JP2006155983A - Destaticizing method of electron beam defect correction device and its device - Google Patents

Destaticizing method of electron beam defect correction device and its device Download PDF

Info

Publication number
JP2006155983A
JP2006155983A JP2004341726A JP2004341726A JP2006155983A JP 2006155983 A JP2006155983 A JP 2006155983A JP 2004341726 A JP2004341726 A JP 2004341726A JP 2004341726 A JP2004341726 A JP 2004341726A JP 2006155983 A JP2006155983 A JP 2006155983A
Authority
JP
Japan
Prior art keywords
electron beam
nitrogen
ionized
water vapor
beam defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004341726A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2004341726A priority Critical patent/JP2006155983A/en
Publication of JP2006155983A publication Critical patent/JP2006155983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove charges accumulated during the defect correction of a photomask by electron beams even in an electron beam defective correction device of which the test piece chamber is vacuum. <P>SOLUTION: Nitrogen introduced in the electron defect correction device by a gas introducing system 1 is ionized by α-rays generated by an α-ray source 2 such as polonium, and the ionized nitrogen is irradiated on a portion 4 charged up by the irradiation of electron beams, and destaticizes it. Otherwise, nitrogen or water vapor introduced in the electron beam defect correction device by the gas introducing system 1 is ionized by soft X-rays and the ionized nitrogen or vapor is irradiated on the portion charged up by the irradiation of the electron beams, and destaticizes it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子ビームを用いた欠陥修正装置特にフォトマスクの欠陥修正装置の、除電方法に関するものである。   The present invention relates to a charge eliminating method for a defect correcting apparatus using an electron beam, particularly a photomask defect correcting apparatus.

半導体集積回路の微細化要求に対してリソグラフィは縮小投影露光装置の光源の短波長化と高NA化で対応してきた。縮小投影露光装置の転写の原版で無欠陥であることを要求されるフォトマスクの欠陥修正は従来レーザーや集束イオンビームを用いて行われてきたが、レーザーでは分解能が不十分で最先端の微細なパターンは修正できず、集束イオンビームでは使用するガリウムの注入によるガラス部のイメージングダメージ(透過率低下)が問題となってきており、微細なパターンの欠陥が修正できてイメージングダメージのない欠陥修正技術が求められている。   Lithography has responded to the demand for miniaturization of semiconductor integrated circuits by shortening the wavelength of the light source of the reduction projection exposure apparatus and increasing the NA. Photomask defect correction, which is required to be defect-free in the transfer master of a reduction projection exposure apparatus, has been conventionally performed using a laser or a focused ion beam. In the focused ion beam, the imaging damage (decrease in transmittance) of the glass due to the implantation of gallium used in the focused ion beam has become a problem, and defects in fine patterns can be corrected and defect correction without imaging damage Technology is required.

上記のような要望に応えて最近では高分解能で短波長でもイメージングダメージのない電子ビームがフォトマスクの欠陥修正に用いられ始めている。電子ビームではフォトマスクのイメージングダメージがないので、高い倍率でのイメージングや修正個所の追加工で加工精度を追い込んでいくことも可能であり、次世代欠陥修正技術としておおいに期待されている。しかし電子ビーム装置で絶縁物であるフォトマスクを観察するとき、チャージアップでイメージが見えなくなったり、イメージがドリフトするため種々の工夫がなされている。チャージアップ対策として主としてチャージの蓄積が起こらないように試料に照射する一次電子の流入と二次電子の放出がバランスする1000V程度の加速電圧で観察・欠陥修正することが行われている(非特許文献1)。他にヘリウムやアルゴンなどの軽いプラスイオンビームを照射して電子ビームのマイナス電荷を中和したり、導電性のプローブを電子ビームの照射でチャージアップしている部分に近づけるもしくは接触させて余分な電荷を逃がしてチャージアップを防止することも行われている。   In response to the above-described demand, recently, an electron beam having a high resolution and a short wavelength and having no imaging damage has begun to be used for photomask defect correction. Since there is no photomask imaging damage in the electron beam, it is possible to pursue the processing accuracy by imaging at a high magnification and additional processing of correction points, and it is highly expected as a next-generation defect correction technology. However, when observing a photomask which is an insulator with an electron beam device, various ideas have been made because the image becomes invisible due to charge-up or the image drifts. As countermeasures for charge-up, observation and defect correction are performed with an acceleration voltage of about 1000 V, which balances the inflow of primary electrons and the emission of secondary electrons to the specimen so that charge accumulation does not occur (non-patented) Reference 1). In addition, irradiate a light positive ion beam such as helium or argon to neutralize the negative charge of the electron beam, or bring the conductive probe close to or in contact with the part charged up by irradiation of the electron beam. In some cases, charge is released to prevent charge-up.

しかし、上記の従来行われているチャージアップ中和・緩和策でも完全にチャージアップを除去できるわけではなく徐々にガラス部やパターンの端部に電荷の蓄積が起こるので、最初の欠陥修正が不十分で欠陥修正個所の追加工を行いたい場合などには、上記のようなチャージアップの影響で高精度の加工ができない場合があるためガラス部やパターンの端部に蓄積した電荷を効率よく除電する方法が求められている。   However, the conventional charge-up neutralization / relaxation measures described above do not completely remove the charge-up, and gradually accumulate charges on the glass and pattern edges. When it is sufficient to perform additional work on defect correction points, high-accuracy processing may not be possible due to the effects of charge-up as described above, so the charges accumulated on the glass and pattern edges can be removed efficiently. There is a need for a way to do that.

一方大気中でウェーハやマスクを除電する場合には除電効果の大きい空気分子をポロニウムのようなα線源や軟X線で電離して、この電離したものをチャージアップしたところに供給して除電する方法が知られているが、真空装置内では電離する空気分子が存在しないため、ポロニウムのようなα線源や軟X線を用いた除電は行われていなかった(ポロニウム:非特許文献2、軟X線:非特許文献3)。
T. Liang, T. Stivers, M. Penn, D. Bald, and C. Sethi, Proceedings of SPIE 5446 291-300(2004) W. V. Brandt, Proceedings of SPIE 4562 600-608(2001) Y. Tanaka, Y. Itou, N. Yoshioka, K. Matsuyama, and D. Dawson, Proceedings of SPIE 5446 751-758(2004)
On the other hand, when neutralizing wafers and masks in the atmosphere, air molecules with a large static elimination effect are ionized with an α-ray source such as polonium or soft X-rays, and this ionized product is supplied to the place where it is charged up to eliminate static electricity. However, since there are no air molecules to ionize in the vacuum apparatus, neutralization using an α-ray source such as polonium or soft X-rays has not been performed (polonium: Non-Patent Document 2). Soft X-ray: Non-patent document 3).
T. Liang, T. Stivers, M. Penn, D. Bald, and C. Sethi, Proceedings of SPIE 5446 291-300 (2004) WV Brandt, Proceedings of SPIE 4562 600-608 (2001) Y. Tanaka, Y. Itou, N. Yoshioka, K. Matsuyama, and D. Dawson, Proceedings of SPIE 5446 751-758 (2004)

本発明は、上記問題点を解決し、試料室内が真空である電子ビーム欠陥修正装置においても、フォトマスクの電子ビーム欠陥修正中に蓄積される電荷を除去することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to remove charges accumulated during correction of electron beam defects in a photomask even in an electron beam defect correction apparatus in which a sample chamber is vacuum.

電子ビーム欠陥修正装置のエッチングガスや遮光膜原料ガスの供給に使っている供給系と同様な構造のガス導入系で電子ビーム欠陥修正装置の作業室内に窒素を局所的に導入する。この窒素を真空内のガス導入系出口近傍に配置した放射線源である、ポロニウムのようなα線源から出るα線で電離させる。プラスとマイナスに電離した窒素が供給されることにより、電子ビームの照射でチャージアップした部分は除電される。   Nitrogen is locally introduced into the working chamber of the electron beam defect correction apparatus by a gas introduction system having the same structure as the supply system used for supplying the etching gas and light shielding film raw material gas of the electron beam defect correction apparatus. This nitrogen is ionized by α rays emitted from an α ray source such as polonium, which is a radiation source arranged in the vicinity of the gas introduction system outlet in a vacuum. By supplying positively and negatively ionized nitrogen, the portion charged up by electron beam irradiation is discharged.

または上記と同様な構造のガス導入系で電子ビーム欠陥修正装置の作業室内に窒素または水蒸気を局所的に導入する。この窒素または水蒸気を真空内のガス導入系出口近傍に配置した放射線源である、軟X線照射装置から出される軟X線で電離させる。プラスとマイナスに電離した窒素または水蒸気が供給されることにより、電子ビームの照射でチャージアップした部分は除電される。   Alternatively, nitrogen or water vapor is locally introduced into the working chamber of the electron beam defect correction apparatus using a gas introduction system having the same structure as described above. This nitrogen or water vapor is ionized by soft X-rays emitted from a soft X-ray irradiation apparatus, which is a radiation source arranged in the vicinity of the gas introduction system outlet in a vacuum. By supplying nitrogen or water vapor ionized positively and negatively, the portion charged up by electron beam irradiation is discharged.

ガス導入系で局所的に供給した窒素を電離するので真空装置内でもポロニウムのようなα線で除電することが可能である。局所的に窒素を供給するため真空排気系に大きな負担をかけることもなく、また除電後も短い排気時間で定常状態復帰可能で、電子ビーム欠陥修正に用いるエッチングガスや遮光膜原料ガスの効果を阻害することもない。プラスとマイナスに電離した窒素をガス導入系のガスの流れでチャージアップしたところに運べるので効率よく過剰な電荷を中和することができる。余剰な電離窒素は排気系で排出されるため新たなチャージアップを起こすこともない。   Since the locally supplied nitrogen is ionized in the gas introduction system, it is possible to remove the charge with α rays such as polonium in the vacuum apparatus. Since nitrogen is supplied locally, it does not place a heavy burden on the vacuum exhaust system, and it can return to the steady state in a short exhaust time after static elimination, and the effects of etching gas and light shielding film source gas used for correcting electron beam defects can be obtained. There is no hindrance. Nitrogen ionized positively and negatively can be transported to the place where it is charged up by the gas flow of the gas introduction system, so that excess charge can be neutralized efficiently. Excess ionized nitrogen is exhausted in the exhaust system, so no new charge-up occurs.

軟X線でもガス導入系で局所的に供給した窒素または水蒸気を電離するので真空装置内でも除電することが可能である。α線同様、プラスとマイナスに電離した窒素または水蒸気をガス導入系のガスの流れでチャージアップしたところに運べるので効率よく過剰な電荷を中和することができる。もちらん余剰な電離窒素や電離した水蒸気は排気系で排出されるため新たなチャージアップを起こすこともない。   Even with soft X-rays, the nitrogen or water vapor locally supplied by the gas introduction system is ionized, so that the static electricity can be removed even in a vacuum apparatus. Similar to α rays, nitrogen or water vapor ionized positively and negatively can be transported to the place where it is charged up by the gas flow of the gas introduction system, so that excess charge can be neutralized efficiently. Of course, excess ionized nitrogen and ionized water vapor are discharged through the exhaust system, so no new charge-up occurs.

以下に本発明の実施例について詳述する。
欠陥が見つかったフォトマスク14を電子ビーム欠陥修正装置に導入し、欠陥検査装置で見つかった欠陥位置にXYステージを移動する。1000V程度のチャージアップしにくい加速電圧の電子ビーム8で欠陥を含む領域のイメージングを行って欠陥9を認識し、欠陥9の材質に応じた適当なエッチングガスや遮光膜原料ガスをガス供給系12から供給しながら欠陥領域のみ選択走査を繰り返して加工し黒または白欠陥を修正する。
Examples of the present invention will be described in detail below.
The photomask 14 in which the defect is found is introduced into the electron beam defect repair apparatus, and the XY stage is moved to the defect position found in the defect inspection apparatus. The defect-containing region is imaged by imaging the region including the defect with an electron beam 8 with an acceleration voltage that is difficult to charge up to about 1000 V, and a gas supply system 12 supplies an appropriate etching gas or light shielding film source gas according to the material of the defect 9 The black and white defects are corrected by repeatedly performing selective scanning only on the defective area while supplying the defect.

上記修正工程で照射した電子ビームの蓄積によりチャージアップして欠陥修正個所の高精度な追加工ができない場合には、電子ビーム欠陥修正で使用したエッチングガスや遮光膜原料ガスが十分排気された状態で、図1(a)に示すように電子ビーム欠陥修正装置の作業室に取り付けられたガス導入系1のバルブを開き、作業室内に局所的に窒素を導入する。真空内のガス導入系出口近傍に配置したポロニウムのようなα線源2から出てくるα線3をガス導入系1の出口に向けて放射する。α線は窒素をプラスとマイナスに電離し、電離した窒素5は、電子ビーム8の照射が原因でチャージアップした部分4に照射され、過剰な電荷は中和され除電される。もちろん上記除電工程の間は電子ビームの照射は行わない。除電が終了後除電に用いた窒素を、電子ビーム欠陥修正で使用するエッチングガスや遮光膜原料ガスの効果を阻害しないように十分に排気する。   The state where the etching gas and light shielding film source gas used in the electron beam defect correction are sufficiently exhausted if the high-precision additional processing of the defect correction location cannot be performed due to the accumulation of the electron beam irradiated in the above correction process Then, as shown in FIG. 1 (a), the valve of the gas introduction system 1 attached to the work chamber of the electron beam defect correction apparatus is opened, and nitrogen is locally introduced into the work chamber. Α rays 3 emitted from an α ray source 2 such as polonium disposed in the vicinity of the gas introduction system outlet in the vacuum are emitted toward the outlet of the gas introduction system 1. The α rays ionize the nitrogen to plus and minus, and the ionized nitrogen 5 is irradiated to the portion 4 that has been charged up due to the irradiation of the electron beam 8, and the excess charge is neutralized and neutralized. Of course, no electron beam irradiation is performed during the above-described static elimination step. After neutralization is completed, the nitrogen used for static elimination is exhausted sufficiently so as not to impede the effects of the etching gas and light shielding film raw material gas used for correcting electron beam defects.

図2(a)に他の実施例を示す。図2(a)に示すように電子ビーム欠陥修正装置の作業室に取り付けられたガス導入系1で作業室内に局所的に導入した窒素または水蒸気を真空内のガス導入系出口近傍に配置した軟X線照射装置6から出される軟X線7をガス導入系1の出口に向けて放射する。軟X線で窒素または水蒸気はプラスとマイナスに電離し、電離した窒素または水蒸気5は、電子ビーム8の照射が原因でチャージアップした部分4に照射され過剰な電荷は中和され除電される。この場合も除電が終了後除電に用いた窒素または水蒸気を、電子ビーム欠陥修正で使用するエッチングガスや遮光膜原料ガスの効果を阻害しないように十分に排気する。   FIG. 2 (a) shows another embodiment. As shown in FIG. 2 (a), nitrogen or water vapor locally introduced into the work chamber by the gas introduction system 1 attached to the work chamber of the electron beam defect correction apparatus is arranged near the gas introduction system outlet in the vacuum. Soft X-rays 7 emitted from the X-ray irradiation device 6 are emitted toward the outlet of the gas introduction system 1. Nitrogen or water vapor is ionized positively and negatively by soft X-rays, and the ionized nitrogen or water vapor 5 is irradiated to the charged up portion 4 due to the irradiation of the electron beam 8, and the excess charge is neutralized and neutralized. Also in this case, the nitrogen or water vapor used for static elimination after the static elimination is sufficiently exhausted so as not to hinder the effects of the etching gas and the light shielding film raw material gas used for correcting the electron beam defects.

上記の方法で除電してから図1(b)や図2(b)に示すように1000V程度のチャージアップしにくい加速電圧の電子ビーム8で再度追加工したい部分9を認識し、適当なエッチングガスや遮光膜原料ガス13をガス供給系12から供給しながら追加工領域9のみ電子ビーム8の選択走査を繰り返し欠陥の追加工を行う。更に欠陥修正領域の追加工が必要でチャージアップで精度が出せないときには上記のα線もしくは軟X腺の除電と電子ビームによる追加工を繰り返して高精度な欠陥修正を行う。   After removing the charge by the above method, as shown in Fig. 1 (b) and Fig. 2 (b), recognize the portion 9 to be reworked with an electron beam 8 with an acceleration voltage that is difficult to charge up to about 1000V, and perform appropriate etching While supplying the gas and the light shielding film source gas 13 from the gas supply system 12, the selective scanning of the electron beam 8 is repeated only in the additional processing region 9, and the additional processing of the defect is performed. Furthermore, when additional work for the defect repair area is required and accuracy cannot be obtained due to charge-up, the above-mentioned alpha ray or soft X-gland static elimination and additional work using an electron beam are repeated to perform highly accurate defect repair.

α線で電離した窒素分子で電子ビームによるチャージアップを除電する場合の概略断面図である。It is a schematic sectional drawing in the case of neutralizing charge-up by an electron beam with nitrogen molecules ionized by α rays. 軟X線で電離した窒素分子または水分子で電子ビームによるチャージアップを除電する場合の概略断面図である。FIG. 3 is a schematic cross-sectional view in the case of removing charge-up by an electron beam with nitrogen molecules or water molecules ionized by soft X-rays.

符号の説明Explanation of symbols

1 窒素(水蒸気)ガス導入系
2 α線源(ポロニウム)
3 α線
4 電荷の蓄積でチャージアップした部分
5 電離した窒素(水)分子
6 軟X線照射装置
7 軟X線
8 電子ビーム
9 欠陥(追加工領域)
10 ガラスまたは石英基板
11 遮光膜パターン
12 エッチングガスまたは遮光膜原料ガス供給系
13 エッチングガスまたは遮光膜原料ガス
14 フォトマスク
1 Nitrogen (water vapor) gas introduction system
2 α-ray source (polonium)
3 alpha rays
4 Charge-up portion due to charge accumulation
5 Ionized nitrogen (water) molecules
6 Soft X-ray irradiation equipment
7 Soft X-ray
8 electron beam
9 Defects (additional machining area)
10 Glass or quartz substrate
11 Light-shielding film pattern
12 Etching gas or light shielding film source gas supply system
13 Etching gas or light shielding film source gas
14 Photomask

Claims (8)

電子ビーム欠陥修正装置内に窒素を導入する工程と、
前記導入した窒素を電離する工程と、
前記電離した窒素を試料上の電子がチャージアップした部分に照射し除電する工程と、
からなる電子ビーム欠陥修正装置の除電方法。
Introducing nitrogen into the electron beam defect repair device;
Ionizing the introduced nitrogen;
Irradiating the ionized nitrogen to the part where the electrons on the sample are charged up, and removing electricity;
A method of neutralizing an electron beam defect correcting apparatus comprising:
前記窒素の電離はα線を用いて行う請求項1記載の電子ビーム欠陥修正装置の除電方法。   The ionization method of the electron beam defect correction apparatus according to claim 1, wherein the ionization of nitrogen is performed using α rays. 前記窒素は、試料にガスを吹き付けるためのガス導入系より導入し、前記α線は前記ガス導入系の出口付近のガスに向けて照射される請求項2記載の電子ビーム欠陥修正装置の除電方法。   The method of claim 2, wherein the nitrogen is introduced from a gas introduction system for spraying a gas to a sample, and the α-ray is irradiated toward a gas near an outlet of the gas introduction system. . 請求項2記載の電子ビーム欠陥修正装置の除電方法においてα線源がポロニウムであることを特徴とする電子ビーム欠陥修正装置の除電方法。   3. The method for neutralizing an electron beam defect correcting apparatus according to claim 2, wherein the α-ray source is polonium. 前記窒素の電離は、軟X線を用いて行う請求項1記載の電子ビーム欠陥装置の除電方法。     2. The method of claim 1, wherein the ionization of nitrogen is performed using soft X-rays. 電子ビーム欠陥修正装置内に水蒸気を導入する工程と、
前記導入した水蒸気を電離する工程と、
前記電離した水蒸気を試料上の電子がチャージアップした部分に照射し除電する工程と、
からなる電子ビーム欠陥修正装置の除電方法。
Introducing water vapor into the electron beam defect correcting device;
Ionizing the introduced water vapor;
Irradiating the ionized water vapor to the charged part of the electrons on the sample;
A method of neutralizing an electron beam defect correcting apparatus comprising:
前記水蒸気の電離は軟X線を用いて行う請求項6記載の電子ビーム欠陥修正装置の除電方法。   7. The method for removing electricity from an electron beam defect correcting apparatus according to claim 6, wherein the ionization of the water vapor is performed using soft X-rays. 試料上に窒素、又は水蒸気を吹き付けるためのガス導入系と、
前記ガス導入系の出口付近に向けて前記窒素、又は水蒸気を電離させる放射線を照射する、放射線源を設けた電子ビーム欠陥修正装置。
A gas introduction system for spraying nitrogen or water vapor on the sample;
An electron beam defect correcting apparatus provided with a radiation source for irradiating the nitrogen or water vapor with ionizing radiation toward the vicinity of an outlet of the gas introduction system.
JP2004341726A 2004-11-26 2004-11-26 Destaticizing method of electron beam defect correction device and its device Withdrawn JP2006155983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341726A JP2006155983A (en) 2004-11-26 2004-11-26 Destaticizing method of electron beam defect correction device and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341726A JP2006155983A (en) 2004-11-26 2004-11-26 Destaticizing method of electron beam defect correction device and its device

Publications (1)

Publication Number Publication Date
JP2006155983A true JP2006155983A (en) 2006-06-15

Family

ID=36634029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341726A Withdrawn JP2006155983A (en) 2004-11-26 2004-11-26 Destaticizing method of electron beam defect correction device and its device

Country Status (1)

Country Link
JP (1) JP2006155983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501999A (en) * 2006-12-08 2010-01-21 キヤノン株式会社 Exposure equipment
JP2014016355A (en) * 2008-07-22 2014-01-30 Ebara Corp Method and device for charged particle beam inspection
JP2014522478A (en) * 2011-04-04 2014-09-04 オムニプローブ、インコーポレイテッド Method for extracting frozen specimen and production of specimen assembly
JP2015132623A (en) * 2015-03-13 2015-07-23 株式会社荏原製作所 charged particle beam inspection method and apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139842A (en) * 1988-11-18 1990-05-29 Nikon Corp Electron beam device
JPH08273579A (en) * 1995-03-31 1996-10-18 Nec Corp Method for observing sample with scanning electron microscope
JPH1164812A (en) * 1997-08-22 1999-03-05 Chisso Corp Device and method for applying thin film and manufacture of liquid crystal display element
JP2001257096A (en) * 2000-03-10 2001-09-21 Techno Ryowa Ltd Jet outlet for electrostatic countermeasure
JP2004519012A (en) * 2001-01-04 2004-06-24 エイエスエムエル ユーエス, インコーポレイテッド In-situ lithography mask cleaning
JP2004253182A (en) * 2003-02-18 2004-09-09 Hitachi High-Technologies Corp Defect analyzing apparatus
JP2004287321A (en) * 2003-03-25 2004-10-14 Sii Nanotechnology Inc Method for correcting defect in photomask

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139842A (en) * 1988-11-18 1990-05-29 Nikon Corp Electron beam device
JPH08273579A (en) * 1995-03-31 1996-10-18 Nec Corp Method for observing sample with scanning electron microscope
JPH1164812A (en) * 1997-08-22 1999-03-05 Chisso Corp Device and method for applying thin film and manufacture of liquid crystal display element
JP2001257096A (en) * 2000-03-10 2001-09-21 Techno Ryowa Ltd Jet outlet for electrostatic countermeasure
JP2004519012A (en) * 2001-01-04 2004-06-24 エイエスエムエル ユーエス, インコーポレイテッド In-situ lithography mask cleaning
JP2004253182A (en) * 2003-02-18 2004-09-09 Hitachi High-Technologies Corp Defect analyzing apparatus
JP2004287321A (en) * 2003-03-25 2004-10-14 Sii Nanotechnology Inc Method for correcting defect in photomask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501999A (en) * 2006-12-08 2010-01-21 キヤノン株式会社 Exposure equipment
JP2014016355A (en) * 2008-07-22 2014-01-30 Ebara Corp Method and device for charged particle beam inspection
JP2014522478A (en) * 2011-04-04 2014-09-04 オムニプローブ、インコーポレイテッド Method for extracting frozen specimen and production of specimen assembly
JP2015132623A (en) * 2015-03-13 2015-07-23 株式会社荏原製作所 charged particle beam inspection method and apparatus

Similar Documents

Publication Publication Date Title
US7662524B2 (en) Photolithography mask repair
US6753538B2 (en) Electron beam processing
JP5779210B2 (en) Charged particle beam inspection method and apparatus
TWI485742B (en) Charged particle beam device and semiconductor device manufacturing method using the same
JP2011192654A (en) Sample surface inspection method and inspection device
US7727681B2 (en) Electron beam processing for mask repair
JP2006155983A (en) Destaticizing method of electron beam defect correction device and its device
JPS63500899A (en) Ion beam device and method of changing a substrate using an ion beam device
US20210327678A1 (en) Particle beam apparatus, defect repair method, lithographic exposure process and lithographic system
WO2006135021A1 (en) Charged particle beam equipment and method for creating charged particle beam image
JP2005303315A (en) Method of manufacturing device
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP2002214760A (en) Method for correcting black defect of mask
US6703623B1 (en) Electron beam proximity exposure apparatus
TW201802580A (en) Method for inspecting blanking plate
JP3908516B2 (en) Photomask defect repair device using ion beam
JP3908530B2 (en) Photomask white defect correction method
JP2011103177A (en) Electron beam irradiation method and electron beam irradiation device
JP2008071492A (en) Charged particle beam apparatus, and device manufacturing method using the apparatus
TWI598924B (en) Ozone supply device, ozone supply method, and charged particle beam drawing device
JP4960393B2 (en) Charged particle beam apparatus and device manufacturing method using the apparatus
JP2000047371A (en) Charge neutralization method for convergent ion beam device
JPH04448A (en) Method for correcting photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100707