれ準備する。この2者をポリマー重量比でPVA/PAMPS=1:2,1:1.5,1:1,1:0.5となるように混合し、70℃において攪拌モーターで均一になるまで混合溶解しする。デシケータ中で減圧脱気し、溶液中に溶けている気体を取り除いた後にテフロン(登録商標)シートを敷いた直径15cmのガラス製平底シャーレのテフロン(登録商標)シート上に注ぎ、室温で水分を蒸発させ乾燥膜を得た。次に膜を6wt% の2種類の架橋剤を含むジメチルホルムアミド溶液中で種々の時間攪拌反応させて架橋膜を作成した。反応溶液から膜を取り出し、純水中に膜を一昼夜浸漬して未反応の反応試薬を除去した。膜を水中から取り出し60℃で一夜真空乾燥した。膜の含水率、電導度およびイオン交換容量を上記方法でそれぞれ測定した。結果を表1に示す。その際、第1の架橋剤として、テレフタルアルデヒド(T)、第2の架橋剤として、n-ブチルアルデヒド(B)、n-ヘキシルアルデヒド(H)、n-オクチルアルデヒド(O)をそれぞれ選び、種々の割合で混合して用いた。以下、例えばB2T5の略号は、n-ブチルアルデヒドとテレフタルアルデヒドの質量比が2:5であることを示す。
〈比較例1〉市販の Nafion115、Nafion117 膜を純水中に一昼夜浸漬した後室温で一昼夜真空乾燥した。膜の含水率、電導度およびイオン交換容量を[0020]に記載した方法でそれぞれ測定した結果を表1に示す。
Moisture content (WU) = (weight after immersion in pure water / weight after vacuum drying) -1
(Ion exchange capacity) After the membrane was immersed in 20 mL of 2M NaCl for 24 hours, the solution was subjected to neutralization titration with 0.1M NaOH using a phenolphthalein indicator to obtain a sulfonic acid group equivalent per dry membrane weight. Measured as (meq / g).
<Example 1> A 6 wt% aqueous solution of PVA (Mw = 124,000 to 186,000) and a 15 wt% aqueous solution of PAMPS (Mw = 2,000,000) are prepared. The two are mixed so that the polymer weight ratio is PVA / PAMPS = 1: 2, 1: 1.5, 1: 1, 1: 0.5, and mixed and dissolved at 70 ° C. with a stirring motor until uniform. To do. After degassing under reduced pressure in a desiccator, removing the gas dissolved in the solution, the solution was poured onto a Teflon (registered trademark) sheet of a 15 cm diameter flat bottom petri dish with a Teflon (registered trademark) sheet, and water was added at room temperature. Evaporation gave a dry film. Next, the film was stirred for various times in a dimethylformamide solution containing 6 wt% of two kinds of crosslinking agents to form a crosslinked film. The membrane was taken out from the reaction solution, and the membrane was immersed in pure water all day and night to remove unreacted reaction reagent. The membrane was removed from the water and vacuum dried at 60 ° C. overnight. The moisture content, conductivity, and ion exchange capacity of the membrane were measured by the above methods. The results are shown in Table 1. At that time, terephthalaldehyde (T) is selected as the first crosslinking agent, and n-butyraldehyde (B), n-hexylaldehyde (H), and n-octylaldehyde (O) are selected as the second crosslinking agent, Used in various proportions. Hereinafter, for example, the abbreviation B2T5 indicates that the mass ratio of n-butyraldehyde to terephthalaldehyde is 2: 5.
<Comparative Example 1> Commercially available Nafion115 and Nafion117 membranes were immersed in pure water for a whole day and night and then vacuum dried at room temperature for a whole day and night. Table 1 shows the results of measuring the water content, conductivity, and ion exchange capacity of the membrane by the methods described in [0020].

Figure 2006156055
Figure 2006156055

〈実施例2〉PVA/PAMPS=1:1のブレンド膜において、ジメチルホルムアミド溶液中で
架橋剤としてn-オクチルアルデヒド/テレフタルアルデヒドの質量比が1:1の条件で反応させたとき、反応時間を変えて実施例1と同様の手順で膜を作成した時の、膜のイオン伝導度および含水率の変化を図1に示す。架橋反応の進行により、膜中の水が追い出されてイオン伝導度が増大したことが分かる。約2時間の架橋反応で良好な膜が得られることも示されている。
〈実施例3〉PVA/PAMPS比を種々に変えたブレンド膜において、ジメチルホルムアミド溶液中で架橋剤として種々の組み合わせおよび質量比の条件で2時間反応させたときの、膜のイオン伝導度を図2(a)(b)に示す。PVA/PAMPS比が1:1〜1.5で良好なイオン伝導度が得られる。第1の架橋剤テレフタルアルデヒドと第2の架橋剤の質量比が同量のときに良いイオン伝導度を示すことが分かる。
〈実施例4〉PVA/PAMPS比を種々に変えたブレンド膜において、ジメチルホルムアミド溶
液中で第1の架橋剤テレフタルアルデヒドと第2の架橋剤n-オクチルアルデヒドが1:1質量比の条件で2時間反応させたときの、膜のイオン伝導度、含水率、イオン交換容量を図3に示す。PAMPS量が増えるに従ってイオン交換容量が増え、伝導度も高くなるが、含水率が増えすぎると逆にイオン伝導度が下がり、架橋の最適条件が存在する。
〈実施例5〉PVA/PAMPS比が1:1.5のブレンド膜において、ジメチルホルムアミド溶液中で第1の架橋剤テレフタルアルデヒドと第2の架橋剤n-オクチルアルデヒドの質量比
5:5,5:10,5:20の条件で2時間反応させたときの、膜のイオン伝導度の温度依存性をNafion 117膜と比較して図4(a)に示す。同様に、PVA/PAMPS比が1:1のブレンド膜において、ジメチルホルムアミド溶液中で第1の架橋剤テレフタルアルデヒドと第2の架橋剤n-ブチルアルデヒドが質量比1:1、PVA/PAMPS比が1:1.5のブレンド膜において、ジメチルホルムアミド溶液中で第1の架橋剤テレフタルアルデヒドと第2の架橋剤n-ヘキシルアルデヒドまたはn-オクチルアルデヒドが質量比1:1の条件で2時間反応させたときの、膜のイオン伝導度の温度依存性をNafion 117膜と比較して図4(b)に示す。広い温度範囲でNafion 117膜以上のイオン伝導度を示した。
<Example 2> When a PVA / PAMPS = 1: 1 blend film was reacted in a dimethylformamide solution under the condition that the mass ratio of n-octylaldehyde / terephthalaldehyde was 1: 1, the reaction time was FIG. 1 shows the changes in the ionic conductivity and water content of the membrane when the membrane was prepared in the same procedure as in Example 1 instead. It can be seen that the progress of the crosslinking reaction expels water in the membrane and increases the ionic conductivity. It has also been shown that good films can be obtained with a crosslinking reaction of about 2 hours.
<Example 3> Fig. 3 shows the ionic conductivity of a membrane obtained by reacting for 2 hours in various combinations and mass ratios as crosslinking agents in a dimethylformamide solution in a blend membrane having various PVA / PAMPS ratios. 2 (a) and (b). Good ionic conductivity is obtained when the PVA / PAMPS ratio is 1: 1 to 1.5. It can be seen that good ionic conductivity is exhibited when the mass ratio of the first crosslinking agent terephthalaldehyde and the second crosslinking agent is the same.
<Example 4> In a blend film having various PVA / PAMPS ratios, the first cross-linking agent terephthalaldehyde and the second cross-linking agent n-octylaldehyde were mixed in a dimethylformamide solution at a mass ratio of 1: 1. FIG. 3 shows the ion conductivity, water content, and ion exchange capacity of the membrane when reacted for a period of time. As the amount of PAMPS increases, the ion exchange capacity increases and the conductivity increases. However, if the water content increases too much, the ionic conductivity decreases and the optimum conditions for crosslinking exist.
Example 5 In a blend film having a PVA / PAMPS ratio of 1: 1.5, the mass ratio of the first crosslinking agent terephthalaldehyde and the second crosslinking agent n-octylaldehyde in the dimethylformamide solution was 5: 5,5. The temperature dependence of the ionic conductivity of the membrane when reacted for 2 hours under the conditions of: 10, 5:20 is shown in FIG. 4 (a) in comparison with the Nafion 117 membrane. Similarly, in a blend membrane with a PVA / PAMPS ratio of 1: 1, the first cross-linking agent terephthalaldehyde and the second cross-linking agent n-butyraldehyde have a mass ratio of 1: 1 and a PVA / PAMPS ratio in the dimethylformamide solution. In a 1: 1.5 blend membrane, the first cross-linking agent terephthalaldehyde and the second cross-linking agent n-hexyl aldehyde or n-octyl aldehyde were reacted in a dimethylformamide solution for 2 hours under the condition of a mass ratio of 1: 1. FIG. 4B shows the temperature dependence of the ionic conductivity of the film compared with that of the Nafion 117 film. It showed ionic conductivity over Nafion 117 membrane over a wide temperature range.

PAMPS/PVA比が1対1、架橋剤O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%の時の25℃における膜イオン伝導度の架橋時間による変化を示した図である。When the PAMPS / PVA ratio was 1: 1 and the amounts of cross-linking agents O-octylaldehyde (O) and terephthalaldehyde (T) were 5% to 5%, changes in membrane ionic conductivity at 25 ° C. were shown depending on the crosslinking time. FIG. (a)架橋剤O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%、10%対5%、20%対5%の時のPAMPS/PVA比対25℃における膜イオン伝導度を示した図である。(b)架橋剤n−ブチルアルデヒド(B)とテレフタルアルデヒド(T)の量が5%対5%、n−ヘキシルアルデヒド(H)とテレフタルアルデヒド(T)の量が5%対5%、O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%の時のPAMPS/PVA比対25℃における膜イオン伝導度を示した図である。架橋時間はいずれも2時間である。(A) PAMPS / PVA ratio versus membrane at 25 ° C. when the amount of cross-linking agents O-octylaldehyde (O) and terephthalaldehyde (T) is 5% to 5%, 10% to 5%, 20% to 5% It is the figure which showed the ionic conductivity. (B) The amount of the cross-linking agents n-butyraldehyde (B) and terephthalaldehyde (T) is 5% to 5%, the amount of n-hexylaldehyde (H) and terephthalaldehyde (T) is 5% to 5%, O -PAMPS / PVA ratio when the amount of octylaldehyde (O) and terephthalaldehyde (T) is 5% to 5% versus membrane ion conductivity at 25 ° C. The crosslinking time is 2 hours. 架橋剤O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%の時のPAMPS/PVA比対25℃における膜イオン伝導度、含水率、イオン交換容量を示した図である。架橋時間はいずれも2時間である。PAMPS / PVA ratio when the amounts of cross-linking agents O-octylaldehyde (O) and terephthalaldehyde (T) are 5% to 5% versus membrane ionic conductivity, water content and ion exchange capacity at 25 ° C. is there. The crosslinking time is 2 hours. (a)架橋剤O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%、10%対5%、20%対5%の時の、PAMPS/PVA比1.5対1で生成した膜、及びNafion117膜の25℃における膜イオン伝導度の温度変化を示した図である。(b)架橋剤n−ブチルアルデヒド(B)とテレフタルアルデヒド(T)の量が5%対5%、PAMPS/PVA比1対1で生成した膜、n−ヘキシルアルデヒド(H)とテレフタルアルデヒド(T)の量が5%対5%、O−オクチルアルデヒド(O)とテレフタルアルデヒド(T)の量が5%対5%の時のPAMPS/PVA比1.5対1で生成した膜、及びNafion117膜の25℃における膜イオン伝導度の温度変化を示した図である。架橋時間はいずれも2時間である。(A) PAMPS / PVA ratio of 1.5 vs. when the amount of cross-linking agents O-octylaldehyde (O) and terephthalaldehyde (T) is 5% to 5%, 10% to 5%, 20% to 5% FIG. 2 is a diagram showing temperature changes in membrane ion conductivity at 25 ° C. of the membrane generated in 1 and the Nafion 117 membrane. (B) Membrane formed with a cross-linking agent of n-butyraldehyde (B) and terephthalaldehyde (T) in an amount of 5% to 5% and a PAMPS / PVA ratio of 1: 1, n-hexylaldehyde (H) and terephthalaldehyde ( A membrane formed with a PAMPS / PVA ratio of 1.5 to 1 when the amount of T) is 5% to 5% and the amount of O-octylaldehyde (O) and terephthalaldehyde (T) is 5% to 5%; and It is the figure which showed the temperature change of the membrane ion conductivity in 25 degreeC of a Nafion117 film | membrane. The crosslinking time is 2 hours.

Claims (7)

酸性基を有する水溶性ポリマーと水酸基を有するポリマー PVA に、PVAの水酸基と反応する2種類の架橋剤による架橋構造を導入したことを特徴とするブレンド架橋型高分子電解質膜。   A blended cross-linked polymer electrolyte membrane comprising a water-soluble polymer having an acidic group and a polymer PVA having a hydroxyl group introduced with a cross-linked structure of two types of cross-linking agents that react with the hydroxyl group of PVA. 酸性基を有する水溶性ポリマーは、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)を有する水溶性高分子であることを特徴とする請求項1に記載のブレンド架
橋型高分子電解質膜。
The blend-crosslinked polymer electrolyte membrane according to claim 1, wherein the water-soluble polymer having an acidic group is a water-soluble polymer having poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS). .
ポリエチレングリコールとその誘導体である水溶性高分子が混合されていることを特徴とする請求項1または2に記載のブレンド架橋型高分子電解質膜。   The blend cross-linked polymer electrolyte membrane according to claim 1 or 2, wherein polyethylene glycol and a water-soluble polymer that is a derivative thereof are mixed. 請求項1から3のいずれかのブレンドポリマー電解質膜に作用させる2種類の架橋剤は、少なくとも、テレフタルアルデヒドやグルタルアルデヒドなどの PVA の水酸基と反応
する2官能性試薬と、種々の鎖長の疎水性鎖を有するアルデヒドなど PVA の水酸基と反
応する1官能性試薬であることを特徴とするブレンド架橋型高分子電解質膜。
The two types of crosslinking agents that act on the blend polymer electrolyte membrane according to any one of claims 1 to 3 include at least a bifunctional reagent that reacts with a hydroxyl group of PVA, such as terephthalaldehyde and glutaraldehyde, and hydrophobic groups having various chain lengths. A blend-crosslinked polymer electrolyte membrane, which is a monofunctional reagent that reacts with a hydroxyl group of PVA, such as an aldehyde having a functional chain.
請求項1から4のいずれかに記載の架橋型高分子電解質膜を用いた燃料電池用膜・電極接合体。   A membrane / electrode assembly for a fuel cell using the cross-linked polymer electrolyte membrane according to any one of claims 1 to 4. 請求項1から4のいずれかに記載の架橋型高分子電解質膜を用いた固体高分子型燃料電池。   A solid polymer fuel cell using the cross-linked polymer electrolyte membrane according to claim 1. 請求項1から4のいずれかに記載の架橋型高分子電解質膜を用いたダイレクトメタノール型燃料電池。

A direct methanol fuel cell using the crosslinked polymer electrolyte membrane according to any one of claims 1 to 4.

JP2004342906A 2004-11-26 2004-11-26 Blend cross-linked polymer electrolyte membrane Expired - Fee Related JP4452802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342906A JP4452802B2 (en) 2004-11-26 2004-11-26 Blend cross-linked polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342906A JP4452802B2 (en) 2004-11-26 2004-11-26 Blend cross-linked polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2006156055A true JP2006156055A (en) 2006-06-15
JP4452802B2 JP4452802B2 (en) 2010-04-21

Family

ID=36634085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342906A Expired - Fee Related JP4452802B2 (en) 2004-11-26 2004-11-26 Blend cross-linked polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4452802B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213903A (en) * 2006-02-08 2007-08-23 Jsr Corp Mixed solution containing polymer electrolyte, polymer electrolyte composition containing polymer having cross-linked structure, and polymer electrolyte membrane
JP2007311239A (en) * 2006-05-19 2007-11-29 National Institute Of Advanced Industrial & Technology Proton conductive electrolytic film, and manufacturing method and use thereof
JP2008203081A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Temperature/humidity sensor
JP2009295572A (en) * 2008-05-08 2009-12-17 Nitto Denko Corp Electrolyte film for solid polymer type fuel cell and method for producing same
JP2014229440A (en) * 2013-05-21 2014-12-08 国立大学法人東京工業大学 Method for manufacturing solid polyelectrolyte, solid polyelectrolyte, ion conductor, and film-electrode assembly
JPWO2019054098A1 (en) * 2017-09-12 2020-03-26 国立研究開発法人物質・材料研究機構 Proton conductive polymer-synthetic resin composite, proton conductive electrolyte membrane containing the composite, method for synthesizing proton conductive polymer-synthetic resin composite, solid polymer electrolyte fuel cell, and solid polymer electrolyte water Electrolysis system
CN111525169A (en) * 2020-04-30 2020-08-11 吕丽芳 Preparation method of high-temperature proton exchange membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213903A (en) * 2006-02-08 2007-08-23 Jsr Corp Mixed solution containing polymer electrolyte, polymer electrolyte composition containing polymer having cross-linked structure, and polymer electrolyte membrane
JP2007311239A (en) * 2006-05-19 2007-11-29 National Institute Of Advanced Industrial & Technology Proton conductive electrolytic film, and manufacturing method and use thereof
JP2008203081A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Temperature/humidity sensor
JP2009295572A (en) * 2008-05-08 2009-12-17 Nitto Denko Corp Electrolyte film for solid polymer type fuel cell and method for producing same
JP2014229440A (en) * 2013-05-21 2014-12-08 国立大学法人東京工業大学 Method for manufacturing solid polyelectrolyte, solid polyelectrolyte, ion conductor, and film-electrode assembly
JPWO2019054098A1 (en) * 2017-09-12 2020-03-26 国立研究開発法人物質・材料研究機構 Proton conductive polymer-synthetic resin composite, proton conductive electrolyte membrane containing the composite, method for synthesizing proton conductive polymer-synthetic resin composite, solid polymer electrolyte fuel cell, and solid polymer electrolyte water Electrolysis system
CN111525169A (en) * 2020-04-30 2020-08-11 吕丽芳 Preparation method of high-temperature proton exchange membrane
CN111525169B (en) * 2020-04-30 2023-01-24 深圳市众通新能源汽车科技有限公司 Preparation method of high-temperature proton exchange membrane

Also Published As

Publication number Publication date
JP4452802B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Carretta et al. Ionomeric membranes based on partially sulfonated poly (styrene): synthesis, proton conduction and methanol permeation
US7285325B2 (en) Membranes having improved mechanical properties, for use in fuel cells
JP3928611B2 (en) Polyarylene ether compounds, compositions containing them, and methods for producing them
JP4234422B2 (en) Ion conductive sulfonated polymer material
Bai et al. Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells
JP4501052B2 (en) Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same
JP2002529546A (en) Polymer composition, film containing the polymer composition, method for producing the same and use thereof
JP2007504303A (en) Composite electrolyte containing cross-linking agent
JP4537065B2 (en) Proton conducting electrolyte membrane, method for producing the same and use in fuel cell
KR100629667B1 (en) Sulfonated aromatic polymers, membrane containing said polymers and a method for the production and use of the same
Zhang et al. Synthesis and characterization of sulfonated poly (aryl ether sulfone) containing pendent quaternary ammonium groups for proton exchange membranes
JP2008112712A (en) Proton conductive electrolyte membrane, its manufacturing method, membrane-electrode assembly using it, and fuel cell
JP2006156041A (en) Blend-cross-linked polymer electrolyte membrane
JP4452802B2 (en) Blend cross-linked polymer electrolyte membrane
US10586995B2 (en) Method for the fabrication of homogenous blends of polystyrenesulfonic acid and polyvinylidene fluoride suitable for the application in direct oxidation methanol fuel cells (DMFCs)
JP4858955B2 (en) Cross-linked polymer electrolyte membrane
JP2006253002A (en) Manufacturing method of ion exchange membrane
JP2007311240A (en) Proton conductive electrolytic film, and manufacturing method and use thereof
JP4940549B2 (en) Novel sulfonic acid group-containing segmented block copolymer and its use
JP5168758B2 (en) Production method of ion exchange membrane
JP2006176665A (en) New sulfonate group-containing segmented block copolymer and application of the same
JP2010040530A (en) Proton conductive electrolyte membrane, its forming method, and membrane-electrode conjugant, and fuel cell using the same
JP3690589B2 (en) Sulfonic acid-containing polyimidazole compound and molded product thereof
JP2004244437A (en) Sulfonated aromatic polyethereal compound, its composite and method for producing the same
JP5470674B2 (en) Polymer electrolyte membrane, polymer electrolyte membrane / electrode assembly, fuel cell, and fuel cell operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4452802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees